JP7438116B2 - Solder paste application method and mask - Google Patents

Solder paste application method and mask Download PDF

Info

Publication number
JP7438116B2
JP7438116B2 JP2020541277A JP2020541277A JP7438116B2 JP 7438116 B2 JP7438116 B2 JP 7438116B2 JP 2020541277 A JP2020541277 A JP 2020541277A JP 2020541277 A JP2020541277 A JP 2020541277A JP 7438116 B2 JP7438116 B2 JP 7438116B2
Authority
JP
Japan
Prior art keywords
area
solder paste
peripheral
region
pad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020541277A
Other languages
Japanese (ja)
Other versions
JPWO2020050330A1 (en
Inventor
剣太 井上
愛 浅見
和順 ▲高▼木
達也 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Senju Metal Industry Co Ltd
Original Assignee
Senju Metal Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Senju Metal Industry Co Ltd filed Critical Senju Metal Industry Co Ltd
Publication of JPWO2020050330A1 publication Critical patent/JPWO2020050330A1/en
Application granted granted Critical
Publication of JP7438116B2 publication Critical patent/JP7438116B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3457Solder materials or compositions; Methods of application thereof
    • H05K3/3478Applying solder preforms; Transferring prefabricated solder patterns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3452Solder masks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/05Patterning and lithography; Masks; Details of resist
    • H05K2203/0548Masks
    • H05K2203/0557Non-printed masks

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Description

本発明は、ソルダペーストの塗布方法及びマスクに関する。
本願は、2018年9月5日に日本に出願された特願2018-166395号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a solder paste application method and a mask.
This application claims priority based on Japanese Patent Application No. 2018-166395 filed in Japan on September 5, 2018, the contents of which are incorporated herein.

従来、LGA(Land Grid Array)やBGA(Ball Grid Array)といった電子部品を、プリント基板等の表面に実装する表面実装(SMT:Surface Mount Technology)においては、ソルダペーストが広く用いられている。ソルダペーストは、フラックスにはんだ粉末を混合して作製されている。表面実装においては、まずプリント基板のパッド(電極)が設けられている面に、ソルダペーストを塗布する。この際、ソルダペーストは前記パッドに塗布され、その塗布範囲はパッドの領域と同等である。次に、プリント基板のパッドと電子部品のランド(電極)とが互いに対向するように、プリント基板の表面に電子部品を載置する。この際、ソルダペーストはプリント基板と電子部品の両電極間に位置している。最後に、電子部品が載置されたプリント基板をリフロー炉で加熱(リフロー)し、ソルダペーストのはんだ粉末を溶融させて互いに結合させ、再び固化させることで両電極間を電気的に接続して、表面実装が完了する。適切な電気的接続を確保するために、両電極間を接続するはんだの抵抗値は所定の値以下であることが必要である。また、表面実装後のプリント基板に衝撃等が加えられた場合であっても、破損せずに適切な電気的接続を維持するため、はんだは所定の強度を持つことが求められる。 Conventionally, solder paste has been widely used in surface mounting technology (SMT) in which electronic components such as LGA (Land Grid Array) and BGA (Ball Grid Array) are mounted on the surface of a printed circuit board or the like. Solder paste is made by mixing solder powder with flux. In surface mounting, solder paste is first applied to the surface of a printed circuit board where pads (electrodes) are provided. At this time, the solder paste is applied to the pad, and the application area is equivalent to the area of the pad. Next, the electronic component is placed on the surface of the printed circuit board so that the pad of the printed circuit board and the land (electrode) of the electronic component face each other. At this time, the solder paste is located between the electrodes of the printed circuit board and the electronic component. Finally, the printed circuit board on which the electronic components are mounted is heated (reflowed) in a reflow oven, the solder powder of the solder paste is melted and bonded to each other, and then solidified again to electrically connect the two electrodes. , surface mounting is completed. In order to ensure proper electrical connection, the resistance value of the solder connecting both electrodes needs to be below a predetermined value. Further, even if a shock or the like is applied to the printed circuit board after surface mounting, the solder is required to have a predetermined strength in order to maintain proper electrical connection without being damaged.

ソルダペーストをプリント基板の表面に塗布するために、例えば、特許文献1に示されるマスクを用いたスクリーン印刷が利用されている。 In order to apply solder paste to the surface of a printed circuit board, for example, screen printing using a mask as shown in Patent Document 1 is used.

日本国特開2001-77521号公報Japanese Patent Application Publication No. 2001-77521

リフロー工程後の両電極間を接続するはんだには、いわゆるボイドが含まれる場合がある。ボイドは、はんだ内に形成された空隙であって、この空隙内にはフラックスの樹脂成分や、フラックスの溶剤等が気化してなるガスが充填されている。ボイドが形成されると両電極間の電気抵抗が上昇し、適切な電気的接続が確保できなくなる可能性がある。また、ボイドははんだの強度を低下させる原因となり、衝撃等が加えられた場合に両電極間の電気的接続が維持できなくなる可能性がある。なお、比較的小さなボイドはこのような不具合を起こさない場合があり、上記のような不具合を引き起こすボイドは比較的大きなボイドであることから、表面実装の分野において、発生するボイドの大きさを抑制することが求められている。 The solder that connects both electrodes after the reflow process may contain so-called voids. A void is a gap formed in the solder, and this gap is filled with a gas produced by vaporizing the resin component of the flux, the solvent of the flux, and the like. When voids are formed, the electrical resistance between both electrodes increases, and there is a possibility that proper electrical connection cannot be secured. Further, voids cause a decrease in the strength of the solder, and there is a possibility that the electrical connection between both electrodes cannot be maintained when an impact or the like is applied. Note that relatively small voids may not cause such problems, and the voids that cause the above problems are relatively large voids, so in the field of surface mounting, it is necessary to suppress the size of the voids that occur. is required to do so.

本発明は、このような事情に鑑みてなされたものであって、表面実装においてはんだ内にボイドが形成された場合であっても、そのボイドの大きさを抑制できるソルダペーストの塗布方法及びマスクを提供することを目的とする。 The present invention has been made in view of the above circumstances, and provides a solder paste application method and mask that can suppress the size of voids even when voids are formed in solder during surface mounting. The purpose is to provide

本発明は、前記課題を解決するため、以下の手段を採用する。
本発明の第1の態様は、塗布対象物と電子部品との間にソルダペーストを塗布した状態でリフローを行い前記塗布対象物と前記電子部品とを接合する方法において用いられる、塗布対象物へのソルダペーストの塗布方法であって、塗布対象物における、電極を含む接合領域内に非塗布領域を形成するように、前記接合領域内に少なくとも一部が位置する塗布領域にソルダペーストを塗布する工程を備え、前記塗布領域は、前記接合領域の中心回りの周方向に間隔をあけて配置された複数の周辺領域と、前記複数の周辺領域の径方向内側に位置する中央領域と、を有し、前記接合領域の中心から径方向外側に向けて開口する、前記複数の周辺領域の間の隙間の、前記接合領域の全周に対する割合が、11.5%以上80.6%以下(但し、11.5%以上16.7%以下を除く)である。
In order to solve the above problems, the present invention employs the following means.
A first aspect of the present invention is to apply a solder paste to an object to be applied, which is used in a method of joining the object to be applied and the electronic component by performing reflow with a solder paste applied between the object to be applied and the electronic component. A method of applying solder paste according to the present invention, wherein the solder paste is applied to an application area at least partially located within the bonding area of the object to be applied, so as to form a non-applying area within the bonding area including the electrode. The application region includes a plurality of peripheral regions arranged at intervals in a circumferential direction around the center of the bonding region , and a central region located radially inside the plurality of peripheral regions. However, the ratio of the gap between the plurality of peripheral regions, which opens radially outward from the center of the joint region, to the entire circumference of the joint region is 11.5% or more and 80.6% or less (provided that , excluding 11.5% or more and 16.7% or less) .

本発明の前記第1の態様において、前記複数の周辺領域の数が、2から6であってもよい。 In the first aspect of the present invention, the number of the plurality of peripheral regions may be from two to six.

本発明の前記第1の態様において、前記複数の周辺領域は、前記周方向に等間隔で配置されてもよい。 In the first aspect of the present invention, the plurality of peripheral regions may be arranged at equal intervals in the circumferential direction.

本発明の前記第1の態様において、前記複数の周辺領域は、前記周方向の長さが異なる第1領域及び第2領域を有し、前記第1領域及び前記第2領域は、前記周方向で交互に配置されてもよい。 In the first aspect of the present invention, the plurality of peripheral regions have a first region and a second region having different lengths in the circumferential direction, and the first region and the second region have different lengths in the circumferential direction. may be arranged alternately.

本発明の前記第1の態様において、前記周方向に隣り合う前記複数の周辺領域の対向辺は、互いに平行していてもよい。 In the first aspect of the present invention, opposing sides of the plurality of circumferential regions adjacent to each other in the circumferential direction may be parallel to each other.

本発明の前記第1の態様において、前記中央領域と各周辺領域との対向辺は、互いに平行していてもよい。 In the first aspect of the present invention, opposing sides of the central region and each peripheral region may be parallel to each other.

本発明の前記第1の態様において、前記中央領域の面積は、各周辺領域の面積の44.4%以上278%以下であってもよい。 In the first aspect of the present invention, the area of the central region may be 44.4% or more and 278% or less of the area of each peripheral region.

本発明の前記第1の態様において、前記接合領域内にソルダペーストが塗布される領域は、前記接合領域の面積の17.5%以上60.1%以下であってもよい。 In the first aspect of the present invention, an area where solder paste is applied within the bonding area may be 17.5% or more and 60.1% or less of the area of the bonding area .

本発明の前記第1の態様において、前記複数の周辺領域は、前記接合領域の外縁に重なって配置されてもよい。 In the first aspect of the present invention, the plurality of peripheral regions may be arranged to overlap an outer edge of the bonding region.

本発明の前記第1の態様において、前記複数の周辺領域は、前記接合領域内に配置されてもよい。 In the first aspect of the present invention, the plurality of peripheral regions may be arranged within the bonding region.

本発明の第の態様は、前記第1の態様のソルダペーストの塗布方法に用いられるマスクであって、前記塗布領域に相当する位置に開口が形成されている。 A second aspect of the present invention is a mask used in the solder paste coating method of the first aspect , in which an opening is formed at a position corresponding to the coating area.

本発明の前記態様によれば、表面実装においてはんだ内にボイドが形成された場合であっても、そのボイドの大きさを抑制することができる。このため、基板等の塗布対象物と電子部品の両電極間の適切な電気的接続を確保でき、また、両電極間を接続するはんだの強度低下を防止できるので、衝撃に強い表面実装後基板等を提供することができる。 According to the aspect of the present invention, even if a void is formed in the solder during surface mounting, the size of the void can be suppressed. For this reason, it is possible to ensure proper electrical connection between the object to be coated, such as a board, and both electrodes of electronic components, and it is also possible to prevent a decrease in the strength of the solder that connects both electrodes. etc. can be provided.

本発明の一実施形態に係るはんだ印刷装置を示す概略図である。1 is a schematic diagram showing a solder printing device according to an embodiment of the present invention. 本発明の一実施形態に係る塗布対象物である基板の平面図である。FIG. 1 is a plan view of a substrate that is an object to be coated according to an embodiment of the present invention. 本発明の一実施形態に係るスクリーン印刷に用いられるマスクの平面図である。FIG. 1 is a plan view of a mask used for screen printing according to an embodiment of the present invention. 本発明の一実施形態に係るソルダペーストの塗布方法の各工程を示す概略図である。1 is a schematic diagram showing each step of a solder paste application method according to an embodiment of the present invention. FIG. 表面実装における、ソルダペーストの塗布工程以降の工程を示す概略図である。FIG. 3 is a schematic diagram showing the steps after the solder paste application step in surface mounting. 実施例1におけるソルダペーストの塗布領域を示す平面図である。3 is a plan view showing a solder paste application area in Example 1. FIG. 実施例2におけるソルダペーストの塗布領域を示す平面図である。FIG. 7 is a plan view showing a solder paste application area in Example 2. 実施例3におけるソルダペーストの塗布領域を示す平面図である。FIG. 7 is a plan view showing a solder paste application area in Example 3. 実施例4におけるソルダペーストの塗布領域を示す平面図である。FIG. 7 is a plan view showing a solder paste application area in Example 4. 実施例5におけるソルダペーストの塗布領域を示す平面図である。FIG. 7 is a plan view showing a solder paste application area in Example 5. 実施例6におけるソルダペーストの塗布領域を示す平面図である。FIG. 7 is a plan view showing a solder paste application area in Example 6. 実施例7におけるソルダペーストの塗布領域を示す平面図である。7 is a plan view showing a solder paste application area in Example 7. FIG. 実施例8におけるソルダペーストの塗布領域を示す平面図である。FIG. 7 is a plan view showing a solder paste application area in Example 8. 実施例9におけるソルダペーストの塗布領域を示す平面図である。FIG. 7 is a plan view showing a solder paste application area in Example 9. 実施例10におけるソルダペーストの塗布領域を示す平面図である。FIG. 7 is a plan view showing a solder paste application area in Example 10. 実施例11におけるソルダペーストの塗布領域を示す平面図である。FIG. 7 is a plan view showing a solder paste application area in Example 11. 実施例12におけるソルダペーストの塗布領域を示す平面図である。FIG. 7 is a plan view showing a solder paste application area in Example 12. 実施例13におけるソルダペーストの塗布領域を示す平面図である。FIG. 7 is a plan view showing a solder paste application area in Example 13. 実施例14におけるソルダペーストの塗布領域を示す平面図である。FIG. 7 is a plan view showing a solder paste application area in Example 14. 実施例15におけるソルダペーストの塗布領域を示す平面図である。FIG. 7 is a plan view showing a solder paste application area in Example 15. 実施例16におけるソルダペーストの塗布領域を示す平面図である。FIG. 7 is a plan view showing a solder paste application area in Example 16. 実施例17におけるソルダペーストの塗布領域を示す平面図である。FIG. 7 is a plan view showing a solder paste application area in Example 17. 実施例18におけるソルダペーストの塗布領域を示す平面図である。FIG. 7 is a plan view showing a solder paste application area in Example 18. 実施例19におけるソルダペーストの塗布領域を示す平面図である。FIG. 7 is a plan view showing a solder paste application area in Example 19. 実施例20におけるソルダペーストの塗布領域を示す平面図である。FIG. 7 is a plan view showing a solder paste application area in Example 20. 実施例21におけるソルダペーストの塗布領域を示す平面図である。FIG. 7 is a plan view showing a solder paste application area in Example 21. 実施例22におけるソルダペーストの塗布領域を示す平面図である。FIG. 7 is a plan view showing a solder paste application area in Example 22. 実施例23におけるソルダペーストの塗布領域を示す平面図である。FIG. 7 is a plan view showing a solder paste application area in Example 23. 実施例24におけるソルダペーストの塗布領域を示す平面図である。FIG. 7 is a plan view showing a solder paste application area in Example 24. 実施例25におけるソルダペーストの塗布領域を示す平面図である。FIG. 7 is a plan view showing a solder paste application area in Example 25. 実施例26におけるソルダペーストの塗布領域を示す平面図である。FIG. 7 is a plan view showing a solder paste application area in Example 26.

以下、添付図面を参照して、本発明の一実施形態に係るはんだ印刷装置及びソルダペーストの塗布方法を説明する。 DESCRIPTION OF THE PREFERRED EMBODIMENTS A solder printing apparatus and a solder paste application method according to an embodiment of the present invention will be described below with reference to the accompanying drawings.

本実施形態のはんだ印刷装置1は、マスクMを用いるスクリーン印刷装置である。図1に示すように、はんだ印刷装置1は、ソルダペーストSの塗布対象物である基板Bを支持する基板支持部2と、基板支持部2の鉛直上方に配置される印刷部3と、基板支持部2及び印刷部3を収容する筐体4とを備えている。マスクMは、筐体4等に固定されたマスク支持部(図示せず)によって筐体4内の所定の位置に保持されている。 The solder printing apparatus 1 of this embodiment is a screen printing apparatus using a mask M. As shown in FIG. 1, the solder printing apparatus 1 includes a substrate support section 2 that supports a substrate B to which solder paste S is applied, a printing section 3 disposed vertically above the substrate support section 2, and a substrate B. It includes a housing 4 that accommodates a support section 2 and a printing section 3. The mask M is held at a predetermined position within the housing 4 by a mask supporter (not shown) fixed to the housing 4 or the like.

基板支持部2は、基板Bの実装面が鉛直上方を向くように鉛直下方から支持するステージ21と、ステージ21を水平方向及び鉛直方向に移動可能かつ鉛直方向に延びる軸回りに回転可能なステージ移動部22とを備えている。ステージ21には、基板Bを保持するためのクランプ部材23が設けられている。また、はんだ印刷装置1には、基板支持部2と筐体4の外部との間で基板Bを搬入及び搬出する基板搬送部(図示せず)が設けられている。 The board support unit 2 includes a stage 21 that supports the board B from vertically below so that the mounting surface of the board B faces vertically upward, and a stage that is movable in the horizontal and vertical directions and rotatable around an axis extending in the vertical direction. A moving part 22 is provided. A clamp member 23 for holding the substrate B is provided on the stage 21. Further, the solder printing apparatus 1 is provided with a substrate transport section (not shown) that carries in and out the substrate B between the substrate support section 2 and the outside of the casing 4 .

印刷部3は、ソルダペーストSをマスクMの表面(上面)で移動させるためのスキージ31と、スキージ31を昇降可能な鉛直移動装置32と、鉛直移動装置32を水平移動可能な水平移動装置33とを備えている。スキージ31は、マスクMの表面に接触しつつ水平方向の+X方向に移動することで、マスクM上に供給されたソルダペーストSを押し広げるための部材である。スキージ31は、鉛直移動装置32に連結されている。スキージ31は、金属、樹脂、ゴムなどの単一の素材から構成された板部材であってもよいし、金属板等におけるマスクMと接触する部位が樹脂やゴムによって被覆された板部材であってもよい。スキージ31は、+X方向とは逆の-X方向に向かうに従い鉛直下方に向かうように傾斜して配置されている。このスキージ31の傾斜角度は手動または自動で調整可能であってもよい。 The printing unit 3 includes a squeegee 31 for moving the solder paste S on the surface (upper surface) of the mask M, a vertical movement device 32 that can move the squeegee 31 up and down, and a horizontal movement device 33 that can move the vertical movement device 32 horizontally. It is equipped with The squeegee 31 is a member for spreading the solder paste S supplied onto the mask M by moving in the horizontal +X direction while contacting the surface of the mask M. The squeegee 31 is connected to a vertical movement device 32. The squeegee 31 may be a plate member made of a single material such as metal, resin, or rubber, or may be a plate member such as a metal plate whose portion that contacts the mask M is covered with resin or rubber. You can. The squeegee 31 is arranged so as to be inclined vertically downward as it goes in the -X direction, which is opposite to the +X direction. The inclination angle of this squeegee 31 may be adjustable manually or automatically.

鉛直移動装置32は、水平移動装置33に支持されており、例えばボールネジを含んで構成されている。鉛直移動装置32は、スキージ31の下端をマスクMの表面に所定の力で押圧させることができる。水平移動装置33は筐体4に固定されており、鉛直移動装置32を水平方向にガイドする直動ガイド34と、直動ガイド34と平行に設けられたボールネジ(図示せず)を回転させるモータ35とを備えている。水平移動装置33は、モータ35の駆動によって、前記ボールネジにナット部材を介して連結された鉛直移動装置32を水平方向に移動させることができる。また、水平移動装置33は、鉛直移動装置32によってスキージ31がマスクMを下方に向けて押圧している状態で、鉛直移動装置32を水平方向に移動させることで、スキージ31がマスクMを押圧しつつ水平方向に移動させることができる。また、はんだ印刷装置1には、マスクM上にソルダペーストSを供給するディスペンサ(図示せず)が設けられている。 The vertical movement device 32 is supported by the horizontal movement device 33, and includes, for example, a ball screw. The vertical movement device 32 can press the lower end of the squeegee 31 against the surface of the mask M with a predetermined force. The horizontal movement device 33 is fixed to the housing 4, and includes a linear motion guide 34 that guides the vertical movement device 32 in the horizontal direction, and a motor that rotates a ball screw (not shown) provided in parallel to the linear motion guide 34. It is equipped with 35. The horizontal movement device 33 can horizontally move the vertical movement device 32 connected to the ball screw via a nut member by driving the motor 35. In addition, the horizontal movement device 33 moves the vertical movement device 32 in the horizontal direction while the squeegee 31 is pressing the mask M downward by the vertical movement device 32, so that the squeegee 31 presses the mask M. It can be moved horizontally while The solder printing apparatus 1 is also provided with a dispenser (not shown) that supplies solder paste S onto the mask M.

筐体4は、前記マスク支持部や印刷部3を支持するに足る剛性を備えている。筐体4は、その内部を気密可能な構造であってもよい。また、ソルダペーストSの塗布を減圧雰囲気下で行う場合は、筐体4に真空ポンプ等の排気装置及び大気開放バルブが設けられていてもよい。 The housing 4 has sufficient rigidity to support the mask support section and the printing section 3. The casing 4 may have a structure that allows its interior to be airtight. Further, when applying the solder paste S in a reduced pressure atmosphere, the housing 4 may be provided with an exhaust device such as a vacuum pump and an atmosphere release valve.

図2Aは基板Bの平面図であり、図2BはマスクMの平面図である。なお、本実施形態において「平面図」とは、基板Bの実装面及びマスクMの上面に垂直な方向から見た図をいう。 2A is a plan view of the substrate B, and FIG. 2B is a plan view of the mask M. Note that in this embodiment, a "plan view" refers to a view seen from a direction perpendicular to the mounting surface of the board B and the upper surface of the mask M.

図2Aに示すように、本実施形態でソルダペーストSが塗布される基板Bは、硬質の板状基材からなるプリント基板であって、少なくとも一方の板面に複数のパッドP(電極、接合領域)が配置されている。この一方の板面が、後述する電子部品Eが実装される実装面である。パッドPの材質としては、銅、金、銀などが挙げられる。基板Bの実装面のうち、複数のパッドP以外の領域には、溶融したはんだをはじく性質を持つソルダレジストが塗布されている。 As shown in FIG. 2A, the substrate B on which the solder paste S is applied in this embodiment is a printed circuit board made of a hard plate-like base material, and has a plurality of pads P (electrodes, bonding area) are located. This one board surface is a mounting surface on which an electronic component E, which will be described later, is mounted. Examples of the material of the pad P include copper, gold, and silver. On the mounting surface of the substrate B, a region other than the plurality of pads P is coated with a solder resist having a property of repelling molten solder.

図2Bに示すように、本実施形態で用いられるマスクMは、ステンレス等の金属板からなり、厚さ方向で貫通する複数の開口Hを有している。マスクMの厚さは例えば30μmから200μmであるが、基板B上にどの程度の厚さのソルダペーストSを塗布するかに応じて適宜変更してよい。従来のスクリーン印刷のマスクにおいては、基板のパッドに対向する位置に、当該パッドと同等の領域で開口が形成されているが、本実施形態の開口Hは、基板BのパッドPとは異なる平面視形状を有している。すなわち本実施形態のマスクMには、基板BにおけるパッドP内に非塗布領域を形成するように、パッドP内に少なくとも一部が位置する塗布領域にソルダペーストSを塗布するための開口Hが形成されている。言い換えれば、当該塗布領域に相当する位置に同等の形状で開口Hが形成されている。本実施形態のマスクMにおける開口Hの形状、すなわち基板Bに塗布されるソルダペーストSの塗布領域の形状は、後述する実施例1~26にて詳細に説明する。図2Bに示すマスクMにおいては、1つのパッドPに対して2つの矩形状の開口Hが形成されており、これらの開口HはパッドPの中心を挟んで互いに対向して配置されている。 As shown in FIG. 2B, the mask M used in this embodiment is made of a metal plate such as stainless steel, and has a plurality of openings H passing through it in the thickness direction. The thickness of the mask M is, for example, 30 μm to 200 μm, but may be changed as appropriate depending on how thick the solder paste S is applied onto the substrate B. In a conventional screen printing mask, an opening is formed at a position opposite to a pad on the substrate in an area equivalent to the pad, but the opening H in this embodiment is in a plane different from that of the pad P on the substrate B. It has a visual shape. That is, the mask M of this embodiment has an opening H for applying the solder paste S to an application area that is at least partially located within the pad P so as to form a non-application area within the pad P on the substrate B. It is formed. In other words, the opening H is formed in the same shape at a position corresponding to the application area. The shape of the opening H in the mask M of this embodiment, that is, the shape of the application area of the solder paste S applied to the substrate B, will be explained in detail in Examples 1 to 26 described later. In the mask M shown in FIG. 2B, two rectangular openings H are formed for one pad P, and these openings H are arranged to face each other with the center of the pad P in between.

本実施形態で使用されるソルダペーストSには特に制限はなく、塗布雰囲気、温度、マスクMの開口大きさ及び形状といった使用の態様に応じて適宜選択してよい。上述したように、ソルダペーストはフラックスにはんだ粉末を混合して作製される。はんだ粉末には、銅、錫、銀、及びそれらの合金等が用いられ、はんだ粉末の形状は球形及び不定形のいずれであってもよい。フラックスは、例えば、ロジン等の樹脂、粘度等を調整するための溶剤、電極の表面を清浄化する活性剤、並びに粘度、粘着性及びチキソ性などを調整するチキソ剤を含み、これらの含有量は使用の態様に応じて適宜調整してよい。 The solder paste S used in this embodiment is not particularly limited, and may be appropriately selected depending on usage conditions such as coating atmosphere, temperature, and the opening size and shape of the mask M. As mentioned above, solder paste is made by mixing solder powder with flux. Copper, tin, silver, alloys thereof, and the like are used for the solder powder, and the shape of the solder powder may be either spherical or irregular. Flux includes, for example, a resin such as rosin, a solvent to adjust viscosity, an activator to clean the surface of the electrode, and a thixotropic agent to adjust viscosity, stickiness, thixotropy, etc. may be adjusted as appropriate depending on the mode of use.

続いて、図3を参照して本実施形態のはんだ印刷装置1を用いたソルダペーストSの塗布方法を説明する。なお、図3においては、スキージ31以外のはんだ印刷装置1の構成を省略している。 Next, a method for applying solder paste S using the solder printing apparatus 1 of this embodiment will be described with reference to FIG. Note that in FIG. 3, the configuration of the solder printing apparatus 1 other than the squeegee 31 is omitted.

前記基板搬送部によってステージ21上に基板Bが載置され、クランプ部材23によって基板Bがステージ21に保持される。続いてステージ移動部22の動作によって、固定されたマスクMに対する基板Bの水平位置及び鉛直方向に延びる軸回りの回転位置が調整され、その後ステージ移動部22が図3(a)に示す状態からステージ21を上昇させて、図3(b)に示すようにマスクMの下面に基板Bの上面(実装面)を密着させる。この時、ステージ移動部22による基板Bの水平位置及び回転位置の調整は完了しているので、基板BのパッドPに対してマスクMの開口Hは適切な位置に配置されている。すなわち、基板BのパッドPが設けられた面とマスクMとが接した際に、マスクMのうち、基板BにソルダペーストSが塗布される領域(塗布領域)と相当(対向)する位置に、開口Hが形成されている。 The substrate B is placed on the stage 21 by the substrate transport section, and the substrate B is held on the stage 21 by the clamp member 23. Subsequently, by the operation of the stage moving section 22, the horizontal position and rotational position of the substrate B relative to the fixed mask M around the axis extending in the vertical direction are adjusted, and then the stage moving section 22 is moved from the state shown in FIG. 3(a). The stage 21 is raised to bring the upper surface (mounting surface) of the substrate B into close contact with the lower surface of the mask M, as shown in FIG. 3(b). At this time, the adjustment of the horizontal position and rotational position of the substrate B by the stage moving unit 22 has been completed, so the opening H of the mask M is placed at an appropriate position with respect to the pad P of the substrate B. That is, when the surface of the substrate B on which the pad P is provided comes into contact with the mask M, a portion of the mask M is located at a position corresponding to (opposed to) the area (application area) where the solder paste S is applied to the substrate B. , an opening H is formed.

続いて、図3(c)に示すように、前記ディスペンサによってソルダペーストSが、スキージ31の進行先のマスクM上、すなわちスキージ31の+X側に供給される。また、鉛直移動装置32の駆動によってスキージ31は下降し、マスクMを所定の力で下方に向けて押圧する。この状態で水平移動装置33が鉛直移動装置32を+X方向に移動させることで、スキージ31はマスクMを押圧したまま+X方向に移動する。ソルダペーストSはスキージ31の進行先の位置に供給されているため、スキージ31の移動に伴って+X方向に移動する。また、スキージ31は上述したように傾斜しているため、その移動に伴ってソルダペーストSには鉛直下方に向かう力が加えられる。このため、図3(d)に示すように、ソルダペーストSはマスクMの開口Hに押し込められて充填され、基板Bの上面(実装面)に接触する。また、スキージ31はマスクMを下方に押圧しつつ+X方向に移動するため、開口H以外のマスクM上面からソルダペーストSをかき取りながら移動でき、よってソルダペーストSを開口Hのみに供給することができる。水平移動装置33によるスキージ31の水平移動が完了すると、図3(e)に示すように、マスクMの複数の開口Hに対するソルダペーストSの充填が完了する。 Subsequently, as shown in FIG. 3C, the dispenser supplies the solder paste S onto the mask M where the squeegee 31 advances, that is, on the +X side of the squeegee 31. Further, the squeegee 31 is lowered by driving the vertical movement device 32, and presses the mask M downward with a predetermined force. In this state, the horizontal movement device 33 moves the vertical movement device 32 in the +X direction, so that the squeegee 31 moves in the +X direction while pressing the mask M. Since the solder paste S is supplied to the position where the squeegee 31 advances, it moves in the +X direction as the squeegee 31 moves. Further, since the squeegee 31 is inclined as described above, a force directed vertically downward is applied to the solder paste S as the squeegee 31 moves. Therefore, as shown in FIG. 3(d), the solder paste S is forced into and filled into the opening H of the mask M, and comes into contact with the upper surface (mounting surface) of the substrate B. Furthermore, since the squeegee 31 moves in the +X direction while pressing the mask M downward, it can move while scraping off the solder paste S from the upper surface of the mask M other than the openings H. Therefore, the solder paste S can be supplied only to the openings H. Can be done. When the horizontal movement of the squeegee 31 by the horizontal movement device 33 is completed, filling of the solder paste S into the plurality of openings H of the mask M is completed, as shown in FIG. 3(e).

続いて、図3(f)に示すように、ステージ移動部22がステージ21を下降させることで、基板BはマスクMの下面から下方に離間する。この時、開口Hに充填されていたソルダペーストSは基板Bの上面に付着しているため、このソルダペーストSもマスクMから離間し、よってマスクMの開口Hに応じたパターンでソルダペーストSが基板Bの実装面に印刷される。マスクMの開口Hは図2Bに示すような形状を有しているため、本実施形態のソルダペーストの塗布方法は、基板BにおけるパッドP内に非塗布領域を形成するように、パッドP内に少なくとも一部が位置する塗布領域にソルダペーストSを塗布する工程を備えている。基板BがマスクMの下面から離間し、ソルダペーストSが基板Bに印刷されることで、本実施形態のソルダペーストの塗布工程が完了する。ソルダペーストSが塗布された基板Bは、前記基板搬送部によってはんだ印刷装置1から搬出される。 Subsequently, as shown in FIG. 3F, the stage moving unit 22 lowers the stage 21, so that the substrate B is spaced downward from the lower surface of the mask M. At this time, since the solder paste S filled in the opening H is attached to the upper surface of the substrate B, this solder paste S is also separated from the mask M, and therefore the solder paste S is formed in a pattern corresponding to the opening H of the mask M. is printed on the mounting surface of the board B. Since the opening H of the mask M has a shape as shown in FIG. The solder paste S is applied to an application area where at least a portion of the solder paste S is located. When the substrate B is separated from the lower surface of the mask M and the solder paste S is printed on the substrate B, the solder paste application process of this embodiment is completed. The board B coated with the solder paste S is carried out from the solder printing apparatus 1 by the board transport section.

続いて、表面実装における、本実施形態のソルダペーストの塗布工程以降の工程を、図4を参照して説明する。
まず、図4(a)に示すように、ソルダペーストSが塗布された基板Bの実装面に電子部品Eを載置する。電子部品Eは、LGAやBGAであってもよい。この電子部品Eの底面(基板Bに対向する面)には、基板Bの複数のパッドPに対応するように、複数のランドL(電極)が設けられている。図4(a)に示す工程では、基板BのパッドPと電子部品EのランドLとが互いに対向するように電子部品Eを基板B上に載置する。この際、基板BのパッドPと電子部品EのランドLとの間にソルダペーストSが位置している。
Next, steps after the solder paste application step of this embodiment in surface mounting will be described with reference to FIG. 4.
First, as shown in FIG. 4(a), an electronic component E is placed on the mounting surface of a substrate B coated with a solder paste S. The electronic component E may be LGA or BGA. A plurality of lands L (electrodes) are provided on the bottom surface (the surface facing the substrate B) of the electronic component E so as to correspond to the plurality of pads P on the substrate B. In the step shown in FIG. 4A, the electronic component E is placed on the substrate B so that the pad P of the substrate B and the land L of the electronic component E face each other. At this time, the solder paste S is located between the pad P of the substrate B and the land L of the electronic component E.

続いて、図4(b)に示すように、電子部品Eが載置された基板Bをリフロー炉(図示せず)で加熱し、ソルダペーストS内のはんだ粉末を溶融させて互いに結合させ、溶融したはんだは基板Bと電子部品Eの両電極に接触する。この時、ソルダペーストSに含まれるフラックスの作用により、パッドPに対する溶融はんだの濡れ性は向上し、また、基板BのパッドP以外の表面には溶融はんだをはじくソルダレジストが塗布されているので、溶融はんだはパッドPの径方向内側に向けて流動する。すなわち、本実施形態のように2つの領域にソルダペーストSが塗布されている場合であっても、2つの領域に含まれるはんだはリフロー工程で一体となる。その後溶融したはんだを冷却して固化させることによって、基板Bと電子部品Eの両電極間をはんだS1で電気的に接続する。以上より、電子部品Eの基板Bに対する表面実装が完了する。 Subsequently, as shown in FIG. 4(b), the board B on which the electronic components E are mounted is heated in a reflow oven (not shown) to melt the solder powder in the solder paste S and bond them together. The molten solder contacts both electrodes of the board B and the electronic component E. At this time, due to the action of the flux contained in the solder paste S, the wettability of the molten solder to the pad P is improved, and the surface of the board B other than the pad P is coated with a solder resist that repels the molten solder. , the molten solder flows toward the inside of the pad P in the radial direction. That is, even when the solder paste S is applied to two regions as in the present embodiment, the solder contained in the two regions becomes integrated in the reflow process. Thereafter, the molten solder is cooled and solidified to electrically connect the electrodes of the board B and the electronic component E with the solder S1. As described above, the surface mounting of the electronic component E onto the substrate B is completed.

次に、図面を参照して、本実施形態のソルダペーストの塗布方法における複数の具体的な実施例を説明する。また、これら実施例と比較するために、従来の塗布方法に相当する比較例についても検討した。
以下の実施例1~26では、基板Bの実装面の平面図を示す図5~30を用いてソルダペーストの塗布領域を説明しており、各平面図は、接合領域である基板Bの1つのパッドPを拡大した図となっている。各実施例において、パッドPの平面視形状は、直径1.0mmの円形とした。以下の説明では、パッドPの中心を通り基板Bの実装面に直交する軸に交差する方向を径方向といい、当該軸回り方向を周方向という。また、便宜上、各図面の紙面上下方向を単に「上下方向」、紙面左右方向を単に「左右方向」と称する場合がある。
これら実施例と比較例において、以下に説明する隙間割合GR、塗布面積率AR、及び最大ボイド面積率VRを確認した。
なお、以下の実施例1~26のうち、実施例1~5、15、16、23~26は、参考例である。
Next, a plurality of specific examples of the solder paste application method of this embodiment will be described with reference to the drawings. Furthermore, in order to compare with these examples, comparative examples corresponding to conventional coating methods were also studied.
In Examples 1 to 26 below, the application area of the solder paste is explained using FIGS. 5 to 30, which show plan views of the mounting surface of the board B. This is an enlarged view of one pad P. In each example, the shape of the pad P in plan view was a circle with a diameter of 1.0 mm. In the following description, a direction passing through the center of the pad P and intersecting an axis perpendicular to the mounting surface of the board B will be referred to as a radial direction, and a direction around the axis will be referred to as a circumferential direction. Furthermore, for convenience, the vertical direction of each drawing may be simply referred to as the "vertical direction" and the horizontal direction of the drawing may simply be referred to as the "horizontal direction."
In these Examples and Comparative Examples, the gap ratio GR, coating area ratio AR, and maximum void area ratio VR, which will be described below, were confirmed.
Note that among Examples 1 to 26 below, Examples 1 to 5, 15, 16, and 23 to 26 are reference examples.

隙間割合GRは、パッドPの中心から径方向外側に向けて開口する、後述する複数の周辺領域A1の間の隙間の、パッドPの全周に対する割合をいう。言い換えれば、パッドPの中心から径方向外側に向けて延びかつ周辺領域A1のいずれもその間に含まれない2本の直線が描ける場合に、これら2本の直線間の角度の360°に対する割合を隙間割合GRとしている。その間に周辺領域A1が含まれない2本の直線が複数対描ける場合は、各対の2本の直線間角度の合計の、360°に対する割合を隙間割合GRとする。なお、隙間割合GRの算出において、後述する中央領域A2の存在は考慮しない。 The gap ratio GR refers to the ratio of gaps between a plurality of peripheral areas A1, which will be described later, that open radially outward from the center of the pad P to the entire circumference of the pad P. In other words, if two straight lines can be drawn that extend radially outward from the center of the pad P and do not include any of the peripheral area A1 between them, then calculate the ratio of the angle between these two straight lines to 360°. The gap ratio is GR. If a plurality of pairs of two straight lines that do not include the peripheral area A1 can be drawn, the ratio of the sum of the angles between the two straight lines of each pair to 360° is defined as the gap ratio GR. Note that in calculating the gap ratio GR, the existence of the central region A2, which will be described later, is not taken into account.

塗布面積率ARは、1つのパッドPに対して塗布されるソルダペーストの全塗布領域の、当該パッドPの面積に対する割合をいう。なお、円周率πは3.14とした。 The coating area ratio AR refers to the ratio of the total coating area of solder paste applied to one pad P to the area of the pad P. In addition, pi was set to 3.14.

最大ボイド面積率VRの確認に際して、実施例毎に36個のパッドPを並べたテスト用の基板を2つ準備し、同数のランドを有する電子部品とのはんだ接続をそれぞれ行って、実施例毎に合計72個のパッドPのはんだ接続サンプルを得た。このはんだ接続には、図3及び図4に示す表面実装の方法を用いた。1つのパッドPの面積に対する、発生したボイドの面積(平面視での面積)の割合(以下、ボイド面積率という)を、72個のパッドPそれぞれについて算出し、それらのうち最大のボイド面積率を、各実施例の「最大ボイド面積率」とした。電子部品のランドの平面視形状は、パッドPと同等とした。 When confirming the maximum void area ratio VR, two test boards with 36 pads P lined up were prepared for each example, and each was soldered to an electronic component having the same number of lands. A total of 72 solder connection samples of pads P were obtained. For this solder connection, the surface mounting method shown in FIGS. 3 and 4 was used. The ratio of the area of the generated void (area in plan view) to the area of one pad P (hereinafter referred to as void area ratio) is calculated for each of the 72 pads P, and the largest void area ratio among them is calculated. was defined as the "maximum void area ratio" of each example. The land of the electronic component had the same shape as the pad P in plan view.

(比較例)
比較例は、直径1.0mmのパッドPに対して、当該パッドPと同一の領域でソルダペーストを塗布する従来の構成とした。この比較例は、後に示す表1において「Ref」で示されている。この比較例において、複数の周辺領域は存在しないので隙間割合GRは算出できず、塗布面積率ARは100%である。また、最大ボイド面積率VRは、43.5%であった。
(Comparative example)
The comparative example had a conventional configuration in which solder paste was applied to a pad P having a diameter of 1.0 mm in the same area as the pad P. This comparative example is indicated by "Ref" in Table 1 shown later. In this comparative example, since there are no plurality of peripheral areas, the gap ratio GR cannot be calculated, and the coating area ratio AR is 100%. Further, the maximum void area ratio VR was 43.5%.

(実施例1)
実施例1におけるソルダペーストの塗布領域を図5を参照して説明する。
実施例1では、基板BにおけるパッドP内に非塗布領域Nを形成するように、パッドP内に少なくとも一部が位置する塗布領域Tにソルダペーストが塗布されている。図5において、ソルダペーストが塗布されている領域に網掛けを付している(他の図6~30でも同様)。塗布領域Tは、パッドPの中心O回りの周方向に間隔Gをあけて配置された複数(2つ)の周辺領域A1を有する。各周辺領域A1は一方向に延びた矩形状であり、長手方向の長さは0.7mm、当該長手方向と直交する短手方向の幅は0.35mmである。
複数の周辺領域A1は、パッドPの中心Oを挟んで互いに対向して配置されている。
複数の周辺領域A1は、当該複数の周辺領域A1の対向方向(図5の紙面上下方向)と直交する方向に延びて配置されている。すなわち、各周辺領域A1は、紙面左右方向に延びている。なお、複数の周辺領域A1が、前記対向方向と交差する方向に延びて配置されてもよい。
複数の周辺領域A1間の隙間(前記対向方向の隙間)の大きさは、0.7mmである。このため、複数の周辺領域A1間の隙間は、パッドPの最大径(1.0mm)の70%であり、前記対向方向における各周辺領域A1の幅の200%である。
複数の周辺領域A1は、周方向に等間隔で配置されている。なお、複数の周辺領域A1が、周方向に等間隔で配置されずともよい。
複数の周辺領域A1の対向辺a,bは、互いに平行している。なお、対向辺a,bが、互いに非平行であってもよい。
複数の周辺領域A1は、パッドPの外縁に重なって配置されている。すなわち、各周辺領域A1の一部は、パッドPの径方向外側に位置している。なお、複数の周辺領域A1が、全てパッドP内に配置される構成であってもよい。
(Example 1)
The application area of the solder paste in Example 1 will be explained with reference to FIG.
In Example 1, solder paste is applied to a coating area T that is at least partially located within the pad P on the substrate B so as to form a non-coating area N within the pad P. In FIG. 5, the area where the solder paste is applied is shaded (the same applies to other FIGS. 6 to 30). The application area T has a plurality of (two) peripheral areas A1 arranged at intervals G in the circumferential direction around the center O of the pad P. Each peripheral area A1 has a rectangular shape extending in one direction, the length in the longitudinal direction is 0.7 mm, and the width in the transverse direction orthogonal to the longitudinal direction is 0.35 mm.
The plurality of peripheral regions A1 are arranged to face each other with the center O of the pad P interposed therebetween.
The plurality of peripheral regions A1 are arranged to extend in a direction perpendicular to the direction in which the plurality of peripheral regions A1 face each other (vertical direction in the paper of FIG. 5). That is, each peripheral area A1 extends in the left-right direction in the drawing. Note that the plurality of peripheral areas A1 may be arranged to extend in a direction intersecting the facing direction.
The size of the gap between the plurality of peripheral areas A1 (the gap in the opposing direction) is 0.7 mm. Therefore, the gap between the plurality of peripheral regions A1 is 70% of the maximum diameter (1.0 mm) of the pad P, and is 200% of the width of each peripheral region A1 in the opposing direction.
The plurality of peripheral areas A1 are arranged at equal intervals in the circumferential direction. Note that the plurality of peripheral areas A1 may not be arranged at equal intervals in the circumferential direction.
Opposing sides a and b of the plurality of peripheral areas A1 are parallel to each other. Note that the opposing sides a and b may be non-parallel to each other.
The plurality of peripheral regions A1 are arranged to overlap the outer edge of the pad P. That is, a portion of each peripheral region A1 is located on the outside of the pad P in the radial direction. Note that the plurality of peripheral regions A1 may all be arranged within the pad P.

本実施例の塗布領域Tを、中心Oを通り上下方向及び左右方向に延びる2本の直線で4つに区画した場合、例えば中心Oから紙面右側に延びる直線L1と中心Oから紙面上側に延びる直線L2との間の区画は他の3つの区画と同一または鏡像であるため、直線L1,L2間がなす90°に対する角度θの割合を、本実施例の隙間割合GRとした。また、角度θは、直線L1と、中心Oから径方向外側に延びかつ紙面上側の周辺領域A1の右下の頂点に接する直線L3と、の間の角度である。直線L1,L3間に周辺領域A1は配置されていない。よって、本実施例の隙間割合GRは、(arctan(0.35/0.35)/90°)=50%である。
本実施例の塗布面積率ARは、(0.7×0.35×2)/(0.5×π)=62.4%である。
本実施例の最大ボイド面積率は、2.3%であった。
If the application area T of this embodiment is divided into four by two straight lines passing through the center O and extending in the vertical and horizontal directions, for example, a straight line L1 extending from the center O to the right side of the paper and a straight line L1 extending from the center O to the upper side of the paper. Since the section between the straight line L2 and the other three sections is the same or a mirror image, the ratio of the angle θ G to 90° between the straight lines L1 and L2 was defined as the gap ratio GR in this example. Further, the angle θ G is an angle between the straight line L1 and a straight line L3 extending radially outward from the center O and touching the lower right vertex of the peripheral area A1 on the upper side of the paper. The peripheral area A1 is not arranged between the straight lines L1 and L3. Therefore, the gap ratio GR in this embodiment is (arctan (0.35/0.35)/90°)=50%.
The coating area ratio AR of this example is (0.7×0.35×2)/(0.5 2 ×π)=62.4%.
The maximum void area ratio in this example was 2.3%.

(実施例2)
実施例2におけるソルダペーストの塗布領域を図6を参照して説明する。なお、実施例2において、前記実施例1と異なる構成のみを以下に説明し、それ以外の構成の説明は省略する。
複数の周辺領域A1間の隙間(前記対向方向の隙間)の大きさは、0.3mmである。このため、複数の周辺領域A1間の隙間は、パッドPの最大径(1.0mm)の30%であり、前記対向方向における各周辺領域A1の幅の85.7%である。
(Example 2)
The solder paste application area in Example 2 will be explained with reference to FIG. 6. In the second embodiment, only the configurations that are different from the first embodiment will be explained below, and the explanation of the other configurations will be omitted.
The size of the gap between the plurality of peripheral areas A1 (the gap in the opposing direction) is 0.3 mm. Therefore, the gap between the plurality of peripheral regions A1 is 30% of the maximum diameter (1.0 mm) of the pad P, and is 85.7% of the width of each peripheral region A1 in the opposing direction.

本実施例の隙間割合GRは、(arctan(0.15/0.35)/90°)=25.8%である。
本実施例の最大ボイド面積率は、13.8%であった。
The gap ratio GR in this embodiment is (arctan (0.15/0.35)/90°)=25.8%.
The maximum void area ratio in this example was 13.8%.

(実施例3)
実施例3におけるソルダペーストの塗布領域を図7を参照して説明する。なお、実施例3において、前記実施例1と異なる構成のみを以下に説明し、それ以外の構成の説明は省略する。
複数の周辺領域A1間の隙間(前記対向方向の隙間)の大きさは、0.4mmである。このため、複数の周辺領域A1間の隙間は、パッドPの最大径(1.0mm)の40%であり、前記対向方向における各周辺領域A1の幅の114%である。
(Example 3)
The solder paste application area in Example 3 will be explained with reference to FIG. 7. In the third embodiment, only the configurations that are different from the first embodiment will be explained below, and the explanation of the other configurations will be omitted.
The size of the gap between the plurality of peripheral areas A1 (the gap in the opposing direction) is 0.4 mm. Therefore, the gap between the plurality of peripheral regions A1 is 40% of the maximum diameter (1.0 mm) of the pad P, and is 114% of the width of each peripheral region A1 in the opposing direction.

本実施例の隙間割合GRは、(arctan(0.2/0.35)/90°)=33%である。
本実施例の最大ボイド面積率は、11.7%であった。
The gap ratio GR in this example is (arctan (0.2/0.35)/90°)=33%.
The maximum void area ratio in this example was 11.7%.

(実施例4)
実施例4におけるソルダペーストの塗布領域を図8を参照して説明する。なお、実施例4において、前記実施例1と異なる構成のみを以下に説明し、それ以外の構成の説明は省略する。
複数の周辺領域A1間の隙間(前記対向方向の隙間)の大きさは、0.5mmである。このため、複数の周辺領域A1間の隙間は、パッドPの最大径(1.0mm)の50%であり、前記対向方向における各周辺領域A1の幅の143%である。
(Example 4)
The solder paste application area in Example 4 will be described with reference to FIG. 8. In the fourth embodiment, only the configurations that are different from the first embodiment will be explained below, and the explanation of the other configurations will be omitted.
The size of the gap between the plurality of peripheral areas A1 (the gap in the opposing direction) is 0.5 mm. Therefore, the gap between the plurality of peripheral regions A1 is 50% of the maximum diameter (1.0 mm) of the pad P, and is 143% of the width of each peripheral region A1 in the opposing direction.

本実施例の隙間割合GRは、(arctan(0.25/0.35)/90°)=39.5%である。
本実施例の最大ボイド面積率は、7.0%であった。
The gap ratio GR in this example is (arctan (0.25/0.35)/90°)=39.5%.
The maximum void area ratio in this example was 7.0%.

(実施例5)
実施例5におけるソルダペーストの塗布領域を図9を参照して説明する。なお、実施例5において、前記実施例1と異なる構成のみを以下に説明し、それ以外の構成の説明は省略する。
複数の周辺領域A1間の隙間(前記対向方向の隙間)の大きさは、0.6mmである。このため、複数の周辺領域A1間の隙間は、パッドPの最大径(1.0mm)の60%であり、前記対向方向における各周辺領域A1の幅の171%である。
(Example 5)
The solder paste application area in Example 5 will be explained with reference to FIG. 9. In the fifth embodiment, only the configurations that are different from the first embodiment will be explained below, and the explanation of the other configurations will be omitted.
The size of the gap between the plurality of peripheral areas A1 (the gap in the opposing direction) is 0.6 mm. Therefore, the gap between the plurality of peripheral regions A1 is 60% of the maximum diameter (1.0 mm) of the pad P, and is 171% of the width of each peripheral region A1 in the opposing direction.

本実施例の隙間割合GRは、(arctan(0.3/0.35)/90°)=45.1%である。
本実施例の最大ボイド面積率は、4.2%であった。
The gap ratio GR in this example is (arctan (0.3/0.35)/90°)=45.1%.
The maximum void area ratio in this example was 4.2%.

(実施例1~5の検討)
実施例1~5の最大ボイド面積率VRは、全て比較例より低くなった。このため、実施例1~5のいずれにおいても、生じたボイドの大きさを抑制できたことが判る。
ボイドの大きさが抑制できた原因を以下に検討する。リフロー工程で溶融したはんだ粉末が互いに結合する際、溶融前のはんだ粉末間に位置していたフラックスの樹脂成分等は溶融はんだの結合によって外部に向けて押し出される。しかし、ソルダペーストの塗布領域が大きいと、前記樹脂成分がはんだから排出される前にはんだが冷えて固化してしまい、このため樹脂成分がはんだ内に残されていたこと(すなわちボイド)が考えられる。一方、実施例1~5では、各周辺領域A1の幅は0.35mmであり、パッドPの最大径(1.0mm)よりも大幅に小さい。このため、フラックスの樹脂成分等が周辺領域A1の短手方向に移動した場合は比較的早期に溶融はんだから排出されるため、各周辺領域A1において、比較例よりもボイドの大きさが抑制されると考えられる。
また、図4に示したように、2つの領域に塗布されたソルダペースト内のはんだ粉末もリフロー工程において一体化する。すなわち、2つの周辺領域A1で溶融したはんだ粉末は、パッドPの中心Oに向けて流動し、パッドPの中央付近で互いに接する。径方向内側へ向かう溶融はんだの流動は維持されるので、2つの領域から流動した溶融はんだの接続箇所は、径方向外側に向けて拡大する。この接続箇所が径方向外側に向けて拡大するために、フラックスの樹脂成分等を径方向外側に向かわせる力が生じ、この力によっても樹脂成分をはんだの外側に向けて排出できると考えられる。
(Study of Examples 1 to 5)
The maximum void area ratio VR of Examples 1 to 5 was all lower than that of the comparative example. Therefore, it can be seen that in all of Examples 1 to 5, the size of the generated voids could be suppressed.
The reason why the void size was suppressed will be discussed below. When melted solder powders are bonded to each other in the reflow process, the resin components of flux, etc. located between the solder powders before melting are pushed outward by the bonding of the molten solder. However, when the solder paste is applied over a large area, the solder cools and solidifies before the resin component is expelled from the solder, which may cause the resin component to remain in the solder (i.e., voids). It will be done. On the other hand, in Examples 1 to 5, the width of each peripheral area A1 is 0.35 mm, which is significantly smaller than the maximum diameter of pad P (1.0 mm). Therefore, if the resin components of the flux move in the lateral direction of the peripheral area A1, they are discharged from the molten solder relatively quickly, so the size of voids is suppressed in each peripheral area A1 compared to the comparative example. It is thought that
Further, as shown in FIG. 4, the solder powder in the solder paste applied to the two regions is also integrated in the reflow process. That is, the solder powder melted in the two peripheral regions A1 flows toward the center O of the pad P, and comes into contact with each other near the center of the pad P. Since the flow of molten solder radially inward is maintained, the connection location of the molten solder flowing from the two regions expands radially outward. Since this connection point expands toward the outside in the radial direction, a force is generated that directs the resin components of the flux toward the outside in the radial direction, and it is thought that this force can also discharge the resin components toward the outside of the solder.

実施例1~5において、複数の周辺領域A1間の隙間は、パッドPの最大径(1.0mm)の30%以上70%以下であった。
また、複数の周辺領域A1間の隙間は、複数の周辺領域A1の対向方向における各周辺領域A1の幅の85.7%以上200%以下であった。
In Examples 1 to 5, the gap between the plurality of peripheral areas A1 was 30% or more and 70% or less of the maximum diameter (1.0 mm) of the pad P.
Further, the gap between the plurality of peripheral regions A1 was 85.7% or more and 200% or less of the width of each peripheral region A1 in the opposing direction of the plurality of peripheral regions A1.

(実施例1~5の変形例)
実施例1~5には以下の変形例が考えられる。
各周辺領域A1は平面視矩形状であるが、平面視で楕円状または長円状であってもよい。複数の周辺領域A1の対向辺a,bは直線状に形成されているが、これらの対向辺が径方向内側に向けて膨出する形状であってもよく、また、径方向外側に向けて窪んだ形状であってもよい。同様に、周辺領域A1の径方向外側の辺が径方向内側に窪んでいたり、径方向外側に膨出したりしていてもよい。
(Modifications of Examples 1 to 5)
The following modifications can be considered for Examples 1 to 5.
Each peripheral area A1 has a rectangular shape in plan view, but may have an elliptical or elliptical shape in plan view. Although the opposing sides a and b of the plurality of peripheral areas A1 are formed in a straight line, these opposing sides may have a shape that bulges radially inward, or radially outward. It may also have a concave shape. Similarly, the radially outer side of the peripheral region A1 may be depressed radially inward or radially outward.

(実施例6)
実施例6におけるソルダペーストの塗布領域を図10を参照して説明する。
実施例6では、基板BにおけるパッドP内に非塗布領域Nを形成するように、パッドP内に少なくとも一部が位置する塗布領域Tにソルダペーストが塗布されている。塗布領域Tは、パッドPの中心O回りの周方向に間隔Gをあけて配置された複数(6つ)の周辺領域A1と、当該複数の周辺領域A1の径方向内側に位置する中央領域A2とを有する。各周辺領域A1と中央領域A2はいずれも一辺の長さが0.3mmの正方形状である。中央領域A2は、その中心がパッドPの中心Oと平面視で一致するように配置されている。複数の周辺領域A1及び中央領域A2の相互の位置関係は、図10に示されている。
複数の周辺領域A1は、周方向に略等間隔で配置されている。なお、複数の周辺領域A1が、周方向に等間隔で配置されずともよい。
周方向に隣り合う複数の周辺領域A1の対向辺a,bは、互いに平行している。なお、対向辺a,bが、互いに非平行であってもよい。
中央領域A2と各周辺領域A1との対向辺c,dは、互いに平行している。なお、対向辺c,dが、互いに非平行であってもよい。
中央領域A2の面積は、各周辺領域A1の面積と同一(100%)である。
複数の周辺領域A1は、パッドPの外縁に重なって配置されている。すなわち、各周辺領域A1の一部は、パッドPの径方向外側に位置している。なお、複数の周辺領域A1が、全てパッドP内に配置される構成であってもよい。
(Example 6)
The solder paste application area in Example 6 will be explained with reference to FIG. 10.
In Example 6, solder paste is applied to an application area T that is at least partially located within the pad P on the substrate B so as to form a non-application area N within the pad P. The application area T includes a plurality of (six) peripheral areas A1 arranged at intervals G in the circumferential direction around the center O of the pad P, and a central area A2 located inside the plurality of peripheral areas A1 in the radial direction. and has. Each of the peripheral areas A1 and the central area A2 has a square shape with each side having a length of 0.3 mm. The center region A2 is arranged so that its center coincides with the center O of the pad P in plan view. The mutual positional relationship of the plurality of peripheral areas A1 and central area A2 is shown in FIG. 10.
The plurality of peripheral areas A1 are arranged at approximately equal intervals in the circumferential direction. Note that the plurality of peripheral areas A1 may not be arranged at equal intervals in the circumferential direction.
Opposing sides a and b of the plurality of circumferential regions A1 adjacent to each other in the circumferential direction are parallel to each other. Note that the opposing sides a and b may be non-parallel to each other.
Opposing sides c and d of the central region A2 and each peripheral region A1 are parallel to each other. Note that the opposing sides c and d may be non-parallel to each other.
The area of the central region A2 is the same (100%) as the area of each peripheral region A1.
The plurality of peripheral regions A1 are arranged to overlap the outer edge of the pad P. That is, a portion of each peripheral region A1 is located on the outside of the pad P in the radial direction. Note that the plurality of peripheral regions A1 may all be arranged within the pad P.

本実施例の塗布領域Tを、中心Oを通り上下方向及び左右方向に延びる2本の直線で4つに区画した場合、例えば中心Oから紙面右側に延びる直線L1と中心Oから紙面上側に延びる直線L2との間の区画は他の3つの区画と同一または鏡像であるため、直線L1,L2間がなす90°に対する角度θG1と角度θG2との和の割合を、本実施例の隙間割合GRとした。角度θG1は、直線L1と、中心Oから径方向外側に延びかつ紙面右上の周辺領域A1の右下の頂点に接する直線L3と、の間の角度であって、arctan(0.1/0.65)で表される。角度θG2は、中心Oから径方向外側に延びかつ紙面右上の周辺領域A1の左上の頂点に接する直線L4と、中心Oから径方向外側に延びかつ紙面上側の周辺領域A1の右下の頂点に接する直線L5と、の間の角度であって、(arctan(0.35/0.15)-arctan(0.4/0.35))で表される。よって、本実施例の隙間割合GRは、(θG1+θG2)/90°=29.7%である。
本実施例の塗布面積率ARは、(0.3×7)/(0.5×π)=80.3%である。
本実施例の最大ボイド面積率は、4.8%であった。
If the application area T of this embodiment is divided into four by two straight lines passing through the center O and extending in the vertical and horizontal directions, for example, a straight line L1 extending from the center O to the right side of the paper and a straight line L1 extending from the center O to the upper side of the paper. Since the section between the straight line L2 and the other three sections is the same or a mirror image, the ratio of the sum of the angle θ G1 and the angle θ G2 with respect to 90° between the straight lines L1 and L2 is calculated as the gap in this embodiment. The ratio was expressed as GR. The angle θ G1 is the angle between the straight line L1 and the straight line L3 extending radially outward from the center O and touching the lower right vertex of the peripheral area A1 at the upper right of the page, and is equal to arctan(0.1/0 .65). The angle θ G2 is between a straight line L4 that extends radially outward from the center O and touches the upper left vertex of the peripheral area A1 on the upper right side of the paper, and a straight line L4 that extends radially outward from the center O and touches the lower right vertex of the peripheral area A1 on the upper right side of the paper. The angle between the straight line L5 that is in contact with , and is expressed as (arctan (0.35/0.15) - arctan (0.4/0.35)). Therefore, the gap ratio GR in this example is (θ G1G2 )/90°=29.7%.
The coating area ratio AR of this example is (0.3 2 ×7)/(0.5 2 ×π)=80.3%.
The maximum void area ratio in this example was 4.8%.

(実施例7)
実施例7におけるソルダペーストの塗布領域を図11を参照して説明する。なお、実施例7において、前記実施例6と異なる構成のみを以下に説明し、それ以外の構成の説明は省略する。
中央領域A2は一辺の長さが0.4mmの正方形状である。中央領域A2は、その中心がパッドPの中心Oと平面視で一致するように配置されている。複数の周辺領域A1及び中央領域A2の相互の位置関係は、図11に示されている。
中央領域A2の面積は、各周辺領域A1の面積の178%(=0.4/0.3)である。
(Example 7)
The solder paste application area in Example 7 will be described with reference to FIG. 11. In the seventh embodiment, only the configurations that are different from the sixth embodiment will be explained below, and the explanation of the other configurations will be omitted.
The central area A2 has a square shape with a side length of 0.4 mm. The center region A2 is arranged so that its center coincides with the center O of the pad P in plan view. The mutual positional relationship of the plurality of peripheral areas A1 and central area A2 is shown in FIG. 11.
The area of the central region A2 is 178% (=0.4 2 /0.3 2 ) of the area of each peripheral region A1.

本実施例の隙間割合GRは、前記実施例6と同じく、29.7%である。
本実施例の塗布面積率ARは、(0.3×6+0.4)/(0.5×π)=89.2%である。
本実施例の最大ボイド面積率は、3.9%であった。
The gap ratio GR in this example is 29.7%, the same as in Example 6.
The coating area ratio AR of this example is (0.3 2 ×6+0.4 2 )/(0.5 2 ×π)=89.2%.
The maximum void area ratio in this example was 3.9%.

(実施例8)
実施例8におけるソルダペーストの塗布領域を図12を参照して説明する。なお、実施例8において、前記実施例6と異なる構成のみを以下に説明し、それ以外の構成の説明は省略する。
中央領域A2は一辺の長さが0.5mmの正方形状である。中央領域A2は、その中心がパッドPの中心Oと平面視で一致するように配置されている。複数の周辺領域A1及び中央領域A2の相互の位置関係は、図12に示されている。
中央領域A2の面積は、各周辺領域A1の面積の278%(=0.5/0.3)である。
(Example 8)
The solder paste application area in Example 8 will be explained with reference to FIG. 12. In the eighth embodiment, only the configurations that are different from the sixth embodiment will be explained below, and the explanation of the other configurations will be omitted.
The central area A2 has a square shape with a side length of 0.5 mm. The center region A2 is arranged so that its center coincides with the center O of the pad P in plan view. The mutual positional relationship of the plurality of peripheral areas A1 and central area A2 is shown in FIG. 12.
The area of the central region A2 is 278% (=0.5 2 /0.3 2 ) of the area of each peripheral region A1.

本実施例の隙間割合GRは、前記実施例6と同じく、29.7%である。
本実施例の塗布面積率ARは、(0.3×6+0.5)/(0.5×π)=100.6%である。
本実施例の最大ボイド面積率は、13.9%であった。
The gap ratio GR in this example is 29.7%, the same as in Example 6.
The coating area ratio AR of this example is (0.3 2 ×6+0.5 2 )/(0.5 2 ×π)=100.6%.
The maximum void area ratio in this example was 13.9%.

(実施例9)
実施例9におけるソルダペーストの塗布領域を図13を参照して説明する。なお、実施例9において、前記実施例6と異なる構成のみを以下に説明し、それ以外の構成の説明は省略する。
中央領域A2は一辺の長さが0.2mmの正方形状である。中央領域A2は、その中心がパッドPの中心Oと平面視で一致するように配置されている。複数の周辺領域A1及び中央領域A2の相互の位置関係は、図13に示されている。
中央領域A2の面積は、各周辺領域A1の面積の44.4%(=0.2/0.3)である。
(Example 9)
The solder paste application area in Example 9 will be explained with reference to FIG. 13. In the ninth embodiment, only the configurations that are different from the sixth embodiment will be explained below, and the explanation of the other configurations will be omitted.
The central area A2 has a square shape with a side length of 0.2 mm. The center region A2 is arranged so that its center coincides with the center O of the pad P in plan view. The mutual positional relationship of the plurality of peripheral areas A1 and central area A2 is shown in FIG. 13.
The area of the central region A2 is 44.4% (=0.2 2 /0.3 2 ) of the area of each peripheral region A1.

本実施例の隙間割合GRは、前記実施例6と同じく、29.7%である。
本実施例の塗布面積率ARは、(0.3×6+0.2)/(0.5×π)=73.9%である。
本実施例の最大ボイド面積率は、12.3%であった。
The gap ratio GR in this example is 29.7%, the same as in Example 6.
The coating area ratio AR of this example is (0.3 2 ×6+0.2 2 )/(0.5 2 ×π)=73.9%.
The maximum void area ratio in this example was 12.3%.

(実施例10)
実施例10におけるソルダペーストの塗布領域を図14を参照して説明する。なお、実施例10において、前記実施例6と異なる構成のみを以下に説明し、それ以外の構成の説明は省略する。
塗布領域Tは、パッドPの中心O回りの周方向に間隔Gをあけて配置された複数(2つ)の周辺領域A1と、当該複数の周辺領域A1の径方向内側に位置する中央領域A2とを有する。各周辺領域A1と中央領域A2はいずれも一辺の長さが0.3mmの正方形状である。中央領域A2は、その中心がパッドPの中心Oと平面視で一致するように配置されている。複数の周辺領域A1及び中央領域A2の相互の位置関係は、図14に示されている。
複数の周辺領域A1は、周方向に等間隔で配置されている。なお、複数の周辺領域A1が、周方向に等間隔で配置されずともよい。
中央領域A2と各周辺領域A1との対向辺a,bは、互いに平行している。なお、対向辺a,bが、互いに非平行であってもよい。
(Example 10)
The solder paste application area in Example 10 will be explained with reference to FIG. 14. In the tenth embodiment, only the configurations that are different from the sixth embodiment will be explained below, and the explanation of the other configurations will be omitted.
The application area T includes a plurality of (two) peripheral areas A1 arranged at intervals G in the circumferential direction around the center O of the pad P, and a central area A2 located radially inside of the plurality of peripheral areas A1. and has. Each of the peripheral areas A1 and the central area A2 has a square shape with each side having a length of 0.3 mm. The center region A2 is arranged so that its center coincides with the center O of the pad P in plan view. The mutual positional relationship of the plurality of peripheral areas A1 and central area A2 is shown in FIG. 14.
The plurality of peripheral areas A1 are arranged at equal intervals in the circumferential direction. Note that the plurality of peripheral areas A1 may not be arranged at equal intervals in the circumferential direction.
Opposing sides a and b of the central region A2 and each peripheral region A1 are parallel to each other. Note that the opposing sides a and b may be non-parallel to each other.

本実施例の塗布領域Tを、中心Oを通り上下方向及び左右方向に延びる2本の直線で4つに区画した場合、例えば中心Oから紙面右側に延びる直線L1と中心Oから紙面上側に延びる直線L2との間の区画は他の3つの区画と同一または鏡像であるため、直線L1,L2間がなす90°に対する角度θの割合を、本実施例の隙間割合GRとした。角度θは、直線L1と、中心Oから径方向外側に延びかつ紙面上側の周辺領域A1の右下の頂点に接する直線L3と、の間の角度である。直線L1,L3間に周辺領域A1は配置されていない。よって、本実施例の隙間割合GRは、(arctan(0.35/0.15)/90°)=74.2%である。
本実施例の塗布面積率ARは、(0.3×3)/(0.5×π)=34.4%である。
本実施例の最大ボイド面積率は、3.1%であった。
If the application area T of this embodiment is divided into four by two straight lines passing through the center O and extending in the vertical and horizontal directions, for example, a straight line L1 extending from the center O to the right side of the paper and a straight line L1 extending from the center O to the upper side of the paper. Since the section between the straight line L2 and the other three sections is the same or a mirror image, the ratio of the angle θ G to 90° between the straight lines L1 and L2 was defined as the gap ratio GR in this example. The angle θ G is an angle between the straight line L1 and a straight line L3 extending radially outward from the center O and touching the lower right vertex of the peripheral area A1 on the upper side of the paper. The peripheral area A1 is not arranged between the straight lines L1 and L3. Therefore, the gap ratio GR in this example is (arctan (0.35/0.15)/90°)=74.2%.
The coating area ratio AR of this example is (0.3 2 ×3)/(0.5 2 ×π)=34.4%.
The maximum void area ratio in this example was 3.1%.

(実施例11)
実施例11におけるソルダペーストの塗布領域を図15を参照して説明する。なお、実施例11において、前記実施例6と異なる構成のみを以下に説明し、それ以外の構成の説明は省略する。
塗布領域Tは、パッドPの中心O回りの周方向に間隔Gをあけて配置された複数(3つ)の周辺領域A1と、当該複数の周辺領域A1の径方向内側に位置する中央領域A2とを有する。中央領域A2は、その中心がパッドPの中心Oと平面視で一致するように配置されている。複数の周辺領域A1及び中央領域A2の相互の位置関係は、図15に示されている。
複数の周辺領域A1は、周方向に略等間隔で配置されている。なお、複数の周辺領域A1が、周方向に等間隔で配置されずともよい。
中央領域A2と各周辺領域A1との対向辺a,bは、互いに平行している。なお、対向辺a,bが、互いに非平行であってもよい。
(Example 11)
The solder paste application area in Example 11 will be described with reference to FIG. 15. In the eleventh embodiment, only the configurations that are different from the sixth embodiment will be explained below, and the explanation of the other configurations will be omitted.
The application area T includes a plurality of (three) peripheral areas A1 arranged at intervals G in the circumferential direction around the center O of the pad P, and a central area A2 located inside the plurality of peripheral areas A1 in the radial direction. and has. The center region A2 is arranged so that its center coincides with the center O of the pad P in plan view. The mutual positional relationship of the plurality of peripheral areas A1 and central area A2 is shown in FIG. 15.
The plurality of peripheral areas A1 are arranged at approximately equal intervals in the circumferential direction. Note that the plurality of peripheral areas A1 may not be arranged at equal intervals in the circumferential direction.
Opposing sides a and b of the central region A2 and each peripheral region A1 are parallel to each other. Note that the opposing sides a and b may be non-parallel to each other.

本実施例の塗布領域Tを、中心Oを通り上下方向に延びる直線で2つに区画した場合、当該直線の右側の区画は左側の区画の鏡像であるため、中心Oから上側に延びる直線L1及び中心Oから下側に延びる直線L2の間がなす180°に対する角度θG1、θG2及びθG3の和の割合を、本実施例の隙間割合GRとした。角度θG1は、中心Oから紙面右側に延びる直線L3と、中心Oから径方向外側に延びかつ紙面上側のの周辺領域A1の右下の頂点に接する直線L4と、の間の角度であって、arctan(0.35/0.15)で表される。角度θG2は、直線L2と、中心Oから径方向外側に延びかつ紙面右下の周辺領域A1の左下の頂点に接する直線L5と、の間の角度であって、(90°-arctan(0.45/0.35))で表される。角度θG3は、直線L3と、中心Oから径方向外側に延びかつ紙面右下の周辺領域A1の右上の頂点に接する直線L6と、の間の角度であって、arctan(0.15/0.65))で表される。よって、本実施例の隙間割合GRは、(θG1+θG2+θG3)/90°=65.4%である。
本実施例の塗布面積率ARは、(0.3×4)/(0.5×π)=45.9%である。
本実施例の最大ボイド面積率は、4.0%であった。
If the coating area T of this embodiment is divided into two by a straight line passing through the center O and extending vertically, the right side of the straight line is a mirror image of the left side, so the straight line L1 extending upward from the center O The ratio of the sum of the angles θ G1 , θ G2 and θ G3 to 180° between the straight line L2 extending downward from the center O was defined as the gap ratio GR in this embodiment. Angle θ G1 is an angle between a straight line L3 extending from the center O to the right side of the paper and a straight line L4 extending radially outward from the center O and touching the lower right vertex of the peripheral area A1 on the upper side of the paper. , arctan (0.35/0.15). The angle θ G2 is the angle between the straight line L2 and the straight line L5 extending radially outward from the center O and touching the lower left vertex of the peripheral area A1 at the lower right of the page, and is (90°−arctan(0 .45/0.35)). The angle θ G3 is the angle between the straight line L3 and the straight line L6 that extends radially outward from the center O and touches the top right vertex of the peripheral area A1 at the bottom right of the page, and is equal to arctan(0.15/0 It is expressed as .65)). Therefore, the gap ratio GR in this example is (θ G1G2G3 )/90°=65.4%.
The coating area ratio AR of this example is (0.3 2 ×4)/(0.5 2 ×π)=45.9%.
The maximum void area ratio in this example was 4.0%.

(実施例12)
実施例12におけるソルダペーストの塗布領域を図16を参照して説明する。なお、実施例12において、前記実施例6と異なる構成のみを以下に説明し、それ以外の構成の説明は省略する。
塗布領域Tは、パッドPの中心O回りの周方向に間隔Gをあけて配置された複数(4つ)の周辺領域A1と、当該複数の周辺領域A1の径方向内側に位置する中央領域A2とを有する。各周辺領域A1と中央領域A2はいずれも一辺の長さが0.3mmの正方形状である。中央領域A2は、その中心がパッドPの中心Oと平面視で一致するように配置されている。複数の周辺領域A1及び中央領域A2の相互の位置関係は、図16に示されている。
複数の周辺領域A1は、周方向に等間隔で配置されている。なお、複数の周辺領域A1が、周方向に等間隔で配置されずともよい。
中央領域A2と各周辺領域A1との対向辺a,bは、互いに平行している。なお、対向辺a,bが、互いに非平行であってもよい。
(Example 12)
The solder paste application area in Example 12 will be explained with reference to FIG. 16. In the twelfth embodiment, only the configurations that are different from the sixth embodiment will be explained below, and the explanation of the other configurations will be omitted.
The application area T includes a plurality of (four) peripheral areas A1 arranged at intervals G in the circumferential direction around the center O of the pad P, and a central area A2 located inside the plurality of peripheral areas A1 in the radial direction. and has. Each of the peripheral areas A1 and the central area A2 has a square shape with each side having a length of 0.3 mm. The center region A2 is arranged so that its center coincides with the center O of the pad P in plan view. The mutual positional relationship of the plurality of peripheral areas A1 and central area A2 is shown in FIG. 16.
The plurality of peripheral areas A1 are arranged at equal intervals in the circumferential direction. Note that the plurality of peripheral areas A1 may not be arranged at equal intervals in the circumferential direction.
Opposing sides a and b of the central region A2 and each peripheral region A1 are parallel to each other. Note that the opposing sides a and b may be non-parallel to each other.

本実施例の塗布領域Tを、中心Oを通り上下方向及び左右方向に延びる2本の直線で4つに区画した場合、例えば中心Oから紙面右側に延びる直線L1と中心Oから紙面上側に延びる直線L2との間の区画は他の3つの区画と同一または鏡像であるため、直線L1,L2間がなす90°に対する角度θの割合を、本実施例の隙間割合GRとした。角度θは、中心Oから径方向外側に延びかつ紙面右側の周辺領域A1の左上の頂点に接する直線L3と、中心Oから径方向外側に延びかつ紙面上側の周辺領域A1の右下の頂点に接する直線L4と、の間の角度である。直線L3,L4間には周辺領域A1は配置されていない。よって、本実施例の隙間割合GRは、(arctan(0.35/0.15)-arctan(0.15/0.35))=48.4%である。
本実施例の塗布面積率ARは、(0.3×5)/(0.5×π)=57.1%である。
本実施例の最大ボイド面積率は、2.6%であった。
If the application area T of this embodiment is divided into four by two straight lines passing through the center O and extending in the vertical and horizontal directions, for example, a straight line L1 extending from the center O to the right side of the paper and a straight line L1 extending from the center O to the upper side of the paper. Since the section between the straight line L2 and the other three sections is the same or a mirror image, the ratio of the angle θ G to 90° between the straight lines L1 and L2 was defined as the gap ratio GR in this example. The angle θ G is between a straight line L3 that extends radially outward from the center O and touches the upper left vertex of the peripheral area A1 on the right side of the paper, and a straight line L3 that extends radially outward from the center O and touches the lower right vertex of the peripheral area A1 on the upper side of the paper. This is the angle between the straight line L4 that is in contact with . The peripheral area A1 is not arranged between the straight lines L3 and L4. Therefore, the gap ratio GR in this example is (arctan(0.35/0.15)-arctan(0.15/0.35))=48.4%.
The coating area ratio AR of this example is (0.3 2 ×5)/(0.5 2 ×π)=57.1%.
The maximum void area ratio in this example was 2.6%.

(実施例13)
実施例13におけるソルダペーストの塗布領域を図17を参照して説明する。なお、実施例13において、前記実施例6と異なる構成のみを以下に説明し、それ以外の構成の説明は省略する。
塗布領域Tは、パッドPの中心O回りの周方向に間隔Gをあけて配置された複数(4つ)の周辺領域A1と、当該複数の周辺領域A1の径方向内側に位置する中央領域A2とを有する。また、複数の周辺領域A1は、周方向の長さが異なる第1領域A11及び第2領域A12を有し、第1領域A11及び第2領域A12は、周方向で交互に配置されている。第1領域A11及び第2領域A12は、2つづつ設けられている。第1領域A11は、一方向に延びる矩形状であり、長手方向の長さが0.6mm、当該長手方向に直交する短手方向の幅が0.3mmである。第2領域A12及び中央領域A2は、いずれも一辺の長さが0.3mmの正方形状である。中央領域A2は、その中心がパッドPの中心Oと平面視で一致するように配置されている。複数の第1領域A11及び複数の第2領域A12並びに中央領域A2の相互の位置関係は、図17に示されている。
中央領域A2と各周辺領域A1との対向辺a,bは、互いに平行している。なお、対向辺a,bが、互いに非平行であってもよい。
(Example 13)
The solder paste application area in Example 13 will be described with reference to FIG. 17. In the thirteenth embodiment, only the configurations that are different from the sixth embodiment will be described below, and the description of the other configurations will be omitted.
The application area T includes a plurality of (four) peripheral areas A1 arranged at intervals G in the circumferential direction around the center O of the pad P, and a central area A2 located inside the plurality of peripheral areas A1 in the radial direction. and has. Further, the plurality of peripheral regions A1 have first regions A11 and second regions A12 having different circumferential lengths, and the first regions A11 and second regions A12 are arranged alternately in the circumferential direction. Two first areas A11 and two second areas A12 are provided. The first region A11 has a rectangular shape extending in one direction, and has a length in the longitudinal direction of 0.6 mm and a width in the transverse direction orthogonal to the longitudinal direction of 0.3 mm. The second area A12 and the central area A2 both have a square shape with a side length of 0.3 mm. The center region A2 is arranged so that its center coincides with the center O of the pad P in plan view. The mutual positional relationship of the plurality of first regions A11, the plurality of second regions A12, and the central region A2 is shown in FIG. 17.
Opposing sides a and b of the central region A2 and each peripheral region A1 are parallel to each other. Note that the opposing sides a and b may be non-parallel to each other.

本実施例の隙間割合GRは、前記実施例12と同様に算出され、(arctan(0.35/0.15)-arctan(0.3/0.35))=29.1%である。
本実施例の塗布面積率ARは、(0.6×0.3×2+0.3×3)/(0.5×π)=34.6%である。
本実施例の最大ボイド面積率は、1.8%であった。
The gap ratio GR in this example is calculated in the same manner as in Example 12, and is (arctan (0.35/0.15) - arctan (0.3/0.35)) = 29.1%.
The coating area ratio AR of this example is (0.6×0.3×2+0.3 2 ×3)/(0.5 2 ×π)=34.6%.
The maximum void area ratio in this example was 1.8%.

(実施例14)
実施例14におけるソルダペーストの塗布領域を図18を参照して説明する。なお、実施例14において、前記実施例6と異なる構成のみを以下に説明し、それ以外の構成の説明は省略する。
塗布領域Tは、パッドPの中心O回りの周方向に間隔Gをあけて配置された複数(6つ)の周辺領域A1と、当該複数の周辺領域A1の径方向内側に位置する中央領域A2とを有する。各周辺領域A1と中央領域A2はいずれも一辺の長さが0.3mmの正方形状である。ただし、周辺領域A1のうち、パッドPの外縁よりも径方向外側の部分は除外されている。複数の周辺領域A1及び中央領域A2の相互の位置関係は、図18に示されている。
周方向に隣り合う複数の周辺領域A1の対向辺a,bは、互いに平行している。なお、対向辺a,bが、互いに非平行であってもよい。
中央領域A2と各周辺領域A1との対向辺c,dは、互いに平行している。なお、対向辺c,dが、互いに非平行であってもよい。
(Example 14)
The solder paste application area in Example 14 will be described with reference to FIG. 18. In the 14th embodiment, only the configurations that are different from the above-mentioned 6th embodiment will be explained below, and the explanation of the other configurations will be omitted.
The application area T includes a plurality of (six) peripheral areas A1 arranged at intervals G in the circumferential direction around the center O of the pad P, and a central area A2 located inside the plurality of peripheral areas A1 in the radial direction. and has. Each of the peripheral areas A1 and the central area A2 has a square shape with each side having a length of 0.3 mm. However, a portion of the peripheral region A1 that is radially outer than the outer edge of the pad P is excluded. The mutual positional relationship of the plurality of peripheral areas A1 and central area A2 is shown in FIG. 18.
Opposing sides a and b of the plurality of circumferential regions A1 adjacent to each other in the circumferential direction are parallel to each other. Note that the opposing sides a and b may be non-parallel to each other.
Opposing sides c and d of the central region A2 and each peripheral region A1 are parallel to each other. Note that the opposing sides c and d may be non-parallel to each other.

本実施例の隙間割合GRは、前記実施例6と同様の方法で算出したが、角度θG1は、arcsin(0.05/0.5)で表されるため、隙間割合GRは、(θG1+θG2)/90°=11.5%である。
本実施例の塗布面積率ARは、約60.1%である。
本実施例の最大ボイド面積率は、13.8%であった。
The gap ratio GR in this example was calculated using the same method as in Example 6, but since the angle θ G1 is expressed as arcsin (0.05/0.5), the gap ratio GR was calculated as (θ G1 + θ G2 )/90°=11.5%.
The coating area ratio AR of this example is approximately 60.1 %.
The maximum void area ratio in this example was 13.8%.

(実施例6~14の検討)
実施例6~14の最大ボイド面積率VRは、全て比較例より低くなった。このため、実施例6~14のいずれにおいても、生じたボイドの大きさを抑制できたことが判る。
ボイドの大きさが抑制できた原因を以下に検討する。まず、周辺領域A1や中央領域A2が比較例の塗布領域よりも小さいため、フラックスの樹脂成分等が早期に溶融はんだ内から排出されやすいことは、実施例1~5と同様であると考えられる。
また、実施例6~14では全て中央領域A2を有しているが、中央領域A2に塗布されたソルダペースト内のはんだ粉末は、溶融後径方向外側に向けて流動する。なお、パッドPの中心Oから径方向外側に向けて開口する、複数の周辺領域A1の間の隙間の、パッドPの全周に対する割合を隙間割合GRとして算出し、実施例6~14のいずれの実施例でも中心Oから径方向外側に向けて間隔Gを介して開口していることが判った。このため、中央領域A2からの溶融はんだは間隔Gを通って適切に径方向外側に流動することができ、これによりフラックスの樹脂成分等を径方向外側に向かわせて排出できると考えられる。
実施例6~14において、中央領域A2の面積は、各周辺領域A1の面積の44.4%以上278%以下であった。
(Study of Examples 6 to 14)
The maximum void area ratio VR of Examples 6 to 14 was all lower than that of the comparative example. Therefore, it can be seen that in all of Examples 6 to 14, the size of the generated voids could be suppressed.
The reason why the void size was suppressed will be discussed below. First, since the peripheral area A1 and the central area A2 are smaller than the application area of the comparative example, it is thought that the resin components of the flux are easily discharged from the molten solder at an early stage, which is the same as in Examples 1 to 5. .
Furthermore, although all of Examples 6 to 14 have a central region A2, the solder powder in the solder paste applied to the central region A2 flows radially outward after melting. Note that the ratio of the gaps between the plurality of peripheral areas A1, which open radially outward from the center O of the pad P, to the entire circumference of the pad P is calculated as the gap ratio GR, and any of Examples 6 to 14 is calculated. It has been found that the opening is also opened from the center O toward the outside in the radial direction via the interval G. Therefore, it is thought that the molten solder from the central region A2 can appropriately flow radially outward through the gap G, and thereby the resin components of the flux and the like can be discharged radially outwardly.
In Examples 6 to 14, the area of the central region A2 was 44.4% or more and 278% or less of the area of each peripheral region A1.

(実施例15)
実施例15におけるソルダペーストの塗布領域を図19を参照して説明する。なお、実施例15において、前記実施例12と異なる構成のみを以下に説明し、それ以外の構成の説明は省略する。
実施例15は、実施例12から中央領域A2を除外した構成を有している。
本実施例の隙間割合GRは、実施例12と同様であり、48.4%である。
本実施例の塗布面積率ARは、(0.3×4)/(0.5×π)=45.7%である。
本実施例の最大ボイド面積率は、13.4%であった。
(Example 15)
The solder paste application area in Example 15 will be described with reference to FIG. 19. In the 15th embodiment, only the configuration that is different from the 12th embodiment will be explained below, and the explanation of the other configurations will be omitted.
Embodiment 15 has a configuration in which central region A2 is excluded from Embodiment 12.
The gap ratio GR in this example is the same as in Example 12, and is 48.4%.
The coating area ratio AR of this example is (0.3 2 ×4)/(0.5 2 ×π)=45.7%.
The maximum void area ratio in this example was 13.4%.

(実施例16)
実施例16におけるソルダペーストの塗布領域を図20を参照して説明する。なお、実施例16において、前記実施例13と異なる構成のみを以下に説明し、それ以外の構成の説明は省略する。
実施例16は、実施例13から中央領域A2を除外した構成を有している。
本実施例の隙間割合GRは、実施例13と同様であり、29.1%である。
本実施例の塗布面積率ARは、(0.6×0.3×2+0.3×2)/(0.5×π)=23.2%である。
本実施例の最大ボイド面積率は、13.8%であった。
(Example 16)
The solder paste application area in Example 16 will be described with reference to FIG. 20. In the 16th embodiment, only the configuration that is different from the 13th embodiment will be explained below, and the explanation of the other configurations will be omitted.
The sixteenth embodiment has a configuration in which the central region A2 is excluded from the thirteenth embodiment.
The gap ratio GR in this example is the same as in Example 13, and is 29.1%.
The coating area ratio AR of this example is (0.6×0.3×2+0.3 2 ×2)/(0.5 2 ×π)=23.2%.
The maximum void area ratio in this example was 13.8%.

(実施例15,16の検討)
実施例15,16の最大ボイド面積率VRは、全て比較例より低くなった。このため、実施例15,16のいずれにおいても、生じたボイドの大きさを抑制できたことが判る。
ボイドの大きさが抑制できた原因を以下に検討すると、周辺領域A1や中央領域A2が比較例の塗布領域よりも小さいため、フラックスの樹脂成分等が早期に溶融はんだ内から排出されやすいことは、実施例1~5と同様であると考えられる。
(Study of Examples 15 and 16)
The maximum void area ratios VR of Examples 15 and 16 were all lower than those of the comparative example. Therefore, it can be seen that in both Examples 15 and 16, the size of the generated voids could be suppressed.
Examining the reasons why the size of the voids could be suppressed as follows, it is possible that because the peripheral area A1 and the central area A2 are smaller than the application area of the comparative example, the resin components of the flux are easily discharged from the molten solder at an early stage. , is considered to be similar to Examples 1 to 5.

(実施例17)
実施例17におけるソルダペーストの塗布領域を図21を参照して説明する。なお、実施例17において、前記実施例6と異なる構成のみを以下に説明し、それ以外の構成の説明は省略する。
塗布領域Tは、パッドPの中心O回りの周方向に間隔Gをあけて配置された複数(6つ)の周辺領域A1と、当該複数の周辺領域A1の径方向内側に位置する中央領域A2とを有する。各周辺領域A1と中央領域A2はいずれも直径が0.3mmの円形状である。各周辺領域A1の中心は、パッドPの外周縁上に位置している。中央領域A2は、その中心がパッドPの中心Oと平面視で一致するように配置されている。複数の周辺領域A1及び中央領域A2の相互の位置関係は、図21に示されている。
複数の周辺領域A1は、周方向に等間隔で配置されている。なお、複数の周辺領域A1が、周方向に等間隔で配置されずともよい。
中央領域A2の面積は、各周辺領域A1の面積と同一(100%)である。
複数の周辺領域A1は、パッドPの外縁に重なって配置されている。すなわち、各周辺領域A1の一部は、パッドPの径方向外側に位置している。なお、複数の周辺領域A1が、全てパッドP内に配置される構成であってもよい。
(Example 17)
The solder paste application area in Example 17 will be described with reference to FIG. 21. In the 17th embodiment, only the configurations that are different from the 6th embodiment will be explained below, and the explanation of the other configurations will be omitted.
The application area T includes a plurality of (six) peripheral areas A1 arranged at intervals G in the circumferential direction around the center O of the pad P, and a central area A2 located inside the plurality of peripheral areas A1 in the radial direction. and has. Each of the peripheral areas A1 and the central area A2 has a circular shape with a diameter of 0.3 mm. The center of each peripheral area A1 is located on the outer peripheral edge of the pad P. The center region A2 is arranged so that its center coincides with the center O of the pad P in plan view. The mutual positional relationship of the plurality of peripheral areas A1 and central area A2 is shown in FIG. 21.
The plurality of peripheral areas A1 are arranged at equal intervals in the circumferential direction. Note that the plurality of peripheral areas A1 may not be arranged at equal intervals in the circumferential direction.
The area of the central region A2 is the same (100%) as the area of each peripheral region A1.
The plurality of peripheral regions A1 are arranged to overlap the outer edge of the pad P. That is, a portion of each peripheral region A1 is located on the outside of the pad P in the radial direction. Note that the plurality of peripheral regions A1 may all be arranged within the pad P.

本実施例の隙間割合GRを算出する。角度θは、中心Oから径方向外側に延びかつ紙面右上の周辺領域A1の中心を通る直線L1と、中心Oから径方向外側に延びかつ紙面右上の周辺領域A1に接する直線L2と、の間の角度であって、arcsin(0.15/0.5)で表される。直線L1,L2の間には、周辺領域A1が位置している。このため、本実施例の隙間割合GRは、(180°-6×θ)/180°=41.8%である。
本実施例の塗布面積率ARは、(0.15×π×7)/(0.5×π)=63%である。
本実施例の最大ボイド面積率は、10.9%であった。
The gap ratio GR in this embodiment is calculated. The angle θ C is defined by the straight line L1 extending radially outward from the center O and passing through the center of the peripheral area A1 at the top right of the paper, and the straight line L2 extending radially outward from the center O and touching the peripheral area A1 at the top right of the paper. is the angle between arcsin (0.15/0.5). A peripheral area A1 is located between the straight lines L1 and L2. Therefore, the gap ratio GR in this example is (180°-6×θ C )/180°=41.8%.
The coating area ratio AR of this example is (0.15 2 ×π × 7)/(0.5 2 ×π) = 63%.
The maximum void area ratio in this example was 10.9%.

(実施例18)
実施例18におけるソルダペーストの塗布領域を図22を参照して説明する。なお、実施例18において、前記実施例17と異なる構成のみを以下に説明し、それ以外の構成の説明は省略する。
中央領域A2は直径が0.4mmの円形状である。中央領域A2は、その中心がパッドPの中心Oと平面視で一致するように配置されている。複数の周辺領域A1及び中央領域A2の相互の位置関係は、図22に示されている。
中央領域A2の面積は、各周辺領域A1の面積の178%である。
本実施例の隙間割合GRは、実施例17と同じく、41.8%である。
本実施例の塗布面積率ARは、(0.15×π×6+0.2×π)/(0.5×π)=43.1%である。
本実施例の最大ボイド面積率は、4.6%であった。
(Example 18)
The solder paste application area in Example 18 will be explained with reference to FIG. 22. In the 18th embodiment, only the configurations that are different from the 17th embodiment will be described below, and the description of other configurations will be omitted.
The central region A2 has a circular shape with a diameter of 0.4 mm. The center region A2 is arranged so that its center coincides with the center O of the pad P in plan view. The mutual positional relationship of the plurality of peripheral areas A1 and central area A2 is shown in FIG. 22.
The area of the central region A2 is 178% of the area of each peripheral region A1.
The gap ratio GR in this example is 41.8%, the same as in Example 17.
The coating area ratio AR of this example is (0.15 2 ×π×6+0.2 2 ×π)/(0.5 2 ×π)=43.1%.
The maximum void area ratio in this example was 4.6%.

(実施例19)
実施例19におけるソルダペーストの塗布領域を図23を参照して説明する。なお、実施例19において、前記実施例17と異なる構成のみを以下に説明し、それ以外の構成の説明は省略する。
中央領域A2は直径が0.5mmの円形状である。中央領域A2は、その中心がパッドPの中心Oと平面視で一致するように配置されている。複数の周辺領域A1及び中央領域A2の相互の位置関係は、図23に示されている。
中央領域A2の面積は、各周辺領域A1の面積の278%である。
本実施例の隙間割合GRは、実施例17と同じく、41.8%である。
本実施例の塗布面積率ARは、(0.15×π×6+0.25×π)/(0.5×π)=48.7%である。
本実施例の最大ボイド面積率は、12.4%であった。
(Example 19)
The solder paste application area in Example 19 will be explained with reference to FIG. 23. In the 19th embodiment, only the configurations that are different from the 17th embodiment will be explained below, and the explanation of the other configurations will be omitted.
The central region A2 has a circular shape with a diameter of 0.5 mm. The center region A2 is arranged so that its center coincides with the center O of the pad P in plan view. The mutual positional relationship of the plurality of peripheral areas A1 and central area A2 is shown in FIG. 23.
The area of the central region A2 is 278% of the area of each peripheral region A1.
The gap ratio GR in this example is 41.8%, the same as in Example 17.
The coating area ratio AR of this example is (0.15 2 ×π×6+0.25 2 ×π)/(0.5 2 ×π)=48.7%.
The maximum void area ratio in this example was 12.4%.

(実施例20)
実施例20におけるソルダペーストの塗布領域を図24を参照して説明する。なお、実施例20において、前記実施例17と異なる構成のみを以下に説明し、それ以外の構成の説明は省略する。
中央領域A2は直径が0.2mmの円形状である。中央領域A2は、その中心がパッドPの中心Oと平面視で一致するように配置されている。複数の周辺領域A1及び中央領域A2の相互の位置関係は、図24に示されている。
中央領域A2の面積は、各周辺領域A1の面積の44.4%である。
本実施例の隙間割合GRは、実施例17と同じく、41.8%である。
本実施例の塗布面積率ARは、(0.15×π×6+0.1×π)/(0.5×π)=35.7%である。
本実施例の最大ボイド面積率は、17.8%であった。
(Example 20)
The solder paste application area in Example 20 will be described with reference to FIG. 24. In the 20th embodiment, only the configuration that is different from the 17th embodiment will be explained below, and the explanation of the other configurations will be omitted.
The central region A2 has a circular shape with a diameter of 0.2 mm. The center region A2 is arranged so that its center coincides with the center O of the pad P in plan view. The mutual positional relationship of the plurality of peripheral areas A1 and central area A2 is shown in FIG. 24.
The area of the central region A2 is 44.4% of the area of each peripheral region A1.
The gap ratio GR in this example is 41.8%, the same as in Example 17.
The coating area ratio AR of this example is (0.15 2 ×π×6+0.1 2 ×π)/(0.5 2 ×π)=35.7%.
The maximum void area ratio in this example was 17.8%.

(実施例21)
実施例21におけるソルダペーストの塗布領域を図25を参照して説明する。なお、実施例21において、前記実施例6と異なる構成のみを以下に説明し、それ以外の構成の説明は省略する。
塗布領域Tは、パッドPの中心O回りの周方向に間隔Gをあけて配置された複数(2つ)の周辺領域A1と、当該複数の周辺領域A1の径方向内側に位置する中央領域A2とを有する。各周辺領域A1と中央領域A2はいずれも直径が0.3mmの円形状である。各周辺領域A1の中心は、パッドPの外周縁上に位置している。中央領域A2は、その中心がパッドPの中心Oと平面視で一致するように配置されている。複数の周辺領域A1及び中央領域A2の相互の位置関係は、図25に示されている。
複数の周辺領域A1は、周方向に等間隔で配置されている。なお、複数の周辺領域A1が、周方向に等間隔で配置されずともよい。
本実施例の隙間割合GRは、前記実施例17を参照して、(180°-2×θ)/180°=80.6%である。
本実施例の塗布面積率ARは、(0.15×π×3)/(0.5×π)=27%である。
本実施例の最大ボイド面積率は、3.8%であった。
(Example 21)
The solder paste application area in Example 21 will be explained with reference to FIG. 25. In the 21st embodiment, only the configurations that are different from the above-mentioned 6th embodiment will be explained below, and the explanation of the other configurations will be omitted.
The application area T includes a plurality of (two) peripheral areas A1 arranged at intervals G in the circumferential direction around the center O of the pad P, and a central area A2 located radially inside of the plurality of peripheral areas A1. and has. Each of the peripheral areas A1 and the central area A2 has a circular shape with a diameter of 0.3 mm. The center of each peripheral area A1 is located on the outer peripheral edge of the pad P. The center region A2 is arranged so that its center coincides with the center O of the pad P in plan view. The mutual positional relationship of the plurality of peripheral areas A1 and central area A2 is shown in FIG. 25.
The plurality of peripheral areas A1 are arranged at equal intervals in the circumferential direction. Note that the plurality of peripheral areas A1 may not be arranged at equal intervals in the circumferential direction.
The gap ratio GR in this embodiment is (180°-2×θ C )/180°=80.6%, referring to the 17th embodiment.
The coating area ratio AR of this example is (0.15 2 ×π×3)/(0.5 2 ×π)=27%.
The maximum void area ratio in this example was 3.8%.

(実施例22)
実施例22におけるソルダペーストの塗布領域を図26を参照して説明する。なお、実施例22において、前記実施例6と異なる構成のみを以下に説明し、それ以外の構成の説明は省略する。
塗布領域Tは、パッドPの中心O回りの周方向に間隔Gをあけて配置された複数(4つ)の周辺領域A1と、当該複数の周辺領域A1の径方向内側に位置する中央領域A2とを有する。各周辺領域A1と中央領域A2はいずれも直径が0.3mmの円形状である。複数の周辺領域A1及び中央領域A2の相互の位置関係は、図26に示されている。
複数の周辺領域A1は、周方向に等間隔で配置されている。なお、複数の周辺領域A1が、周方向に等間隔で配置されずともよい。
本実施例の隙間割合GRは、前記実施例17を参照して、(180°-4×θ)/180°=61.2%である。
本実施例の塗布面積率ARは、(0.15×π×5)/(0.5×π)=45%である。
本実施例の最大ボイド面積率は、4.9%であった。
(Example 22)
The solder paste application area in Example 22 will be explained with reference to FIG. 26. In the 22nd embodiment, only the configurations that are different from the above-mentioned 6th embodiment will be explained below, and the explanation of the other configurations will be omitted.
The application area T includes a plurality of (four) peripheral areas A1 arranged at intervals G in the circumferential direction around the center O of the pad P, and a central area A2 located inside the plurality of peripheral areas A1 in the radial direction. and has. Each of the peripheral areas A1 and the central area A2 has a circular shape with a diameter of 0.3 mm. The mutual positional relationship of the plurality of peripheral areas A1 and central area A2 is shown in FIG. 26.
The plurality of peripheral areas A1 are arranged at equal intervals in the circumferential direction. Note that the plurality of peripheral areas A1 may not be arranged at equal intervals in the circumferential direction.
The gap ratio GR in this embodiment is (180°-4×θ C )/180°=61.2%, referring to the 17th embodiment.
The coating area ratio AR of this example is (0.15 2 ×π × 5)/(0.5 2 ×π) = 45%.
The maximum void area ratio in this example was 4.9%.

(実施例17~22の検討)
実施例17~22の最大ボイド面積率VRは、全て比較例より低くなった。このため、実施例17~22のいずれにおいても、生じたボイドの大きさを抑制できたことが判る。
ボイドの大きさが抑制できた原因を以下に検討する。まず、周辺領域A1や中央領域A2が比較例の塗布領域よりも小さいため、フラックスの樹脂成分等が早期に溶融はんだ内から排出されやすいことは、実施例1~5と同様であると考えられる。
また、実施例17~22では全て中央領域A2を有しているが、中央領域A2に塗布されたソルダペースト内のはんだ粉末は、溶融後径方向外側に向けて流動する。なお、パッドPの中心Oから径方向外側に向けて開口する、複数の周辺領域A1の間の隙間の、パッドPの全周に対する割合を隙間割合GRとして算出し、実施例17~22のいずれの実施例でも中心Oから径方向外側に向けて間隔Gを介して開口していることが判った。このため、中央領域A2からの溶融はんだは間隔Gを通って適切に径方向外側に流動することができ、これによりフラックスの樹脂成分等を径方向外側に向かわせて排出できると考えられる。
実施例17~22において、中央領域A2の面積は、各周辺領域A1の面積の44.4%以上278%以下であった。
(Study of Examples 17 to 22)
The maximum void area ratios VR of Examples 17 to 22 were all lower than those of the comparative example. Therefore, it can be seen that in all of Examples 17 to 22, the size of the generated voids could be suppressed.
The reason why the void size was suppressed will be discussed below. First, since the peripheral area A1 and the central area A2 are smaller than the application area of the comparative example, it is thought that the resin components of the flux are easily discharged from the molten solder at an early stage, which is the same as in Examples 1 to 5. .
Furthermore, although all of Examples 17 to 22 have a central region A2, the solder powder in the solder paste applied to the central region A2 flows radially outward after melting. Note that the ratio of the gaps between the plurality of peripheral areas A1 that open radially outward from the center O of the pad P to the entire circumference of the pad P is calculated as the gap ratio GR, It has been found that the opening is also opened from the center O toward the outside in the radial direction via the interval G. Therefore, it is thought that the molten solder from the central region A2 can appropriately flow radially outward through the gap G, and thereby the resin components of the flux and the like can be discharged radially outwardly.
In Examples 17 to 22, the area of the central region A2 was 44.4% or more and 278% or less of the area of each peripheral region A1.

(実施例23)
実施例23におけるソルダペーストの塗布領域を図27を参照して説明する。
実施例23では、基板BにおけるパッドP内に非塗布領域Nを形成するように、パッドP内に少なくとも一部が位置する塗布領域Tにソルダペーストが塗布されている。塗布領域Tは、パッドPの中心O回りの周方向に間隔Gをあけて配置された複数(2つ)の周辺領域A1を有する。2つの周辺領域A1は、径方向内側の一部で互いに接して配置されている。本実施例では、2つの周辺領域A1の接触箇所は平面視で中心Oと同一の位置に配置されている。各周辺領域A1の形状は、中心Oに頂点が位置し、頂角が90°である直角二等辺三角形である。各周辺領域A1の底辺(前記頂点に対向する辺)の長さは1.0mmである。また、2つの周辺領域A1の底辺間の距離も1.0mmである。各周辺領域A1の周方向の幅が、パッドPの中心Oから径方向外側に向かうに従い漸次拡大している。
複数の周辺領域A1は、周方向に等間隔で配置されている。なお、複数の周辺領域A1が、周方向に等間隔で配置されずともよい。
複数の周辺領域A1は、パッドPの外縁に重なって配置されている。すなわち、各周辺領域A1の一部は、パッドPの径方向外側に位置している。なお、複数の周辺領域A1が、全てパッドP内に配置される構成であってもよい。
本実施例の隙間割合GRは、50%である。
本実施例の塗布面積率ARは、(1.0/2)/(0.5×π)=63.7%である。
本実施例の最大ボイド面積率は、12.5%であった。
(Example 23)
The solder paste application area in Example 23 will be explained with reference to FIG. 27.
In Example 23, solder paste is applied to an application area T that is at least partially located within the pad P on the substrate B so as to form a non-application area N within the pad P. The application area T has a plurality of (two) peripheral areas A1 arranged at intervals G in the circumferential direction around the center O of the pad P. The two peripheral regions A1 are arranged in contact with each other at a portion of the radially inner side. In this embodiment, the contact point between the two peripheral areas A1 is arranged at the same position as the center O in plan view. The shape of each peripheral area A1 is a right-angled isosceles triangle whose apex is located at the center O and whose apex angle is 90°. The length of the base (the side facing the apex) of each peripheral area A1 is 1.0 mm. Further, the distance between the bases of the two peripheral areas A1 is also 1.0 mm. The circumferential width of each peripheral region A1 gradually increases from the center O of the pad P toward the outside in the radial direction.
The plurality of peripheral areas A1 are arranged at equal intervals in the circumferential direction. Note that the plurality of peripheral areas A1 may not be arranged at equal intervals in the circumferential direction.
The plurality of peripheral regions A1 are arranged to overlap the outer edge of the pad P. That is, a portion of each peripheral region A1 is located on the outside of the pad P in the radial direction. Note that the plurality of peripheral regions A1 may all be arranged within the pad P.
The gap ratio GR in this example is 50%.
The coating area ratio AR of this example is (1.0 2 /2)/(0.5 2 ×π)=63.7%.
The maximum void area ratio in this example was 12.5%.

(実施例24)
実施例24におけるソルダペーストの塗布領域を図28を参照して説明する。なお、実施例24において、前記実施例23と異なる構成のみを以下に説明し、それ以外の構成の説明は省略する。
各周辺領域A1の底辺の長さは1.3mmである。また、2つの周辺領域A1の底辺間の距離も1.3mmである。
本実施例の塗布面積率ARは、(1.3/2)/(0.5×π)=107.6%である。
本実施例の最大ボイド面積率は、14.6%であった。
(Example 24)
The solder paste application area in Example 24 will be described with reference to FIG. 28. In the 24th embodiment, only the configuration that is different from the 23rd embodiment will be explained below, and the explanation of the other configurations will be omitted.
The length of the base of each peripheral area A1 is 1.3 mm. Further, the distance between the bases of the two peripheral areas A1 is also 1.3 mm.
The coating area ratio AR of this example is (1.3 2 /2)/(0.5 2 ×π)=107.6%.
The maximum void area ratio in this example was 14.6%.

(実施例23,24の検討)
実施例23,24の最大ボイド面積率VRは、全て比較例より低くなった。このため、実施例23,24のいずれにおいても、生じたボイドの大きさを抑制できたことが判る。
ボイドの大きさが抑制できた原因を以下に検討する。まず、周辺領域A1が比較例の塗布領域よりも小さいため、フラックスの樹脂成分等が早期に溶融はんだ内から排出されやすいことは、実施例1~5と同様であると考えられる。
また、実施例23,24は中央領域を有していないが、周辺領域A1の径方向内側部分はパッドPの中央部に達している。このため、周辺領域A1の径方向内側部分に塗布されたソルダペースト内のはんだ粉末は、溶融後径方向外側に向けて紙面左右方向に流動する場合がある。なお、隙間割合GRとして算出したことで、実施例23,24のいずれの実施例でも中心Oから径方向外側に向けて間隔Gを介して開口していることが判った。このため、周辺領域A1の径方向内側部分からの溶融はんだは間隔Gを通って適切に径方向外側に流動することができ、これによりフラックスの樹脂成分等を径方向外側に向かわせて排出できると考えられる。
(Study of Examples 23 and 24)
The maximum void area ratios VR of Examples 23 and 24 were all lower than those of the comparative example. Therefore, it can be seen that in both Examples 23 and 24, the size of the generated voids could be suppressed.
The reason why the void size was suppressed will be discussed below. First, since the peripheral area A1 is smaller than the application area of the comparative example, it is considered that the resin components of the flux are easily discharged from the molten solder at an early stage, similar to Examples 1 to 5.
Furthermore, although Examples 23 and 24 do not have a central region, the radially inner portion of the peripheral region A1 reaches the central portion of the pad P. For this reason, the solder powder in the solder paste applied to the radially inner portion of the peripheral region A1 may flow radially outward in the horizontal direction in the drawing after melting. In addition, by calculating the gap ratio GR, it was found that in both Examples 23 and 24, the openings were opened from the center O toward the outside in the radial direction via the gap G. Therefore, the molten solder from the radially inner portion of the peripheral area A1 can appropriately flow radially outward through the gap G, and thereby the resin components of the flux, etc. can be discharged radially outwardly. it is conceivable that.

(実施例23,24の変形例)
実施例23,24には以下の変形例が考えられる。
これらの実施例では2つの周辺領域A1が設けられているが、周辺領域A1の数は3以上でもよい。この場合、各周辺領域A1の周方向の幅が径方向外側に向かうに従い拡大する割合を小さくしてもよい。また、2つの周辺領域A1の接触箇所が平面視でパッドPの中心Oと異なる位置に配置されてもよい。
(Modification of Examples 23 and 24)
The following modifications can be considered for Examples 23 and 24.
Although two peripheral areas A1 are provided in these embodiments, the number of peripheral areas A1 may be three or more. In this case, the rate at which the width of each peripheral region A1 in the circumferential direction increases toward the outside in the radial direction may be reduced. Further, the contact point between the two peripheral regions A1 may be arranged at a position different from the center O of the pad P in plan view.

(実施例25)
実施例25におけるソルダペーストの塗布領域を図29を参照して説明する。
実施例25では、基板BにおけるパッドP内に非塗布領域Nを形成するように、パッドP内に少なくとも一部が位置する塗布領域Tにソルダペーストが塗布されている。塗布領域Tは、パッドPの中心Oを含み且つ一方向(本実施例では紙面左右方向)に延びて配置された延在領域A3を有する。延在領域A3の平面視形状は矩形であって、長手方向の長さが1.3mm、短手方向の幅が0.3mmである。
延在領域A3は、パッドPの外縁に重なって配置されている。すなわち、延在領域A3の一部は、パッドPの径方向外側に位置している。本実施例では、延在領域A3の長手方向両端部のいずれもが、パッドPの径方向外側に位置している。なお、延在領域A3が全てパッドP内に配置される構成であってもよいし、延在領域A3の長手方向の一端部のみがパッドPの径方向外側に位置してもよい。
本実施例では、延在領域A3がパッドPの径方向外側まで達しているため、隙間割合GRは算出不可能である。
本実施例の塗布面積率ARは、(1.3×0.3)/(0.5×π)=49.7%である。
本実施例の最大ボイド面積率は、17.5%であった。
(Example 25)
The solder paste application area in Example 25 will be explained with reference to FIG. 29.
In Example 25, solder paste is applied to an application area T that is at least partially located within the pad P on the substrate B so as to form a non-application area N within the pad P. The application area T has an extension area A3 that includes the center O of the pad P and extends in one direction (in the left-right direction in the drawing in this embodiment). The extension area A3 has a rectangular shape in plan view, and has a length in the longitudinal direction of 1.3 mm and a width in the transverse direction of 0.3 mm.
The extension region A3 is arranged to overlap the outer edge of the pad P. That is, a portion of the extension region A3 is located on the radially outer side of the pad P. In this embodiment, both ends of the extension region A3 in the longitudinal direction are located on the outside of the pad P in the radial direction. Note that the entire extension region A3 may be arranged within the pad P, or only one end of the extension region A3 in the longitudinal direction may be located outside the pad P in the radial direction.
In this embodiment, since the extension region A3 reaches the radially outer side of the pad P, the gap ratio GR cannot be calculated.
The coating area ratio AR of this example is (1.3×0.3)/(0.5 2 ×π)=49.7%.
The maximum void area ratio in this example was 17.5%.

(実施例26)
実施例26におけるソルダペーストの塗布領域を図30を参照して説明する。なお、実施例26において、前記実施例25と異なる構成のみを以下に説明し、それ以外の構成の説明は省略する。
塗布領域Tは、延在領域A3の長手方向に交差する方向において延在領域A3を挟んで配置された複数(2つ)の側方領域A4をさらに有する。各側方領域A4の平面視形状は、一辺の長さが0.3mmの正方形であって、その一辺は紙面上下方向に延びている。複数の側方領域A4及び延在領域A3の相互の位置関係は、図30に示されている。
延在領域A3と各側方領域A4との対向辺a,bは、互いに平行している。なお、対向辺a,bが、互いに非平行であってもよい。
複数の側方領域A4は、パッドPの外縁に重なって配置されている。すなわち、各側方領域A4の一部は、パッドPの径方向外側に位置している。なお、複数の側方領域A4が、全てパッドP内に配置される構成であってもよい。
本実施例の塗布面積率ARは、(1.3×0.3+0.3×2)/(0.5×π)=72.6%である。
本実施例の最大ボイド面積率は、15.0%であった。
(Example 26)
The solder paste application area in Example 26 will be described with reference to FIG. 30. In the 26th embodiment, only the configurations that are different from the 25th embodiment will be described below, and the description of other configurations will be omitted.
The application region T further includes a plurality of (two) side regions A4 arranged across the extension region A3 in a direction intersecting the longitudinal direction of the extension region A3. The shape of each side region A4 in plan view is a square with a side length of 0.3 mm, and one side of the square extends in the vertical direction of the paper. The mutual positional relationship of the plurality of side regions A4 and extension region A3 is shown in FIG. 30.
Opposing sides a and b of the extension area A3 and each side area A4 are parallel to each other. Note that the opposing sides a and b may be non-parallel to each other.
The plurality of side regions A4 are arranged to overlap the outer edge of the pad P. That is, a portion of each side region A4 is located on the outside of the pad P in the radial direction. Note that the plurality of side regions A4 may all be arranged within the pad P.
The coating area ratio AR of this example is (1.3×0.3+0.3 2 ×2)/(0.5 2 ×π)=72.6%.
The maximum void area ratio in this example was 15.0%.

(実施例25,26の検討)
実施例25,26の最大ボイド面積率VRは、全て比較例より低くなった。このため、実施例25,26のいずれにおいても、生じたボイドの大きさを抑制できたことが判る。
ボイドの大きさが抑制できた原因を以下に検討すると、延在領域A3や側方領域A4が比較例の塗布領域よりも小さいため、フラックスの樹脂成分等が早期に溶融はんだ内から排出されやすいことは、実施例1~5と同様であると考えられる。
(Study of Examples 25 and 26)
The maximum void area ratios VR of Examples 25 and 26 were all lower than those of the comparative example. Therefore, it can be seen that in both Examples 25 and 26, the size of the generated voids could be suppressed.
Examining the reasons why the size of the voids could be suppressed as follows, it is found that since the extension area A3 and the side area A4 are smaller than the application area of the comparative example, the resin components of the flux are easily discharged from the molten solder at an early stage. This is considered to be the same as in Examples 1 to 5.

(実施例25,26の変形例)
実施例25,26には以下の変形例が考えられる。
例えば、複数の側方領域A4の数を3以上にしてもよい。
(Modification of Examples 25 and 26)
The following modifications can be considered for Examples 25 and 26.
For example, the number of the plurality of side regions A4 may be three or more.

上述した実施例1~26の、隙間割合GR、塗布面積率AR、及び最大ボイド面積率VRを表1に示す。 Table 1 shows the gap ratio GR, coating area ratio AR, and maximum void area ratio VR of Examples 1 to 26 described above.

Figure 0007438116000001
Figure 0007438116000001

実施例1~26の最大ボイド面積率VRは、全て比較例より低くなった。このため、全実施例のいずれにおいても、生じたボイドの大きさを抑制できたことが判る。よって、基板等の塗布対象物と電子部品の両電極間の適切な電気的接続を確保でき、また、両電極間を接続するはんだの強度低下を防止できるので、衝撃に強い表面実装後基板等を提供することができる。 The maximum void area ratio VR of Examples 1 to 26 was all lower than that of the comparative example. Therefore, it can be seen that in all of the examples, the size of the generated voids could be suppressed. Therefore, it is possible to ensure proper electrical connection between the substrate or other coating object and both electrodes of the electronic component, and it is also possible to prevent a decrease in the strength of the solder that connects the two electrodes, resulting in a surface-mounted substrate that is resistant to impact. can be provided.

以上、本発明の一実施形態を説明したが、本発明は前記実施形態に限定されることはない。本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。 Although one embodiment of the present invention has been described above, the present invention is not limited to the above embodiment. Additions, omissions, substitutions, and other changes to the configuration are possible without departing from the spirit of the invention.

例えば、前記実施形態では、塗布対象物である基板BにおけるパッドPの平面視形状は円形であるが、これに限定されず、例えば矩形や多角形状であってもよい。 For example, in the embodiment, the pad P on the substrate B, which is the object to be coated, has a circular shape in plan view, but is not limited to this, and may be rectangular or polygonal, for example.

前記実施形態では、塗布対象物として硬質の板状基材からなるプリント基板が用いられているが、ソルダペーストの塗布対象物として、フレキシブル基板を用いてもよい。また、一の電子部品に他の電子部品を直接に接続する際に、前記一の電子部品を塗布対象物としてその電極面にソルダペーストを塗布してもよい。塗布対象物は、ソルダペーストを塗布可能であれば、どのような部材であってもよい。 In the embodiment described above, a printed circuit board made of a hard plate-like base material is used as the object to be coated, but a flexible board may also be used as the object to be coated with the solder paste. Furthermore, when directly connecting one electronic component to another electronic component, solder paste may be applied to the electrode surface of the first electronic component as an object to be applied. The object to be coated may be any member as long as it can be coated with solder paste.

前記実施形態では、ソルダペーストを塗布対象物に塗布する際にマスクMを用いたスクリーン印刷が利用されているが、基板上で移動可能な吐出ノズルを有するディスペンサを用いて、前記実施例1~26に示すような塗布領域に、ソルダペーストをマスク等を用いずに直接塗布する方法であってもよい。 In the embodiment described above, screen printing using a mask M is used when applying the solder paste to the object to be applied. A method of directly applying the solder paste to the application area as shown in 26 without using a mask or the like may be used.

また、本発明は以下の態様を含んでもよい。
本発明の第4の態様は、塗布対象物へソルダペーストを塗布するためのマスクであって、塗布対象物における接合領域内に非塗布領域を形成するように前記接合領域内に少なくとも一部が位置する塗布領域と相当する位置に開口が形成され、前記開口は、前記接合領域の中心回りの周方向に間隔をあけて配置された複数の周辺開口を有する。
本発明の第5の態様は、塗布対象物へソルダペーストを塗布するためのマスクであって、塗布対象物における接合領域内に非塗布領域を形成するように前記接合領域内に少なくとも一部が位置する塗布領域と相当する位置に開口が形成され、前記開口は、前記接合領域の中心を含み且つ一方向に延びて配置された延在開口を有する。
Further, the present invention may include the following aspects.
A fourth aspect of the present invention is a mask for applying solder paste to an object to be applied, wherein at least a portion of the solder paste is formed in the bonding area of the object so as to form a non-applying area in the bonding area of the object. An opening is formed at a position corresponding to the application area, and the opening has a plurality of peripheral openings spaced apart in a circumferential direction around the center of the bonding area.
A fifth aspect of the present invention is a mask for applying solder paste to an object to be applied, wherein at least a portion of the solder paste is formed in the bonding area of the object so as to form a non-applying area in the bonding area of the object. An opening is formed at a position corresponding to the application area, and the opening has an extending opening that includes the center of the bonding area and extends in one direction.

本発明は、プリント基板といった塗布対象物へのソルダペーストの塗布方法、及び当該塗布に用いられるマスクに適用可能であり、表面実装においてはんだ内にボイドが形成された場合であっても、そのボイドの大きさを抑制することができる。 The present invention is applicable to a method of applying solder paste to an object to be applied, such as a printed circuit board, and a mask used for the application, and even if voids are formed in the solder during surface mounting, the voids can be removed. The size of can be suppressed.

A1 周辺領域
A11 第1領域
A12 第2領域
A2 中央領域
A3 延在領域
A4 側方領域
B 基板(塗布対象物)
N 非塗布領域
O 中心
P パッド(接合領域)
S ソルダペースト
T 塗布領域
A1 Peripheral area A11 First area A12 Second area A2 Central area A3 Extended area A4 Side area B Substrate (object to be coated)
N Non-applying area O Center P Pad (bonding area)
S Solder paste T Application area

Claims (11)

塗布対象物と電子部品との間にソルダペーストを塗布した状態でリフローを行い前記塗布対象物と前記電子部品とを接合する方法において用いられる、塗布対象物へのソルダペーストの塗布方法であって、
塗布対象物における、電極を含む接合領域内に非塗布領域を形成するように、前記接合領域内に少なくとも一部が位置する塗布領域にソルダペーストを塗布する工程を備え、
前記塗布領域は、前記接合領域の中心回りの周方向に間隔をあけて配置された複数の周辺領域と、前記複数の周辺領域の径方向内側に位置する中央領域と、を有し、
前記接合領域の中心から径方向外側に向けて開口する、前記複数の周辺領域の間の隙間の、前記接合領域の全周に対する割合が、11.5%以上80.6%以下(但し、11.5%以上16.7%以下を除く)である、ソルダペーストの塗布方法。
A method of applying solder paste to an object to be applied, which is used in a method of joining the object to be applied and the electronic component by performing reflow with solder paste applied between the object to be applied and the electronic component, ,
a step of applying solder paste to a coating area at least partially located within the bonding area of the object to be coated so as to form a non-coating area within the bonding area including the electrode;
The application area has a plurality of peripheral areas arranged at intervals in a circumferential direction around the center of the joining area, and a central area located radially inside the plurality of peripheral areas,
The ratio of the gaps between the plurality of peripheral regions, which open radially outward from the center of the joint region, to the entire circumference of the joint region is 11.5% or more and 80.6% or less (provided that 11.5% or more and 80.6% or less .5% or more and 16.7% or less).
前記複数の周辺領域の数が、2から6である、請求項1に記載のソルダペーストの塗布方法。 The method of applying solder paste according to claim 1, wherein the number of the plurality of peripheral areas is 2 to 6. 前記複数の周辺領域は、前記周方向に等間隔で配置されている、請求項1または2に記載のソルダペーストの塗布方法。 The solder paste application method according to claim 1 or 2, wherein the plurality of peripheral areas are arranged at equal intervals in the circumferential direction. 前記複数の周辺領域は、前記周方向の長さが異なる第1領域及び第2領域を有し、
前記第1領域及び前記第2領域は、前記周方向で交互に配置されている、請求項1から3のいずれか一項に記載のソルダペーストの塗布方法。
The plurality of peripheral regions have a first region and a second region having different lengths in the circumferential direction,
The solder paste application method according to any one of claims 1 to 3, wherein the first region and the second region are alternately arranged in the circumferential direction.
前記周方向に隣り合う前記複数の周辺領域の対向辺は、互いに平行している、請求項1から4のいずれか一項に記載のソルダペーストの塗布方法。 5. The solder paste application method according to claim 1, wherein opposing sides of the plurality of circumferential regions adjacent to each other in the circumferential direction are parallel to each other. 前記中央領域と各周辺領域との対向辺は、互いに平行している、請求項1から5のいずれか一項に記載のソルダペーストの塗布方法。 6. The solder paste application method according to claim 1, wherein opposing sides of the central region and each peripheral region are parallel to each other. 前記中央領域の面積は、各周辺領域の面積の44.4%以上278%以下である、請求項1から6のいずれか一項に記載のソルダペーストの塗布方法。 7. The solder paste application method according to claim 1, wherein the area of the central region is 44.4% or more and 278% or less of the area of each peripheral region. 前記接合領域内にソルダペーストが塗布される領域は、前記接合領域の面積の17.5%以上60.1%以下である、請求項1からのいずれか一項に記載のソルダペーストの塗布方法。 Application of the solder paste according to any one of claims 1 to 7 , wherein the area to which the solder paste is applied within the bonding area is 17.5% or more and 60.1% or less of the area of the bonding area. Method. 前記複数の周辺領域は、前記接合領域の外縁に重なって配置されている、請求項1からのいずれか一項に記載のソルダペーストの塗布方法。 The solder paste application method according to any one of claims 1 to 8 , wherein the plurality of peripheral areas are arranged to overlap an outer edge of the bonding area. 前記複数の周辺領域は、前記接合領域内に配置されている、請求項1からのいずれか一項に記載のソルダペーストの塗布方法。 The solder paste application method according to any one of claims 1 to 8 , wherein the plurality of peripheral areas are arranged within the bonding area. 請求項1から1のいずれか一項に記載のソルダペーストの塗布方法に用いられるマスクであって、
前記塗布領域に相当する位置に開口が形成されたマスク。
A mask used in the solder paste application method according to any one of claims 1 to 10 ,
A mask having an opening formed at a position corresponding to the application area.
JP2020541277A 2018-09-05 2019-09-04 Solder paste application method and mask Active JP7438116B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018166395 2018-09-05
JP2018166395 2018-09-05
PCT/JP2019/034832 WO2020050330A1 (en) 2018-09-05 2019-09-04 Method of applying solder paste and mask

Publications (2)

Publication Number Publication Date
JPWO2020050330A1 JPWO2020050330A1 (en) 2021-09-24
JP7438116B2 true JP7438116B2 (en) 2024-02-26

Family

ID=69722428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020541277A Active JP7438116B2 (en) 2018-09-05 2019-09-04 Solder paste application method and mask

Country Status (4)

Country Link
JP (1) JP7438116B2 (en)
KR (1) KR20210052527A (en)
CN (1) CN112913339A (en)
WO (1) WO2020050330A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000252617A (en) 1999-03-01 2000-09-14 Ngk Spark Plug Co Ltd Manufacture of wiring board
JP2004314601A (en) 2003-03-31 2004-11-11 Sanyo Electric Co Ltd Metal mask and lead-free solder paste printing method using it
JP2017139337A (en) 2016-02-04 2017-08-10 Necプラットフォームズ株式会社 Metal mask

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0712237U (en) * 1993-08-03 1995-02-28 住友ベークライト株式会社 Metal mask for solder paste printing
TW360899B (en) * 1996-05-29 1999-06-11 Rohm Co Ltd Method for mounting terminal on circuit board and circuit board
JP2001077521A (en) 1999-08-31 2001-03-23 Senju Metal Ind Co Ltd Method and device forsolder paste printing
TWI239618B (en) * 2003-09-19 2005-09-11 Advanced Semiconductor Eng Method for mounting a semiconductor package onto PCB
JP4735332B2 (en) * 2006-03-01 2011-07-27 トヨタ自動車株式会社 Vehicle side structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000252617A (en) 1999-03-01 2000-09-14 Ngk Spark Plug Co Ltd Manufacture of wiring board
JP2004314601A (en) 2003-03-31 2004-11-11 Sanyo Electric Co Ltd Metal mask and lead-free solder paste printing method using it
JP2017139337A (en) 2016-02-04 2017-08-10 Necプラットフォームズ株式会社 Metal mask

Also Published As

Publication number Publication date
JPWO2020050330A1 (en) 2021-09-24
TW202034752A (en) 2020-09-16
CN112913339A (en) 2021-06-04
WO2020050330A1 (en) 2020-03-12
KR20210052527A (en) 2021-05-10

Similar Documents

Publication Publication Date Title
KR101156819B1 (en) Methods of fluxless micro-piercing of solder balls, and resulting devices
JP4502690B2 (en) Mounting board
JP2002329745A (en) Mounting method and paste material for electronic parts
CN1262785A (en) Semiconductor device, method for manufacturing same, circuit board and electronic apparatus
JP4631851B2 (en) Solder pre-coating method and electronic device work
JP4696110B2 (en) Electronic component mounting method and electronic component mounting apparatus
JP2007116145A (en) Method for manufacturing circuit substrate equipped with plural solder connection parts on upper surface thereof
US9674952B1 (en) Method of making copper pillar with solder cap
JP7438116B2 (en) Solder paste application method and mask
KR20110107770A (en) Squeegee for paste printing, paste printing equipment and method of manufacturing wiring board
JP2014045190A (en) Method for manufacturing printed-circuit board
TWI833798B (en) Application method of solder paste and mask
JP2011218782A (en) Squeegee for paste printing, paste printing device, and method of manufacturing wiring board
JP6124032B2 (en) Mounting structure and manufacturing method of mounting structure
JP2000094637A (en) Screen printing squeegee
JP7069404B2 (en) Printed wiring board and electronic equipment
JP2002329954A (en) Footprint structure of printed wiring board
TW200916252A (en) Solder transfer sheet and solder transfer method
JP6369000B2 (en) Solder paste supply method
JP2009188264A (en) Bump formation method
JP2007253593A (en) Screen printing method
JP4005077B2 (en) Manufacturing method of semiconductor device and coating method of viscous liquid
JP2001044602A (en) Image drawing equipment
JP3516983B2 (en) Method of manufacturing printed circuit board and method of mounting surface mount component
JPH11233915A (en) Mounted printed wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210301

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20210512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20210512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220207

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220207

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220921

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220921

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220930

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20221004

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20221111

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20221115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240213

R150 Certificate of patent or registration of utility model

Ref document number: 7438116

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150