JP7441877B2 - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
JP7441877B2
JP7441877B2 JP2022052686A JP2022052686A JP7441877B2 JP 7441877 B2 JP7441877 B2 JP 7441877B2 JP 2022052686 A JP2022052686 A JP 2022052686A JP 2022052686 A JP2022052686 A JP 2022052686A JP 7441877 B2 JP7441877 B2 JP 7441877B2
Authority
JP
Japan
Prior art keywords
fuel cell
flow rate
oxidant gas
opening degree
cell system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022052686A
Other languages
English (en)
Other versions
JP2023145826A (ja
Inventor
智之 井上
優斗 中谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2022052686A priority Critical patent/JP7441877B2/ja
Priority to US18/124,639 priority patent/US20230317994A1/en
Priority to CN202310310897.7A priority patent/CN116895796A/zh
Publication of JP2023145826A publication Critical patent/JP2023145826A/ja
Application granted granted Critical
Publication of JP7441877B2 publication Critical patent/JP7441877B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/04664Failure or abnormal function
    • H01M8/04686Failure or abnormal function of auxiliary devices, e.g. batteries, capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04992Processes for controlling fuel cells or fuel cell systems characterised by the implementation of mathematical or computational algorithms, e.g. feedback control loops, fuzzy logic, neural networks or artificial intelligence
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0438Pressure; Ambient pressure; Flow
    • H01M8/04395Pressure; Ambient pressure; Flow of cathode reactants at the inlet or inside the fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04761Pressure; Flow of fuel cell exhausts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04955Shut-off or shut-down of fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Computing Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • Medical Informatics (AREA)
  • Fuzzy Systems (AREA)
  • Evolutionary Computation (AREA)
  • Health & Medical Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Artificial Intelligence (AREA)
  • Fuel Cell (AREA)

Description

本発明は、移動体、産業機械等に電力を供給可能な燃料電池システムに関する。
近年、より多くの人々が手ごろで信頼でき、持続可能かつ先進的なエネルギへのアクセスを確保するために、エネルギの効率化に貢献する燃料電池(燃料電池スタック)に関する研究開発が行われている。
燃料電池スタックには、酸化剤ガスと燃料ガスとが供給される。酸化剤ガスは、コンプレッサによって加圧された空気である。酸化剤ガスの流量は、コンプレッサの上流に設けられた流量センサ(例えばマスフローメータ)によって計測される。
特許文献1には、流量センサの異常を判定する技術が開示される。この技術は、圧力測定値と圧力算出値とを用いて、流量センサが異常であるかの判定を行う。圧力測定値は、コンプレッサの下流に設けられた圧力測定器(圧力センサ)によって検出される。
特開2020-126792号公報
コンプレッサの低回転領域においては、コンプレッサの吐出量の変化に対する昇圧比の変化率が小さい。このため、特許文献1の技術で使用される圧力測定値は、特にコンプレッサが低回転領域で回転する場合に、誤差が大きい。従って、圧力測定値、すなわち圧力センサを使用せずに流量センサの異常を判定する技術が望まれる。
本発明は上述した課題を解決することを目的とする。
本発明の態様に係る燃料電池システムは、酸化剤ガスと燃料ガスとにより発電する燃料電池スタックと、前記燃料電池スタックに供給される前記酸化剤ガスが流れる供給流路と、前記燃料電池スタックから排出される酸化剤オフガスが流れる排出流路と、前記供給流路と前記排出流路とを接続するバイパス流路と、前記供給流路に設けられ、前記燃料電池スタックに前記酸化剤ガスを供給する酸化剤ガス供給部と、前記供給流路を流れる前記酸化剤ガスの流量を計測する流量計測部と、前記バイパス流路に設けられ、開度の調整が可能なバイパス弁と、前記排出流路に設けられ、開度の調整が可能な封止弁と、前記バイパス弁の開度と、前記封止弁の開度と、前記酸化剤ガス供給部における前記酸化剤ガスの供給状態とに基づき、前記供給流路を流れる前記酸化剤ガスの流量を算出し、算出値と前記流量計測部の計測値とのずれが所定量以上である場合に、前記流量計測部の前記計測値が正常ではないと判定する制御部と、を備える。
本発明によれば、圧力測定値、すなわち圧力センサを使用せずに酸化剤ガスの流量を算出することができるため、流量計測部が正常であるかの判定を精度よく行うことができる。
図1は、本発明に係る燃料電池システムの概略構成図である。 図2は、バイパス弁の開度が小さい場合のP-Q特性を示す図である。 図3は、バイパス弁の開度が大きい場合のP-Q特性を示す図である。 図4は、マスフローメータの状態判定処理の手順を示すフローチャートである。 図5は、流量の範囲を算出する際に使用されるP-Q特性を示す図である。
[1 燃料電池システム10の構成]
図1は、本発明に係る燃料電池システム10の概略構成図である。燃料電池システム10は、例えば、移動体(自動車、船舶、航空機等)、産業機械等に使用可能である。燃料電池システム10は、エネルギの効率化に寄与する。
燃料電池システム10は、燃料電池スタック12と、酸化剤ガス給排システム14と、燃料ガス給排システム16と、冷却システム18と、制御装置20とを有する。燃料電池スタック12の出力(発電電力)は、1以上の負荷に供給され得る。また、燃料電池スタック12の出力(発電電力)は、蓄電装置に供給され得る。
燃料電池スタック12は、複数の発電セル22を有する。各々の発電セル22は、固体高分子電解質膜とアノード電極とカソード電極とを有する。発電セル22には、カソード電極に酸化剤ガスを供給するカソード流路が形成される。発電セル22には、アノード電極に燃料ガスを供給するアノード流路が形成される。燃料電池スタック12は、酸化剤ガス(エア)と燃料ガス(水素)との反応により発電する。
酸化剤ガス給排システム14は、燃料電池スタック12のカソード流路に酸化剤ガスを供給するための各構成と、燃料電池スタック12のカソード流路から酸化剤オフガスを排出するための各構成とを有する。酸化剤ガス給排システム14は、各種流路として、供給流路24と、排出流路26と、バイパス流路28とを有する。また、酸化剤ガス給排システム14は、各種装置として、コンプレッサ(酸化剤ガス供給部)30と、加湿器32と、第1封止弁34と、第2封止弁36と、バイパス弁38とを有する。また、酸化剤ガス給排システム14は、各種センサとして、圧力センサ40と、温度センサ42と、マスフローメータ(流量計測部)44と、第1開度センサ48と、第2開度センサ50とを有する。
供給流路24は、酸化剤ガスの吸気口52と燃料電池スタック12のカソード流路の入口とを接続する。供給流路24には、上流(吸気口52)から下流(燃料電池スタック12)に向かって、圧力センサ40と、温度センサ42と、マスフローメータ44と、コンプレッサ30と、第1封止弁34と、加湿器32の加湿流路32Aとが、その順番で設けられる。供給流路24のうち、コンプレッサ30と第1封止弁34との間には、バイパス流路28に接続される分岐部分24Pがある。
排出流路26は、燃料電池スタック12のカソード流路の出口と希釈器54とを接続する。排出流路26には、上流(燃料電池スタック12)から下流(希釈器54)に向かって、加湿器32の加湿流路32Bと、第2封止弁36とが、その順番で設けられる。排出流路26のうち、第2封止弁36の下流には、バイパス流路28に接続される合流部分26Pがある。
バイパス流路28は、供給流路24と排出流路26とを接続する。バイパス流路28は、供給流路24の分岐部分24Pと、排出流路26の合流部分26Pとを接続する。バイパス流路28には、バイパス弁38が設けられる。
圧力センサ40は、吸気口52から吸気される酸化剤ガスの圧力、すなわち大気圧を検出する。温度センサ42は、吸気口52から吸気される酸化剤ガスの温度、すなわち吸気温度を検出する。マスフローメータ44は、吸気口52から吸気される酸化剤ガスの流量、すなわちコンプレッサ30に吸引される酸化剤ガスの流量を計測する。圧力センサ40の検出値と、温度センサ42の検出値と、マスフローメータ44の計測値とは、制御装置20に送信される。
コンプレッサ30は、モータにより駆動される機械式の過給器等で構成される。コンプレッサ30は、吸気口52から酸化剤ガスを吸引して加圧し、加湿器32を通じて燃料電池スタック12に供給する。コンプレッサ30の動作は、制御装置20によって制御される。コンプレッサ30には、モータの回転角度を検出する回転角度センサ46が設けられる。回転角度センサ46は、例えばレゾルバ、ロータリエンコーダ等である。
加湿器32は、加湿流路32Aと加湿流路32Bとを有する。加湿器32の加湿流路32Aには、コンプレッサ30から吐出される高温で乾燥した酸化剤ガスが流通する。加湿器32の加湿流路32Bには、燃料電池スタック12から排出される高湿度の酸化剤オフガスが流通する。加湿器32において、乾燥した酸化剤ガスは、高湿度の酸化剤オフガスによって加湿される。
第1封止弁34は、分岐部分24Pから加湿器32までの供給流路24の開度を調整可能である。第1封止弁34は、背圧弁である。第2封止弁36は、加湿器32から合流部分26Pまでの排出流路26の開度を調整可能である。第2封止弁36は、背圧弁である。バイパス弁38は、バイパス流路28の開度を調整可能である。第1封止弁34と第2封止弁36とバイパス弁38の各々の開閉動作及び開度は、制御装置20によって制御される。
第1開度センサ48は、第2封止弁36の開度を検出する。第2開度センサ50は、バイパス弁38の開度を検出する。第1開度センサ48の検出値と、第2開度センサ50の検出値とは、制御装置20に送信される。
燃料ガス給排システム16は、燃料電池スタック12のアノード流路に燃料ガスを供給するための各構成と、燃料電池スタック12のアノード流路から燃料オフガスを排出するための各構成とを有する。
冷却システム18は、燃料電池スタック12に冷媒を供給するための各構成と、燃料電池スタック12から冷媒を排出するための各構成とを有する。
制御装置20は、制御部56と記憶部58とを有する。制御部56は、処理回路を有する。処理回路は、CPU等のプロセッサであってもよい。処理回路は、ASIC、FPGA等の集積回路であってもよい。プロセッサは、記憶部58に記憶されるプログラムを実行することによって各種の処理を実行可能である。複数の処理のうちの少なくとも一部が、ディスクリートデバイスを含む電子回路によって実行されてもよい。
制御部56は、燃料電池システム10の動作制御を行う。例えば、制御部56は、各種センサから送信される信号を受信する。制御部56は、受信した各々の信号に基づいて、酸化剤ガス給排システム14、燃料ガス給排システム16及び冷却システム18のそれぞれを制御する。例えば、制御部56は、各弁、コンプレッサ30等に動作指令値を示す信号を送信する。また、制御部56は、後述する状態判定処理を行い、マスフローメータ44の計測値が正常か否かを判定する。
記憶部58は、揮発性メモリと不揮発性メモリとを有する。揮発性メモリとしては、例えばRAM等が挙げられる。揮発性メモリは、プロセッサのワーキングメモリとして使用される。揮発性メモリは、処理又は演算に必要なデータ等を一時的に記憶する。不揮発性メモリとしては、例えばROM、フラッシュメモリ等が挙げられる。不揮発性メモリは、保存用のメモリとして使用される。不揮発性メモリは、プログラム、テーブル、マップ60等を記憶する。記憶部58の少なくとも一部が、上述したようなプロセッサ、集積回路等に備えられてもよい。
[2 本発明の原理]
図2は、バイパス弁38の開度が小さい場合のP-Q特性を示す図である。図3は、バイパス弁38の開度が大きい場合のP-Q特性を示す図である。図2及び図3のP-Q特性は、酸化剤ガスの昇圧率と流量に関する。制御部56は、マスフローメータ44の計測値と、理論的な算出値とを比較し、マスフローメータ44の計測値が正常か否かを判定する。制御部56は、理論的な算出値を、燃料電池システム10のP-Q特性とコンプレッサ30のP-Q特性とを使用して算出する。以下では説明の便宜のために、燃料電池システム10のP-Q特性を「システムPQ」(システム特性)とも称する。また、コンプレッサ30のP-Q特性を「コンプレッサPQ」とも称する。図2及び図3において、特性62はシステムPQであり、特性64はコンプレッサPQである。
システムPQ、すなわち特性62は、酸化剤ガス給排システム14における酸化剤ガスの昇圧比(降圧比)と、酸化剤ガス給排システム14における酸化剤ガスの流量との関係を示す。なお、酸化剤ガス給排システム14の昇圧比(降圧比)は、コンプレッサ30の出口におけるガス圧と、希釈器54の入口におけるガス圧との比である。一方、コンプレッサPQ、すなわち特性64は、コンプレッサ30における酸化剤ガスの昇圧比と、コンプレッサ30における酸化剤ガスの流量との関係を示す。特性62と特性64との交点の流量(Q)は、流量の理論的な算出値に相当する。
酸化剤ガス給排システム14内の圧損が一定である場合、システムPQは一義的に決まる。しかし、実際には、酸化剤ガス給排システム14の圧損は一定でない。従って、酸化剤ガス給排システム14の圧損の変化に伴い、システムPQは変化する。
例えば、酸化剤ガス給排システム14内の圧損は、第2封止弁36の開度の変化に伴い変化する。第2封止弁36の開度が大きいほど、第2封止弁36での圧損は小さい。第2封止弁36の開度が小さいほど、第2封止弁36での圧損は大きい。このため、図2及び図3の矢印70で示されるように、システムPQとしての特性62は、特性66と特性68との間で変化する。特性66は、第2封止弁36の開度が下限(開度最小)である場合のシステムPQである。特性68は、第2封止弁36の開度が上限(開度最大)である場合のシステムPQである。
また、酸化剤ガス給排システム14内の圧損は、バイパス弁38の開度の変化に伴い変化する。バイパス弁38の開度が大きいほど、バイパス弁38での圧損は小さい。バイパス弁38の開度が小さいほど、バイパス弁38での圧損は大きい。このため、例えば図2と図3との差異として示されるように、特性62、特性66及び特性68は、バイパス弁38の開度の変化に伴い変化する。
バイパス弁38の開度が小さいほど、燃料電池スタック12及び第2封止弁36を流れる酸化剤ガスの比率が、バイパス流路28を流れる酸化剤ガスの比率より大きくなる。このため、バイパス弁38の開度が小さいほど、酸化剤ガス給排システム14内の圧損に対する第2封止弁36の開度の影響は大きい。別の見方をすると、バイパス弁38を通る経路で圧損が支配的に決まらない。従って、図2と図3との差異として示されるように、バイパス弁38の開度が小さいほど、第2封止弁36の開度の変化量に対するシステムPQの変化量が大きい。つまり、バイパス弁38の開度が小さいほど、上限値と下限値との差、すなわち特性66と特性68との間の範囲は大きくなる。
一方、バイパス弁38の開度が大きいほど、燃料電池スタック12及び第2封止弁36を流れる酸化剤ガスの比率が、バイパス流路28を流れる酸化剤ガスの比率より小さくなる。このため、バイパス弁38の開度が大きいほど、酸化剤ガス給排システム14内の圧損に対する第2封止弁36の開度の影響は小さい。別の見方をすると、バイパス弁38を通る経路で圧損が支配的に決まる。従って、図2と図3との差異として示されるように、バイパス弁38の開度が大きいほど、第2封止弁36の開度の変化量に対するシステムPQの変化量が小さい。つまり、バイパス弁38の開度が大きいほど、上限値と下限値との差、すなわち特性66と特性68との間の範囲は小さくなる。
更に、図2と図3との差異として示されるように、バイパス弁38の開度が小さいほど、システムPQの昇圧比及び昇圧比の変化率は大きい。また、図2と図3の各々で示されるように、第2封止弁36の開度が小さいほど、システムPQの昇圧比及び昇圧比の変化率は大きい。
コンプレッサ30の回転数(モータの回転数)が一定である場合、コンプレッサPQは一義的に決まる。しかし、実際には、コンプレッサ30の回転数は、一定でない。例えば、コンプレッサ30の回転数は、制御部56からの指令値に応じて変化する。従って、図2及び図3の矢印72で示されるように、コンプレッサPQとしての特性64は、コンプレッサ30の回転数の変化に伴い変化する。なお、コンプレッサ30の回転数が大きいほど、昇圧比は大きい。
以上から、システムPQと、コンプレッサPQと、第2封止弁36の開度と、バイパス弁38の開度と、コンプレッサ30の回転数とを用いることによって、上述した理論的な算出値を算出することが可能となる。但し、第2封止弁36の開度の検出値と、バイパス弁38の開度の検出値とには誤差が含まれる。誤差としては、例えば指令値に対する実際の開度の誤差、センサの誤差、計算の誤差等が挙げられる。このため、算出値の算出時には、誤差に対応した幅を設定することが好ましい。この幅も、バイパス弁38の開度が小さいほど大きく、バイパス弁38の開度が大きいほど小さい。
本実施形態において、記憶部58は、システムPQとコンプレッサPQとを示す複数のマップ60(図1)を記憶する。マップ60は、バイパス弁38の複数の開度範囲の各々に対して作成される。各々のマップ60において、第2封止弁36の開度によってシステムPQが定まり、コンプレッサ30の回転数によってコンプレッサPQが定まる。なお、各々のマップ60の間でシステムPQは異なる一方で、コンプレッサPQは同じである。制御部56は、複数のマップ60のうち、バイパス弁38の開度に対応するマップ60を使用して、流量の理論的な算出値を取得する。
[3 状態判定処理]
図4は、マスフローメータ44の状態判定処理の手順を示すフローチャートである。制御部56は、任意のタイミングで、状態判定処理を実行する。例えば、制御部56は、燃料電池システム10の起動時に、状態判定処理を実行してもよい。また、制御部56は、所定時間毎に、状態判定処理を実行してもよい。
ステップS1において、制御部56は、ステップS2以降の処理で使用する各種情報を取得する。制御部56は、第1開度センサ48から第2封止弁36の開度の検出値を取得する。制御部56は、第2開度センサ50からバイパス弁38の開度の検出値を取得する。制御部56は、回転角度センサ46からコンプレッサ30の回転数の検出値を取得する。なお、制御部56は、各開度及び回転数として、各々の機器に送信する指令値を使用してもよい。制御部56は、圧力センサ40から吸気圧の検出値を取得する。制御部56は、温度センサ42から吸気温度の検出値を取得する。制御部56は、マスフローメータ44から流量の計測値を取得する。ステップS1の実行後、処理はステップS2に移行する。
ステップS2において、制御部56は、記憶部58に記憶される複数のマップ60の中から、バイパス弁38の開度に対応するマップ60を選択する。制御部56は、選択したマップ60を、ステップS3で使用するP-Q特性として設定する。ステップS2の実行後、処理はステップS3に移行する。
ステップS3において、制御部56は、ステップS2で設定したマップ60を使用して、コンプレッサ30の回転数と第2封止弁36の開度とに対応する流量の上限値Q-Uと下限値Q-L、すなわち流量の範囲を算出する。図5を用いて、制御部56がステップS3で行う処理を説明する。制御部56は、マップ60を使用して、第1開度センサ48の検出値(第2封止弁36の開度)に対応する特性62(システムPQ)を特定する。特性62は、特性66と特性68との間に位置する。ところで、第1開度センサ48の検出値には誤差が含まれている可能性がある。制御部56は、特性62に誤差を加えた範囲74を算出する。誤差及び範囲の決め方は、予め定められている。また、制御部56は、マップ60を使用して、コンプレッサ30の回転数に対応する特性64(コンプレッサPQ)を特定する。制御部56は、範囲74の小流量側の境界74aと特性64との交点の流量値を、流量の下限値Q-Lとする。また、制御部56は、範囲74の大流量側の境界74bと特性64との交点の流量値を、流量の上限値Q-Uとする。ステップS3の実行後、処理はステップS4に移行する。
ステップS4において、制御部56は、吸気圧と吸気温度とから、ステップS3で算出した流量の上下限値(Q-U及びQ-L)の各々を、実流量(算出値)の上下限値(Q´-U及びQ´-L)に変換する。変換式は、記憶部58に記憶されている。ステップS4の実行後、処理はステップS5に移行する。
ステップS5において、制御部56は、マスフローメータ44の計測値と、ステップS4で取得された実流量(算出値)とのずれが所定量以上か否かを判定する。例えば、制御部56は、計測値が実流量の範囲外、すなわち実流量の下限値Q´-Lを下回るか又は実流量の上限値Q´-Uを上回る場合に、ずれが所定量以上と判定する。又は、制御部56は、実流量の上下限値(Q´-U及びQ´-L)の平均値を算出し、計測値と平均値との差が所定値以上である場合に、ずれが所定量以上と判定してもよい。ずれが所定量以上である場合(ステップS5:YES)、処理はステップS6に移行する。一方、ずれが所定量以上でない場合(ステップS5:NO)、処理はステップS7に移行する。
ステップS5からステップS6に移行すると、制御部56は、マスフローメータ44の計測値が異常であると判定する。この場合、マスフローメータ44が故障している可能性がある。制御部56は、例えば、表示装置(不図示)に警告表示の指示信号を出力してもよい。又は、制御部56は、他の制御装置(不図示)に故障を知らせるための信号を出力してもよい。ステップS6が実行されると、状態判定処理は終了する。
ステップS5からステップS7に移行すると、制御部56は、マスフローメータ44の計測値が正常であると判定する。ステップS7が実行されると、状態判定処理は終了する。
[4 実施形態から得られる発明]
上記実施形態から把握しうる発明について、以下に記載する。
本発明の態様に係る燃料電池システム(10)は、酸化剤ガスと燃料ガスとにより発電する燃料電池スタック(12)と、前記燃料電池スタックに供給される前記酸化剤ガスが流れる供給流路(24)と、前記燃料電池スタックから排出される酸化剤オフガスが流れる排出流路(26)と、前記供給流路と前記排出流路とを接続するバイパス流路(28)と、前記供給流路に設けられ、前記燃料電池スタックに前記酸化剤ガスを供給する酸化剤ガス供給部(30)と、前記供給流路を流れる前記酸化剤ガスの流量を計測する流量計測部(44)と、前記バイパス流路に設けられ、開度の調整が可能なバイパス弁(38)と、前記排出流路に設けられ、開度の調整が可能な封止弁(36)と、前記バイパス弁の開度と、前記封止弁の開度と、前記酸化剤ガス供給部における前記酸化剤ガスの供給状態とに基づき、前記供給流路を流れる前記酸化剤ガスの流量を算出し、算出値と前記流量計測部の計測値とのずれが所定量以上である場合に、前記流量計測部の前記計測値が正常ではないと判定する制御部(56)と、を備える。
上記構成においては、バイパス弁の開度と封止弁の開度とに基づき、酸化剤ガスの適切な流量を算出する。上記構成によれば、圧力センサを使用せずに酸化剤ガスの流量を算出することができるため、流量計測部が正常であるかの判定を精度よく行うことができる。
本発明の態様において、前記制御部は、前記バイパス弁の開度が大きいほど、前記封止弁の上下限開度が小さくなるように燃料電池システムの圧力-流量特性(62、66、68)を設定し、前記封止弁の前記上下限開度の範囲内で前記供給流路を流れる前記酸化剤ガスの流量を算出してもよい。
バイパス弁が開くほど、燃料電池システムの圧損においては、封止弁を通る経路の圧損よりバイパス弁を通る経路での圧損が支配的になる。このため、封止弁の開度誤差(指示値と実際の開度の差等)による流量への影響を小さくすることができる。結果として、算出値の精度を高くすることができる。
本発明の態様において、前記制御部は、前記酸化剤ガス供給部における前記酸化剤ガスの供給状態により設定される酸化剤ガス供給部の圧力-流量特性(64)と、前記燃料電池システムの圧力-流量特性とに基づき、前記算出値の上限値(Q´-U)と前記算出値の下限値(Q´-L)とを取得し、前記流量計測部の前記計測値が、前記上限値と前記下限値との間の範囲から外れている場合に、前記流量計測部の前記計測値が正常ではないと判定してもよい。
上記構成によれば、精度よく燃料電池システムの流量特性を算出することができる。
本発明の態様において、前記制御部は、前記バイパス弁の開度と前記封止弁の開度とによって燃料電池システムの圧力-流量特性を設定し、前記酸化剤ガス供給部における前記酸化剤ガスの供給状態によって酸化剤ガス供給部の圧力-流量特性を設定し、前記燃料電池システムの圧力-流量特性と前記酸化剤ガス供給部の圧力-流量特性とを用いて前記算出値を取得してもよい。
10…燃料電池システム 12…燃料電池スタック
24…供給流路 26…排出流路
28…バイパス流路
30…コンプレッサ(酸化剤ガス供給部) 36…第2封止弁(封止弁)
38…バイパス弁
44…マスフローメータ(流量計測部) 56…制御部
62、66、68…特性(燃料電池システムの圧力-流量特性)
64…特性(酸化剤ガス供給部の圧力-流量特性)

Claims (4)

  1. 酸化剤ガスと燃料ガスとにより発電する燃料電池スタックと、
    前記燃料電池スタックに供給される前記酸化剤ガスが流れる供給流路と、
    前記燃料電池スタックから排出される酸化剤オフガスが流れる排出流路と、
    前記供給流路と前記排出流路とを接続するバイパス流路と、
    前記供給流路に設けられ、前記燃料電池スタックに前記酸化剤ガスを供給する酸化剤ガス供給部と、
    前記供給流路を流れる前記酸化剤ガスの流量を計測する流量計測部と、
    前記バイパス流路に設けられ、開度の調整が可能なバイパス弁と、
    前記排出流路に設けられ、開度の調整が可能な封止弁と、
    前記バイパス弁の開度と、前記封止弁の開度と、前記酸化剤ガス供給部における前記酸化剤ガスの供給状態とに基づき、前記供給流路を流れる前記酸化剤ガスの流量を算出し、算出値と前記流量計測部の計測値とのずれが所定量以上である場合に、前記流量計測部の前記計測値が正常ではないと判定する制御部と、
    を備える、燃料電池システム。
  2. 請求項1に記載の燃料電池システムであって、
    前記制御部は、
    前記バイパス弁の開度が大きいほど、前記封止弁の上下限開度が小さくなるように燃料電池システムの圧力-流量特性を設定し、
    前記封止弁の前記上下限開度の範囲内で前記供給流路を流れる前記酸化剤ガスの流量を算出する、
    燃料電池システム。
  3. 請求項2に記載の燃料電池システムであって、
    前記制御部は、
    前記酸化剤ガス供給部における前記酸化剤ガスの供給状態により設定される酸化剤ガス供給部の圧力-流量特性と、前記燃料電池システムの圧力-流量特性とに基づき、前記算出値の上限値と前記算出値の下限値とを取得し、
    前記流量計測部の前記計測値が、前記上限値と前記下限値との間の範囲から外れている場合に、前記流量計測部の前記計測値が正常ではないと判定する、
    燃料電池システム。
  4. 請求項1に記載の燃料電池システムであって、
    前記制御部は、
    前記バイパス弁の開度と前記封止弁の開度とによって燃料電池システムの圧力-流量特性を設定し、
    前記酸化剤ガス供給部における前記酸化剤ガスの供給状態によって酸化剤ガス供給部の圧力-流量特性を設定し、
    前記燃料電池システムの圧力-流量特性と前記酸化剤ガス供給部の圧力-流量特性とを用いて前記算出値を取得する、
    燃料電池システム。
JP2022052686A 2022-03-29 2022-03-29 燃料電池システム Active JP7441877B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022052686A JP7441877B2 (ja) 2022-03-29 2022-03-29 燃料電池システム
US18/124,639 US20230317994A1 (en) 2022-03-29 2023-03-22 Fuel cell system
CN202310310897.7A CN116895796A (zh) 2022-03-29 2023-03-27 燃料电池系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022052686A JP7441877B2 (ja) 2022-03-29 2022-03-29 燃料電池システム

Publications (2)

Publication Number Publication Date
JP2023145826A JP2023145826A (ja) 2023-10-12
JP7441877B2 true JP7441877B2 (ja) 2024-03-01

Family

ID=88193775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022052686A Active JP7441877B2 (ja) 2022-03-29 2022-03-29 燃料電池システム

Country Status (3)

Country Link
US (1) US20230317994A1 (ja)
JP (1) JP7441877B2 (ja)
CN (1) CN116895796A (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090017340A1 (en) 2007-07-09 2009-01-15 Gm Global Technology Operations, Inc. Control method for cold fuel cell system operation
JP2009123550A (ja) 2007-11-15 2009-06-04 Toyota Motor Corp 燃料電池システム
JP2018085220A (ja) 2016-11-24 2018-05-31 トヨタ自動車株式会社 燃料電池システム
JP2018181771A (ja) 2017-04-20 2018-11-15 トヨタ自動車株式会社 燃料電池システム
JP2019161957A (ja) 2018-03-16 2019-09-19 トヨタ自動車株式会社 車両及びその制御方法
DE102019133095A1 (de) 2019-12-05 2021-06-10 Audi Ag Verfahren zum Durchführen einer Testmessung an einer Brennstoffzellenvorrichtung, Brennstoffzellenvorrichtung sowie Kraftfahrzeug
JP2023113190A (ja) 2022-02-03 2023-08-16 本田技研工業株式会社 燃料電池システム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090017340A1 (en) 2007-07-09 2009-01-15 Gm Global Technology Operations, Inc. Control method for cold fuel cell system operation
JP2009123550A (ja) 2007-11-15 2009-06-04 Toyota Motor Corp 燃料電池システム
JP2018085220A (ja) 2016-11-24 2018-05-31 トヨタ自動車株式会社 燃料電池システム
JP2018181771A (ja) 2017-04-20 2018-11-15 トヨタ自動車株式会社 燃料電池システム
JP2019161957A (ja) 2018-03-16 2019-09-19 トヨタ自動車株式会社 車両及びその制御方法
DE102019133095A1 (de) 2019-12-05 2021-06-10 Audi Ag Verfahren zum Durchführen einer Testmessung an einer Brennstoffzellenvorrichtung, Brennstoffzellenvorrichtung sowie Kraftfahrzeug
JP2023113190A (ja) 2022-02-03 2023-08-16 本田技研工業株式会社 燃料電池システム

Also Published As

Publication number Publication date
CN116895796A (zh) 2023-10-17
JP2023145826A (ja) 2023-10-12
US20230317994A1 (en) 2023-10-05

Similar Documents

Publication Publication Date Title
JP5168848B2 (ja) 燃料電池システム
US9105889B2 (en) Method and apparatus for determining humidity states of individual cells in a fuel cell, method and apparatus for controlling humidity states of individual cells in a fuel cell, and a fuel cell system
CN101728556B (zh) 用于燃料电池系统中主气流测量装置故障时的补救措施的方法
CN101393994B (zh) 根据hfr测量值的燃料电池湿度在线系统确认和控制
US10290887B2 (en) Fuel cell system and method for operating such a system
US8551664B2 (en) Fuel cell humidifier diagnostic
CN111224132B (zh) 一种燃料电池关机吹扫方法及系统
US8551665B2 (en) Supply system and warning device for a fuel cell stack and method for controlling the supply system
CN101375455A (zh) 燃料电池系统和估算燃料电池输出特性的方法
JP2005100952A (ja) 燃料電池システム
JP2008016399A (ja) 燃料電池システム
JP4951862B2 (ja) 燃料電池システム
JP7441877B2 (ja) 燃料電池システム
CA2981161C (en) Fuel cell system and control method for fuel cell system
US20130221675A1 (en) Gas turbine combined power generation system with high temperature fuel cell and operating method thereof
US9172103B2 (en) Transient inlet relative humidity estimation via adaptive cathode humidification unit model and high frequency resistance
JP4730023B2 (ja) 燃料電池システム
JP4981538B2 (ja) 圧力センサの較正装置および燃料電池システム
JP2006310046A (ja) 燃料電池の水素循環量制御装置及び燃料電池の水素循環量制御方法
US8192878B2 (en) Method and algorithm to detect frozen anode pressure sensor
JP2004342475A (ja) 燃料電池システムの運転制御
JP2023132389A (ja) 燃料電池システム及び燃料電池システムの弁制御方法
JP5297574B2 (ja) 燃料電池システム
JP7298430B2 (ja) 燃料電池システム
US20160336610A1 (en) Method for adjusting an operating gas flow in a fuel cell system, and a fuel cell system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240219

R150 Certificate of patent or registration of utility model

Ref document number: 7441877

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150