JP7440864B2 - Embankment reinforcement method - Google Patents

Embankment reinforcement method Download PDF

Info

Publication number
JP7440864B2
JP7440864B2 JP2020037791A JP2020037791A JP7440864B2 JP 7440864 B2 JP7440864 B2 JP 7440864B2 JP 2020037791 A JP2020037791 A JP 2020037791A JP 2020037791 A JP2020037791 A JP 2020037791A JP 7440864 B2 JP7440864 B2 JP 7440864B2
Authority
JP
Japan
Prior art keywords
embankment
wall
ground
water
overflow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020037791A
Other languages
Japanese (ja)
Other versions
JP2021139162A (en
Inventor
嘉之 森川
英紀 高橋
一彦 上野
タング タン ビン グエン
雅也 河田
幸彦 徳永
一生 小西
博文 田口
英幸 浅田
裕史 府川
滋 久保
眞郷 和田
久 深田
和彦 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toa Corp
Toray Engineering Co Ltd
Penta Ocean Construction Co Ltd
Takenaka Civil Engineering and Construction Co Ltd
Shimizu Corp
Fudo Tetra Corp
National Institute of Maritime Port and Aviation Technology
Original Assignee
Toa Corp
Penta Ocean Construction Co Ltd
Takenaka Civil Engineering and Construction Co Ltd
Toyo Construction Co Ltd
Shimizu Corp
Fudo Tetra Corp
National Institute of Maritime Port and Aviation Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toa Corp, Penta Ocean Construction Co Ltd, Takenaka Civil Engineering and Construction Co Ltd, Toyo Construction Co Ltd, Shimizu Corp, Fudo Tetra Corp, National Institute of Maritime Port and Aviation Technology filed Critical Toa Corp
Priority to JP2020037791A priority Critical patent/JP7440864B2/en
Publication of JP2021139162A publication Critical patent/JP2021139162A/en
Application granted granted Critical
Publication of JP7440864B2 publication Critical patent/JP7440864B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
    • Y02A10/11Hard structures, e.g. dams, dykes or breakwaters

Landscapes

  • Revetment (AREA)

Description

本発明は、堤防補強構造および堤防補強方法に関するものである。 The present invention relates to an embankment reinforcement structure and an embankment reinforcement method.

従来、津波や高潮が海岸堤防に来襲し、海側の水位が上昇して越流が発生すると、陸側の地盤が洗掘されることがある。これは堤体全体の破壊につながり、海水が陸域に流れ込み甚大な被害が発生する。また、津波に先行する地震動によって、堤防が崩壊したり、天端高さが下がったりすると、海水が陸域に流れ込み甚大な被害が発生する。また、高波等によって堤防の海側が崩壊し、周辺地盤が消失したり沈下することもある。 Traditionally, when a tsunami or storm surge hits a coastal embankment, and the water level on the sea side rises and overflow occurs, the ground on the land side may be scoured. This leads to the destruction of the entire levee body, causing seawater to flow onto land and causing severe damage. Furthermore, if the earthquake that precedes a tsunami causes the embankment to collapse or the height of the crest to drop, seawater will flow onto land and cause severe damage. In addition, the sea side of the embankment may collapse due to high waves, causing the surrounding ground to disappear or subside.

このような問題を解決するため、従来は、例えば以下のような対策が採られていた。
(1)越流等が発生しないように、堤防の天端高さを高くする方法
(2)地震動によって沈下する量を推定して、天端を高くしておく方法
(3)堤体下部の原地盤を地盤改良により強化する方法
(4)地震動や越流等を受けても天端高さを保つために、堤体内部に鋼管矢板や二重矢板などを打設する方法(例えば、特許文献1を参照)
In order to solve such problems, conventionally, for example, the following measures have been taken.
(1) A method of increasing the height of the top of the levee to prevent overflow, etc. (2) A method of estimating the amount of subsidence due to earthquake motion and raising the top of the levee (3) A method of raising the top of the levee to prevent overflow, etc. A method of strengthening the original ground through ground improvement (4) A method of driving steel pipe sheet piles or double sheet piles inside the embankment body in order to maintain the crown height even when subjected to seismic motion or overflow (for example, a patented method) (See Reference 1)

特開2011-214248号公報JP2011-214248A

しかしながら、上記の従来の方法は、それぞれ以下のような問題がある。
(1)全ての大きな津波や高波、高潮に対応することは難しい。越流等が発生しても、崩壊しない堤防が必要である。
(2)天端を高くすることで、沈下量がより増えることになり、最適な高さを設定することが困難である。また、総じて不経済である。
(3)堤体下部を地盤改良するためには、特殊な工法が必要であり、不経済である。
(4)鋼材を用いることから不経済である。
However, each of the above conventional methods has the following problems.
(1) It is difficult to respond to all large tsunamis, high waves, and storm surges. It is necessary to have embankments that will not collapse even if overflow occurs.
(2) By raising the top, the amount of subsidence increases, making it difficult to set the optimal height. Moreover, it is generally uneconomical.
(3) In order to improve the ground at the bottom of the embankment body, special construction methods are required, which is uneconomical.
(4) It is uneconomical because steel is used.

本発明は、上記に鑑みてなされたものであって、堤防の越流等に対する抵抗性能および耐震性能を向上することのできる経済的な堤防補強構造および堤防補強方法を提供することを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to provide an economical embankment reinforcement structure and embankment reinforcement method that can improve the resistance performance and seismic performance against overflow of the embankment. .

上記した課題を解決し、目的を達成するために、本発明に係る堤防補強構造は、堤体からなる堤防を補強する構造であって、地震時を含む外力作用時および越流時に堤体の天端高さを維持するために、堤体の内部に天端から所定の深さまで壁状に設けられ、地盤材料とセメント系固化材とを混合した地盤改良体からなる壁体を備え、この壁体は、越流によって堤内側の地盤が洗掘した場合でも自立可能であるとともに、地震動または堤外側の水面変動によって堤体の周辺地盤が沈下した場合でも天端高さを維持可能であることを特徴とする。 In order to solve the above-mentioned problems and achieve the objects, the levee reinforcement structure according to the present invention is a structure for reinforcing an levee consisting of an levee body, and is a structure for reinforcing an levee consisting of an levee body. In order to maintain the height of the crown, a wall is provided inside the embankment body from the crown to a predetermined depth, and is made of a soil improvement body made of a mixture of ground material and cement-based solidification material. The wall can stand on its own even if the ground inside the levee is scoured by overflow, and can maintain its crown height even if the ground around the levee sinks due to seismic motion or water level fluctuations outside the levee. It is characterized by

また、本発明に係る他の堤防補強構造は、上述した発明において、壁体が、格子状の構造体であることを特徴とする。 Further, another embankment reinforcing structure according to the present invention is characterized in that the wall body is a lattice-like structure in the above-described invention.

また、本発明に係る他の堤防補強構造は、上述した発明において、堤体の表層側に設けられた遮水層を備え、この遮水層は、堤体の内部への水の浸透を防ぎ、壁体へ作用する外力を低減するものであることを特徴とする。 Further, another embankment reinforcement structure according to the present invention is the above-mentioned invention, and includes a water-blocking layer provided on the surface layer side of the bank body, and this water-blocking layer prevents water from penetrating into the inside of the bank body. , is characterized in that it reduces the external force acting on the wall.

また、本発明に係る他の堤防補強構造は、上述した発明において、堤外側の堤体の内部において所定の深さまで壁状に設けられた遮水壁を備え、この遮水壁は、堤体の内部への水の浸透を防ぎ、壁体へ作用する外力を低減するものであることを特徴とする。 Further, another embankment reinforcement structure according to the present invention is provided with an impermeable wall provided in a wall shape to a predetermined depth inside the embankment body on the outside of the embankment, and this impermeable wall is provided in the embankment body. It is characterized by preventing water from penetrating into the interior of the wall and reducing external forces acting on the wall.

また、本発明に係る堤防補強方法は、堤体からなる堤防を補強する方法であって、地震時を含む外力作用時および越流時に堤体の天端高さを維持するために、堤体の内部に天端から所定の深さまで、地盤材料とセメント系固化材とを混合した地盤改良体からなる壁体を設けるステップを備え、この壁体は、越流によって堤内側の地盤が洗掘した場合でも自立可能であるとともに、地震動または堤外側の水面変動によって堤体の周辺地盤が沈下した場合でも天端高さを維持可能であることを特徴とする。 Furthermore, the embankment reinforcement method according to the present invention is a method for reinforcing an embankment consisting of an embankment body. A step is provided inside the embankment to a predetermined depth from the top to a predetermined depth. It is characterized by being able to stand on its own even when the embankment is moved, and also being able to maintain its crown height even when the surrounding ground of the embankment sinks due to seismic motion or fluctuations in the water level outside the embankment.

また、本発明に係る他の堤防補強方法は、上述した発明において、壁体が、格子状の構造体であることを特徴とする。 Further, another embankment reinforcing method according to the present invention is characterized in that the wall body is a lattice-like structure in the above-mentioned invention.

また、本発明に係る他の堤防補強方法は、上述した発明において、堤体の表層側に遮水層を設けるステップを備え、この遮水層は、堤体の内部への水の浸透を防ぎ、壁体へ作用する外力を低減するものであることを特徴とする。 Further, another embankment reinforcement method according to the present invention, in the above-mentioned invention, includes a step of providing an impermeable layer on the surface layer side of the embankment body, and this impermeable layer prevents water from penetrating into the inside of the embankment body. , is characterized in that it reduces the external force acting on the wall.

また、本発明に係る他の堤防補強方法は、上述した発明において、堤外側の堤体の内部において所定の深さまで壁状に遮水壁を設けるステップを備え、この遮水壁は、堤体の内部への水の浸透を防ぎ、壁体へ作用する外力を低減するものであることを特徴とする。 Further, another embankment reinforcement method according to the present invention, in the above-mentioned invention, includes a step of providing an impermeable wall in the form of a wall to a predetermined depth inside the embankment body on the outside of the embankment, and this impermeable wall is It is characterized by preventing water from penetrating into the interior of the wall and reducing external forces acting on the wall.

本発明に係る堤防補強構造によれば、堤体からなる堤防を補強する構造であって、地震時を含む外力作用時および越流時に堤体の天端高さを維持するために、堤体の内部に天端から所定の深さまで壁状に設けられ、地盤材料とセメント系固化材とを混合した地盤改良体からなる壁体を備え、この壁体は、越流によって堤内側の地盤が洗掘した場合でも自立可能であるとともに、地震動または堤外側の水面変動によって堤体の周辺地盤が沈下した場合でも天端高さを維持可能であるので、堤防の越流等に対する抵抗性能および耐震性能を経済的に向上することができるという効果を奏する。 According to the embankment reinforcement structure according to the present invention, it is a structure for reinforcing an embankment consisting of an embankment body, and in order to maintain the top height of the embankment body during the action of external forces including earthquakes and during overflow, A wall is installed inside the bank from the top to a predetermined depth, and is made of a ground improvement material made of a mixture of ground material and cement-based solidification material. It can stand on its own even if it is scoured, and the crown height can be maintained even if the ground around the embankment sinks due to seismic motion or fluctuations in the water level outside the embankment, which improves the resistance to overflow of the embankment and its earthquake resistance. This has the effect that performance can be improved economically.

また、本発明に係る他の堤防補強構造によれば、壁体が、格子状の構造体であるので、地震時における堤体地盤のせん断変形を抑制して、堤体地盤内の過剰間隙水圧の上昇を抑制することができ、液状化強度を向上させることができるという効果を奏する。 Further, according to another embankment reinforcement structure according to the present invention, since the wall body is a lattice-like structure, shear deformation of the embankment base ground during an earthquake is suppressed, and excessive pore water pressure in the embankment base is suppressed. This has the effect of suppressing the increase in liquefaction and improving the liquefaction strength.

また、本発明に係る他の堤防補強構造によれば、堤体の表層側に設けられた遮水層を備え、この遮水層は、堤体の内部への水の浸透を防ぎ、壁体へ作用する外力を低減するものであるので、壁体を経済的なものにすることができるという効果を奏する。 Further, according to another embankment reinforcement structure according to the present invention, the impermeable layer is provided on the surface layer side of the embankment body, and this impermeable layer prevents water from penetrating into the inside of the embankment body, and Since it reduces the external force acting on the wall, it has the effect of making the wall economical.

また、本発明に係る他の堤防補強構造によれば、堤外側の堤体の内部において所定の深さまで壁状に設けられた遮水壁を備え、この遮水壁は、堤体の内部への水の浸透を防ぎ、壁体へ作用する外力を低減するものであるので、壁体を経済的なものにすることができるという効果を奏する。 Further, according to another embankment reinforcement structure according to the present invention, an impermeable wall is provided in the form of a wall to a predetermined depth inside the embankment body on the outside of the embankment, and this impermeable wall extends into the interior of the embankment body. Since it prevents water from penetrating and reduces the external force acting on the wall, it has the effect of making the wall more economical.

また、本発明に係る堤防補強方法によれば、堤体からなる堤防を補強する方法であって、地震時を含む外力作用時および越流時に堤体の天端高さを維持するために、堤体の内部に天端から所定の深さまで、地盤材料とセメント系固化材とを混合した地盤改良体からなる壁体を設けるステップを備え、この壁体は、越流によって堤内側の地盤が洗掘した場合でも自立可能であるとともに、地震動または堤外側の水面変動によって堤体の周辺地盤が沈下した場合でも天端高さを維持可能であるので、堤防の越流等に対する抵抗性能および耐震性能を経済的に向上することができるという効果を奏する。 Moreover, according to the embankment reinforcement method according to the present invention, it is a method for reinforcing an embankment consisting of an embankment body, and in order to maintain the top height of the embankment body during the action of external forces including earthquakes and during overflow, A step is provided inside the embankment to a predetermined depth from the top to a predetermined depth. It can stand on its own even if it is scoured, and the crown height can be maintained even if the ground around the embankment sinks due to seismic motion or fluctuations in the water level outside the embankment, which improves the resistance to overflow of the embankment and its earthquake resistance. This has the effect that performance can be improved economically.

また、本発明に係る他の堤防補強方法によれば、壁体が、格子状の構造体であるので、地震時における堤体地盤のせん断変形を抑制して、堤体地盤内の過剰間隙水圧の上昇を抑制することができ、液状化強度を向上させることができるという効果を奏する。 Furthermore, according to another embankment reinforcement method according to the present invention, since the wall is a lattice-like structure, shear deformation of the embankment ground during an earthquake is suppressed, and excessive pore water pressure in the embankment ground is suppressed. It is possible to suppress the increase in the liquefaction strength and improve the liquefaction strength.

また、本発明に係る他の堤防補強方法によれば、堤体の表層側に遮水層を設けるステップを備え、この遮水層は、堤体の内部への水の浸透を防ぎ、壁体へ作用する外力を低減するものであるので、壁体を経済的なものにすることができるという効果を奏する。 Further, another embankment reinforcement method according to the present invention includes the step of providing an impermeable layer on the surface layer side of the embankment body, and this impermeable layer prevents water from penetrating into the inside of the embankment body, and Since it reduces the external force acting on the wall, it has the effect of making the wall economical.

また、本発明に係る他の堤防補強方法によれば、堤外側の堤体の内部において所定の深さまで壁状に遮水壁を設けるステップを備え、この遮水壁は、堤体の内部への水の浸透を防ぎ、壁体へ作用する外力を低減するものであるので、壁体を経済的なものにすることができるという効果を奏する。 Further, according to another embankment reinforcement method according to the present invention, the step of providing an impermeable wall in the form of a wall to a predetermined depth inside the embankment body on the outside of the embankment is provided, and the impermeable wall extends into the interior of the embankment body. Since it prevents water from penetrating and reduces the external force acting on the wall, it has the effect of making the wall more economical.

図1は、本発明に係る堤防補強構造および堤防補強方法の実施の形態を示す横断面図である。FIG. 1 is a cross-sectional view showing an embodiment of an embankment reinforcement structure and an embankment reinforcement method according to the present invention. 図2は、設計での外力図であり、(1)は一般的な設計、(2)は遮水効果を考慮した設計である。FIG. 2 is an external force diagram in the design, where (1) is a general design and (2) is a design that takes into account the water shielding effect. 図3は、実験結果を示す図であり、(1)は比較例、(2)は実施例である。FIG. 3 is a diagram showing experimental results, in which (1) is a comparative example and (2) is an example. 図4は、不飽和領域が残留している時(t=2s)としていない時(t=8s)の比較図である。FIG. 4 is a comparison diagram between when the unsaturated region remains (t=2s) and when it does not (t=8s). 図5は、格子状の壁体の一例を示す概略斜視図である。FIG. 5 is a schematic perspective view showing an example of a lattice-shaped wall.

以下に、本発明に係る堤防補強構造および堤防補強方法の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 EMBODIMENT OF THE INVENTION Below, embodiment of the embankment reinforcement structure and embankment reinforcement method based on this invention is described in detail based on drawings. Note that the present invention is not limited to this embodiment.

図1に示すように、本発明の実施の形態に係る堤防補強構造10は、基礎地盤G上に築造された堤体12からなる堤防14を補強する構造であって、堤体12内に設けられた壁体16を備える。堤体12は、幅Bに対する長さの比率が大きい線状の構造物であり、横断面形状は略台形状である。図1において、HWLは津波、高潮来襲時の水位、NWLは平常時の水位、GLは越流洗掘後の地表面である。 As shown in FIG. 1, an embankment reinforcement structure 10 according to an embodiment of the present invention is a structure that reinforces an embankment 14 consisting of an embankment body 12 built on foundation ground G, and is provided within the embankment body 12. A wall body 16 is provided. The embankment body 12 is a linear structure having a large ratio of length to width B, and has a substantially trapezoidal cross-sectional shape. In Figure 1, HWL is the water level at the time of a tsunami or storm surge, NWL is the water level during normal times, and GL is the ground surface after overflow scouring.

壁体16は、地震時を含む外力作用時および越流時に堤体12の天端高さHを維持するためのものであり、堤体12の天端18の略中央から基礎地盤Gにかけて鉛直方向に壁板状に設けられる。この壁体16は、地盤材料とセメント系固化材とを混合した地盤改良体からなる。壁体16は、津波や高潮来襲時の越流によって堤体12の陸側(堤内側)の地盤G1が洗掘した場合でも自立可能に構成されるとともに、地震動や堤外側の水面変動によって堤体12の周辺地盤が沈下した場合でも天端高さHを維持可能に構成される。これにより、越流が発生して陸側の地盤G1が洗掘された場合でも、天端高さHを保つことができる。また、地震動や高波等によって周辺地盤が沈下した場合でも、天端高さHを保持することができる。なお、図1の例では、壁体16が基礎地盤Gに着底している場合を図示しているが、本発明の壁体はこれに限るものではなく、例えば壁体16は基礎地盤Gに着底しない構造であってもよい。壁体16は、越流によって堤体12の陸側の地盤G1が洗掘した場合でも自立可能で、かつ、地震動や高波等によって堤体12の周辺地盤が沈下した場合でも天端高さHを維持可能に支持できればいかなる態様のものでもよい。 The wall 16 is for maintaining the top height H of the levee body 12 during the action of external forces including earthquakes and overflow, and extends vertically from approximately the center of the crest 18 of the levee body 12 to the foundation ground G. It is installed in the shape of a wall plate in the direction. This wall body 16 is made of a ground improvement body made of a mixture of ground material and cement-based solidifying material. The wall 16 is configured to be able to stand on its own even if the ground G1 on the land side (inner side of the levee) of the levee body 12 is scoured due to overflow during a tsunami or storm surge, and also to be able to stand on its own due to seismic motion or water level fluctuations on the outside of the levee. It is configured such that the crown height H can be maintained even if the ground around the body 12 sinks. Thereby, even if overflow occurs and the ground G1 on the land side is scoured, the crown height H can be maintained. Further, even if the surrounding ground sinks due to earthquake motion, high waves, etc., the crown height H can be maintained. In addition, although the example of FIG. 1 shows the case where the wall body 16 is bottomed on the foundation ground G, the wall body of this invention is not limited to this. For example, the wall body 16 is on the foundation ground G. It may have a structure that does not touch the bottom. The wall 16 can be self-supporting even if the ground G1 on the land side of the levee body 12 is scoured by overflow, and the top height H can be maintained even if the ground around the levee body 12 sinks due to earthquake motion, high waves, etc. Any form may be used as long as it can sustainably support the structure.

堤体12の堤外側のり面20の全体と、天端18の壁体16上面まで(表層側)は、遮水層22で連続的に防護されている。遮水層22は、堤体12の内部への水の浸透を防ぎ、壁体16へ作用する外力(土圧、水圧、空圧の合力)を低減するものである。 The entire outer slope 20 of the embankment body 12 and the upper surface of the wall body 16 at the top end 18 (surface layer side) are continuously protected by a water-blocking layer 22. The impermeable layer 22 prevents water from penetrating into the interior of the embankment body 12 and reduces external force (combined force of earth pressure, water pressure, and air pressure) acting on the wall body 16.

また、堤外側のり面20ののり先の直下には、遮水壁24が設けられる。この遮水壁24は、のり先から基礎地盤Gにかけて鉛直方向に延びる壁板状のものであり、例えば矢板や地盤改良体により構築される。この地盤改良体は、堤体地盤とセメント系固化材とを原位置で混合撹拌する深層混合処理工法などで形成可能である。遮水壁24は、堤体12の内部への水の浸透を防ぎ、壁体16へ作用する外力(土圧、水圧、空圧の合力)を低減するものである。 Further, a water-shielding wall 24 is provided directly below the destination of the slope surface 20 on the outside of the embankment. The impermeable wall 24 is in the form of a wall plate that extends in the vertical direction from the tip of the wall to the foundation ground G, and is constructed of, for example, sheet piles or ground improvement bodies. This ground improvement body can be formed by a deep mixing method in which the embankment body ground and cement-based solidification material are mixed and stirred in situ. The impermeable wall 24 prevents water from penetrating into the interior of the embankment body 12 and reduces external force (combined force of earth pressure, water pressure, and air pressure) acting on the wall body 16.

平常時の水位NWLよりも上側の遮水層22と遮水壁24と壁体16の間には、不飽和領域Rが形成される。図2(1)は、一般的な設計での外力図、(2)は遮水効果を考慮した設計での外力図である。図2(1)に示すように、遮水層22、遮水壁24がない場合、堤体12内部に水が浸入すると、壁体16に有効土圧Psと静水圧Pwの合力が作用する。これに対し、図2(2)に示すように、遮水層22、遮水壁24により水が浸入しなければ、壁体16には有効土圧Psと空圧Paの合力しか作用しない。 An unsaturated region R is formed between the water-shielding layer 22, the water-shielding wall 24, and the wall body 16 above the normal water level NWL. FIG. 2(1) is an external force diagram for a general design, and FIG. 2(2) is an external force diagram for a design that takes into account the water shielding effect. As shown in FIG. 2(1), when there is no impermeable layer 22 or impermeable wall 24, when water infiltrates into the embankment body 12, a resultant force of effective earth pressure Ps and hydrostatic pressure Pw acts on the wall body 16. . On the other hand, as shown in FIG. 2(2), if water does not enter through the impermeable layer 22 and the impermeable wall 24, only the resultant force of the effective earth pressure Ps and the air pressure Pa acts on the wall body 16.

したがって、遮水層22、遮水壁24を設けると、壁体16へ作用する外力を低減することができる。外力が低減すると、壁体16に要求される抵抗性能(例えば、体積やセメント量など)が減り、壁体16を経済的なものにすることができる。遮水層22は、のり面20の最外層に限るものではなく、堤外側から堤体12の内部への水の浸透を防げる位置であればいかなる位置でもよい。最外層に設ける場合は施工が容易となる。また、遮水壁24は、のり先の下方に限るものではなく、堤外側から堤体12の内部への水の浸透を防げる位置であればいかなる位置に設けてもよい。遮水層22、遮水壁24はいずれか一方を省略することができるし、双方を省略することもできるが、壁体16へ作用する外力を低減する上で設けることが望ましい。 Therefore, by providing the water-blocking layer 22 and the water-blocking wall 24, the external force acting on the wall 16 can be reduced. When the external force is reduced, the resistance performance (for example, volume, amount of cement, etc.) required of the wall 16 is reduced, and the wall 16 can be made economical. The water-blocking layer 22 is not limited to the outermost layer of the slope surface 20, but may be placed at any position as long as it can prevent water from penetrating into the interior of the embankment body 12 from the outside of the embankment. When provided on the outermost layer, construction is easy. Further, the water shielding wall 24 is not limited to the lower part of the levee tip, but may be provided at any position that can prevent water from penetrating into the levee body 12 from the outside of the levee. Either one or both of the water-blocking layer 22 and the water-blocking wall 24 can be omitted, but it is desirable to provide them in order to reduce the external force acting on the wall 16.

上記の堤防補強構造10を構築する場合には、堤体12の天端18から、周知のセメント固化処理工法による地盤改良を施し、堤体12内に地盤改良した壁体16を形成する。また、堤体12の堤外側のり面20ののり先の下側部分に遮水壁24を構築するとともに、堤外側のり面20と天端18に遮水層22を構築する。地盤改良は、堤体地盤とセメント系固化材とを原位置で混合撹拌する混合処理工法が好ましい。この堤防補強構造10によれば、鋼材を用いないので、堤防14の越流等に対する対策、耐震補強を経済的に行うことができる。したがって、堤防14の越流等に対する抵抗性能および耐震性能を経済的に向上することができる。 When constructing the above-described embankment reinforcement structure 10, ground improvement is performed from the top end 18 of the embankment body 12 by a well-known cement solidification treatment method, and a wall body 16 with improved ground is formed within the embankment body 12. In addition, a water-shielding wall 24 is constructed at the lower part of the tip of the slope 20 on the outside of the bank 12, and a water-shielding layer 22 is constructed on the slope 20 on the outside of the bank and the top 18. For ground improvement, it is preferable to use a mixing method in which the levee body ground and cement-based solidification material are mixed and stirred in situ. According to this embankment reinforcement structure 10, since steel materials are not used, countermeasures against overflow of the embankment 14 and seismic reinforcement can be carried out economically. Therefore, the resistance performance against overflow of the embankment 14 and the seismic performance can be economically improved.

上記の実施の形態においては、壁体16が板状の場合を例にとり説明したが、本発明の壁体は板状に限るものではなく、様々な形態を採用可能である。例えば、壁体16が格子状の構造体であってもよい。つまり、地盤改良した部分が、図5に示すように平面視で格子状を呈する構造体であってもよいし、側面視で格子状を呈する構造体であってもよい。または、これらの組み合わせでもよい。壁体16を格子状の構造体とすれば、地震時における堤体地盤のせん断変形を抑制して、堤体地盤内の過剰間隙水圧の上昇を抑制することができ、液状化強度を向上させることができる。また、上記の実施の形態では、壁体16を堤体12の横断方向に一つだけ設けた場合を例にとり説明したが、本発明はこれに限るものではなく、堤体12の横断方向に間隔をあけて壁体16を2つ以上設けてもよい。このようにしても、上記と同様の作用効果を奏することができる。 In the above embodiment, the case where the wall body 16 is plate-shaped has been described as an example, but the wall body of the present invention is not limited to the plate-shape, and various forms can be adopted. For example, the wall 16 may be a grid-like structure. In other words, the ground-improved portion may be a structure that has a lattice shape in plan view as shown in FIG. 5, or may have a lattice shape in side view. Alternatively, a combination of these may be used. If the wall body 16 is made into a lattice-like structure, it is possible to suppress shear deformation of the embankment body ground during an earthquake, suppress an increase in excess pore water pressure within the embankment body ground, and improve liquefaction strength. be able to. Further, in the above embodiment, the case where only one wall body 16 is provided in the transverse direction of the embankment body 12 has been described as an example, but the present invention is not limited to this. Two or more wall bodies 16 may be provided at intervals. Even in this case, the same effects as described above can be achieved.

(本発明の効果の検証)
次に、本発明の効果を検証するために行った実験および結果について説明する。
(Verification of effects of the present invention)
Next, experiments conducted to verify the effects of the present invention and their results will be described.

本実験は、水槽に入れた堤体模型を用いて、壁体の影響を調べたものである。まず、堤体模型の堤外側の水位を上げることによって、越流を生じさせた。図3(1)は壁体を有しない堤体(比較例)、(2)は幅方向に間隔をあけて2つの壁体を設けた堤体(本発明の実施例)である。この図に示すように、比較例では、越流が発生して陸側の地盤が洗掘されると、天端高さを保つことができない。これに対し、実施例では、越流が発生して陸側の地盤が洗掘された場合でも、天端高さを保つことができる。したがって、壁体を有する本実施例は、比較例に比べて、越流に対する抵抗性能に優れている。 This experiment investigated the influence of walls using a model of the embankment placed in a water tank. First, overflow was caused by raising the water level on the outside of the embankment model. FIG. 3(1) shows an embankment without walls (comparative example), and FIG. 3(2) shows an embankment with two walls spaced apart in the width direction (an example of the present invention). As shown in this figure, in the comparative example, when overflow occurs and the ground on the land side is scoured, the crown height cannot be maintained. On the other hand, in the embodiment, even if an overflow occurs and the ground on the land side is scoured, the height of the crown can be maintained. Therefore, the present example having the wall body has excellent resistance performance against overflow compared to the comparative example.

次に、壁体を有し、遮水層、遮水壁を有さない堤体を用いて、越流時の堤体内部各所の間隙水圧の時間変化を測定し、不飽和領域の影響について調べた。図4(1)、(2)は、測定点を示している。(1)がt=2s、(2)がt=8sである。測定点P5、P8は壁体の左側(堤外側)の上下に位置し、P5は平常時の水位よりも下側に、P8は天端近傍に設定している。(3)に示すように、t=0の越流開始からt=2sまでの越流初期は壁体の左側に不飽和領域が残留して水圧上昇が抑えられているが、t=8sでは不飽和領域が残留しなくなり水圧が上昇している。(4)~(6)に、各時刻における壁体に作用する曲げモーメント、水平荷重、壁体の変位を示す。不飽和領域が残留しなくなると、曲げモーメント、水平荷重、変位が増大することがわかる。したがって、壁体の堤外側で不飽和領域が残留するように、遮水層を設けることが有効である。 Next, using an embankment with walls but no impermeable layer or impermeable wall, we measured the temporal changes in pore water pressure at various locations inside the embankment during overflow, and investigated the effects of unsaturated regions. Examined. FIGS. 4(1) and 4(2) show measurement points. (1) is t=2s, and (2) is t=8s. Measurement points P5 and P8 are located above and below the left side of the wall (outside the embankment), P5 is set below the normal water level, and P8 is set near the top. As shown in (3), at the initial stage of overflow from the start of overflow at t=0 to t=2s, an unsaturated region remains on the left side of the wall and the increase in water pressure is suppressed, but at t=8s No more unsaturated areas remain and the water pressure is rising. (4) to (6) show the bending moment acting on the wall, horizontal load, and displacement of the wall at each time. It can be seen that when no unsaturated region remains, the bending moment, horizontal load, and displacement increase. Therefore, it is effective to provide a water-blocking layer so that an unsaturated region remains outside the embankment of the wall.

以上説明したように、本発明に係る堤防補強構造によれば、堤体からなる堤防を補強する構造であって、地震時を含む外力作用時および越流時に堤体の天端高さを維持するために、堤体の内部に天端から所定の深さまで壁状に設けられ、地盤材料とセメント系固化材とを混合した地盤改良体からなる壁体を備え、この壁体は、越流によって堤内側の地盤が洗掘した場合でも自立可能であるとともに、地震動または堤外側の水面変動によって堤体の周辺地盤が沈下した場合でも天端高さを維持可能であるので、堤防の越流等に対する抵抗性能および耐震性能を経済的に向上することができる。 As explained above, the embankment reinforcement structure according to the present invention is a structure for reinforcing an embankment consisting of an embankment body, and maintains the top height of the embankment body when external forces are applied, including earthquakes, and when overflowing. In order to prevent overflow, a wall is provided inside the levee body from the top to a predetermined depth, and is made of a ground improvement material made of a mixture of ground material and cement solidification material. It is possible to stand on its own even if the ground on the inside of the levee is scoured, and the crown height can be maintained even if the ground around the levee body sinks due to seismic motion or water level fluctuations on the outside of the levee. It is possible to economically improve resistance performance and seismic performance against earthquakes, etc.

また、本発明に係る他の堤防補強構造によれば、壁体が、格子状の構造体であるので、地震時における堤体地盤のせん断変形を抑制して、堤体地盤内の過剰間隙水圧の上昇を抑制することができ、液状化強度を向上させることができる。 Further, according to another embankment reinforcement structure according to the present invention, since the wall body is a lattice-like structure, shear deformation of the embankment base ground during an earthquake is suppressed, and excessive pore water pressure in the embankment base is suppressed. It is possible to suppress the increase in the liquefaction strength and improve the liquefaction strength.

また、本発明に係る他の堤防補強構造によれば、堤体の表層側に設けられた遮水層を備え、この遮水層は、堤体の内部への水の浸透を防ぎ、壁体へ作用する外力を低減するものであるので、壁体を経済的なものにすることができる。 Further, according to another embankment reinforcement structure according to the present invention, the impermeable layer is provided on the surface layer side of the embankment body, and this impermeable layer prevents water from penetrating into the inside of the embankment body, and Since the external force acting on the wall is reduced, the wall can be made economical.

また、本発明に係る他の堤防補強構造によれば、堤外側の堤体の内部において所定の深さまで壁状に設けられた遮水壁を備え、この遮水壁は、堤体の内部への水の浸透を防ぎ、壁体へ作用する外力を低減するものであるので、壁体を経済的なものにすることができる。 Further, according to another embankment reinforcement structure according to the present invention, an impermeable wall is provided in the form of a wall to a predetermined depth inside the embankment body on the outside of the embankment, and this impermeable wall extends into the interior of the embankment body. This prevents water from penetrating and reduces the external force acting on the wall, making the wall more economical.

また、本発明に係る堤防補強方法によれば、堤体からなる堤防を補強する方法であって、地震時を含む外力作用時および越流時に堤体の天端高さを維持するために、堤体の内部に天端から所定の深さまで、地盤材料とセメント系固化材とを混合した地盤改良体からなる壁体を設けるステップを備え、この壁体は、越流によって堤内側の地盤が洗掘した場合でも自立可能であるとともに、地震動または堤外側の水面変動によって堤体の周辺地盤が沈下した場合でも天端高さを維持可能であるので、堤防の越流等に対する抵抗性能および耐震性能を経済的に向上することができる。 Moreover, according to the embankment reinforcement method according to the present invention, it is a method for reinforcing an embankment consisting of an embankment body, and in order to maintain the top height of the embankment body during the action of external forces including earthquakes and during overflow, A step is provided inside the embankment to a predetermined depth from the top to a predetermined depth. It can stand on its own even if it is scoured, and the crown height can be maintained even if the ground around the embankment sinks due to seismic motion or fluctuations in the water level outside the embankment, which improves the resistance to overflow of the embankment and its earthquake resistance. Performance can be improved economically.

また、本発明に係る他の堤防補強方法によれば、壁体が、格子状の構造体であるので、地震時における堤体地盤のせん断変形を抑制して、堤体地盤内の過剰間隙水圧の上昇を抑制することができ、液状化強度を向上させることができる。 Further, according to another embankment reinforcement method according to the present invention, since the wall body is a lattice-like structure, shear deformation of the embankment base ground during an earthquake is suppressed, and excessive pore water pressure in the embankment base is suppressed. It is possible to suppress the increase in the liquefaction strength and improve the liquefaction strength.

また、本発明に係る他の堤防補強方法によれば、堤体の表層側に遮水層を設けるステップを備え、この遮水層は、堤体の内部への水の浸透を防ぎ、壁体へ作用する外力を低減するものであるので、壁体を経済的なものにすることができる。 Further, another embankment reinforcement method according to the present invention includes the step of providing an impermeable layer on the surface layer side of the embankment body, and this impermeable layer prevents water from penetrating into the inside of the embankment body, and Since the external force acting on the wall is reduced, the wall can be made economical.

また、本発明に係る他の堤防補強方法によれば、堤外側の堤体の内部において所定の深さまで壁状に遮水壁を設けるステップを備え、この遮水壁は、堤体の内部への水の浸透を防ぎ、壁体へ作用する外力を低減するものであるので、壁体を経済的なものにすることができる。 Further, according to another embankment reinforcement method according to the present invention, the step of providing an impermeable wall in the form of a wall to a predetermined depth inside the embankment body on the outside of the embankment is provided, and the impermeable wall extends into the interior of the embankment body. This prevents water from penetrating and reduces the external force acting on the wall, making the wall more economical.

以上のように、本発明に係る堤防補強構造および堤防補強方法は、海岸や河岸に設置される堤防などに有用であり、特に、越流等に対する抵抗性能および耐震性能を、経済的に向上するのに適している。 As described above, the embankment reinforcement structure and the embankment reinforcement method according to the present invention are useful for embankments installed on coasts and river banks, and particularly economically improve resistance performance against overflow and seismic performance. It is suitable for

10 堤防補強構造
12 堤体
14 堤防
16 壁体
18 天端
20 のり面
22 遮水層
24 遮水壁
B 幅
G 基礎地盤
G1 陸側の地盤
GL 越流洗掘後の地表面
H 天端高さ
HWL 津波、高潮来襲時の水位
NWL 平常時の水位
Pa 空圧
Ps 有効土圧
Pw 静水圧
R 不飽和領域
10 Embankment reinforcement structure 12 Embankment body 14 Embankment 16 Wall body 18 Top 20 Slope 22 Impermeable layer 24 Impervious wall B Width G Foundation ground G1 Land side ground GL Ground surface after overflow scour H Crown height HWL Water level during tsunami or storm surge NWL Water level during normal times Pa Pneumatic pressure Ps Effective earth pressure Pw Hydrostatic pressure R Unsaturated area

Claims (4)

堤体からなる堤防を補強する方法であって、
地震時を含む外力作用時および越流時に前記堤体の天端高さを維持するために、前記堤体の内部に天端から所定の深さまで鉛直方向に延び、地盤材料とセメント系固化材とを混合した地盤改良体からなる壁体を設けるステップと、前記壁体の堤外側に遮水層を設け、前記壁体と前記遮水層との間に不飽和領域を形成することによって、前記壁体へ作用する土圧、水圧、空圧の合力である外力を低減するステップとを備え、前記壁体は、越流によって堤内側の地盤が洗掘した場合でも自立可能であるとともに、地震動または堤外側の水面変動によって前記堤体の周辺地盤が沈下した場合でも天端高さを維持可能であることを特徴とする堤防補強方法。
A method of reinforcing an embankment consisting of an embankment body,
In order to maintain the height of the crest of the levee body during the action of external forces including earthquakes and overflow, the levee body is provided with ground material and cement-based solidifying material that extends vertically from the crest to a predetermined depth. a step of providing a wall made of a ground improvement material mixed with the above, and providing a water-blocking layer on the outside of the embankment of the wall, and forming an unsaturated region between the wall and the water-blocking layer, reducing an external force that is a resultant of earth pressure, water pressure, and air pressure acting on the wall , and the wall can stand on its own even if the ground inside the embankment is scoured by overflow; A method for reinforcing an embankment, characterized in that the crown height can be maintained even if the surrounding ground of the embankment body sinks due to seismic motion or water level fluctuations outside the embankment.
前記壁体が、上方から見て格子状を呈する構造体、または、側方から見て格子状を呈する構造体であることを特徴とする請求項に記載の堤防補強方法。 2. The embankment reinforcing method according to claim 1 , wherein the wall is a structure that has a lattice shape when viewed from above , or a structure that has a lattice shape when viewed from the side . 前記遮水層を、前記堤体の堤外側のり面の全体と、前記堤体の天端の前記壁体の上面とに連続的に設けることを特徴とする請求項またはに記載の堤防補強方法。 The embankment according to claim 1 or 2 , wherein the impermeable layer is continuously provided on the entire slope of the outer slope of the embankment body and on the upper surface of the wall body at the top end of the embankment body. Reinforcement method. 堤外側の前記堤体の内部において所定の深さまで壁状に遮水壁を設けるステップを備え、この遮水壁は、堤外側から前記堤体の内部への水の浸透を防ぎ、前記壁体へ作用する前記外力を低減するものであることを特徴とする請求項のいずれか一つに記載の堤防補強方法。 A step of providing a wall-shaped impermeable wall to a predetermined depth inside the embankment body on the outside of the embankment, the impermeable wall prevents water from penetrating from the outside of the embankment into the inside of the embankment body, and The embankment reinforcement method according to any one of claims 1 to 3 , characterized in that the method reduces the external force acting on the embankment.
JP2020037791A 2020-03-05 2020-03-05 Embankment reinforcement method Active JP7440864B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020037791A JP7440864B2 (en) 2020-03-05 2020-03-05 Embankment reinforcement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020037791A JP7440864B2 (en) 2020-03-05 2020-03-05 Embankment reinforcement method

Publications (2)

Publication Number Publication Date
JP2021139162A JP2021139162A (en) 2021-09-16
JP7440864B2 true JP7440864B2 (en) 2024-02-29

Family

ID=77668042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020037791A Active JP7440864B2 (en) 2020-03-05 2020-03-05 Embankment reinforcement method

Country Status (1)

Country Link
JP (1) JP7440864B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023032835A (en) 2021-08-27 2023-03-09 Toyo Tire株式会社 pneumatic tire
CN117634002A (en) * 2024-01-15 2024-03-01 广东大禹水利建设有限公司 Dyke siltation composite plugging construction method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003013451A (en) 2001-07-02 2003-01-15 Sumitomo Metal Ind Ltd Reinforcing structure of banking
JP2006161358A (en) 2004-12-06 2006-06-22 Rinjiro Suda Bank
JP2007231641A (en) 2006-03-01 2007-09-13 Daiyo Kensetsu Kk Collapse prevention construction method for dike
JP2009287365A (en) 2008-06-02 2009-12-10 Hokukon Co Ltd Composite bottom gutter for dam body of pool
JP2011214248A (en) 2010-03-31 2011-10-27 Sumitomo Metal Ind Ltd Structure for reinforcing embankment
JP2014177854A (en) 2012-06-01 2014-09-25 Nippon Steel & Sumitomo Metal Reinforcement structure of dike
JP2015081436A (en) 2013-10-22 2015-04-27 大成建設株式会社 Ground improvement body structure

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003013451A (en) 2001-07-02 2003-01-15 Sumitomo Metal Ind Ltd Reinforcing structure of banking
JP2006161358A (en) 2004-12-06 2006-06-22 Rinjiro Suda Bank
JP2007231641A (en) 2006-03-01 2007-09-13 Daiyo Kensetsu Kk Collapse prevention construction method for dike
JP2009287365A (en) 2008-06-02 2009-12-10 Hokukon Co Ltd Composite bottom gutter for dam body of pool
JP2011214248A (en) 2010-03-31 2011-10-27 Sumitomo Metal Ind Ltd Structure for reinforcing embankment
JP2014177854A (en) 2012-06-01 2014-09-25 Nippon Steel & Sumitomo Metal Reinforcement structure of dike
JP2015081436A (en) 2013-10-22 2015-04-27 大成建設株式会社 Ground improvement body structure

Also Published As

Publication number Publication date
JP2021139162A (en) 2021-09-16

Similar Documents

Publication Publication Date Title
JP2012007394A (en) Embankment reinforcement structure
JP6171569B2 (en) Embankment reinforcement structure
JP7440864B2 (en) Embankment reinforcement method
JP5471797B2 (en) Seismic reinforcement structure of revetment structure and existing revetment structure
Terzaghi Stability and stiffness of cellular cofferdams
JP7149919B2 (en) Improvement structure and improvement method of existing wharf
KR101338834B1 (en) Concrete pile using waisted tire and a wave dissipating concrete block and seashore structure using thereof
JP5572540B2 (en) Temporary deadline structure of the final deadline in the impermeable wall and its deadline method
JP6511671B2 (en) Construction method of coastal soil structure against huge tsunami by high-rigidity geosynthetic reinforced soil retaining wall with rigid integrated wall work
JP4958064B2 (en) Seismic reinforcement structure of quay
JP4370359B1 (en) Liquefaction prevention structure
JP2013023874A (en) Breakwater water structure
JP5541267B2 (en) Tide barrier
JP7320362B2 (en) Design method for reinforcement structure of cut-off wall
JP2725273B2 (en) Seismic structure of river embankment
JP6590767B2 (en) Liquefaction countermeasure method
JP2008081960A (en) Ocean wave protection structure
JP7396331B2 (en) Improvement structure of existing quay wall and construction method of the improvement structure
JP4927355B2 (en) How to build a sloping bank
JP7396332B2 (en) Improvement structure of existing quay wall and construction method of the improvement structure
JPH01226921A (en) Earthquake-proof reinforced revetment construction
JP7469608B2 (en) Support structure, gravity breakwater and construction method of gravity breakwater
JPH04228714A (en) Water area construction using member to be driven into water bottom ground
JP7066651B2 (en) Reinforcement structure of seawall
JP7359515B2 (en) Liquefaction countermeasure structure for underground structures

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20200824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200824

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20201014

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20201014

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240207

R150 Certificate of patent or registration of utility model

Ref document number: 7440864

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150