JP7424854B2 - Film deposition processing parts and film deposition equipment - Google Patents

Film deposition processing parts and film deposition equipment Download PDF

Info

Publication number
JP7424854B2
JP7424854B2 JP2020023299A JP2020023299A JP7424854B2 JP 7424854 B2 JP7424854 B2 JP 7424854B2 JP 2020023299 A JP2020023299 A JP 2020023299A JP 2020023299 A JP2020023299 A JP 2020023299A JP 7424854 B2 JP7424854 B2 JP 7424854B2
Authority
JP
Japan
Prior art keywords
film
sprayed
film forming
alloy
forming processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020023299A
Other languages
Japanese (ja)
Other versions
JP2021127499A (en
Inventor
豊 門脇
敏伸 吉田
仁栄 赤瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Techno Ltd
Original Assignee
Ulvac Techno Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Techno Ltd filed Critical Ulvac Techno Ltd
Priority to JP2020023299A priority Critical patent/JP7424854B2/en
Priority to CN202011627743.3A priority patent/CN113265631B/en
Priority to KR1020210007756A priority patent/KR102468589B1/en
Publication of JP2021127499A publication Critical patent/JP2021127499A/en
Application granted granted Critical
Publication of JP7424854B2 publication Critical patent/JP7424854B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/564Means for minimising impurities in the coating chamber such as dust, moisture, residual gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3441Dark space shields

Description

本発明は、合金溶射膜及び成膜装置に関する。 The present invention relates to an alloy sprayed film and a film forming apparatus.

スパッタリング法、CVDなどにより真空容器内で基板に膜を形成する技術がある。このとき、真空容器内に設けられた基板以外の成膜処理用部品(例えば、防着板など)にも膜が付着する場合がある。このような膜が成膜処理用部品からパーティクルとして剥離すると、パーティクルが膜中に入り込み、膜製品の歩留まり低下を引き起こす場合がある。 There is a technique of forming a film on a substrate in a vacuum container using a sputtering method, CVD, or the like. At this time, the film may also adhere to parts for film forming processing (for example, adhesion prevention plates, etc.) other than the substrate provided in the vacuum container. If such a film is peeled off as particles from the film-forming processing component, the particles may enter the film and cause a decrease in the yield of film products.

このような理由から、成膜処理用部品の表面には、所体の表面粗さを持った溶射膜を形成する方法がある(例えば、特許文献1参照)。このような溶射膜を成膜処理用部品の表面に形成することにより、成膜処理用部品からの不要な膜剥離が効果的に抑制される。 For these reasons, there is a method of forming a sprayed film with a certain surface roughness on the surface of a part for film forming processing (for example, see Patent Document 1). By forming such a sprayed film on the surface of the film forming part, unnecessary film peeling from the film forming part can be effectively suppressed.

特開2008-291299号公報Japanese Patent Application Publication No. 2008-291299

しかしながら、基板に形成する膜の材料として、膜応力が比較的高い材料を選択したり、長時間成膜を遂行し成膜処理用部品に形成される膜の厚みが比較的厚くなったりする場合には、溶射膜が溶射膜上に堆積した膜の応力に打ち負けてしまうと、溶射膜が膜と一緒に成膜処理用部品から剥離する可能性がある。従って、このような成膜処理用部品に形成する溶射膜においては、より耐剥離性に優れたものが要求されている。 However, when a material with relatively high film stress is selected as the material for the film to be formed on the substrate, or when film formation is performed for a long time and the film formed on the film forming processing parts becomes relatively thick. If the thermal sprayed film overcomes the stress of the film deposited on the thermal sprayed film, there is a possibility that the thermal sprayed film will peel off from the film-forming processing component together with the film. Therefore, thermal sprayed films formed on such film-forming parts are required to have better peeling resistance.

以上のような事情に鑑み、本発明の目的は、成膜処理用部品からの剥離をより抑制させた合金溶射膜、並びに、その合金溶射膜を備えた成膜装置を提供することにある。 In view of the above circumstances, an object of the present invention is to provide a thermal sprayed alloy film that is more inhibited from peeling off from parts for film forming processing, and a film forming apparatus equipped with the thermal sprayed alloy film.

上記目的を達成するため、本発明の一形態に係る合金溶射膜は、成膜処理雰囲気に晒される成膜処理用部品の表面に設けられた溶射膜であって、アルミニウムと、スカンジウム及びハフニウムの少なくともいずれかの第1元素とを有する。 In order to achieve the above object, a thermal sprayed alloy film according to one embodiment of the present invention is a thermal sprayed film provided on the surface of a film forming part exposed to a film forming process atmosphere, and comprises aluminum, scandium, and hafnium. and at least one of the first elements.

このような合金溶射膜であれば、応力が高い被膜が合金溶射膜に堆積したとしても、成膜処理用部品から合金溶射膜が剥がれにくくなる。 With such a sprayed alloy film, even if a coating with high stress is deposited on the sprayed alloy film, the sprayed alloy film will be difficult to peel off from the parts for film-forming treatment.

上記の合金溶射膜においては、上記溶射膜は、上記第1元素のほかに、ジルコニウム、チタン、及びシリコンの少なくともいずれかの第2元素を含んでもよい。 In the above-mentioned alloy sprayed film, the above-mentioned sprayed film may contain, in addition to the above-mentioned first element, a second element of at least one of zirconium, titanium, and silicon.

このような合金溶射膜であれば、第1元素のほかに、ジルコニウム、チタン、及びシリコンの少なくともいずれかの第2元素を含んでいるので、成膜処理用部品から合金溶射膜が剥がれにくくなる。 Since such a sprayed alloy film contains at least one of the second elements of zirconium, titanium, and silicon in addition to the first element, the sprayed alloy film is difficult to peel off from the parts for film formation. .

上記の合金溶射膜においては、上記第1元素は、上記溶射膜に0.05wt%以上1.5wt%以下含まれてもよい。 In the above alloy sprayed film, the first element may be included in the above sprayed film in an amount of 0.05 wt% or more and 1.5 wt% or less.

このような合金溶射膜であれば、第1元素は、溶射膜に0.05wt%以上1.5wt%以下含まれているので、成膜処理用部品から合金溶射膜が剥がれにくくなる。 In such a sprayed alloy film, since the first element is contained in the sprayed film in an amount of 0.05 wt% or more and 1.5 wt% or less, the sprayed alloy film is difficult to peel off from the parts for film formation.

上記の合金溶射膜においては、上記第2元素は、上記溶射膜にジルコニウムが0.1wt%以上0.5wt%以下含まれ、または、チタンが0.1wt%以上3.0wt%以下含まれてもよい。 In the above alloy sprayed film, the second element includes zirconium in the sprayed film at 0.1 wt% or more and 0.5 wt% or less, or titanium in the above sprayed film at 0.1 wt% or more and 3.0 wt% or less. Good too.

このような合金溶射膜であれば、第2元素は、溶射膜に上記濃度で含まれているので、成膜処理用部品から合金溶射膜が剥がれにくくなる。 In such a sprayed alloy film, since the second element is contained in the sprayed film at the above concentration, the sprayed alloy film is difficult to peel off from the parts for film formation.

上記の合金溶射膜においては、上記成膜処理用部品は、上記成膜処理雰囲気を囲む防着板、またはスパッタリングターゲットの周りを囲むシールド部材であってもよい。 In the above-mentioned thermal sprayed alloy film, the film-forming processing component may be an adhesion prevention plate surrounding the film-forming processing atmosphere or a shield member surrounding the sputtering target.

このような合金溶射膜は、成膜処理雰囲気を囲む防着板、またはスパッタリングターゲットの周りを囲むシールド部材から剥がれにくくなる。 Such an alloy sprayed film is difficult to peel off from the adhesion prevention plate surrounding the film-forming treatment atmosphere or the shield member surrounding the sputtering target.

上記の合金溶射膜においては、上記成膜処理雰囲気に晒される基板に、高融点金属膜が形成されてもよい。 In the above alloy sprayed film, a high melting point metal film may be formed on the substrate exposed to the above film forming treatment atmosphere.

このような合金溶射膜であれば、成膜処理用部品に高融点金属膜が形成されても、成膜処理用部品から合金溶射膜が剥がれにくくなる。 With such a sprayed alloy film, even if a high melting point metal film is formed on the part for film formation, the sprayed alloy film will be difficult to peel off from the part for film formation.

上記目的を達成するため、本発明の一形態に係る成膜装置は、成膜源と、成膜源と、基板支持部と、成膜処理用部品と、真空容器とを具備する。
上記基板支持部は、上記成膜源に対向する。
上記成膜処理用部品は、上記成膜源と上記基板支持部との間の成膜処理雰囲気、または上記成膜源を囲み、アルミニウムと、スカンジウム及びハフニウムの少なくともいずれかの第1元素とを有する合金溶射膜が上記成膜処理雰囲気に向けて設けられている。
上記真空容器は、上記成膜源、上記基板支持部、及び上記成膜処理用部品を収容する。
In order to achieve the above object, a film forming apparatus according to one embodiment of the present invention includes a film forming source, a film forming source, a substrate support, parts for film forming processing, and a vacuum container.
The substrate support section faces the film forming source.
The film-forming processing component is arranged in a film-forming processing atmosphere between the film-forming source and the substrate support, or surrounding the film-forming source, and containing a first element of at least one of scandium and hafnium. A thermally sprayed alloy film having the above-mentioned structure is provided facing the above-mentioned film-forming treatment atmosphere.
The vacuum container accommodates the film forming source, the substrate support, and the film forming processing components.

このような成膜装置であれば、応力が高い被膜が合金溶射膜に堆積したとしても、成膜処理用部品から合金溶射膜が剥がれにくくなる。 With such a film forming apparatus, even if a coating with high stress is deposited on the sprayed alloy film, the sprayed alloy film will be difficult to peel off from the parts for film forming processing.

上記の成膜装置においては、上記合金溶射膜は、上記第1元素のほかに、ジルコニウム、チタン、及びシリコンの少なくともいずれかの第2元素を含んでもよい。
成膜装置。
In the above film forming apparatus, the alloy sprayed film may contain, in addition to the first element, a second element of at least one of zirconium, titanium, and silicon.
Film deposition equipment.

このような成膜装置であれば、第1元素のほかに、ジルコニウム、チタン、及びシリコンの少なくともいずれかの第2元素を含んでいるので、成膜処理用部品から合金溶射膜が剥がれにくくなる。 Such a film forming apparatus contains at least one of the second elements of zirconium, titanium, and silicon in addition to the first element, making it difficult for the alloy sprayed film to peel off from the parts for film forming processing. .

以上述べたように、本発明によれば、成膜処理用部品からの剥離をより抑制させた合金溶射膜、並びに、その合金溶射膜を備えた成膜装置が提供される。 As described above, according to the present invention, there is provided a sprayed alloy film that is more inhibited from peeling off from parts for film forming processing, and a film forming apparatus equipped with the sprayed alloy film.

成膜装置の一例を示す模式的断面図である。FIG. 1 is a schematic cross-sectional view showing an example of a film forming apparatus. 合金溶射膜が照射された成膜処理用部品の一部断面を示す模式図である。FIG. 2 is a schematic diagram showing a partial cross section of a part for film forming treatment that has been irradiated with an alloy sprayed film.

以下、図面を参照しながら、本発明の実施形態を説明する。各図面には、XYZ軸座標が導入される場合がある。また、同一の部材または同一の機能を有する部材には同一の符号を付す場合があり、その部材を説明した後には適宜説明を省略する場合がある。 Embodiments of the present invention will be described below with reference to the drawings. In each drawing, XYZ axis coordinates may be introduced. In addition, the same members or members having the same function may be given the same reference numerals, and the description may be omitted as appropriate after the member has been described.

本実施形態の合金溶射膜が利用される成膜装置の一例を説明する。図1は、成膜装置の一例を示す模式的断面図である。 An example of a film forming apparatus in which the alloy sprayed film of this embodiment is utilized will be described. FIG. 1 is a schematic cross-sectional view showing an example of a film forming apparatus.

成膜装置1は、真空容器10と、支持台20と、スパッタリングターゲット30と、成膜処理用部品40、41、42と、磁気回路部50と、合金溶射膜60、61、62と、排気機構70と、ガス供給機構75と、電源80とを具備する。支持台20には、成膜処理の対象物である基板21が設置されている。 The film forming apparatus 1 includes a vacuum vessel 10, a support base 20, a sputtering target 30, parts for film forming processing 40, 41, 42, a magnetic circuit section 50, sprayed alloy films 60, 61, 62, and an exhaust gas. It includes a mechanism 70, a gas supply mechanism 75, and a power source 80. A substrate 21 that is a target object for film formation is installed on the support stand 20 .

真空容器10は、減圧状態を維持可能な容器である。真空容器10は、支持台20、スパッタリングターゲット30、及び成膜処理用部品40、41、42等を収容する。真空容器10には、配管71を通じて、例えば、真空ポンプ、バルブ等の排気機構70が接続されている。排気機構70によって真空容器10内の雰囲気が所定の圧力に維持される。真空容器10には、導入管76を通じて、流量計、弁等のガス供給機構75が設置される。ガス供給機構75は、真空容器10内に放電ガスを供給する。放電ガスは、例えば、不活性ガス(Ar、Ne、He等)である。また、真空容器10には、真空容器10内の圧力を計測する圧力計が設置されてもよい。 The vacuum container 10 is a container that can maintain a reduced pressure state. The vacuum container 10 accommodates a support stand 20, a sputtering target 30, parts for film forming processing 40, 41, 42, and the like. An exhaust mechanism 70 such as a vacuum pump or a valve is connected to the vacuum container 10 through a pipe 71 . The atmosphere inside the vacuum container 10 is maintained at a predetermined pressure by the exhaust mechanism 70. A gas supply mechanism 75 such as a flow meter and a valve is installed in the vacuum container 10 through an introduction pipe 76 . The gas supply mechanism 75 supplies discharge gas into the vacuum container 10 . The discharge gas is, for example, an inert gas (Ar, Ne, He, etc.). Further, a pressure gauge may be installed in the vacuum container 10 to measure the pressure inside the vacuum container 10.

支持台20は、成膜装置1の基板支持部である。支持台20は、真空容器10内に設置されている。支持台20は、スパッタリングターゲット30に対向する。支持台20は、基板21を支持する。支持台20において、基板21が載置される載置面は、導電体でもよく、絶縁体でもよい。例えば、載置面には、静電チャックが設置されてもよい。支持台20には、基板21を所定温度に保つ温度調節機構が内蔵されてもよい。基板21は、適用されるデバイスに応じて適宜変更され、例えば、ガラス基板、石英基板等の絶縁基板、シリコンウェーハ等の半導体基板、金属基板等である。 The support stand 20 is a substrate support part of the film forming apparatus 1. The support stand 20 is installed inside the vacuum container 10. The support stand 20 faces the sputtering target 30. The support stand 20 supports the substrate 21. In the support stand 20, the mounting surface on which the substrate 21 is mounted may be a conductor or an insulator. For example, an electrostatic chuck may be installed on the mounting surface. The support stand 20 may have a built-in temperature control mechanism that maintains the substrate 21 at a predetermined temperature. The substrate 21 may be changed as appropriate depending on the device to which it is applied, and may be, for example, an insulating substrate such as a glass substrate or a quartz substrate, a semiconductor substrate such as a silicon wafer, a metal substrate, or the like.

スパッタリングターゲット30(以下、ターゲット30)は、絶縁スペーサ11を介して真空容器10内に設置される。ターゲット30は、支持台20に対して対向するように配置される。ターゲット30は、ターゲット本体であるターゲット材31と、基材32と、接合部材33とを有する。ターゲット30は、成膜装置1の成膜源である。 A sputtering target 30 (hereinafter referred to as target 30) is installed in vacuum container 10 with insulating spacer 11 in between. The target 30 is arranged to face the support base 20. The target 30 includes a target material 31 that is a target body, a base material 32, and a joining member 33. The target 30 is a film forming source of the film forming apparatus 1 .

ターゲット材31は、プラズマによってスパッタリングされるスパッタリング面31sを有する。ターゲット材31は、基板21に形成する膜の組成に応じて、適宜変更される。ターゲット材31は、金属、半金属、またはセラミックである。例えば、ターゲット材31は、タングステン(W)、モリブデン(Mo)、チタン(Ti)、タングステンシリサイド(WSi)、チタン窒化物(TiN)等の高融点金属、シリコン(Si)、シリコン炭化物(SiC)等の半導体材である。ターゲット材は、これらの金属、半金属に限らず、シリコン窒化物(SiN)等でもよい。ターゲット材の平面形状は、基板21の平面形状に対応して適宜調整される。 The target material 31 has a sputtering surface 31s that is sputtered by plasma. The target material 31 is changed as appropriate depending on the composition of the film to be formed on the substrate 21. Target material 31 is metal, semimetal, or ceramic. For example, the target material 31 is made of high melting point metal such as tungsten (W), molybdenum (Mo), titanium (Ti), tungsten silicide (WSi), titanium nitride (TiN), silicon (Si), silicon carbide (SiC), etc. It is a semiconductor material such as. The target material is not limited to these metals and metalloids, but may also be silicon nitride (SiN) or the like. The planar shape of the target material is adjusted as appropriate in accordance with the planar shape of the substrate 21.

基材32は、バッキングプレートであり、ターゲット材31の裏面に設けられる。基材32は、径の異なる部分321、322を有する。基材32は、部分322が部分321から突き出た凸状体になっている。換言すれば、基材32においては、部分321、322により段差が形成される。部分322の外径は、例えば、ターゲット材31の直径と略同じである。基材32の内部には、冷媒を流す流路が設けられてもよい。 The base material 32 is a backing plate and is provided on the back surface of the target material 31. The base material 32 has portions 321 and 322 with different diameters. The base material 32 has a convex shape in which a portion 322 protrudes from a portion 321. In other words, in the base material 32, a step is formed by the portions 321 and 322. The outer diameter of the portion 322 is, for example, approximately the same as the diameter of the target material 31. A channel through which a refrigerant flows may be provided inside the base material 32.

接合部材33は、ターゲット材31と基材32との間に設けられる。接合部材33は、ターゲット材31と基材32とを密に接合する。接合部材33は、例えば、インジウム等のろう材である。 The joining member 33 is provided between the target material 31 and the base material 32. The joining member 33 tightly joins the target material 31 and the base material 32. The joining member 33 is, for example, a brazing material such as indium.

磁気回路部50は、支持台20とは反対側のターゲット30の裏側に配置される。磁気回路部50は、ターゲット30に平行に配置されたヨーク51と、ヨーク51に設けられた磁石52とを有する。磁石52は、スパッタリング面31sとは反対側のターゲット30の裏面に臨むように配置されている。 The magnetic circuit section 50 is arranged on the back side of the target 30 on the opposite side to the support stand 20. The magnetic circuit section 50 includes a yoke 51 arranged parallel to the target 30 and a magnet 52 provided on the yoke 51. The magnet 52 is arranged so as to face the back surface of the target 30 on the opposite side to the sputtering surface 31s.

スパッタリング面31s付近には、磁石52から放出された磁場が漏洩して、この漏洩した磁場にプラズマ中の電子等が捕捉される。これにより、スパッタリング面31s付近には、高密度のプラズマが形成されて、所謂マグネトロンスパッタリングが行われる。磁石52の形状、個数は、放電の安定性、基板21の成膜層の面内分布、または、ターゲット30の使用効率向上の観点から適宜調整される。 The magnetic field emitted from the magnet 52 leaks near the sputtering surface 31s, and electrons and the like in the plasma are captured by this leaked magnetic field. As a result, high-density plasma is formed near the sputtering surface 31s, and so-called magnetron sputtering is performed. The shape and number of the magnets 52 are adjusted as appropriate from the viewpoint of stability of discharge, in-plane distribution of the deposited layer on the substrate 21, or improvement in usage efficiency of the target 30.

成膜処理用部品40は、環状のシールド部材である。成膜処理用部品40は、金属製であり、例えば、電位が接地電位となったアースシールドである。成膜装置1を上面視した場合、成膜処理用部品40は、ターゲット30の外周を囲む。成膜処理用部品40は、ターゲット30のスパッタリング面31sを開放し、ターゲット30の外周に沿って真空容器10に配置される。成膜処理用部品40は、例えば、真空容器10の上部に固定されている。成膜処理用部品40の形状は、一例であり、図示した形状に限らない。 The film forming processing component 40 is an annular shield member. The film-forming processing component 40 is made of metal, and is, for example, an earth shield whose potential is the ground potential. When the film forming apparatus 1 is viewed from above, the film forming processing components 40 surround the outer periphery of the target 30 . The film forming processing component 40 is placed in the vacuum vessel 10 along the outer periphery of the target 30 with the sputtering surface 31s of the target 30 open. The film-forming processing component 40 is fixed to the upper part of the vacuum container 10, for example. The shape of the film-forming processing component 40 is an example, and is not limited to the illustrated shape.

成膜処理用部品40の材料は、例えば、ステンレス鋼、アルミニウム等である。成膜処理用部品40とターゲット30との間には、例えば、0.1mm~数mm程度の隙間が設けられる。これにより、成膜時には所謂パッシェン則から成膜処理用部品40とターゲット30との間隙では放電が起きにくくなり、プラズマがスパッタリング面31s付近に集まり安定したプラズマ放電が持続する。 The material of the film forming processing component 40 is, for example, stainless steel, aluminum, or the like. A gap of approximately 0.1 mm to several mm is provided between the film forming processing component 40 and the target 30, for example. As a result, during film formation, due to the so-called Paschen's law, discharge is less likely to occur in the gap between the film-forming processing component 40 and the target 30, and plasma gathers near the sputtering surface 31s, maintaining stable plasma discharge.

合金溶射膜60は、成膜処理用部品40に溶射されている。例えば、成膜処理用部品40が成膜処理雰囲気12に向かう成膜処理用部品40の表面に合金溶射膜60が形成されている。 The alloy sprayed film 60 is sprayed onto the film forming processing component 40 . For example, the alloy sprayed film 60 is formed on the surface of the film-forming processing component 40 that faces the film-forming processing atmosphere 12 .

合金溶射膜60は、アルミニウム(Al)と、アルミニウムのほかに、スカンジウム(Sc)及びハフニウム(Hf)の少なくともいずれかの第1元素を有する。さらに、合金溶射膜60は、ジルコニウム(Zr)及びチタン(Ti)の少なくともいずれかの第2元素を含んでもよい。または、第2元素として、シリコン(Si)が選択されてもよい。 The alloy sprayed film 60 includes aluminum (Al) and a first element of at least one of scandium (Sc) and hafnium (Hf) in addition to aluminum. Furthermore, the alloy sprayed film 60 may contain at least one of the second elements of zirconium (Zr) and titanium (Ti). Alternatively, silicon (Si) may be selected as the second element.

ここで、Sc及びHfの少なくともいずれかの第1元素の合計は、合金溶射膜60に0.05wt%以上1.5wt%以下含まれる。この場合、合金溶射膜60は、Al-Sc合金溶射膜、Al-Hf合金溶射膜、及びAl-Sc-Hf合金溶射膜のいずれかである。 Here, the total amount of the first element of at least one of Sc and Hf is contained in the sprayed alloy film 60 at 0.05 wt% or more and 1.5 wt% or less. In this case, the alloy sprayed film 60 is any one of an Al-Sc alloy sprayed film, an Al-Hf alloy sprayed film, and an Al-Sc-Hf alloy sprayed film.

また、第2元素を含有させた場合、Al-Sc-Zr合金溶射膜またはAl-Hf-Zr合金溶射膜では、Zrが0.1wt%以上0.5wt%以下含まれてもよく、あるいは、Al-Sc-Ti合金溶射膜またはAl-Hf-Ti合金溶射膜では、Tiが0.1wt%以上3wt%以下含まれてもよく、あるいは、Al-Sc-Si合金溶射膜またはAl-Hf-Si合金溶射膜では、Siが0.5wt%以上5wt%以下含まれてもよい。 Further, when a second element is contained, in the Al-Sc-Zr alloy sprayed film or the Al-Hf-Zr alloy sprayed film, Zr may be contained in 0.1 wt% or more and 0.5 wt% or less, or, The Al-Sc-Ti alloy sprayed film or the Al-Hf-Ti alloy sprayed film may contain 0.1 wt% or more and 3 wt% or less of Ti, or the Al-Sc-Si alloy sprayed film or the Al-Hf- The Si alloy sprayed film may contain 0.5 wt% or more and 5 wt% or less of Si.

ここで、第1元素の重量%が0.05wt%より小さくなると、合金溶射膜中で再結晶が起きやすくなり、熱履歴によって合金溶射膜が柔らかくなる傾向にある。これにより、合金溶射膜は、その上に堆積する被膜の応力に負けてしまい、被膜とともに成膜処理用部品から剥がれる可能性がある。一方、第1元素の重量%が1.5wt%よりも大きくなると、材料硬度が高くなり溶射に用いる材料加工が難しくなり好ましくない。
Here, if the weight percent of the first element is less than 0.05 wt%, recrystallization tends to occur in the sprayed alloy film, and the sprayed alloy film tends to become soft due to thermal history. As a result, the alloy sprayed film will succumb to the stress of the film deposited thereon, and there is a possibility that it will peel off together with the film from the film-forming processing component. On the other hand, if the weight % of the first element is greater than 1.5 wt %, the hardness of the material increases, making it difficult to process the material used for thermal spraying, which is not preferable.

ここで、第2元素として、Tiが0.1wt%よりも小さくなると再結晶抑制効果が小さくなり、3wt%よりも大きくなると金属間化合物の影響が大きくなり、溶射膜強度が低下して好ましくない。あるいは、Zrが0.1wt%よりも小さくなると再結晶抑制効果が小さくなり、0.5wt%よりも大きくなると溶射材料の硬度が高くなり溶射材料加工には向かなくなる。 Here, as a second element, if Ti is less than 0.1 wt%, the recrystallization suppressing effect will be small, and if it is more than 3 wt%, the influence of intermetallic compounds will become large, which is undesirable because the strength of the sprayed film will decrease. . Alternatively, if Zr is less than 0.1 wt%, the effect of suppressing recrystallization will be reduced, and if it is more than 0.5 wt%, the hardness of the thermal sprayed material will increase, making it unsuitable for processing the thermal sprayed material.

成膜処理用部品41は、成膜処理雰囲気12を囲む防着板である。成膜処理用部品41は、例えば、真空容器10の上部から下部に向けて真空容器10の内壁に沿って設けられる。さらに、成膜処理用部品41は、真空容器10の中部から支持台20に向けて配置される。成膜処理用部品41の形状は、一例であり、図示した形状に限らない。成膜処理用部品41は、金属製であり、例えば、その電位は、接地電位になっている。成膜処理用部品41の材料は、例えば、ステンレス鋼、アルミニウム等である。 The film-forming processing component 41 is an anti-adhesion plate that surrounds the film-forming processing atmosphere 12 . The film-forming processing component 41 is provided, for example, along the inner wall of the vacuum container 10 from the top to the bottom of the vacuum container 10 . Further, the film-forming processing component 41 is placed from the middle of the vacuum container 10 toward the support stand 20 . The shape of the film-forming processing component 41 is an example, and is not limited to the illustrated shape. The film forming processing component 41 is made of metal, and its potential is, for example, a ground potential. The material of the film forming processing component 41 is, for example, stainless steel, aluminum, or the like.

合金溶射膜61は、成膜処理用部品41に溶射されている。例えば、合金溶射膜61は、成膜処理用部品41が成膜処理雰囲気12に向かう成膜処理用部品41の表面に形成されている。合金溶射膜61の成分は、合金溶射膜60の成分と同じである。 The alloy sprayed film 61 is sprayed onto the film forming processing component 41 . For example, the alloy sprayed film 61 is formed on the surface of the film-forming processing component 41 which faces the film-forming processing atmosphere 12 . The components of the sprayed alloy film 61 are the same as those of the sprayed alloy film 60.

成膜処理用部品42は、ターゲット30を基板21に向けて開放したり、スパッタリング面31sを遮蔽したりするシャッタである。成膜処理用部品42は、例えば、スパッタリング面31sと略平行に設けられる。成膜処理用部品42の形状は、一例であり、図示した形状に限らない。成膜処理用部品42は、金属製であり、例えば、その電位は、接地電位になっている。成膜処理用部品42の材料は、例えば、ステンレス鋼、アルミニウム等である。 The film forming processing component 42 is a shutter that opens the target 30 toward the substrate 21 and shields the sputtering surface 31s. The film forming processing component 42 is provided, for example, substantially parallel to the sputtering surface 31s. The shape of the film-forming processing component 42 is an example, and is not limited to the illustrated shape. The film forming processing component 42 is made of metal, and its potential is, for example, a ground potential. The material of the film forming processing component 42 is, for example, stainless steel, aluminum, or the like.

合金溶射膜62は、成膜処理用部品42の基板21に対向する主面と、ターゲット30に対向する主面とに溶射されている。合金溶射膜62の成分は、合金溶射膜60の成分と同じである。 The alloy sprayed film 62 is sprayed on the main surface of the film-forming processing component 42 facing the substrate 21 and the main surface facing the target 30 . The components of the sprayed alloy film 62 are the same as those of the sprayed alloy film 60.

電源80は、線路81を介してターゲット30に接続される。電源80は、ターゲット30に電力を供給する。電源80は、DC電源でもよく、VHF電源でもよく、RF電源でもよい。電源80がVHF電源、RF電源等の高周波電源のとき、電源80と、ターゲット30との間の線路81には、整合回路が設けられてもよい。 A power source 80 is connected to the target 30 via a line 81. A power supply 80 supplies power to the target 30. The power source 80 may be a DC power source, a VHF power source, or an RF power source. When the power source 80 is a high frequency power source such as a VHF power source or an RF power source, a matching circuit may be provided on the line 81 between the power source 80 and the target 30.

真空容器10内に放電ガスが導入され、ターゲット30に電力が投入されると、ターゲット30と、真空容器10または成膜処理用部品41との間で容量結合による放電が起きる。これにより、プラズマがスパッタリング面31s付近に形成される。そして、プラズマに晒されたスパッタリング面31sからは、成膜処理雰囲気12に向かってスパッタリング粒子が飛散する。 When a discharge gas is introduced into the vacuum container 10 and power is applied to the target 30, a discharge occurs between the target 30 and the vacuum container 10 or the film forming processing component 41 due to capacitive coupling. As a result, plasma is formed near the sputtering surface 31s. Then, sputtering particles scatter toward the film-forming processing atmosphere 12 from the sputtering surface 31s exposed to the plasma.

この結果、基板21には、ターゲット材31を材とする被膜が形成される。同時に成膜処理用部品40、41、42も成膜処理雰囲気12に晒されることから、合金溶射膜60、61、62にも被膜が堆積する。 As a result, a film made of the target material 31 is formed on the substrate 21. At the same time, since the parts 40, 41, and 42 for film forming processing are also exposed to the film forming processing atmosphere 12, films are deposited on the alloy sprayed films 60, 61, and 62 as well.

図2は、合金溶射膜が照射された成膜処理用部品の一部断面を示す模式図である。ここで、成膜処理用部品4は、成膜処理用部品40、41、42のいずれかを示し、合金溶射膜6は、合金溶射膜60、61、62のいずれかを示す。成膜中には、合金溶射膜6の表面6sが成膜処理雰囲気12に晒されることになる。 FIG. 2 is a schematic diagram showing a partial cross section of a part for film forming treatment that has been irradiated with an alloy sprayed film. Here, the film-forming processing component 4 indicates any of the film-forming processing components 40, 41, and 42, and the alloy sprayed film 6 indicates any of the alloy sprayed films 60, 61, and 62. During film formation, the surface 6s of the alloy sprayed film 6 is exposed to the film formation processing atmosphere 12.

成膜処理用部品4の溶射面4sは、合金溶射膜6が溶射される前に絶縁粒子によってブラスト処理が施されている。例えば、溶射面4sは、3μm以上の算術平均粗さRaを有している。例えば、溶射面4sの算術平均粗さRaが3μmより小さくなると、成膜処理用部品4と合金溶射膜6との密着性が悪くなり好ましくない。 The sprayed surface 4s of the film forming part 4 is blasted with insulating particles before the alloy sprayed film 6 is sprayed. For example, the sprayed surface 4s has an arithmetic mean roughness Ra of 3 μm or more. For example, if the arithmetic mean roughness Ra of the sprayed surface 4s is smaller than 3 μm, the adhesion between the film forming processing component 4 and the alloy sprayed film 6 will deteriorate, which is not preferable.

合金溶射膜6は、アーク溶射、フレーム溶射、プラズマ溶射、及びコールドスプレー溶射等のいずれか手法により、溶射面4sに形成される。合金溶射膜6は、溶射直後において、例えば、非晶質膜である。合金溶射膜6の厚みは、例えば、100μm以上400μm以下である。合金溶射膜6の表面6sは、8μm以上40μm以下の算術平均粗さRaを有する。 The alloy sprayed film 6 is formed on the sprayed surface 4s by any one of arc spraying, flame spraying, plasma spraying, cold spraying, and the like. Immediately after spraying, the alloy sprayed film 6 is, for example, an amorphous film. The thickness of the alloy sprayed film 6 is, for example, 100 μm or more and 400 μm or less. The surface 6s of the sprayed alloy film 6 has an arithmetic mean roughness Ra of 8 μm or more and 40 μm or less.

成膜処理用部品4(シールド部材、防着板、及びシャッタ等)は、一般的には水冷機構を備えていない。従って、成膜処理用部品4は、成膜処理雰囲気12に晒されることによって、その温度が350℃以上になる場合がある。本実施形態では、成膜処理用部品4が成膜処理雰囲気12に晒される熱履歴によって成膜処理用部品4が例えば350℃以上に加熱される温度を"プロセス温度"と呼ぶ。 The film forming processing components 4 (shield member, adhesion prevention plate, shutter, etc.) generally do not have a water cooling mechanism. Therefore, when the film-forming processing component 4 is exposed to the film-forming processing atmosphere 12, its temperature may reach 350° C. or higher. In this embodiment, the temperature at which the film-forming process component 4 is heated to, for example, 350° C. or higher due to the thermal history of the film-forming process component 4 being exposed to the film-forming process atmosphere 12 is referred to as a "process temperature."

このような条件で、成膜処理用部品4に形成する溶射膜として、純粋Al(Alを99.00wt%以上含有)で構成された溶射膜、あるいはAl-Cu合金で構成された溶射膜(以下、Al溶射膜とする。)を用いた場合、溶射膜中で再結晶が起きやすくなる。この結果、Al溶射膜は、熱履歴によって柔らかくなり、結局の所、Al溶射膜が被膜とともに成膜処理用部品4から剥がれる現象が引き起こされる。 Under these conditions, the sprayed film formed on the film forming part 4 is a sprayed film made of pure Al (containing 99.00 wt% or more of Al) or a sprayed film made of Al-Cu alloy ( (hereinafter referred to as an Al sprayed film), recrystallization tends to occur in the sprayed film. As a result, the Al sprayed film becomes soft due to the thermal history, and eventually the Al sprayed film is peeled off from the film forming part 4 along with the coating.

さらに、Al溶射膜に堆積する膜が応力の高い被膜であるとき、Al溶射膜の成膜処理用部品4に対する密着力が該応力に打ち負けてしまい、被膜がAl溶射膜とともに成膜処理用部品4から剥がれる場合がある。 Furthermore, when the film deposited on the Al sprayed film is a film with high stress, the adhesion of the Al sprayed film to the film forming processing component 4 is overcome by the stress, and the film is deposited along with the Al sprayed film. It may peel off from part 4.

このように、成膜処理用部品4に溶射膜としてAl溶射膜を選択した場合、熱履歴によってAl溶射膜が被膜とともに剥がれ、パーティクル発生を引き起こす。 In this way, when an Al sprayed film is selected as the sprayed film for the film forming part 4, the Al sprayed film is peeled off together with the coating due to thermal history, causing particle generation.

これに対し、本実施形態の合金溶射膜6は、アルミニウム(Al)と、スカンジウム(Sc)及びハフニウム(Hf)の少なくともいずれかの第1元素を有する。さらに、合金溶射膜6は、ジルコニウム(Zr)、チタン(Ti)、及びシリコン(Si)の少なくともいずれかの第2元素を含む場合もある。 On the other hand, the sprayed alloy film 6 of this embodiment includes aluminum (Al) and at least one of the first elements of scandium (Sc) and hafnium (Hf). Furthermore, the alloy sprayed film 6 may contain at least one of the second elements of zirconium (Zr), titanium (Ti), and silicon (Si).

このような合金溶射膜6であれば、合金溶射膜6が熱履歴を受けてプロセス温度に達したとしても、合金溶射膜6中では再結晶が起きにくくなっている。この結果、合金溶射膜6は、熱履歴を受けてプロセス温度に達したとしても、所望の硬さを維持し、成膜処理用部品4から剥がれにくくなる。 With such a sprayed alloy film 6, even if the sprayed alloy film 6 undergoes thermal history and reaches the process temperature, recrystallization is unlikely to occur in the sprayed alloy film 6. As a result, even if the thermal sprayed alloy film 6 receives a thermal history and reaches the process temperature, it maintains the desired hardness and becomes difficult to peel off from the film-forming processing component 4.

例えば、Al-0.2wt%Scからなる合金溶射膜6を用いた場合、プロセス温度が260℃~370℃の範囲では、熱履歴とともにビッカース硬度が20HVから、30HV~70HVの範囲にまで上昇する例がある。あるいは、Alと、0.1wt%~0.7%のScとが混在した合金溶射膜6を用いた場合、再結晶開始温度が約350℃であるのに対し、再結晶完了温度が約570℃になる例がある。すなわち、AlにScに添加することにより、プロセス温度程度では、合金溶射膜6の再結晶が抑制され、合金溶射膜6は、所望の硬度を維持する。 For example, when using an alloy sprayed film 6 made of Al-0.2wt%Sc, at a process temperature in the range of 260°C to 370°C, the Vickers hardness increases from 20HV to a range of 30HV to 70HV with the thermal history. There is an example. Alternatively, when using an alloy sprayed film 6 containing a mixture of Al and 0.1 wt% to 0.7% Sc, the recrystallization start temperature is about 350°C, but the recrystallization completion temperature is about 570°C. There are examples of temperatures reaching ℃. That is, by adding Sc to Al, recrystallization of the sprayed alloy film 6 is suppressed at about the process temperature, and the sprayed alloy film 6 maintains the desired hardness.

Figure 0007424854000001
Figure 0007424854000001

表1は、比較例としてのAl溶射膜及び本実施形態の合金溶射膜6のそれぞれに、WSi膜とSiN膜とを堆積した場合の溶射膜のシールドライフを示す表である。ここで、シールドライフ(kW/h)とは、プロセス温度で成膜を継続したとき、被膜が堆積した溶射膜が成膜処理用部品4から剥がれるまでのターゲット30に投入する電力(kW)と成膜時間(h)とを掛け合わせた値である。すなわち、シールドライフは、被膜の応力に対する溶射膜の剥離耐性を示す指標である。シールドライフが大きいほど、被膜の応力に対する溶射膜の剥離耐性が高いことを意味する。なお、基板としては、SUS304板を用いた。 Table 1 is a table showing the shield life of the sprayed film when a WSi film and a SiN film are deposited on the Al sprayed film as a comparative example and the alloy sprayed film 6 of the present embodiment, respectively. Here, the shield life (kW/h) is the power (kW) input to the target 30 until the deposited thermal spray film peels off from the film forming processing part 4 when film forming is continued at the process temperature. It is the value multiplied by the film forming time (h). That is, the shield life is an index indicating the peeling resistance of the sprayed film against the stress of the film. The larger the shield life, the higher the peeling resistance of the sprayed film against the stress of the film. Note that a SUS304 plate was used as the substrate.

表1に示すように、被膜がWSi膜のとき、シールドライフは、Al溶射膜で500kW・hであるのに対し、合金溶射膜6では、600kW・hに上昇している。被膜がSiN膜のとき、シールドライフは、Al溶射膜で250kW・hであるのに対し、合金溶射膜6では、400kW・hに上昇している。 As shown in Table 1, when the coating is a WSi film, the shield life is 500 kW·h for the Al sprayed film, but increases to 600 kW·h for the alloy sprayed film 6. When the coating is a SiN film, the shield life is 250 kW·h for the Al sprayed film, but increases to 400 kW·h for the alloy sprayed film 6.

このように合金溶射膜6を成膜用処理用部品6に形成した場合、Al溶射膜を成膜処理用部品4に形成した場合に比べて、被膜に対する剥離耐性が大きく上昇することが分かった。例えば、溶射でなくスパッタリングで形成したAlSc膜では、適切な表面粗さが得られず、また、その上に堆積する膜の応力に耐えうるほどの厚みが得られないので好ましくない。 It was found that when the alloy sprayed film 6 was formed on the film-forming processing part 6 in this way, the peeling resistance of the film was significantly increased compared to when the Al sprayed film was formed on the film-forming processing part 4. . For example, an AlSc film formed by sputtering rather than thermal spraying is not preferable because it does not have an appropriate surface roughness and does not have a thickness sufficient to withstand the stress of the film deposited thereon.

以上、本発明の実施形態について説明したが、本発明は上述の実施形態にのみ限定されるものではなく種々変更を加え得ることは勿論である。各実施形態は、独立の形態とは限らず、技術的に可能な限り複合することができる。 Although the embodiments of the present invention have been described above, it goes without saying that the present invention is not limited to the above-described embodiments and can be modified in various ways. Each embodiment is not necessarily an independent form, and can be combined to the extent technically possible.

1…成膜装置
4、40、41、42…成膜処理用部品
4s…溶射面
6、60、61、62…合金溶射膜
6s…表面
10…真空容器
11…絶縁スペーサ
12…成膜処理雰囲気
20…支持台
21…基板
30…スパッタリングターゲット(ターゲット)
31…ターゲット材
31s…スパッタリング面
32…基材
33…接合部材
50…磁気回路部
51…ヨーク
52…磁石
70…排気機構
71…配管
75…ガス供給機構
76…導入管
80…電源
81…線路
321、322…部分
1... Film forming apparatus 4, 40, 41, 42... Parts for film forming processing 4s... Sprayed surface 6, 60, 61, 62... Alloy sprayed film 6s... Surface 10... Vacuum vessel 11... Insulating spacer 12... Film forming processing atmosphere 20... Support stand 21... Substrate 30... Sputtering target (target)
31...Target material 31s...Sputtering surface 32...Base material 33...Joining member 50...Magnetic circuit part 51...Yoke 52...Magnet 70...Exhaust mechanism 71...Piping 75...Gas supply mechanism 76...Introduction pipe 80...Power supply 81...Line 321 , 322...part

Claims (8)

シールド部材と、
成膜処理雰囲気に晒される前記シールド部材の表面に設けられた合金溶射膜
を具備し、
前記合金溶射膜は、アルミニウムと、スカンジウム及びハフニウムの少なくともいずれかの第1元素とを有し、
前記第1元素は、前記合金溶射膜に0.05wt%以上1.5wt%以下含まれる
成膜処理用部品
A shield member,
an alloy sprayed film provided on the surface of the shield member exposed to a film forming treatment atmosphere ;
Equipped with
The alloy sprayed film has aluminum and a first element of at least one of scandium and hafnium,
The first element is contained in the sprayed alloy film at 0.05 wt% or more and 1.5 wt% or less.
Parts for film forming processing .
請求項1に記載された成膜処理用部品であって、
前記合金溶射膜は、前記第1元素のほかに、ジルコニウム及びチタンの少なくともいずれかの第2元素をさらに含む
成膜処理用部品
The film forming processing component according to claim 1,
In addition to the first element, the alloy sprayed film further includes a second element of at least one of zirconium and titanium.
Parts for film forming processing .
請求項1または2に記載された成膜処理用部品であって、
前記合金溶射膜の表面の算術平均粗さRaは、8μm以上40μm以下である
成膜処理用部品。
The film forming processing component according to claim 1 or 2,
The arithmetic mean roughness Ra of the surface of the alloy sprayed film is 8 μm or more and 40 μm or less.
Parts for film forming processing.
請求項に記載された成膜処理用部品であって、
前記第2元素として、前記合金溶射膜に、ジルコニウムが0.1wt%以上0.5wt%以下含まれ、または、チタンが0.1wt%以上3.0wt%以下含まれる
成膜処理用部品
The film forming processing component according to claim 2 ,
As the second element, the alloy sprayed film contains 0.1 wt% or more and 0.5 wt% or less of zirconium, or 0.1 wt% or more and 3.0 wt% or less of titanium.
Parts for film forming processing .
請求項1~4のいずれか1つに記載された成膜処理用部品であって、
前記シールド部材は、前記成膜処理雰囲気を囲む防着板、またはスパッタリングターゲットの周りを囲むシールド部材である
成膜処理用部品
The film forming processing component according to any one of claims 1 to 4,
The shield member is an adhesion prevention plate that surrounds the film formation processing atmosphere, or a shield member that surrounds the sputtering target.
Parts for film forming processing .
請求項1~5のいずれか1つに記載された成膜処理用部品であって、
前記シールド部材の表面に設けられた合金溶射膜に、成膜用材料であるタングステン(W)、モリブデン(Mo)、チタン(Ti)、タングステンシリサイド(WSi)、チタン窒化物(TiN)、シリコン、シリコン炭化物又はシリコン窒化物からなる膜が形成される
成膜処理用部品
The film forming processing component according to any one of claims 1 to 5,
The alloy sprayed film provided on the surface of the shield member includes film forming materials such as tungsten (W), molybdenum (Mo), titanium (Ti), tungsten silicide (WSi), titanium nitride (TiN), silicon, A film made of silicon carbide or silicon nitride is formed.
Parts for film forming processing .
成膜源と、
前記成膜源に対向する基板支持部と、
前記成膜源と前記基板支持部との間の成膜処理雰囲気、または前記成膜源を囲み、アルミニウムと、スカンジウム及びハフニウムの少なくともいずれかの第1元素とを有する合金溶射膜が前記成膜処理雰囲気に向けて設けられた成膜処理用部品と、
前記成膜源、前記基板支持部、及び前記成膜処理用部品を収容する真空容器と
を具備し、
前記第1元素は、前記合金溶射膜に0.05wt%以上1.5wt%以下含まれる
成膜装置。
A film formation source;
a substrate support part facing the film forming source;
A thermal sprayed alloy film containing aluminum and a first element of at least one of scandium and hafnium is formed in a film forming process atmosphere between the film forming source and the substrate support, or surrounding the film forming source. Film forming processing parts installed facing the processing atmosphere,
a vacuum container that accommodates the film-forming source, the substrate support, and the film-forming process components;
The first element is contained in the sprayed alloy film at 0.05 wt% or more and 1.5 wt% or less.
Film deposition equipment.
請求項7に記載された成膜装置であって、
前記合金溶射膜は、前記第1元素のほかに、ジルコニウム、チタン、及びシリコンの少なくともいずれかの第2元素をさらに含む
成膜装置。
The film forming apparatus according to claim 7,
The alloy sprayed film further includes, in addition to the first element, a second element of at least one of zirconium, titanium, and silicon.
JP2020023299A 2020-02-14 2020-02-14 Film deposition processing parts and film deposition equipment Active JP7424854B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020023299A JP7424854B2 (en) 2020-02-14 2020-02-14 Film deposition processing parts and film deposition equipment
CN202011627743.3A CN113265631B (en) 2020-02-14 2020-12-31 Alloy melt-blown film and film forming apparatus
KR1020210007756A KR102468589B1 (en) 2020-02-14 2021-01-20 Alloy sprayed film and film deposition apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020023299A JP7424854B2 (en) 2020-02-14 2020-02-14 Film deposition processing parts and film deposition equipment

Publications (2)

Publication Number Publication Date
JP2021127499A JP2021127499A (en) 2021-09-02
JP7424854B2 true JP7424854B2 (en) 2024-01-30

Family

ID=77227894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020023299A Active JP7424854B2 (en) 2020-02-14 2020-02-14 Film deposition processing parts and film deposition equipment

Country Status (3)

Country Link
JP (1) JP7424854B2 (en)
KR (1) KR102468589B1 (en)
CN (1) CN113265631B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114983238B (en) * 2022-06-29 2023-03-24 九阳股份有限公司 Cooking container with high-temperature creep resistant metal coating and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002146524A (en) 2000-08-25 2002-05-22 Nikko Materials Co Ltd Sputtering target hardly causing generation of particle
JP2008291299A (en) 2007-05-23 2008-12-04 Texas Instr Japan Ltd Structure for preventing peeling of metal film in apparatus for forming metal film, and method for manufacturing semiconductor device using the structure
JP2019536894A (en) 2016-09-30 2019-12-19 ハネウェル・インターナショナル・インコーポレーテッドHoneywell International Inc. High strength aluminum alloy backing plate and manufacturing method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4686159B2 (en) * 1999-12-28 2011-05-18 株式会社東芝 Vacuum film forming device parts, vacuum film forming device and target device using the same
US20010047838A1 (en) * 2000-03-28 2001-12-06 Segal Vladimir M. Methods of forming aluminum-comprising physical vapor deposition targets; sputtered films; and target constructions
JP2006219740A (en) * 2005-02-14 2006-08-24 Chokoon Zairyo Kenkyusho:Kk Niobium-based alloy heat resistant member having excellent oxidation resistance
US7354660B2 (en) * 2005-05-10 2008-04-08 Exxonmobil Research And Engineering Company High performance alloys with improved metal dusting corrosion resistance
KR101391343B1 (en) * 2008-06-10 2014-05-07 닛테츠스미킨하드 가부시키가이샤 Hearth roll having excellent mn build-up resistance, thermal shock resistance and wear resistance, and thermal spraying material for the same
JP2011021275A (en) * 2009-06-15 2011-02-03 Kobe Steel Ltd Reflective film of al alloy, stacked reflective film, automotive lighting device, lighting equipment, and sputtering target of al alloy
JP5857794B2 (en) * 2012-02-27 2016-02-10 株式会社Ihi Metal material with diffusion layer and method for producing the same
JP5998654B2 (en) * 2012-05-31 2016-09-28 東京エレクトロン株式会社 Vacuum processing apparatus, vacuum processing method, and storage medium
WO2014080933A1 (en) * 2012-11-21 2014-05-30 株式会社コベルコ科研 Electrode used in display device or input device, and sputtering target for use in electrode formation
CN103602860A (en) * 2013-11-21 2014-02-26 中联重科股份有限公司 Aluminum alloy material, preparation method thereof and spare part and engineering machinery prepared from aluminum alloy material
KR102454433B1 (en) * 2015-05-28 2022-10-17 삼성디스플레이 주식회사 Apparatus of forming a film and cleaning method thereof
WO2017022597A1 (en) * 2015-08-03 2017-02-09 公立大学法人大阪府立大学 Aluminum alloy thermal spray material and thermal spray film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002146524A (en) 2000-08-25 2002-05-22 Nikko Materials Co Ltd Sputtering target hardly causing generation of particle
JP2008291299A (en) 2007-05-23 2008-12-04 Texas Instr Japan Ltd Structure for preventing peeling of metal film in apparatus for forming metal film, and method for manufacturing semiconductor device using the structure
JP2019536894A (en) 2016-09-30 2019-12-19 ハネウェル・インターナショナル・インコーポレーテッドHoneywell International Inc. High strength aluminum alloy backing plate and manufacturing method

Also Published As

Publication number Publication date
KR102468589B1 (en) 2022-11-17
KR20210103937A (en) 2021-08-24
JP2021127499A (en) 2021-09-02
CN113265631A (en) 2021-08-17
CN113265631B (en) 2023-05-02

Similar Documents

Publication Publication Date Title
US10060024B2 (en) Sputtering target for PVD chamber
JP4451596B2 (en) Element coated with carbonitride of semiconductor processing apparatus and method of manufacturing the same
JP5661983B2 (en) Target and process kit parts for sputtering chamber
KR100636076B1 (en) Corrosion resistant component of semiconductor processing equipment and method of manufacturing thereof
US20140116338A1 (en) Coating for performance enhancement of semiconductor apparatus
JP2007027707A (en) Design of process kit for reducing generation of particles
JPH01152271A (en) Sputtering device
JPH09272965A (en) Parts for vacuum film forming device, vacuum film forming device using the same, target and backing plate
JP7424854B2 (en) Film deposition processing parts and film deposition equipment
TWI686491B (en) Method and process chamber for depositing material on a substrate
JP2009287058A (en) Film-forming method by direct-current reactive facing target type sputtering, pure yttria corrosion-resistant film formed with the film-forming method, and corrosion-resistant quartz assembly
JP5603219B2 (en) Thin film forming equipment
JP4435353B2 (en) Sputtering equipment
US20170213712A1 (en) Backing Plate Obtained by Diffusion-Bonding Anticorrosive Metal and Mo or Mo Alloy, and Sputtering Target-Backing Plate Assembly Provided with Said Backing Plate
JP2016037621A (en) Sputtering target-packing blade conjugate
JP4769181B2 (en) Target and backing plate
JPH02285067A (en) Device for forming thin film in vacuum
TW202209397A (en) Methods and apparatus for reducing defects in preclean chambers
JP6291551B2 (en) Sputtering target-backing plate assembly
JP5254277B2 (en) Manufacturing method of parts for vacuum film forming apparatus
JPH08193264A (en) Method for cooling target
JP2001316810A (en) Sputtering target and sputtering equipment using the same
JP2017140651A (en) Member joining method
JP5269920B2 (en) Manufacturing method of parts for vacuum film forming apparatus
TW202117036A (en) Coating for chamber particle reduction

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230119

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20230119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240118

R150 Certificate of patent or registration of utility model

Ref document number: 7424854

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150