JP7442147B2 - 無人飛行体、情報処理方法およびプログラム - Google Patents

無人飛行体、情報処理方法およびプログラム Download PDF

Info

Publication number
JP7442147B2
JP7442147B2 JP2021501561A JP2021501561A JP7442147B2 JP 7442147 B2 JP7442147 B2 JP 7442147B2 JP 2021501561 A JP2021501561 A JP 2021501561A JP 2021501561 A JP2021501561 A JP 2021501561A JP 7442147 B2 JP7442147 B2 JP 7442147B2
Authority
JP
Japan
Prior art keywords
sound
target
sound source
unmanned
aerial vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021501561A
Other languages
English (en)
Other versions
JPWO2020170510A1 (ja
Inventor
ステファン ウィリアム ジョン
一暢 小西
勝彦 浅井
和夫 井上
俊介 久原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Publication of JPWO2020170510A1 publication Critical patent/JPWO2020170510A1/ja
Application granted granted Critical
Publication of JP7442147B2 publication Critical patent/JP7442147B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0047Navigation or guidance aids for a single aircraft
    • G08G5/0069Navigation or guidance aids for a single aircraft specially adapted for an unmanned aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D45/00Aircraft indicators or protectors not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/02Initiating means
    • B64C13/16Initiating means actuated automatically, e.g. responsive to gust detectors
    • B64C13/18Initiating means actuated automatically, e.g. responsive to gust detectors using automatic pilot
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/02Initiating means
    • B64C13/16Initiating means actuated automatically, e.g. responsive to gust detectors
    • B64C13/20Initiating means actuated automatically, e.g. responsive to gust detectors using radiated signals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D31/00Power plant control systems; Arrangement of power plant control systems in aircraft
    • B64D31/02Initiating means
    • B64D31/06Initiating means actuated automatically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U20/00Constructional aspects of UAVs
    • B64U20/80Arrangement of on-board electronics, e.g. avionics systems or wiring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • B64U30/26Ducted or shrouded rotors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/80Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using ultrasonic, sonic or infrasonic waves
    • G01S3/802Systems for determining direction or deviation from predetermined direction
    • G01S3/803Systems for determining direction or deviation from predetermined direction using amplitude comparison of signals derived from receiving transducers or transducer systems having differently-oriented directivity characteristics
    • G01S3/8034Systems for determining direction or deviation from predetermined direction using amplitude comparison of signals derived from receiving transducers or transducer systems having differently-oriented directivity characteristics wherein the signals are derived simultaneously
    • G01S3/8036Systems for determining direction or deviation from predetermined direction using amplitude comparison of signals derived from receiving transducers or transducer systems having differently-oriented directivity characteristics wherein the signals are derived simultaneously derived directly from separate directional systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/18Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using ultrasonic, sonic, or infrasonic waves
    • G01S5/28Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using ultrasonic, sonic, or infrasonic waves by co-ordinating position lines of different shape, e.g. hyperbolic, circular, elliptical or radial
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • G05D1/102Simultaneous control of position or course in three dimensions specially adapted for aircraft specially adapted for vertical take-off of aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C11/00Propellers, e.g. of ducted type; Features common to propellers and rotors for rotorcraft
    • B64C11/001Shrouded propellers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/10UAVs characterised by their flight controls autonomous, i.e. by navigating independently from ground or air stations, e.g. by using inertial navigation systems [INS]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/20Remote controls
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S2205/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S2205/01Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations specially adapted for specific applications
    • G01S2205/03Airborne
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/18Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using ultrasonic, sonic, or infrasonic waves

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Remote Sensing (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Description

本開示は、無人飛行体、情報処理方法およびプログラムに関する。
特許文献1には、バックグラウンドマイクロフォンによって収集された音声データからバックグラウンドノイズを除去する処理を行う無人航空機が開示されている。
特表2017-502568号公報
しかしながら、特許文献1の技術では、音源への安全性が考慮されていないため、安全性を確保した上で収音品質を向上することが難しい場合がある。
そこで本開示では、音源への安全性を確保した上で収音品質を向上することができる無人飛行体、情報処理方法及びプログラムを提供する。
本開示に係る無人飛行体は、無人飛行体であって、音データを生成するマイクロフォンを少なくとも含むセンサと、プロセッサと、を備え、前記プロセッサは、前記マイクロフォンが生成する音データを用いて、ターゲット音の品質を判定し、前記センサが生成するデータを用いて、前記無人飛行体と前記ターゲット音の音源との位置関係を取得し、前記ターゲット音の品質と前記位置関係とに基づいて、前記無人飛行体と前記ターゲット音の音源との間の距離が制御されるように、前記無人飛行体の移動を制御する。
なお、これらの全般的または具体的な態様は、システム、方法、集積回路、コンピュータプログラムまたはコンピュータ読み取り可能なCD-ROMなどの記録媒体で実現されてもよく、システム、方法、集積回路、コンピュータプログラムおよび記録媒体の任意な組み合わせで実現されてもよい。
本開示に係る無人飛行体、情報処理方法およびプログラムは、音源への安全性を確保した上で収音品質を向上することができる。
図1は、実施の形態に係る無人飛行体およびコントローラの外観を示す図である。 図2は、実施の形態に係る無人飛行体を上方から見た場合の平面図である。 図3は、図2に示す無人飛行体のIII-III断面図である。 図4は、実施の形態に係る無人飛行体の構成を示すブロック図である。 図5は、実施の形態に係る無人飛行体の収音制御における動作例を示すフローチャートである。 図6は、無人飛行体によるターゲット音の品質の判定処理の一例を示すフローチャートである。 図7は、ターゲット音の品質の指標としてのSN比を算出する算出方法の一例を示す図である。 図8Aは、実施の形態に係る無人飛行体の収音制御における動作例の第1の場面を説明するための図である。 図8Bは、実施の形態に係る無人飛行体の収音制御における動作例の第2の場面を説明するための図である。 図8Cは、実施の形態に係る無人飛行体の収音制御における動作例の第3の場面を説明するための図である。 図9Aは、実施の形態に係る無人飛行体の収音制御における動作例の第4の場面を説明するための図である。 図9Bは、実施の形態に係る無人飛行体の収音制御における動作例の第5の場面を説明するための図である。 図9Cは、実施の形態に係る無人飛行体の収音制御における動作例の第6の場面を説明するための図である。 図10Aは、実施の形態に係る無人飛行体の収音制御における動作例の第7の場面を説明するための図である。 図10Bは、実施の形態に係る無人飛行体の収音制御における動作例の第8の場面を説明するための図である。 図10Cは、実施の形態に係る無人飛行体の収音制御における動作例の第9の場面を説明するための図である。 図11Aは、実施の形態に係る無人飛行体の収音制御における動作例の第10の場面を説明するための図である。 図11Bは、実施の形態に係る無人飛行体の収音制御における動作例の第11の場面を説明するための図である。 図12Aは、実施の形態に係る無人飛行体の収音制御における動作例の第12の場面を説明するための図である。 図12Bは、実施の形態に係る無人飛行体の収音制御における動作例の第13の場面を説明するための図である。 図13は、基準SN比と用途との関係の一例を示す表である。 図14は、変形例に係る無人飛行体の収音制御における動作例を示すフローチャートである。 図15は、変形例に係る無人飛行体の収音制御における別の動作例を示すフローチャートである。
(本開示の基礎となった知見)
特許文献1に記載されている無人航空機は、上述したように、無人航空機が有する回転翼などの推進ユニットから生じるバックグラウンドノイズを、収集された音声データから除去する処理を行っている。しかしながら、この無人航空機は、音声データを収集する対象となる音源との間の相対的な位置関係を考慮していない。このため、無人航空機が備える、音源からのターゲット音声を検出する音源収集マイクロフォンが、効果的に収音することができる収音範囲内に、音源が含まれていない場合が生じる。このように、音源収集マイクロフォンの収音範囲内に、音源が含まれていない場合、ターゲット音声を音源収集マイクロフォンによって効率よく収音することができないため、相対的にバックグラウンドノイズの方を大きく収集することになる。これにより、音源収集マイクロフォンで得られる音声データのノイズ成分が相対的に大きくなるため、SN(Signal Noise)比が小さくなる。よって、得られた音声データに、バックグラウンドノイズを除去する処理を行ったとしても、高品質な音声データを得ることは難しい。
そこで、音源からのターゲット音声をバックグラウンドノイズよりも相対的に大きく収集するために、無人航空機を音源に近づけて音声データを収集することが考えられる。無人航空機を音源に近づける方向に移動させ、音源に近い位置で音声データを収集させる場合、無人航空機が制御不能となったり、無人航空機の推進力を発生させているアクチュエータに不具合が発生したりすれば、音源に向かって無人航空機が落下するおそれがある。このため、例えば音源を防護ネットで囲うなどの安全対策をすることで、音源の安全を確保する必要があった。つまり、防護ネットを製造し、設置するためのエネルギーまたはコストを余分に費やさないと、音源の安全性の確保が難しかった。
このような問題を解決するために、本開示の一態様に係る無人飛行体は、無人飛行体であって、音データを生成するマイクロフォンを少なくとも含むセンサと、プロセッサと、を備え、前記プロセッサは、前記マイクロフォンが生成する音データを用いて、ターゲット音の品質を判定し、前記センサが生成するデータを用いて、前記無人飛行体と前記ターゲット音の音源との位置関係を取得し、前記ターゲット音の品質と前記位置関係とに基づいて、前記無人飛行体と前記ターゲット音の音源との間の距離が制御されるように、前記無人飛行体の移動を制御する。このため、無人飛行体と音源との間の距離を制御しつつ、ターゲット音の品質を確保することができる。よって、音源への安全性を確保した上で収音品質を向上することができる。
また、前記プロセッサは、前記ターゲット音の品質が予め定められた目標品質よりも高い場合、前記音源から離れるように前記無人飛行体の移動を制御してもよい。このため、目標品質が維持される範囲で離れるため、音源の安全性をさらに向上させることができる。
また、前記プロセッサは、前記音源から離れるように前記無人飛行体の移動を制御する場合、前記無人飛行体の現在位置から前記ターゲット音の品質が前記目標品質となる位置までの間のいずれかの位置に移動するように、前記無人飛行体の移動を制御してもよい。このため、収音品質が目標品質を下回ることなく、音源の安全性を高めることができる。
また、前記プロセッサは、前記ターゲット音の品質が予め定められた目標品質よりも低い場合、前記音源に近づくように前記無人飛行体の移動を制御してもよい。このため、目標品質が満たされるまでの範囲で接近するため、音源の安全性を確保した上で、さらにターゲット音の収音品質を向上させることができる。
また、前記プロセッサは、さらに、前記音源からの所定距離を示す距離情報を取得し、前記音源に近づくように前記無人飛行体の移動を制御する場合、前記距離情報と前記位置関係とに基づいて、前記音源から前記所定距離離れた位置よりも前記音源に近づかないように、前記無人飛行体の移動を制御してもよい。このため、音源の安全性が確保できる範囲で、音源に近づく方向に無人飛行体を移動させるため、音源と無人飛行体とを少なくとも所定距離以上離すことで収音品質を向上させつつ、音源への安全性を確実に確保できる。
また、さらに、前記マイクロフォンの向き、および、前記無人飛行体から外向きの前記マイクロフォンの突出量の少なくとも一方を変更するアクチュエータを備え、前記プロセッサは、前記距離情報と前記位置関係とに基づいて、前記音源から前記所定距離離れた位置まで前記音源に近づくように前記無人飛行体の移動を制御した後において、前記ターゲット音の品質が予め定められた目標品質よりも品質が低い場合、前記アクチュエータを制御することで、前記マイクロフォンの向き、および、前記無人飛行体から外向きの前記マイクロフォンの突出量の少なくとも一方を変更してもよい。
このため、プロセッサは、アクチュエータを制御することで、マイクロフォンの向きを変更させる場合、マイクロフォンの感度が高い方向を音源へ向けることができる。これにより、マイクロフォンの感度が高い方向と音源方向とを一致させることができるため、騒音の音圧レベルに対するターゲット音の音圧レベルを相対的に向上させることができ収音品質を向上させることができる。
また、プロセッサは、アクチュエータを制御することで、無人飛行体の外方向へのマイクロフォンの突出量を変更させる場合、マイクロフォンを無人飛行体の外方向へ突出させ、マイクロフォンを音源に近づけることができる。これにより、マイクロフォンは騒音の発生源である無人飛行体から離れるため、騒音の音圧レベルを低下させることができる。また、マイクロフォンは音源に近づくため、騒音の音圧レベルに対するターゲット音の音圧レベルを相対的に向上させることができる。これにより、効果的に収音品質を向上させることができる。
また、前記プロセッサは、前記品質を判定するための指標として、前記ターゲット音と前記無人飛行体の飛行に関わる騒音とを用いて算出されるSN(Signal Noise)比を算出してもよい。このため、ターゲット音の品質を容易に判定することができる。
また、前記プロセッサは、さらに、前記予め定められた目標品質として、前記無人飛行体の飛行に関わる騒音を用いて予め設定された目標SN比を取得し、取得された前記目標SN比と算出された前記SN比とを比較することで、前記ターゲット音の品質を判定してもよい。このため、予め目標SN比を算出するため、収音品質の処理量を削減できる。
また、前記プロセッサは、前記無人飛行体が水平方向に移動するように前記無人飛行体を制御してもよい。これにより、無人飛行体は、水平方向において音源から離れる方向に移動するため、水平方向における音源からの距離を確保することができる。このため、現在位置よりも高い位置に行かないことで、無人飛行体が落下した際の衝撃を軽減でき、音源の安全を確保することができる。
また、前記プロセッサは、前記無人飛行体が地面に対して近づくように前記無人飛行体を制御してもよい。これにより、無人飛行体は、地面に近づくことで音源に近づく方向に移動するため、水平方向における音源からの距離を確保したまま音源に近づくことができる。このため、現在位置よりも地面に近づくことで、無人飛行体が落下した際の衝撃をより軽減でき、音源の安全を確保することができる。
また、前記プロセッサは、前記音データを用いて、前記位置関係を取得してもよい。これにより、マイクロフォンのみ搭載して、音源への安全性を確保した上で収音品質を向上することができる。延いては、無人飛行体の総重量の増加を抑制することができる。
また、前記センサは、さらに、画像データを生成するイメージセンサを含み、前記プロセッサは、前記イメージセンサにより生成された前記画像データを用いて、前記位置関係を取得してもよい。これによれば、プロセッサは、画像データを用いて位置関係を取得するため、精度が高い位置関係を取得することができる。
また、前記センサは、さらに、測距データを生成する測距センサを含み、前記プロセッサは、前記測距センサにより生成された前記測距データを用いて、前記位置関係を取得してもよい。これによれば、プロセッサは、測距データを用いて位置関係を取得するため、精度が高い位置関係を取得することができる。
また、前記プロセッサは、前記ターゲット音の品質と前記位置関係と予め定められた目標品質とに基づいて目標距離を決定し、前記無人飛行体と前記音源との間の距離が前記目標距離となるように前記無人飛行体の移動を制御してもよい。これにより、無人飛行体は、予め定められた目標品質に対応する位置に移動することができる。
また、前記位置関係は、(i)前記無人飛行体と前記音源との間の距離、(ii)前記無人飛行体に対する前記音源の位置、および、(iii)前記無人飛行体から前記音源への方向の少なくともいずれか1つであってもよい。
なお、これらの全般的または具体的な態様は、システム、方法、集積回路、コンピュータプログラムまたはコンピュータ読み取り可能なCD-ROMなどの記録媒体で実現されてもよく、システム、方法、集積回路、コンピュータプログラムまたは記録媒体の任意な組み合わせで実現されてもよい。
以下、本発明の一態様に係る無人飛行体について、図面を参照しながら具体的に説明する。
なお、以下で説明する実施の形態は、いずれも本発明の一具体例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
(実施の形態)
以下、図1~図12Bを用いて、実施の形態を説明する。
[1.構成]
図1は、実施の形態に係る無人飛行体およびコントローラの外観を示す図である。図2は、実施の形態に係る無人飛行体を上方から見た場合の平面図である。
図1に示すように、無人飛行体100は、コントローラ200へのユーザによる操作に応じた操作信号をコントローラ200から受信し、受信した操作信号に応じて飛行する。また、無人飛行体100は、飛行している状態において、受信した操作信号に応じて無人飛行体100が備えるカメラ107を用いて撮像してもよい。カメラ107により撮像された画像データは、後述する携帯端末300に送信されてもよい。
コントローラ200は、ユーザからの操作を受け付け、受け付けた操作に応じた操作信号を無人飛行体100に送信する。また、コントローラ200は、スマートフォンなどの、ディスプレイを有する携帯端末300を保持していてもよい。
携帯端末300は、無人飛行体100のカメラ107により撮像された画像データを無人飛行体100から受信し、例えばリアルタイムに受信した画像データを表示する。
これにより、ユーザは、無人飛行体100のカメラ107に撮像させた画像データを、携帯端末300でリアルタイムに確認しながら、コントローラ200を操作することで、無人飛行体100の飛行中における位置および姿勢の少なくとも一方である飛行状態を変更することができる。このため、ユーザは、無人飛行体100のカメラ107によって撮像する撮像範囲を自由に変更することができる。
無人飛行体100は、4つの発生器110と、4つのダクト130と、本体140と、4本のアーム141とを備える。
4つの発生器110のそれぞれは、無人飛行体100を飛行させる力を発生させる。4つの発生器110のそれぞれは、具体的には、気流を発生させることで無人飛行体100を飛行させる力を発生させる。4つの発生器110のそれぞれは、回転することで気流を発生させる回転翼111と、回転翼111を回転させるアクチュエータ112とを有する。回転翼111およびアクチュエータ112は、無人飛行体100が水平面に設置されている状態において鉛直方向に略平行な回転軸を有し、上方から下方に向かって流れる気流を発生させる。これにより、4つの発生器110は、無人飛行体100が上方に浮上する推力を発生し、無人飛行体100を飛行させる力を発生させる。アクチュエータ112は、例えば、モータである。
4つの発生器110は、上方から見た場合、本体140を中心として、90度の角度間隔でそれぞれ配置されている。つまり、4つの発生器110は、本体140を囲うように環状に並んで配置されている。
なお、4つの発生器110のそれぞれが有する回転翼111は、1つのプロペラで構成される例を図示しているが、これに限らずに、2つのプロペラが同一の回転軸において互いに逆回転する二重反転プロペラで構成されていてもよい。
図3は、図2に示す無人飛行体のIII-III断面図である。つまり、図3は、1つの発生器110および当該発生器110に対応して配置されるダクト130を回転翼111の回転軸を通る平面で切断したときの断面図である。
4つのダクト130は、それぞれ、4つの発生器110に対応して設けられる。4つのダクト130のそれぞれは、対応する発生器110の側方を覆う位置に、つまり、当該発生器110の回転翼111の回転軸方向に略直交する方向を覆う位置に、配置される。例えば、4つのダクト130のそれぞれは、対応する発生器110の回転軸方向の長さに亘って、当該発生器110の側方を覆う。つまり、4つのダクト130のそれぞれは、内部に発生器110が配置される空間131であって、上下方向に当該ダクト130を貫通する円柱形状の空間131を有する。4つのダクト130のそれぞれは、対応する発生器110が発生させる気流の下流側に向かうほど、当該ダクト130の厚みが薄くなる形状を有する。4つのダクト130のそれぞれは、具体的には、対応する発生器110が発生させる気流の下流側に向かうほど、当該ダクト130の円柱形状の内面に、当該ダクト130の外面が近づく形状を有する。つまり、4つのダクト130のそれぞれは、対応する発生器110が発生させる気流の下流側が尖っている形状を有する。また、ダクト130の内面の気流の上流側の端部は、丸みを帯びた形状である。具体的には、当該端部は、ダクト130の内径が気流方向に向かって尻すぼむ形状である。これにより、ダクト130に空気が入りやすくすることができ、飛行性能を向上させることができる。また、ダクト130ひいては無人飛行体100の軽量化が可能となる。なお、当該端部は、気流の方向に即した直線的な形状であってもよい。
本体140は、例えば、円柱形状の箱状の部材、つまり、筐体であり、内部に、プロセッサ、メモリ、バッテリ、各種センサなどの電子機器が配置されている。なお、本体140の形状は、円柱形状に限らずに、四角柱など他の形状の箱状の部材であってもよい。また、本体140は、外部に、4つのマイクロフォン105、ジンバル106、および、カメラ107が配置されている。例えば、4つのマイクロフォン105は、それぞれ、本体140の側面のうち、4つの発生器110に対応する4つのアーム141が接続されている4つの領域の間の領域に配置されている。つまり、例えば、4つのマイクロフォン105は、それぞれ、本体140を中心として、4つの発生器110のそれぞれに向かう方向を基準に45°ずれた方向に対応する位置に配置されている。
4つのアーム141は、本体140と4つのダクト130とを接続する部材である。4つのアーム141は、一端が本体140に固定されており、他端が4つのダクト130のうちの対応する1つに固定されている。
図4は、実施の形態に係る無人飛行体の構成を示すブロック図である。具体的には、図4は、無人飛行体100が備えるハードウェア構成を用いて実現されるプロセッサ101による機能について説明するためのブロック図である。
図4に示すように、無人飛行体100は、プロセッサ101と、GPS(Global Positioning System)受信機102と、加速度センサ103と、ジャイロセンサ104と、4つのマイクロフォン105と、ジンバル106と、カメラ107と、測距センサ108と、通信IF109と、4つの発生器110とを備える。
プロセッサ101は、加速度センサ103、ジャイロセンサ104、4つのマイクロフォン105、カメラ107が有するイメージセンサ、測距センサ108などを含む各種センサにより検出された検出結果、GPS受信機102または通信IF109による受信結果などを取得し、取得した検出結果または受信結果に対して、図示しないメモリまたはストレージに記憶されている所定のプログラムを実行することで各種処理を実行する。これにより、プロセッサ101は、4つの発生器110、ジンバル106およびカメラ107のうちの少なくとも1つを制御する。
GPS受信機102は、GPS衛星を含む人工衛星から当該GPS受信機102の位置を示す情報を受信する。つまり、GPS受信機102は、無人飛行体100の現在位置を検出する。GPS受信機102は、検出された無人飛行体100の現在位置をプロセッサ101または図示しないストレージに逐次出力する。
加速度センサ103は、無人飛行体100の異なる3方向のそれぞれにかかる加速度を検出するセンサである。
ジャイロセンサ104は、無人飛行体100の異なる3方向を軸とした3軸周りそれぞれの回転における角速度を検出するセンサである。
4つのマイクロフォン105のそれぞれは、特定の方向を基準とする所定の角度範囲である収音範囲において、収音範囲以外の角度範囲よりも高品質な音を収音することができる特性の指向性を有するマイクロフォンであり、センサの一例である。所定の角度範囲は、例えば、90°以下の角度範囲であり、マイクロフォン105の位置を基準とした広がりを有する3次元的な角度範囲である。4つのマイクロフォン105のそれぞれは、複数のマイクロフォン素子を有するマイクロフォンアレイであってもよい。4つのマイクロフォン105のそれぞれは、収音することで音データを逐次生成し、逐次生成された音データをプロセッサ101または図示しないストレージに逐次出力する。ストレージに音データが出力された場合、ストレージは、出力された音データを逐次記憶する。このとき、ストレージは、例えば、現在時刻を示す時刻情報と対応付けて音データを記憶してもよい。
ジンバル106は、カメラ107の三軸方向周りの姿勢を一定に保つための機器である。つまり、ジンバル106は、無人飛行体100の姿勢が変化しても、カメラ107の姿勢を、例えば、地球座標系に対して所望の姿勢に維持するための機器である。ここで所望の姿勢とは、コントローラ200から受信した操作信号に含まれるカメラ107の撮像方向によって定まる姿勢である。
カメラ107は、レンズなどの光学系およびイメージセンサを有する機器であり、センサの一例である。カメラ107は、撮像することで画像データを逐次生成し、逐次生成された画像データをプロセッサ101またはストレージに逐次出力する。ストレージに画像データが出力された場合、ストレージは、出力された画像データを逐次記憶する。このとき、ストレージは、例えば、現在時刻を示す時刻情報と対応付けて画像データを記憶してもよい。
測距センサ108は、測距センサ108から周囲の物体までの距離を検出するセンサである。測距センサ108は、例えば、超音波センサ、TOF(Time Of Flight)カメラ、LIDAR(Light Detection and Ranging)などである。測距センサ108により生成される測距データは、測距センサ108を基準とした方向と、当該方向における周囲の物体までの距離とが対応付けられたデータであってもよい。測距センサ108は、無人飛行体100の規定の位置に固定されている。このため、当該規定の位置と、無人飛行体100の本体140の中心の位置などのような無人飛行体100の基準位置との位置関係は、固定された関係にある。よって、測距センサ108の検出結果を用いることで、無人飛行体100は、無人飛行体100の基準位置と周囲の物体との間の位置関係を算出することができる。測距センサ108は、センサの一例である。測距センサ108は、測距することで測距データを逐次生成し、生成された測距データをプロセッサ101またはストレージに逐次出力する。ストレージに測距データが出力された場合、ストレージは、出力された測距データを逐次記憶する。このとき、ストレージは、例えば、現在時刻を示す時刻情報と対応付けて測距データを逐次記憶してもよい。なお、無人飛行体100には、複数の測距センサ108が無人飛行体100の異なる複数の位置に配置されていてもよい。これにより、複数の測距センサ108は、無人飛行体100から異なる複数の方向にある物体までの距離を検出することができる。
通信IF109は、コントローラ200または携帯端末300との間で通信する通信インタフェースである。通信IF109は、例えば、コントローラ200が発する送信信号を受信するための通信インタフェースを含む。また、通信IF109は、携帯端末300との間で無線通信するための通信インタフェース、つまり、通信IF109は、例えば、IEEE802.11a、b、g、n、ac、ax規格に適合した無線LAN(Local Area Network)インタフェースであってもよい。
4つの発生器110は、上述により説明しているため、詳細な説明を省略する。
プロセッサ101は、機能構成として、収音処理部101aと、品質判定部101bと、音源判定部101cと、位置検出部101dと、飛行制御部101eと、映像制御部101fと、障害物検知部101gとを有する。なお、各処理部101a~101gは、各種センサから逐次検出された検出データ、他の処理部により逐次実行された処理結果などを用いて処理を逐次実行し、得られた処理結果を予め定められた出力先に逐次出力する。
収音処理部101aは、4つのマイクロフォン105のそれぞれが収音することで生成した4つの音データを取得し、取得された4つの音データのそれぞれに対して所定の音処理を実行する。収音処理部101aは、ノイズ処理部101aaと、騒音レベル演算部101abとを有する。ノイズ処理部101aaは、取得された音データに対して、音源分離処理を行うことで、無人飛行体100の飛行に関わる騒音と、ターゲット音とを分離する。無人飛行体100の飛行に関わる騒音(以下、「騒音」という。)とは、例えば、無人飛行体100の発生器110が駆動することにより生じる騒音である。ノイズ処理部101aaは、例えば、任意の方向への指向性を得るための指向性フィルタを、各マイクロフォン105が有する複数のマイクロフォン素子のそれぞれから得られた音声信号に適用することで、騒音、または、ターゲット音を抽出する。これにより、騒音と、ターゲット音とが分離される。次に、騒音レベル演算部101abは、ノイズ処理部101aaにより分離された騒音の音圧レベルと、ノイズ処理部101aaにより分離されたターゲット音の音圧レベルとを算出する。これにより、収音処理部101aでは、4つのマイクロフォン105のそれぞれが収音することで生成した4つの音データのそれぞれについて、当該音データに含まれる騒音と、ターゲット音とが抽出される。なお、騒音レベル演算部101abは、所定の周波数帯域の音成分をフィルタリングする所定の音処理を実行することで、音データに含まれる騒音を低減してもよい。所定の周波数帯域の音成分は、例えば、発生器110の回転翼111が回転することで発生する騒音の周波数帯域である。
品質判定部101bは、収音処理部101aにより得られた騒音の音圧レベルと、ターゲット音の音圧レベルとを用いて、ターゲット音の品質が予め定められた目標品質よりも高いか低いかを判定する。なお、具体的には、品質判定部101bは、騒音の音圧レベルと、ターゲット音の音圧レベルとを用いて、ターゲット音の騒音に対するSN比を、ターゲット音の品質を判定するための指標として算出する。そして、品質判定部101bは、予め定められた目標品質として、ターゲット音と騒音とを用いて算出されるSN比を用いて算出された目標SN比を取得し、取得された目標SN比と算出されたSN比とを比較することで、ターゲット音の品質を判定する。ここで、目標SN比は、基準SN比を基準としたSN比の範囲であってもよい。例えば、目標SN比は、基準SN比を基準とする±1dBの範囲であってもよい。なお、目標SN比は、図示しないメモリまたはストレージに予め記憶されていてもよいし、外部装置に記憶されていてもよい。つまり、品質判定部101bは、図示しないメモリまたはストレージから目標SN比を読み出すことで取得してもよいし、通信IF109を介して外部装置から目標SN比を取得してもよい。
品質判定部101bは、SN比が目標SN比より高いか低いかを判定し、SN比が目標SN比より高い場合、つまり、SN比が当該目標SN比の範囲の上限より高い場合、品質が高いと判定する。品質判定部101bは、SN比が目標SN比より低い場合、つまり、SN比が当該目標SN比の下限より低い場合、品質が低いと判定する。品質判定部101bは、4つのマイクロフォン105から得られた4つの音データのうちで、収音処理部101aにより得られたターゲット音の音圧レベルが最も大きい音データについてターゲット音の品質を判定すればよく、他の音データについてターゲット音の品質を判定しなくてもよい。
音源判定部101cは、4つのマイクロフォン105により出力された音データ、カメラ107により出力された画像データ、および、測距センサ108により出力された測距データのうちの少なくとも1つを用いて、無人飛行体100とターゲット音の音源(以下、「音源」という。)との位置関係を取得する。音源判定部101cは、取得された位置関係を飛行制御部101eに出力する。
音源判定部101cは、4つのマイクロフォン105により生成された音データを用いて位置関係を取得する場合、当該音データを用いて、無人飛行体100を基準とする、(i)音源の音源方向、(ii)音源の位置、および、(iii)音源までの距離のうちの少なくとも1つを位置関係として判定する。無人飛行体100を基準とする音源の音源方向とは、無人飛行体100から音源への方向である。無人飛行体100を基準とする音源の位置とは、無人飛行体100に対する音源の相対位置である。無人飛行体100を基準とする音源までの距離とは、無人飛行体100から音源までの距離である。このように、音源判定部101cは、これらの判定結果を、無人飛行体100と音源との位置関係として取得する。
例えば、音源判定部101cは、4つのマイクロフォン105から得られた4つの音データを比較することで、ターゲット音の音圧が大きいと推定される方向を音源方向として判定してもよい。また、音源判定部101cは、4つのマイクロフォン105のそれぞれから得られる音データのそれぞれに含まれる複数のデータであって、当該マイクロフォン105を構成する複数のマイクロフォン素子から得られる複数のデータを比較することで、ターゲット音の音圧が大きいと推定される方向を音源方向として判定してもよい。また、例えば、音源判定部101cは、音源から発せられるターゲット音の大きさを取得し、4つのマイクロフォン105により生成された音データに含まれるターゲット音の音圧と、取得したターゲット音の大きさとを比較することで音源までの距離を推定してもよい。この場合、音源から発せられるターゲット音の大きさは、音源までの距離を推定するために予め定められた大きさであってもよい。また、音源判定部101cは、判定された音源方向と音源までの距離とを用いて、無人飛行体100に対する音源の相対位置を推定してもよい。
また、音源判定部101cは、カメラ107のイメージセンサにより生成された画像データを用いて位置関係を取得する場合、当該画像データを用いて、無人飛行体100を基準とする、(i)音源の音源方向、(ii)音源の位置、および、(iii)音源までの距離のうちの少なくとも1つを判定する。このように、音源判定部101cは、これらの判定結果を、無人飛行体100と音源との位置関係として取得する。例えば、音源判定部101cは、画像データへの画像処理により予め定められた音源の色、形状、種類などを認識することで、音源の位置、音源までの距離、および、音源方向の少なくとも一つを判定してもよい。
また、音源判定部101cは、測距センサ108により生成された測距データを用いて位置関係を取得する場合、当該測距データを用いて、無人飛行体100を基準とする、(i)音源の音源方向、(ii)音源の位置、および、(iii)音源までの距離のうちの少なくとも1つを判定する。このように、音源判定部101cは、これらの判定結果を、無人飛行体100と音源との位置関係として取得する。例えば、音源判定部101cは、測距データを用いて三次元モデルを構成し、構成された三次元モデルから音源の三次元形状を認識することで、音源の位置、音源までの距離、および、音源方向の少なくとも1つを判定してもよい。
また、音源判定部101cは、音データまたは画像データを用いて音源方向が判定されている場合、測距データから判定された音源方向にある物体の距離を取得することで、無人飛行体100に対する音源の相対位置を推定してもよい。このように、音源判定部101cは、各センサにより生成されたデータを用いて、音源方向、および、無人飛行体100から音源までの距離を特定することで、無人飛行体100と音源との相対位置を特定してもよい。
また、音源判定部101cは、音源から音源の位置情報を取得することで、無人飛行体100に対する音源方向、または、無人飛行体100に対する音源の相対位置を特定してもよい。
音源は、例えば、人であってもよいし、スピーカであってもよいし、車両であってもよい。
位置検出部101dは、GPS受信機102による検出結果を取得して、無人飛行体100の現在位置を検出する。
飛行制御部101eは、位置検出部101dにより検出された無人飛行体100の現在位置と、加速度センサ103およびジャイロセンサ104による検出結果から得られる無人飛行体100の飛行速度および飛行姿勢と、通信IF109により受信されたコントローラ200からの操作信号とに応じて、発生器110のアクチュエータ112の回転数を制御することにより、無人飛行体100の飛行状態を制御する。つまり、飛行制御部101eは、ユーザによるコントローラ200への操作に応じて、無人飛行体100の飛行状態を制御する通常制御を行う。
また、飛行制御部101eは、通常制御とは別に、品質判定部101bにより判定されたターゲット音の品質と、音源判定部101cにより判定された無人飛行体100と音源との位置関係とに基づいて、無人飛行体100と音源との間の距離が制御されるように、無人飛行体100の移動を制御する収音制御を行う。
飛行制御部101eは、収音制御における飛行状態の制御において、例えば、品質判定部101bによりターゲット音の品質が予め定められた目標品質よりも低いと判定された場合、音源から離れるように無人飛行体100の移動を制御する。これにより、無人飛行体100は、音源から離れる方向に飛行する。
また、飛行制御部101eは、音源から離れるように無人飛行体100の移動を制御する場合、位置検出部101dにより検出された無人飛行体100の現在位置からターゲット音の品質が目標品質となる位置までの間のいずれかの位置に移動するように、無人飛行体100の移動を制御する。この場合、飛行制御部101eは、例えば、音源と、ターゲット音の品質が目標品質となる位置との間の距離を、目標距離として決定し、無人飛行体100と音源との間の距離が目標距離となるように無人飛行体100の移動を制御してもよい。
飛行制御部101eは、無人飛行体100の現在位置と音源との間の距離と、音源によるターゲット音の品質と、予め定められた音圧レベルおよび音源からの距離の関係とを用いて、音源から予め定められた目標品質となる位置までの目標距離を算出し、音源から目標距離離れた位置に無人飛行体100が位置するように無人飛行体100の移動を制御する。これにより、無人飛行体100は、音源から離れる方向に飛行する場合、例えば、ターゲット音の品質が目標品質となる位置まで飛行し、当該位置よりも音源から離れない。
また、飛行制御部101eは、収音制御における飛行状態の制御において、例えば、品質判定部101bによりターゲット音の品質が予め定められた目標品質よりも高いと判定された場合、音源に近づくように無人飛行体100の移動を制御する。これにより、無人飛行体100は、音源に近づく方向に飛行する。
飛行制御部101eは、音源に近づくように無人飛行体100の移動を制御する場合、音源から所定距離離れた位置よりも音源に近づくことを禁止することを示す距離情報と、音源判定部101cにより取得された位置関係とに基づいて、音源から所定距離離れた位置よりも音源に近づかないように、無人飛行体100の移動を制御する。これにより、無人飛行体100は、音源に近づく方向に飛行する場合、例えば、音源から所定距離離れた位置まで音源に近づき、当該位置よりも音源に近づかない。
なお、距離情報は、図示しないメモリまたはストレージに予め記憶されていてもよいし、外部装置に記憶されていてもよい。つまり、飛行制御部101eは、図示しないメモリまたはストレージから距離情報を読み出すことで取得してもよいし、通信IF109を介して外部装置から距離情報を取得してもよい。
なお、飛行制御部101eは、4つのマイクロフォン105によるターゲット音の収音を行っている場合に、収音制御を行ってもよい。飛行制御部101eは、例えば、4つのマイクロフォン105によるターゲット音の収音が開始されると、通常制御を止めて収音制御を開始し、ターゲット音の収音が終了すると、収音制御を止めて通常制御を開始してもよい。
収音制御は、4つのマイクロフォン105がターゲット音を収音する場合に行われればよい。つまり、収音制御は、ターゲット音のみを収音する制御であってもよいし、カメラ107により画像を撮像すると共にターゲット音を収音する制御であってもよい。
映像制御部101fは、通信IF109が受信した操作信号に応じてジンバル106を制御することで、操作信号が示す方向にカメラ107の撮像方向が向くようにカメラ107の姿勢を制御する。また、映像制御部101fは、カメラ107が撮像した画像データに所定の画像処理を実行してもよい。映像制御部101fは、カメラ107から得られた画像データ、または、所定の画像処理後の画像データを、通信IF109を介して携帯端末300に送信してもよい。
障害物検知部101gは、測距センサ108が検出した、無人飛行体100から物体までの距離に応じて、無人飛行体100の周囲の障害物を検知する。障害物検知部101gは、飛行制御部101eとの間で情報のやり取りを行うことで、これから無人飛行体100が移動する先にある障害物を検知してもよい。障害物検知部101gは、これから無人飛行体100が移動する先に障害物を検知した場合、当該障害物をよけて無人飛行体100を移動させるように飛行制御部101eに指示してもよい。
[2.動作]
次に、実施の形態に係る無人飛行体100の動作について説明する。
図5は、実施の形態に係る無人飛行体の収音制御における動作例を示すフローチャートである。図6は、無人飛行体によるターゲット音の品質の判定処理の一例を示すフローチャートである。図7は、ターゲット音の品質の指標としてのSN比を算出する算出方法の一例を示す図である。
図5に示すように、無人飛行体100の品質判定部101bは、収音処理部101aにより収音制御が開示されると、4つのマイクロフォン105により生成された4つの音データに含まれるターゲット音の品質を判定する(S11)。収音処理部101aは、例えば、コントローラ200から受信した操作信号が収音開始を示す信号を含んでいれば、収音を開始する。ステップS1におけるターゲット音の品質の判定処理の詳細について、図6および図7を用いて説明する。
図6に示すように、まず、収音処理部101aの騒音レベル演算部101abは、4つのマイクロフォン105により生成された4つの音データのそれぞれについて、騒音の音圧レベルを算出する(S21)。例えば、騒音レベル演算部101abは、音データとして、図7に示すノイズ処理前の信号を各マイクロフォン105から取得する。ノイズ処理前の信号は、例えば、正規化数の時間変化により表される。このため、騒音レベル演算部101abは、ノイズ処理前の信号の振幅に、対応するマイクロフォン105の性能に応じた音圧変換係数を乗算することにより、音圧レベルの時間変化を算出する。騒音レベル演算部101abは、算出された音圧レベルの時間変化から所定の周波数帯域を抽出し、抽出された所定の周波数帯域における音圧レベルの時間変化から所定の時間間隔(例えば1秒間)で平均音圧レベルを算出することで、騒音の音圧レベルを算出する。なお、所定の周波数帯域は、ターゲット音を抽出するために予め定められた周波数帯域である。
騒音レベル演算部101abは、各マイクロフォン105から取得されたノイズ処理前の信号を用いて騒音の音圧レベルを算出するとしたが、これに限らずに、ターゲット音が発生していない状態で騒音を予め収音することで得られた信号を用いて算出された音圧レベルをストレージから取得してもよい。この場合、予め得られた信号を用いて算出された音圧レベルとは、例えば、無人飛行体100の発生器110の異なる複数段階の回転数のそれぞれに応じて収音されることにより得られた信号から算出される音圧レベルであり、各回転数に対応付けられた音圧レベルである。つまり、騒音レベル演算部101abは、無人飛行体100の発生器110の回転数に対応付けられている音圧レベルをストレージから読み出すことで、騒音の音圧レベルを取得してもよい。
次に、収音処理部101aのノイズ処理部101aaが、ノイズ処理として、取得された音データに対して音源分離処理を行うことで、無人飛行体100の飛行に関わる騒音と、ターゲット音とを分離する(S22)。これにより、図7に示すノイズ処理後の信号が得られる。
次に、騒音レベル演算部101abは、分離されたターゲット音の音圧レベルを算出する(S23)。ノイズ処理後の信号は、ノイズ処理前の信号と同様に、例えば、正規化数の時間変化により表される。このため、騒音レベル演算部101abは、ノイズ処理後の信号の振幅に、対応するマイクロフォン105の性能に応じた音圧変換係数を乗算することにより、音圧レベルの時間変化を算出する。騒音レベル演算部101abは、算出された音圧レベルの時間変化から所定の周波数帯域を抽出し、抽出された所定の周波数帯域における音圧レベルの時間変化から所定の時間間隔(例えば1秒間)での平均音圧レベルを算出することで、ターゲット音の音圧レベルを算出する。また、騒音レベル演算部101abは、平均音圧レベルを算出するのに用いる所定の時間間隔を、検知されたターゲット音の特性を用いて算出してもよい。つまり、所定の時間間隔は、検知されたターゲット音の特性に応じて調整されてもよい。ここでの特性とは、例として、検知したターゲット音の周波数帯域、検知したターゲット音の期間の長さが挙げられる。例えば、騒音レベル演算部101abは、検知したターゲット音の周波数帯域が所定の周波数帯域に入るかどうかを判定して、所定の時間間隔を長くしてもよい。また、検知したターゲット音の期間が短いほど所定の時間間隔を短くしてもよい。
品質判定部101bは、騒音レベル演算部101abにより算出された、騒音の音圧レベル、および、ターゲット音の音圧レベルを用いて、ターゲット音の音圧レベルから騒音の音圧レベルを減算することで、ターゲット音の騒音に対するSN比を算出する(S24)。
次に、品質判定部101bは、算出されたSN比が目標SN比であるか否かを判定する(S12)。具体的には、品質判定部101bは、算出されたSN比が基準SN比を基準としたSN比の範囲内にあるか否かを判定する。
品質判定部101bにより、算出されたSN比が目標SN比でないと判定された場合(S12でNo)、次のステップS13に進む。反対に、品質判定部101bにより、算出されたSN比が目標SN比であると判定された場合(S12でYes)、ステップS17に進む。SN比が目標SN比である場合には、無人飛行体100では、良好にターゲット音を集音できているため、無人飛行体100を移動させない。
次に、障害物検知部101gは、無人飛行体100が安全に移動可能であるか否かを判定する(S13)。具体的には、障害物検知部101gは、無人飛行体100の周囲に物体があるか否かを判定し、無人飛行体100の周囲に物体が無いと判定された場合、無人飛行体100が安全に移動可能であると判定し、無人飛行体100の周囲に物体があると判定された場合、無人飛行体100が安全に移動できないと判定する。
障害物検知部101gにより、無人飛行体100が安全に移動可能であると判定された場合(S13でYes)、次のステップS14に進む。反対に、障害物検知部101gにより、無人飛行体100が安全に移動可能でないと判定された場合(S13でNo)、ステップS17に進む。
品質判定部101bは、算出されたSN比が目標SN比よりも高いか、または、低いかを判定する(S14)。ここでは、品質判定部101bは、目標SN比として、基準SN比(例えば-10dB)を基準とする±1dBの範囲を用いて、算出されたSN比が目標SN比よりも高いか、または、低いかを判定する例を説明する。品質判定部101bは、具体的には、算出されたSN比が目標SN比の範囲の上限(例えば、-9dB)よりも高いか、または、目標SN比の範囲の下限(例えば、-11dB)よりも低いかを判定する。
そして、飛行制御部101eは、品質判定部101bにより算出されたSN比が目標SN比の範囲よりも高いと判定された場合(S14で高い)、無人飛行体100を音源から離れる方向に移動させる制御を行う(S15)。
飛行制御部101eは、品質判定部101bにより算出されたSN比が目標SN比の範囲よりも低いと判定された場合(S14で低い)、無人飛行体100を音源に近づく方向に移動させる制御を行う(S16)。
収音処理部101aは、収音を停止するか否かを判定する(S17)。収音処理部101aは、収音を停止すると判定した場合(S17でYes)、収音制御を終了する。収音処理部101aは、収音を停止しないと判定した場合(S17でNo)、品質判定部101bは、ステップS11の判定を再び行う。
図8Aは、実施の形態に係る無人飛行体の収音制御における動作例の第1の場面を説明するための図である。図8Bは、実施の形態に係る無人飛行体の収音制御における動作例の第2の場面を説明するための図である。図8Cは、実施の形態に係る無人飛行体の収音制御における動作例の第3の場面を説明するための図である。図9Aは、実施の形態に係る無人飛行体の収音制御における動作例の第4の場面を説明するための図である。図9Bは、実施の形態に係る無人飛行体の収音制御における動作例の第5の場面を説明するための図である。図9Cは、実施の形態に係る無人飛行体の収音制御における動作例の第6の場面を説明するための図である。図10Aは、実施の形態に係る無人飛行体の収音制御における動作例の第7の場面を説明するための図である。図10Bは、実施の形態に係る無人飛行体の収音制御における動作例の第8の場面を説明するための図である。図10Cは、実施の形態に係る無人飛行体の収音制御における動作例の第9の場面を説明するための図である。
なお、図8A~図8C、図9A~図9C、図10A~図10Cは、無人飛行体100を上方からみた場合の無人飛行体100の動作を示す図である。図8A~図8C、図9A~図9C、図10A~図10Cは、音源400が人であり、ターゲット音が音源400による音声である場合に、無人飛行体100がターゲット音を収音する動作の一例を示す図である。なお、図8A~図8C、図9A~図9C、図10A~図10Cの例では、目標SN比として基準SN比を記載している。また、図8A~図8C、図9A~図9C、図10A~図10Cの例で示されている破線L1は、距離情報により示される音源400から所定距離d1離れた位置であることを示す仮想的な線である。つまり、破線L1は、音源の安全を確保するための安全範囲の境界を示す線である。
図8Aに示す場面では、騒音の音圧レベルは75dBと算出され、ターゲット音の音圧レベルは70dBと算出され、これにより、SN比が-5dBと算出されたことを示している。このとき、目標SN比は-10dBに設定されており、算出されたSN比は目標SN比よりも高いため、無人飛行体100は、図8Bに示すように、音源400から離れる方向に移動する。図8Bに示す場面では、無人飛行体100は、音源400から離れた後にマイクロフォン105から得られた音データを用いて、騒音の音圧レベルは75dBと算出され、ターゲット音の音圧レベルは70dBと算出され、これにより、SN比が-10dBと算出されたことを示している。この場合には、算出されたSN比は、目標SN比の範囲内であるため、無人飛行体100は、図8Cに示すように音源400との距離を保ったまま移動しない。
図9Aに示す場面では、騒音の音圧レベルは75dBと算出され、ターゲット音の音圧レベルは65dBと算出され、これにより、SN比が-10dBと算出されたことを示している。このとき、目標SN比は-10dBに設定されており、算出されたSN比は目標SN比の範囲内であるため、無人飛行体100は、図9Aに示すように音源400との距離を保ったまま移動しない。次に、図9Bには、音源400が無人飛行体100に近づいて移動してきた場面が示されている。この場合、無人飛行体100は、無人飛行体100に音源400が近づいた後にマイクロフォン105から得られた音データを用いて、騒音の音圧レベルは75dBと算出され、ターゲット音の音圧レベルは69dBと算出され、これにより、SN比が-6dBと算出されたものとする。算出されたSN比は、目標SN比よりも高いため、無人飛行体100は、図9Cに示すように、音源400から離れる方向に移動する。図9Cに示す場面では、無人飛行体100は、音源400から離れた後にマイクロフォン105から得られた音データを用いて、騒音の音圧レベルは75dBと算出され、ターゲット音の音圧レベルは65dBと算出され、これにより、SN比が-10dBと算出されたことを示している。この場合には、算出されたSN比は、目標SN比の範囲内であるため、無人飛行体100は、図9Cに示すように音源400との距離を保ったまま移動しない。
図10Aに示す場面では、騒音の音圧レベルは75dBと算出され、ターゲット音の音圧レベルは58dBと算出され、これにより、SN比が-17dBと算出されたことを示している。このとき、目標SN比は-10dBに設定されており、算出されたSN比は目標SN比よりも低いため、無人飛行体100は、図10Bに示すように、音源400に近づく方向に移動する。図10Bに示す場面では、無人飛行体100は、音源400に近づいた後にマイクロフォン105から得られた音データを用いて、騒音の音圧レベルは75dBと算出され、ターゲット音の音圧レベルは61dBと算出され、これにより、SN比が-14dBと算出されたことを示している。この場合であっても、算出されたSN比は目標SN比よりも低いため、無人飛行体100は、図10Cに示すように、さらに音源400に近づく方向に移動する。図10Cに示す場面では、無人飛行体100は、音源400に近づいた後にマイクロフォン105から得られた音データを用いて、騒音の音圧レベルは75dBと算出され、ターゲット音の音圧レベルは63dBと算出され、これにより、SN比が-12dBと算出されたことを示している。この場合であっても、算出されたSN比は目標SN比よりも低いが、音源400に所定距離d1の位置まで近づいてしまっているため、これ以上音源に近づく方向に移動しない。
なお、上記では、無人飛行体100と音源400との位置関係を水平方向の距離を用いて説明したが、三次元空間上の距離に適用してもよい。この場合、無人飛行体100が音源400に近づく方向に移動する制御を行う場合の距離情報で示される所定距離d1により規定される安全範囲を、水平方向の距離で規定される範囲を例にして説明したが、三次元空間上の距離で規定される範囲としてもよい。
図11Aは、実施の形態に係る無人飛行体の収音制御における動作例の第10の場面を説明するための図である。図11Bは、実施の形態に係る無人飛行体の収音制御における動作例の第11の場面を説明するための図である。図12Aは、実施の形態に係る無人飛行体の収音制御における動作例の第12の場面を説明するための図である。図12Bは、実施の形態に係る無人飛行体の収音制御における動作例の第13の場面を説明するための図である。なお、図11A、図11B、図12Aおよび図12Bは、水平方向から見た場合の無人飛行体および音源の位置関係と安全範囲との一例を示す図である。
図11Aに示す場面では、騒音の音圧レベルは75dBと算出され、ターゲット音の音圧レベルは68dBと算出され、これにより、SN比が-7dBと算出されたことを示している。このとき、目標SN比は-10dBに設定されており、算出されたSN比は目標SN比よりも高いため、飛行制御部101eは、音源400から離れる方向に無人飛行体100が移動するように制御する。このように、飛行制御部101eは、音源から離れる方向に無人飛行体100を移動させる制御を行う場合、図11Bに示すように、無人飛行体100を上昇させる制御を行わずに、無人飛行体100が水平方向に移動するように無人飛行体100を制御してもよい。このとき、飛行制御部101eは、無人飛行体100がさらに地面に近づく方向に移動するように制御を行ってもよい。
これにより、無人飛行体100は、音源から離れる方向に移動する場合に、上昇することで音源から離れる制御を行わずに、水平方向において音源から離れる方向に移動するため、水平方向における音源からの距離を確保することができる。このため、現在位置よりも高い位置に行かないことで、無人飛行体100が落下した際の衝撃を軽減でき、音源の安全を確保することができる。なお、上記では、無人飛行体100が音源から離れる方向に移動する場合を例にして説明したが、無人飛行体100が音源に近づく方向に移動する場合であっても、同様の効果が奏される。
図12Aに示す場面では、騒音の音圧レベルは75dBと算出され、ターゲット音の音圧レベルは59dBと算出され、これにより、SN比が-16dBと算出されたことを示している。このとき、目標SN比は-10dBに設定されており、算出されたSN比は目標SN比よりも低いため、飛行制御部101eは、音源400に近づく方向に無人飛行体100が移動するように制御する。このように、飛行制御部101eは、音源に近づく方向に無人飛行体100を移動させる制御を行う場合、図12Bに示すように、無人飛行体100が地面に対して近づくように無人飛行体100を制御してもよい。
これにより、無人飛行体100は、音源に近づく方向に移動する場合に、水平方向に移動することで音源に近づく制御を行わずに、地面に近づくことで音源に近づく方向に移動するため、水平方向における音源からの距離を確保したまま音源に近づくことができる。このため、現在位置よりも地面に近づくことで、無人飛行体100が落下した際の衝撃をより軽減でき、音源の安全を確保することができる。なお、上記では、無人飛行体100が音源に近づく方向に移動する場合を例にして説明したが、無人飛行体100が音源に離れる方向に移動する場合であっても、同様の効果が奏される。
[3.効果など]
本実施の形態に係る無人飛行体100によれば、プロセッサ101は、マイクロフォン105が生成する音データを用いてターゲット音の品質を判定する。プロセッサ101は、センサが生成するデータを用いて、無人飛行体100とターゲット音の音源400との位置関係を取得する。プロセッサ101は、ターゲット音の品質と位置関係とに基づいて、無人飛行体100とターゲット音の音源との間の距離が制御されるように、無人飛行体100の移動を制御する。このため、無人飛行体100と音源400との間の距離を制御しつつ、ターゲット音の品質を確保することができる。よって、音源400への安全性を確保した上で適切な音質で収音することができる。
また、無人飛行体100において、プロセッサ101は、ターゲット音の品質が予め定められた目標品質よりも高い場合、音源400から離れるように無人飛行体100の移動を制御する。このため、ターゲット音の品質が確保されている場合には、音源400から離れる方向に無人飛行体100を移動させるため、音源400の安全性をさらに向上させることができる。
また、無人飛行体100において、プロセッサ101は、音源400から離れるように無人飛行体100の移動を制御する場合、無人飛行体100の現在位置からターゲット音の品質が目標品質となる位置までの間に移動するように、無人飛行体100の移動を制御する。このため、ターゲット音の品質が確保されている範囲で、音源400から離れる方向に無人飛行体100を移動させることができる。
また、無人飛行体100において、プロセッサ101は、ターゲット音の品質が予め定められた目標品質よりも低い場合、音源400に近づくように無人飛行体100の移動を制御する。このため、ターゲット音の品質が確保されていない場合には、音源400に近づく方向に無人飛行体100を移動させるため、ターゲット音の品質を向上させることができる。
また、無人飛行体100において、プロセッサ101は、品質を判定するための指標として、ターゲット音と無人飛行体100の飛行に関わる騒音とを用いて算出されるSN(Signal Noise)比を算出する。また、プロセッサ101は、さらに、予め定められた目標品質として、ターゲット音と無人飛行体の飛行に関わる騒音とを用いて算出されるSN(Signal Noise)比を用いて予め算出された目標SN比を取得する。そして、プロセッサ101は、取得された目標SN比と算出されたSN比とを比較することで、ターゲット音の品質を判定する。このため、ターゲット音の品質を容易に判定することができる。
また、無人飛行体100において、センサは、さらに、カメラ107が備えるイメージセンサであって、画像データを生成するイメージセンサを含む。プロセッサ101は、イメージセンサにより生成された画像データを用いて、位置関係を取得する。これによれば、プロセッサ101は、画像データをさらに用いて位置関係を取得するため、精度が高い位置関係を取得することができる。
また、無人飛行体100において、センサは、さらに、測距データを生成する測距センサ108を含む。プロセッサ101は、測距センサ108により生成された測距データを用いて、位置関係を取得する。これによれば、プロセッサ101は、測距データをさらに用いて位置関係を取得するため、精度が高い位置関係を取得することができる。
また、無人飛行体100において、プロセッサ101は、ターゲット音の品質と位置関係と予め定められた目標品質とに基づいて目標距離を決定し、無人飛行体100と音源400との間の距離が目標距離となるように無人飛行体100の移動を制御する。これにより、無人飛行体100は、予め定められた目標品質に対応する位置に移動することができる。
[4.変形例]
[4-1.変形例1]
上記実施の形態に係る無人飛行体100によれば、目標品質としての目標SN比の基準となる基準SN比は、例えば、-10dBのような1つの値を例にして説明したが、1つの値に限らずに収音制御の用途に応じて複数の値が設定されてもよい。
図13は、基準SN比と用途との関係の一例を示す表である。なお、目標SN比が±1dBの目標範囲ではなく閾値である場合には、基準SN比を目標SN比と読み替えてもよい。
図13に示すように、例えば、用途に応じて4段階の基準SN比が定められていてもよい。ここで示されるR1~R4は、R1<R2<R3<R4の関係にある。例えば、最低品質に対する基準SN比はR1であり、一般的な音声収集に対する基準SN比はR2であり、中継放送に対する基準SN比はR3であり、高品質な放送に対する基準SN比はR4である。これらの用途は、コントローラ200へのユーザによる操作によって選択され、選択された用途に応じた基準SN比が無人飛行体100の収音制御で利用される。また、用途は、コントローラ200によるアプリケーションに応じて固定であってもよく、この場合にはアプリケーションに応じた基準SN比が無人飛行体100の収音制御で利用される。
[4-2.変形例2]
上記実施の形態に係る無人飛行体100では、飛行制御部101eは、品質判定部101bにより算出されたSN比が目標SN比の範囲よりも高いと判定された場合、無人飛行体100を音源から離れる方向に移動させる制御を行うとしたが、移動しない制御を行ってもよい。これは、十分に高い品質で収音できているからである。
[4-3.変形例3]
上記実施の形態に係る無人飛行体100では、算出されたSN比が目標SN比よりも低い場合であっても音源まで所定距離d1の位置まで近づいてしまった場合には、移動しないとしたが、さらなる制御を行ってもよい。つまり、上記実施の形態では、距離情報と位置関係とに基づいて、音源から所定距離離れた位置まで音源に近づくように無人飛行体100の移動を制御した後において、ターゲット音の品質が予め定められた目標品質よりも品質が低い場合、移動しないとしたがこれに限らない。
例えば、無人飛行体100は、図示しない、マイクロフォン105の向き変更するアクチュエータを有している場合、プロセッサ101は、当該アクチュエータを制御することで、マイクロフォン105の向きを変更してもよい。つまり、マイクロフォン105の感度が高い方向を音源へ向けてもよい。これにより、マイクロフォン105の感度が高い方向と音源方向とを一致させることができるため、騒音の音圧レベルに対するターゲット音の音圧レベルを相対的に向上させることができ収音品質を向上させることができる。
また、無人飛行体100は、図示しない、無人飛行体100に対する外方向へのマイクロフォン105の突出量を変更するアクチュエータを有している場合、当該アクチュエータを制御することで、無人飛行体100の外方向へのマイクロフォン105の突出量を変更してもよい。つまり、マイクロフォン105を無人飛行体100の外方向へ突出させ、マイクロフォン105を音源に近づけてもよい。これにより、マイクロフォン105は騒音の発生源である無人飛行体100から離れるため、騒音の音圧レベルを低下させることができる。また、マイクロフォン105は音源に近づくため、騒音の音圧レベルに対するターゲット音の音圧レベルを相対的に向上させることができる。これにより、効果的に収音品質を向上させることができる。なお、アクチュエータは、マイクロフォン105の向きを変更するアクチュエータと、マイクロフォン105の突出量を変更するアクチュエータとを含んでいてもよく、プロセッサ101は、両方のアクチュエータを制御することでマイクロフォン105の向きおよび突出量を変更する制御を行ってもよい。なお、無人飛行体100の外方向とは、例えば、無人飛行体100の水平方向の側方の方向である。また、無人飛行体100は、音源に近づくように無人飛行体の移動を制御した後に、目標品質よりもターゲット音の品質が低い場合、マイクロフォン105の向き、および、無人飛行体100から外向きのマイクロフォンの突出量の少なくとも一方を変更する制御を行ってもよい。
[4-4.変形例4]
上記実施の形態に係る無人飛行体100は、4つの発生器110を備える構成としたが、無人飛行体100が備える発生器の数は、4つに限らずに、1~3つであってもよいし、5つ以上であってもよい。
[4-5.変形例5]
上記実施の形態に係る無人飛行体100は、本体140と4つのダクト130とが4つのアーム141により接続される構成としたが、これに限らずに、4つの発生器110が本体140に接続されている構成であれば、4つのダクト130または4つのアーム141を備えていない構成であってもよい。つまり、無人飛行体は、本体140に直接4つの発生器110が接続されている構成であってもよいし、本体140に直接4つのダクト130が接続されている構成であってもよい。また、無人飛行体は、4つのダクト130を備えていない構成、つまり、4つの発生器110の側方が覆われていない構成であってもよい。
[4-6.変形例6]
上記実施の形態に係る無人飛行体100は、4つのマイクロフォン105を備える構成としたが、無人飛行体100が備えるマイクロフォンの数は、4つに限らずに、1~3つであってもよいし、5つ以上であってもよい。なお、マイクロフォン105の数が少ない場合、無人飛行体100の姿勢を回転させることで、異なるタイミングで複数の音データを取得し、複数の音データを比較することで、音源方向を推定してもよい。マイクロフォン105は、無人飛行体100の外側に、つまり、外部の空間に露出するように配置されていればよく、本体140の側方以外にもアーム141の側方に配置されていてもよい。また、マイクロフォン105は、本体140から離れた位置に配置されてもよい。例えば、本体140にアーム141とは別に取り付けられた本体140から離れる方向に延長されたアームのような棒、金属線のような線又は糸のような紐の先端又は途中にマイクロフォン105が配置されてもよい。
[4-7.変形例7]
上記実施の形態では、音源400との距離が所定距離d1まで近づいてもSN比が目標SN比より低い場合に、マイクロフォン105の向きを変更することを例示したが、これに限らずに、マイクロフォン105の感度の高い方向を音源方向に予め合わせた上で、実施の形態の図5で説明した動作を行うようにしてもよい。なお、マイクロフォン105の感度の高い方向を音源方向に合わせる場合、マイクロフォン105の向きを変更するためのアクチュエータを有している無人飛行体100であればアクチュエータを制御することでマイクロフォン105の向きを変更してもよいし、アクチュエータを有していない無人飛行体100であれば飛行姿勢を制御することでマイクロフォン105の感度の高い方向を音源方向に合わせてもよい。
なお、飛行姿勢を制御して、マイクロフォン105の感度の高い方向を音源方向に合わせる場合、4つのマイクロフォン105のそれぞれの感度の高い方向が無人飛行体100に対してどの範囲にあるかを示す情報は、予め、無人飛行体100が備える図示しないメモリに記憶されている。このため、飛行制御部101eによる無人飛行体100の姿勢を変更する変更量を決定する品質判定部101bは、メモリから読み出した感度の高い方向の情報と、例えば、加速度センサ103およびジャイロセンサ104などの各種センサにより得られる無人飛行体100の姿勢とに基づいて、無人飛行体100をどのくらい回転させれば、音源方向が感度の高い方向に合わせられるかを示す変化量を決定することができる。
[4-8.変形例8]
上記実施の形態に係る無人飛行体100は、コントローラ200から受信した操作信号が収音開始を示す信号を含んでいれば、収音を開始するとしたが、これに限らない。例えば、収音処理部101aが取得した音データに収音を開始することを示す収音コマンドが含まれている場合に収音を開始してもよいし、カメラ107により得られた画像データを解析することで、ユーザが収音開始のジェスチャを行ったことを認識できた場合、または、ユーザが収音開始の言葉を発声したことをユーザの唇の動きから認識できた場合に、収音を開始してもよい。また、ユーザによるジェスチャや特定のキーワードの発声の認識を、所定距離d1の調整に用いてもよい。
また、無人飛行体100は、コントローラ200で操作されずに、予め設定されたプログラムに従って自律的に飛行してもよい。
また、コントローラ200は、無人飛行体100の操作インタフェースを備えず、予め設定されたプログラムに従って無人飛行体100を操作してもよい。
[4-9.変形例9]
上記実施の形態に係る無人飛行体100は、収音品質の評価指標としてSN比を用いたが、これに限らない。品質の評価指標として、音声認識の処理後の信頼係数や音声認識の誤り率を用いてもよい。
[4-10.変形例10]
上記実施の形態に係る無人飛行体100は、ターゲット音及び無人飛行体100の飛行音(すなわち騒音)の周波数の情報を用いて移動を制御してもよい。具体的には、品質判定部101bは、ターゲット音の周波数と飛行音の周波数との差を判定し、飛行制御部101eは、当該差に基づいて音源に近づくか離れるかを制御する。図14を参照して本変形例の処理を説明する。図14は、変形例10に係る無人飛行体の収音制御における動作例を示すフローチャートである。
品質判定部101bは、ターゲット音の周波数と飛行音の周波数とを判定する(S31)。なお、ステップS31では、ターゲット音の周波数帯域と飛行音の周波数帯域とが判定されてもよい。
次に、品質判定部101bは、ターゲット音の周波数と飛行音の周波数との差が閾値以下であるか否かを判定する(S32)。ステップS31において周波数帯域が判定される場合は、周波数の差として各周波数帯域それぞれの中心周波数の差が用いられてもよい。
ターゲット音の周波数と飛行音の周波数との差が閾値超過であると判定されると(S32でNo)、飛行制御部101eは、無人飛行体100を音源から離れるように飛行制御を行う(S33)。このように、周波数の差が十分に大きいと、無人飛行体100がターゲットから遠ざかっても、収音した音から飛行音すなわちノイズをフィルタリングした後の音の収音品質を十分に維持することができる。
反対に、ターゲット音の周波数と飛行音の周波数との差が閾値以下であると判定されると(S32でYes)、飛行制御部101eは、無人飛行体100を音源に近づけるように飛行制御を行う(S34)。このように、周波数の差が小さいと、収音した音から飛行音すなわちノイズをフィルタリングした後の音の収音品質を十分に維持することが困難であるため、無人飛行体100が近づけられる。
ステップS33またはステップS34の飛行制御が行われると、収音処理部101aは、収音を停止するか否かを判定する(S35)。収音処理部101aは、収音を停止すると判定した場合(S35でYes)、収音制御を終了する。収音処理部101aは、収音を停止しないと判定した場合(S35でNo)、品質判定部101bは、ステップS31の判定を再び行う。
このように、ターゲット音の周波数と飛行音(すなわち騒音)の周波数との差に基づいて音源からの距離が制御されることにより、結果として収音品質(例えばSN比)に応じた音源と無人飛行体100との距離の制御が可能となる。
[4-11.変形例11]
上記変形例10に係る無人飛行体100は、さらに飛行音の制御により飛行制御を抑制してもよい。具体的には、飛行制御部101eは、ターゲット音と飛行音の周波数の差に基づいてプロペラの回転を制御する。図15を参照して本変形例の処理を説明する。図15は、変形例11に係る無人飛行体の収音制御における動作例を示すフローチャートである。なお、図14と実質的に同一の処理については説明を省略する。
品質判定部101bは、ターゲット音の周波数と飛行音の周波数とを判定する(S31)。
次に、品質判定部101bは、ターゲット音の周波数と飛行音の周波数との差が閾値以下であるか否かを判定する(S32)。
ターゲット音の周波数と飛行音の周波数との差が閾値超過であると判定されると(S32でNo)、飛行制御部101eは、無人飛行体100を音源から離れるように飛行制御を行う(S33)。
反対に、ターゲット音の周波数と飛行音の周波数との差が閾値以下であると判定されると(S32でYes)、飛行制御部101eは、周波数の差が広がるようにプロペラの回転を制御する(S36)。例えば、飛行制御部101eは、飛行音の周波数とターゲット音の周波数との差が大きくなるようにプロペラの回転数を変更する。
このように、ターゲット音の周波数と飛行音の周波数との差が広がるように飛行制御を行うことにより、収音品質を向上させるとともに無人飛行体100が音源に近づくことを抑制することができる。
なお、変形例11及び12のようにターゲット音と飛行音の周波数の差に基づいて移動制御又は飛行制御を行った後に、上記実施の形態のように収音品質に基づいて移動制御が行われてもよい。
[4-12.変形例12]
上記実施の形態に係る無人飛行体100は、ターゲット音の品質が目標品質を満たす範囲内で移動してもよい。具体的には、飛行制御部101eは、ターゲット音の品質が目標品質を満たす範囲を移動許可範囲として決定し、無人飛行体100の移動を当該移動許可範囲内に制限する。例えば、飛行制御部101eは、コントローラ200から受信した操作信号のうち移動許可範囲内への移動の操作は実行するが、移動許可範囲外への移動の操作については実行しない。
なお、上記各実施の形態において、各構成要素は、専用のハードウェアで構成されるか、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、CPUまたはプロセッサなどのプログラム実行部が、ハードディスクまたは半導体メモリなどの非一時的な記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。ここで、上記各実施の形態の無人飛行体100、情報処理方法などを実現するソフトウェアは、次のようなプログラムである。
すなわち、このプログラムは、コンピュータに、音データを生成するマイクロフォンを少なくとも含むセンサと、プロセッサと、を備える無人飛行体の前記プロセッサが行う情報処理方法であって、前記マイクロフォンが生成する音データを用いて、ターゲット音の品質を判定し、前記センサが生成するデータを用いて、前記無人飛行体と前記ターゲット音の音源との位置関係を取得し、前記ターゲット音の品質と前記位置関係とに基づいて、前記無人飛行体と前記ターゲット音の音源との間の距離が制御されるように、前記無人飛行体の移動を制御する情報処理方法を実行させる。
以上、本発明の一つまたは複数の態様に係る無人飛行体、情報処理方法およびプログラムについて、実施の形態に基づいて説明したが、本発明は、この実施の形態に限定されるものではない。本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、本発明の一つまたは複数の態様の範囲内に含まれてもよい。
なお、品質判定部101b、音源判定部101c、障害物検知部101g、飛行制御部101eで行う処理並びに画像認識処理、音声認識処理は、機械学習を用いてもよい。機械学習には、例えば、入力情報に対してラベル(出力情報)が付与された教師データを用いて入力と出力との関係を学習する教師あり学習、ラベルのない入力のみからデータの構造を構築する教師なし学習、ラベルありとラベルなしのどちらも扱う半教師あり学習、状態の観測結果から選択した行動に対するフィードバック(報酬)を得ることにより、最も多く報酬を得ることができる連続した行動を学習する強化学習などが挙げられる。また、機械学習の具体的な手法として、ニューラルネットワーク(多層のニューラルネットワークを用いた深層学習を含む)、遺伝的プログラミング、決定木、ベイジアン・ネットワーク、サポート・ベクター・マシン(SVM)などが存在する。本開示においては、以上で挙げた具体例のいずれかを用いればよい。
本開示は、ターゲット音の品質を向上させることができる無人飛行体、情報処理方法およびプログラムなどとして有用である。
100 無人飛行体
101 プロセッサ
101a 収音処理部
101aa ノイズ処理部
101ab 騒音レベル演算部
101b 品質判定部
101c 音源判定部
101d 位置検出部
101e 飛行制御部
101f 映像制御部
101g 障害物検知部
102 GPS受信機
103 加速度センサ
104 ジャイロセンサ
105 マイクロフォン
106 ジンバル
107 カメラ
108 測距センサ
109 通信IF
110 発生器
111 回転翼
112 アクチュエータ
130 ダクト
131 空間
140 本体
141 アーム
200 コントローラ
300 携帯端末
400 音源

Claims (11)

  1. 無人飛行体であって、
    音データを生成するマイクロフォンを少なくとも含むセンサと、
    プロセッサと、を備え、
    前記プロセッサは、
    前記マイクロフォンが生成する音データを用いて得た、ターゲット音の品質を判定し、
    前記センサが生成するデータを用いて、前記無人飛行体と前記ターゲット音の音源との位置関係を取得し、
    前記ターゲット音の品質と前記位置関係とに基づいて、前記無人飛行体と前記ターゲット音の音源との間の距離が制御されるように、前記無人飛行体の移動を制御し、
    前記音源からの所定距離を示す距離情報を取得し、
    前記音源に近づくように前記無人飛行体の移動を制御する場合、前記距離情報と前記位置関係とに基づいて、前記音源から前記所定距離離れた安全位置よりも前記音源に近づかないように、前記無人飛行体移動させ、
    前記プロセッサは、さらに、
    前記距離情報と前記位置関係とに基づいて、前記安全位置として、前記音源から前記所定距離離れた第1の安全位置まで前記音源に近づけるように前記無人飛行体を移動させたとき、前記第1の安全位置まで近づけた前記無人飛行体の前記マイクロフォンが前記音データとして生成した第1の音データを用いて得られる第1のターゲット音の品質が予め定められた目標品質よりも高いと前記判定により判定された場合、前記目標品質に等しい第2ターゲット音が得られる第2音データを前記マイクロフォンが生成する第2の安全位置へ前記無人飛行体を移動させ、
    前記第1の安全位置における高さ方向の位置は、前記音源の前記高さ方向の位置よりも高く、
    前記第2の安全位置の前記高さ方向の位置は、前記第1の安全位置における前記高さ方向の位置よりも低く、かつ前記音源から前記所定距離離れた位置であり、
    前記第2の安全位置への前記移動において、前記プロセッサは、前記音源の位置を中心とする半径が前記所定距離の半円に沿って前記無人飛行体を前記第1の安全位置から前記第2の安全位置へ移動させることで、前記無人飛行体の高さ方向の位置を地面に近づける方向であって、かつ前記無人飛行体の水平方向の位置を前記音源から離れる方向に前記無人飛行体を移動させる、
    無人飛行体。
  2. 前記プロセッサは、前記ターゲット音の品質が前記目標品質よりも低いと前記判定により判定された場合、前記音源に近づくように前記無人飛行体の移動させ
    請求項に記載の無人飛行体。
  3. 前記無人飛行体は、さらに、
    前記マイクロフォンの向き、および、前記無人飛行体から外向きの前記マイクロフォンの突出量の少なくとも一方を変更するアクチュエータを備え、
    前記プロセッサは、前記距離情報と前記位置関係とに基づいて、前記第1の安全位置まで前記音源に近づけるように前記無人飛行体移動させたとき前記第1のターゲット音の品質が前記目標品質より低い場合、前記アクチュエータを制御することで、(i)前記マイクロフォンの向きを前記音源へ向けるように変更するまたは(ii)前記マイクロフォンが前記音源により近づくように前記無人飛行体から外向きの前記マイクロフォンの突出量の少なくとも一方を変更する
    請求項1または2に記載の無人飛行体。
  4. 前記プロセッサは、前記判定において、前記品質を判定するための指標として、前記ターゲット音と前記無人飛行体の飛行に関わる騒音とを用いて算出されるSN(Signal Noise)比を算出する
    請求項1からのいずれか1項に記載の無人飛行体。
  5. 前記プロセッサは、
    さらに、予め定められた目標品質として、前記無人飛行体の飛行に関わる騒音を用いて予め設定された目標SN比を取得し、
    取得された前記目標SN比と算出された前記SN比とを比較することで、前記ターゲット音の品質を判定する
    請求項に記載の無人飛行体。
  6. 前記センサは、さらに、画像データを生成するイメージセンサを含み、
    前記プロセッサは、前記イメージセンサにより生成された前記画像データを用いて、前記位置関係を取得する
    請求項1からのいずれか1項に記載の無人飛行体。
  7. 前記センサは、さらに、測距データを生成する測距センサを含み、
    前記プロセッサは、前記測距センサにより生成された前記測距データを用いて、前記位置関係を取得する
    請求項1からのいずれか1項に記載の無人飛行体。
  8. 前記プロセッサは、前記ターゲット音の品質と前記位置関係と前記目標品質とに基づいて目標距離を決定し、前記無人飛行体と前記音源との間の距離が前記目標距離となるように前記無人飛行体の移動を制御する
    請求項1からのいずれか1項に記載の無人飛行体。
  9. 前記位置関係は、(i)前記無人飛行体と前記音源との間の距離、(ii)前記無人飛行体に対する前記音源の位置、および、(iii)前記無人飛行体から前記音源への方向の少なくともいずれか1つである
    請求項1からのいずれか1項に記載の無人飛行体。
  10. 音データを生成するマイクロフォンを少なくとも含むセンサと、プロセッサと、を備える無人飛行体の前記プロセッサが行う情報処理方法であって、
    前記プロセッサが、
    前記マイクロフォンが生成する音データを用いて得た、ターゲット音の品質を判定し、
    前記センサが生成するデータを用いて、前記無人飛行体と前記ターゲット音の音源との位置関係を取得し、
    前記ターゲット音の品質と前記位置関係とに基づいて、前記無人飛行体と前記ターゲット音の音源との間の距離が制御されるように、前記無人飛行体の移動を制御し、
    前記音源からの所定距離を示す距離情報を取得し、
    前記音源に近づくように前記無人飛行体の移動を制御する場合、前記距離情報と前記位置関係とに基づいて、前記音源から前記所定距離離れた安全位置よりも前記音源に近づかないように、前記無人飛行体移動させ、
    前記プロセッサは、さらに、
    前記距離情報と前記位置関係とに基づいて、前記安全位置として、前記音源から前記所定距離離れた第1の安全位置まで前記音源に近づけるように前記無人飛行体を移動させたとき、前記第1の安全位置まで近づけた前記無人飛行体の前記マイクロフォンが前記音データとして生成した第1の音データを用いて得られる第1のターゲット音の品質が予め定められた目標品質よりも高いと前記判定により判定された場合、前記目標品質に等しい第2ターゲット音が得られる第2音データを前記マイクロフォンが生成する第2の安全位置へ前記無人飛行体を移動させ、
    前記第1の安全位置における高さ方向の位置は、前記音源の前記高さ方向の位置よりも高く、
    前記第2の安全位置の前記高さ方向の位置は、前記第1の安全位置における前記高さ方向の位置よりも低く、かつ前記音源から前記所定距離離れた位置であり、
    前記第2の安全位置への移動において、前記プロセッサは、前記音源の位置を中心とする半径が前記所定距離の半円に沿って前記無人飛行体を前記第1の安全位置から前記第2の安全位置へ移動させることで、前記無人飛行体の高さ方向の位置を地面に近づける方向であって、かつ前記無人飛行体の水平方向の位置を前記音源から離れる方向に前記無人飛行体を移動させる、
    情報処理方法。
  11. 音データを生成するマイクロフォンを少なくとも含むセンサと、プロセッサと、を備える無人飛行体の情報処理方法を前記プロセッサに実行させるためのプログラムであって、
    前記プログラムは、前記プロセッサに、
    前記マイクロフォンが生成する音データを用いて得た、ターゲット音の品質を判定させ
    前記センサが生成するデータを用いて、前記無人飛行体と前記ターゲット音の音源との位置関係を取得させ
    前記ターゲット音の品質と前記位置関係とに基づいて、前記無人飛行体と前記ターゲット音の音源との間の距離が制御されるように、前記無人飛行体の移動を制御する処理を実行させ
    前記音源からの所定距離を示す距離情報を取得させ
    前記音源に近づくように前記無人飛行体の移動を制御する場合、前記距離情報と前記位置関係とに基づいて、前記音源から前記所定距離離れた安全位置よりも前記音源に近づかないように、前記無人飛行体の移動を制御する処理を実行させ、
    前記プログラムは、さらに、前記プロセッサに、
    前記距離情報と前記位置関係とに基づいて、前記安全位置として、前記音源から前記所定距離離れた第1の安全位置まで前記音源に近づけるように前記無人飛行体を移動させたとき、前記第1の安全位置まで近づけた前記無人飛行体の前記マイクロフォンが前記音データとして生成した第1の音データを用いて得られる第1のターゲット音の品質が予め定められた目標品質よりも高いと前記判定により判定された場合、前記目標品質に等しい第2ターゲット音が得られる第2音データを前記マイクロフォンが生成する第2の安全位置へ前記無人飛行体を移動させる処理を実行させ、
    前記第1の安全位置における高さ方向の位置は、前記音源の前記高さ方向の位置よりも高く、
    前記第2の安全位置の前記高さ方向の位置は、前記第1の安全位置における前記高さ方向の位置よりも低く、かつ前記音源から前記所定距離離れた位置であり、
    前記プログラムは、前記第2の安全位置への前記移動において、前記プロセッサに、前記音源の位置を中心とする半径が前記所定距離の半円に沿って前記無人飛行体を前記第1の安全位置から前記第2の安全位置へ移動させることで、前記無人飛行体の高さ方向の位置を地面に近づける方向であって、かつ前記無人飛行体の水平方向の位置を前記音源から離れる方向に前記無人飛行体を移動させる、
    情報処理方法を前記プロセッサに実行させるためのプログラム。
JP2021501561A 2019-02-19 2019-11-08 無人飛行体、情報処理方法およびプログラム Active JP7442147B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019027725 2019-02-19
JP2019027725 2019-02-19
PCT/JP2019/043783 WO2020170510A1 (ja) 2019-02-19 2019-11-08 無人飛行体、情報処理方法およびプログラム

Publications (2)

Publication Number Publication Date
JPWO2020170510A1 JPWO2020170510A1 (ja) 2021-12-16
JP7442147B2 true JP7442147B2 (ja) 2024-03-04

Family

ID=72144006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021501561A Active JP7442147B2 (ja) 2019-02-19 2019-11-08 無人飛行体、情報処理方法およびプログラム

Country Status (5)

Country Link
US (1) US11928974B2 (ja)
EP (1) EP3929074A4 (ja)
JP (1) JP7442147B2 (ja)
CN (1) CN112912309A (ja)
WO (1) WO2020170510A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7296554B2 (ja) 2019-02-19 2023-06-23 パナソニックIpマネジメント株式会社 無人飛行体、情報処理方法およびプログラム
JP7406656B2 (ja) * 2019-12-31 2023-12-27 ジップライン インターナショナル インク. 航空機の相関動作及び検知
CN115027675B (zh) * 2022-06-21 2023-05-19 江汉大学 一种基于无人机平台用爆破现场噪声测量装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006181651A (ja) 2004-12-24 2006-07-13 Toshiba Corp 対話型ロボット、対話型ロボットの音声認識方法および対話型ロボットの音声認識プログラム
JP2008126329A (ja) 2006-11-17 2008-06-05 Toyota Motor Corp 音声認識ロボットおよび音声認識ロボットの制御方法
US20170220036A1 (en) 2016-01-28 2017-08-03 Qualcomm Incorporated Drone flight control

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006134221A (ja) * 2004-11-09 2006-05-25 Matsushita Electric Ind Co Ltd 追従移動装置
JP2007158958A (ja) 2005-12-07 2007-06-21 Yamaha Corp 音声入出力装置
JP4435212B2 (ja) * 2007-06-19 2010-03-17 本田技研工業株式会社 姿勢認識装置及び自律ロボット
US9146295B2 (en) * 2012-05-24 2015-09-29 The Boeing Company Acoustic ranging system using atmospheric dispersion
US9275645B2 (en) * 2014-04-22 2016-03-01 Droneshield, Llc Drone detection and classification methods and apparatus
CN105899965B (zh) 2014-08-29 2018-10-02 深圳市大疆创新科技有限公司 用于采集音频数据的无人飞行器
CN112859899A (zh) * 2014-10-31 2021-05-28 深圳市大疆创新科技有限公司 用于利用视觉标记进行监视的系统和方法
US9997079B2 (en) * 2014-12-12 2018-06-12 Amazon Technologies, Inc. Commercial and general aircraft avoidance using multi-spectral wave detection
KR102353231B1 (ko) 2015-04-24 2022-01-20 삼성디스플레이 주식회사 비행 표시장치
WO2017081898A1 (ja) * 2015-11-09 2017-05-18 Necソリューションイノベータ株式会社 飛行制御装置、飛行制御方法、及びコンピュータ読み取り可能な記録媒体
JP2018090117A (ja) * 2016-12-05 2018-06-14 株式会社エンルートM’s 無人飛行装置、無人飛行方法及び無人飛行プログラム
JP6912281B2 (ja) * 2017-06-20 2021-08-04 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd 飛行体、飛行制御システム、飛行制御方法、プログラム及び記録媒体
CN107300689A (zh) * 2017-06-28 2017-10-27 南京理工大学 一种低空无人飞行器声源方位探测系统
US10852427B2 (en) * 2017-06-30 2020-12-01 Gopro, Inc. Ultrasonic ranging state management for unmanned aerial vehicles
US10748434B2 (en) * 2017-07-27 2020-08-18 Intel Corporation Methods, systems, and apparatus for drone collision avoidance and acoustic detection
US10290293B2 (en) * 2017-11-08 2019-05-14 Intel Corporation Systems, apparatus, and methods for drone audio noise reduction
EP3547308B1 (en) * 2018-03-26 2024-01-24 Sony Group Corporation Apparatuses and methods for acoustic noise cancelling

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006181651A (ja) 2004-12-24 2006-07-13 Toshiba Corp 対話型ロボット、対話型ロボットの音声認識方法および対話型ロボットの音声認識プログラム
JP2008126329A (ja) 2006-11-17 2008-06-05 Toyota Motor Corp 音声認識ロボットおよび音声認識ロボットの制御方法
US20170220036A1 (en) 2016-01-28 2017-08-03 Qualcomm Incorporated Drone flight control

Also Published As

Publication number Publication date
EP3929074A4 (en) 2022-06-01
US11928974B2 (en) 2024-03-12
EP3929074A1 (en) 2021-12-29
WO2020170510A1 (ja) 2020-08-27
US20210233416A1 (en) 2021-07-29
JPWO2020170510A1 (ja) 2021-12-16
CN112912309A (zh) 2021-06-04

Similar Documents

Publication Publication Date Title
US10945070B2 (en) Unmanned aircraft, information processing method, and recording medium
JP7442147B2 (ja) 無人飛行体、情報処理方法およびプログラム
US20220083078A1 (en) Method for controlling aircraft, device, and aircraft
CN110775269B (zh) 无人飞行体、信息处理方法以及程序记录介质
CN105867405A (zh) 无人机、无人机降落控制装置及方法
JP6912281B2 (ja) 飛行体、飛行制御システム、飛行制御方法、プログラム及び記録媒体
JP2019057185A (ja) 飛行装置、飛行方法及びプログラム
JP6630939B2 (ja) 制御装置、撮像装置、移動体、制御方法、及びプログラム
WO2022141225A1 (en) Methods, apparatus, and systems for operating device based on speech command
US11964775B2 (en) Mobile object, information processing apparatus, information processing method, and program
US11741932B2 (en) Unmanned aircraft and information processing method
US20200262071A1 (en) Mobile robot for recognizing queue and operating method of mobile robot
JP7457949B2 (ja) 情報処理方法、無人飛行体及び無人飛行体制御システム
CN113056419A (zh) 无人飞行体、控制方法以及程序
US20210200201A1 (en) Unmanned aerial vehicle, information processing method, and recording medium
JP2023095030A (ja) 異常検知システム、及び異常検知方法
JP6714802B2 (ja) 制御装置、飛行体、制御方法、及びプログラム
US11919640B2 (en) Unmanned aircraft
JP2020111146A (ja) 無人飛行体、制御方法及びプログラム

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210312

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230522

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231128

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20231207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240209

R151 Written notification of patent or utility model registration

Ref document number: 7442147

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151