JP7424401B2 - Resin compositions for prepregs, prepregs, metal-clad laminates, printed wiring boards, and semiconductor devices - Google Patents

Resin compositions for prepregs, prepregs, metal-clad laminates, printed wiring boards, and semiconductor devices Download PDF

Info

Publication number
JP7424401B2
JP7424401B2 JP2022051796A JP2022051796A JP7424401B2 JP 7424401 B2 JP7424401 B2 JP 7424401B2 JP 2022051796 A JP2022051796 A JP 2022051796A JP 2022051796 A JP2022051796 A JP 2022051796A JP 7424401 B2 JP7424401 B2 JP 7424401B2
Authority
JP
Japan
Prior art keywords
resin
resin composition
prepreg
resins
prepregs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022051796A
Other languages
Japanese (ja)
Other versions
JP2022100320A (en
Inventor
知史 枝川
昭仁 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Bakelite Co Ltd
Original Assignee
Sumitomo Bakelite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Bakelite Co Ltd filed Critical Sumitomo Bakelite Co Ltd
Priority to JP2022051796A priority Critical patent/JP7424401B2/en
Publication of JP2022100320A publication Critical patent/JP2022100320A/en
Application granted granted Critical
Publication of JP7424401B2 publication Critical patent/JP7424401B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、基板材料用樹脂組成物、プリプレグ、金属張積層板、プリント配線板、および半導体装置に関する。より詳細には、コア材等を含む基板材料を製造するために用いられる樹脂組成物、ならびにこの樹脂組成物を用いて製造されるプリプレグ、金属張積層板、プリント配線板、および半導体装置に関する。 The present invention relates to a resin composition for substrate materials, a prepreg, a metal-clad laminate, a printed wiring board, and a semiconductor device. More specifically, the present invention relates to a resin composition used for manufacturing a substrate material including a core material, as well as prepregs, metal-clad laminates, printed wiring boards, and semiconductor devices manufactured using this resin composition.

従来より、電子部品を搭載するための配線基板においては、下地となる絶縁基板や絶縁層上に、エポキシ樹脂等の樹脂ペーストを塗布し、硬化させて樹脂絶縁層を形成するものが知られている。この様な配線基板としては、例えば、樹脂絶縁層間に配線層を形成しつつ、樹脂絶縁層を積層したビルドアップ配線基板や、樹脂絶縁層をソルダーレジスト層として用いたプリント配線基板が提案されている(たとえば、特許文献1)。
特許文献1では、光学素子への入射光や光学素子からの出射光等が、光学素子と基板との接続部にて反射や拡散するのを抑制して、光学素子への光情報の誤入力、光学素子からの光情報の誤出力が発生するのを防止できるプリント配線板の材料として、硬化性樹脂、金属系の導電性フィラーおよび黒色着色剤を含有する導電性樹脂組成物を用いることが記載されている。
Conventionally, in wiring boards for mounting electronic components, it has been known that a resin paste such as epoxy resin is applied onto an underlying insulating substrate or insulating layer and hardened to form a resin insulating layer. There is. As such a wiring board, for example, a build-up wiring board in which a wiring layer is formed between resin insulation layers and resin insulation layers are laminated, and a printed wiring board in which a resin insulation layer is used as a solder resist layer have been proposed. (For example, Patent Document 1).
In Patent Document 1, light incident on an optical element, light emitted from an optical element, etc. is prevented from being reflected or diffused at a connection between the optical element and a substrate, thereby preventing erroneous input of optical information to the optical element. , it is possible to use a conductive resin composition containing a curable resin, a metal-based conductive filler, and a black colorant as a material for a printed wiring board that can prevent erroneous output of optical information from optical elements. Are listed.

特開2013-91748号公報JP2013-91748A

しかし、これまで提案されてきたプリント配線基板はソルダーレジスト層に黒色着色剤が配合されており、樹脂絶縁層自体が低光透過性を有するものは提案されていない。
本発明者らは、光学素子の出射光やの反射や拡散、および光学素子搭載面とは反対側の面から入射する光の反射や拡散により、光学素子の誤作動が生じ、これを防止するには基板自体が低光透過性を備えればよいことを知見した。
However, the printed wiring boards that have been proposed so far include a black coloring agent in the solder resist layer, and no one has been proposed in which the resin insulating layer itself has low light transmittance.
The present inventors have discovered that malfunctions of optical elements occur due to reflection and diffusion of light emitted from the optical element, and reflection and diffusion of light incident from the surface opposite to the surface on which the optical element is mounted, which can be prevented. The inventors have found that it is sufficient for the substrate itself to have low light transmittance.

本発明者らは、鋭意研究を重ねた結果、光学素子が搭載される基板自体を、紫外から赤外領域にわたる波長領域の光を吸収する材料で形成することにより、光学素子の誤作動を防止できることを見出し、本発明を完成させた。 As a result of extensive research, the inventors of the present invention discovered that the substrate itself on which the optical element is mounted is made of a material that absorbs light in the wavelength range from ultraviolet to infrared to prevent malfunction of the optical element. They discovered that it can be done and completed the present invention.

本発明によれば、熱硬化性樹脂と、無機充填材と、黒色顔料と、を含む基板材料用樹脂組成物であって、当該基板材料用組成物の硬化物の、厚み60μmにおける400nm~1100nmの波長の光に対する透過率の最大値が、10%以下である基板材料用樹脂組成物が提供される。 According to the present invention, there is provided a resin composition for a substrate material containing a thermosetting resin, an inorganic filler, and a black pigment, wherein a cured product of the composition for a substrate material has a thickness of 400 nm to 1100 nm at a thickness of 60 μm. Provided is a resin composition for a substrate material having a maximum transmittance of 10% or less for light having a wavelength of .

また本発明によれば、樹脂組成物が含浸された繊維基材からなる繊維基材層を備えるプリプレグであって、前記樹脂組成物は、上記基板材料用樹脂組成物である、プリプレグが提供される。 Further, according to the present invention, there is provided a prepreg comprising a fiber base material layer made of a fiber base material impregnated with a resin composition, wherein the resin composition is the resin composition for a substrate material. Ru.

また本発明によれば、上記プリプレグと、前記プリプレグに積層された金属箔とを備える、金属張積層板が提供される。 Further, according to the present invention, there is provided a metal-clad laminate including the prepreg described above and a metal foil laminated on the prepreg.

また本発明によれば、上記プリプレグの成形体と、前記成形体の両面または片面に設けられた配線パターンとを備える、プリント配線板が提供される。 Further, according to the present invention, there is provided a printed wiring board comprising the prepreg molded body and a wiring pattern provided on both surfaces or one side of the molded body.

また本発明によれば、上記プリント配線板と、前記プリント配線板に搭載された半導体素子と、を備える半導体装置が提供される。 Further, according to the present invention, there is provided a semiconductor device including the above printed wiring board and a semiconductor element mounted on the printed wiring board.

本発明によれば、紫外から赤外領域にわたる波長領域の光を吸収する基板材料用樹脂組成物、当該樹脂組成物の硬化物を備えるプリプレグ、金属張積層板、プリント配線板、および半導体装置が提供される。 According to the present invention, a resin composition for a substrate material that absorbs light in a wavelength region ranging from ultraviolet to infrared regions, a prepreg comprising a cured product of the resin composition, a metal-clad laminate, a printed wiring board, and a semiconductor device are provided. provided.

以下、本発明の実施の形態について説明する。
本実施形態の基板材料用樹脂組成物(以下、樹脂組成物と称する)は、熱硬化性樹脂と、無機充填材と、黒色顔料とを含み、当該樹脂組成物の硬化物の、厚み60μmにおける400nm~1100nmの波長の光に対する透過率の最大値は、10%以下である。
Embodiments of the present invention will be described below.
The resin composition for a substrate material of the present embodiment (hereinafter referred to as a resin composition) includes a thermosetting resin, an inorganic filler, and a black pigment, and the cured product of the resin composition has a thickness of 60 μm. The maximum value of transmittance for light having a wavelength of 400 nm to 1100 nm is 10% or less.

一実施形態において、本実施形態の樹脂組成物は、その硬化物の厚み60μmにおける400nm~1100nmの波長の光に対する透過率の最大値が、5%以下であることが好ましく、4%以下であることがさらに好ましい。透過率の最大値が10%以下であることにより、この硬化物をコア材とした基板上に光学素子を搭載した場合、光学素子の出射光の反射や拡散が抑制され、また光学素子搭載面とは反対側の面から入射する光の反射や拡散が防止される。これにより、光学素子の光による誤作動を防止することができる。また、光学素子を任意の位置に配置することができるため、光学素子の配置の自由度を上げることができる。 In one embodiment, the resin composition of the present embodiment has a maximum transmittance of 5% or less, preferably 4% or less, for light having a wavelength of 400 nm to 1100 nm at a thickness of 60 μm of the cured product. It is even more preferable. Since the maximum value of the transmittance is 10% or less, when an optical element is mounted on a substrate using this cured product as a core material, reflection and diffusion of the light emitted from the optical element is suppressed, and the surface on which the optical element is mounted is suppressed. Reflection and diffusion of light incident from the opposite surface is prevented. Thereby, malfunction of the optical element due to light can be prevented. Furthermore, since the optical element can be placed at any position, the degree of freedom in arranging the optical element can be increased.

本実施形態の樹脂組成物は、黒色顔料を含む。黒色顔料を含むことにより、紫外から赤外領域にわたる波長領域の光透過率を低減することができる。そのため、当該樹脂組成物の硬化物をコア材として基板を作製したとき、この基板は、紫外から赤外領域にわたる波長領域の光を通さず、またこの基板に光学素子を搭載した場合、光学素子の出射光の反射や拡散が抑制され、そのため光学素子の誤作動が低減される。 The resin composition of this embodiment contains a black pigment. By including the black pigment, it is possible to reduce the light transmittance in the wavelength range from ultraviolet to infrared. Therefore, when a substrate is manufactured using the cured product of the resin composition as a core material, this substrate does not transmit light in the wavelength range from ultraviolet to infrared, and when an optical element is mounted on this substrate, the optical element Reflection and diffusion of the emitted light are suppressed, thereby reducing malfunctions of the optical elements.

本実施形態の樹脂組成物に用いられる熱硬化性樹脂としては、エポキシ樹脂、アクリル樹脂、メラミン樹脂、マレイミド樹脂、フェノキシ樹脂、ポリウレタン樹脂、ジアリルフタレート樹脂、シリコーン樹脂などが挙げられる。熱硬化性樹脂は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。熱硬化性樹脂としては、中でも、エポキシ樹脂を用いることが好ましい。これにより、以下で説明する黒色顔料の分散性を向上できる。 Examples of the thermosetting resin used in the resin composition of this embodiment include epoxy resin, acrylic resin, melamine resin, maleimide resin, phenoxy resin, polyurethane resin, diallyl phthalate resin, and silicone resin. The thermosetting resins may be used alone or in combination of two or more. Among the thermosetting resins, it is preferable to use epoxy resins. Thereby, the dispersibility of the black pigment described below can be improved.

上述したエポキシ樹脂としては、具体的には、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールM型エポキシ樹脂(4,4’-(1,3-フェニレンジイソプリジエン)ビスフェノール型エポキシ樹脂)、ビスフェノールP型エポキシ樹脂(4,4’-(1,4-フェニレンジイソプリジエン)ビスフェノール型エポキシ樹脂)、ビスフェノールZ型エポキシ樹脂(4,4’-シクロヘキシジエンビスフェノール型エポキシ樹脂)などのビスフェノール型エポキシ樹脂;フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、テトラフェノール基エタン型ノボラック型エポキシ樹脂、縮合環芳香族炭化水素構造を有するノボラック型エポキシ樹脂などのノボラック型エポキシ樹脂;ビフェニル型エポキシ樹脂;キシリレン型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂などのアラルキル型エポキシ樹脂;ナフチレンエーテル型エポキシ樹脂、ナフトール型エポキシ樹脂、ナフタレンジオール型エポキシ樹脂、2官能ないし4官能エポキシ型ナフタレン樹脂、ビナフチル型エポキシ樹脂、ナフタレンアラルキル型エポキシ樹脂、ナフタレン変性クレゾールノボラック型エポキシ樹脂などのナフタレン骨格を有するエポキシ樹脂;アントラセン型エポキシ樹脂;フェノキシ型エポキシ樹脂;ジシクロペンタジエン型エポキシ樹脂;ノルボルネン型エポキシ樹脂;アダマンタン型エポキシ樹脂;フルオレン型エポキシ樹脂などが挙げられる。エポキシ樹脂は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 Specifically, the above-mentioned epoxy resins include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol E type epoxy resin, bisphenol S type epoxy resin, bisphenol M type epoxy resin (4,4'-(1, 3-phenylene diisopridiene) bisphenol type epoxy resin), bisphenol P type epoxy resin (4,4'-(1,4-phenylene diisopridiene) bisphenol type epoxy resin), bisphenol Z type epoxy resin (4, Bisphenol-type epoxy resins such as 4'-cyclohexydiene bisphenol-type epoxy resins; phenol novolac-type epoxy resins, cresol novolak-type epoxy resins, tetraphenol-based ethane-type novolak-type epoxy resins, novolacs having a condensed ring aromatic hydrocarbon structure Novolac-type epoxy resins such as type epoxy resins; biphenyl-type epoxy resins; aralkyl-type epoxy resins such as xylylene-type epoxy resins and biphenylaralkyl-type epoxy resins; naphthylene ether-type epoxy resins, naphthol-type epoxy resins, naphthalene diol-type epoxy resins, Epoxy resins having a naphthalene skeleton such as difunctional to tetrafunctional epoxy naphthalene resins, binaphthyl epoxy resins, naphthalene aralkyl epoxy resins, naphthalene-modified cresol novolak epoxy resins; anthracene epoxy resins; phenoxy epoxy resins; dicyclopentadiene Type epoxy resins; norbornene type epoxy resins; adamantane type epoxy resins; fluorene type epoxy resins and the like. The epoxy resins may be used alone or in combination of two or more.

エポキシ樹脂の中でも、樹脂組成物の硬化物の耐熱性および絶縁信頼性をより一層向上できる観点から、ビスフェノール型エポキシ樹脂、ノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、アラルキル型エポキシ樹脂、ナフタレン型エポキシ樹脂、アントラセン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂からなる群から選択される一種または二種以上が好ましく、アラルキル型エポキシ樹脂、縮合環芳香族炭化水素構造を有するノボラック型エポキシ樹脂およびナフタレン型エポキシ樹脂からなる群から選択される一種または二種以上がより好ましい。 Among epoxy resins, bisphenol-type epoxy resins, novolac-type epoxy resins, biphenyl-type epoxy resins, aralkyl-type epoxy resins, and naphthalene-type epoxy resins are selected from the viewpoint of further improving the heat resistance and insulation reliability of cured resin compositions. , anthracene type epoxy resin, and dicyclopentadiene type epoxy resin are preferred, and aralkyl type epoxy resin, novolak type epoxy resin having a condensed ring aromatic hydrocarbon structure, and naphthalene type epoxy resin. More preferably, one or more selected from the group consisting of:

ビスフェノールA型エポキシ樹脂としては、三菱化学社製の「エピコート828EL」および「YL980」等を用いることができる。ビスフェノールF型エポキシ樹脂としては、三菱化学社製の「jER806H」および「YL983U」、DIC社製の「EPICLON 830S」等を用いることができる。2官能ナフタレン型エポキシ樹脂としては、DIC社製の「HP4032」、「HP4032D」および「HP4032SS」等を用いることができる。4官能ナフタレン型エポキシ樹脂としては、DIC社製の「HP4700」および「HP4710」等を用いることができる。ナフトール型エポキシ樹脂としては、新日鐵化学社製の「ESN-475V」、日本化薬社製の「NC7000L」等を用いることができる。アラルキル型エポキシ樹脂としては、日本化薬社製の「NC3000」、「NC3000H」、「NC3000L」、「NC3000S」、「NC3000S-H」、「NC3100」、新日鐵化学社製の「ESN-170」、および「ESN-480」等を用いることができる。ビフェニル型エポキシ樹脂としては、三菱化学社製の「YX4000」、「YX4000H」、「YX4000HK」および「YL6121」等を用いることができる。アントラセン型エポキシ樹脂としては、三菱化学社製の「YX8800」等を用いることができる。ナフチレンエーテル型エポキシ樹脂としては、DIC社製の「HP6000」、「EXA-7310」、「EXA-7311」、「EXA-7311L」および「EXA7311-G3」等を用いることができる。 As the bisphenol A epoxy resin, "Epicote 828EL" and "YL980" manufactured by Mitsubishi Chemical Corporation can be used. As the bisphenol F type epoxy resin, "jER806H" and "YL983U" manufactured by Mitsubishi Chemical Corporation, "EPICLON 830S" manufactured by DIC Corporation, etc. can be used. As the bifunctional naphthalene type epoxy resin, "HP4032", "HP4032D", "HP4032SS", etc. manufactured by DIC Corporation can be used. As the tetrafunctional naphthalene type epoxy resin, "HP4700" and "HP4710" manufactured by DIC Corporation can be used. As the naphthol type epoxy resin, "ESN-475V" manufactured by Nippon Steel Chemical Co., Ltd., "NC7000L" manufactured by Nippon Kayaku Co., Ltd., etc. can be used. Aralkyl type epoxy resins include "NC3000", "NC3000H", "NC3000L", "NC3000S", "NC3000S-H", "NC3100" manufactured by Nippon Kayaku Co., Ltd., and "ESN-170" manufactured by Nippon Steel Chemical Co., Ltd. ”, “ESN-480”, etc. can be used. As the biphenyl type epoxy resin, "YX4000", "YX4000H", "YX4000HK", "YL6121", etc. manufactured by Mitsubishi Chemical Corporation can be used. As the anthracene type epoxy resin, "YX8800" manufactured by Mitsubishi Chemical Corporation, etc. can be used. As the naphthylene ether type epoxy resin, "HP6000", "EXA-7310", "EXA-7311", "EXA-7311L", "EXA7311-G3", etc. manufactured by DIC Corporation can be used.

これらエポキシ樹脂の中でも特にアラルキル型エポキシ樹脂が好ましい。これにより、樹脂組成物の硬化物の吸湿半田耐熱性および難燃性をさらに向上させることができる。 Among these epoxy resins, aralkyl epoxy resins are particularly preferred. Thereby, the moisture absorption solder heat resistance and flame retardance of the cured product of the resin composition can be further improved.

アラルキル型エポキシ樹脂は、例えば、下記一般式(1)で表される。 The aralkyl type epoxy resin is represented by the following general formula (1), for example.

Figure 0007424401000001
(上記一般式(1)中、AおよびBは、ベンゼン環、ビフェニル構造等の芳香族環を表す。またAおよびBの芳香族環の水素が置換されていてもよい。置換基としては、例えば、メチル基、エチル基、プロピル基、フェニル基等が挙げられる。nは繰返し単位を表し、例えば、1~10の整数である。)
Figure 0007424401000001
(In the above general formula (1), A and B represent an aromatic ring such as a benzene ring or a biphenyl structure. Furthermore, hydrogen in the aromatic rings of A and B may be substituted. As a substituent, Examples include methyl group, ethyl group, propyl group, phenyl group, etc. n represents a repeating unit and is, for example, an integer from 1 to 10.)

アラルキル型エポキシ樹脂の具体例としては、以下の式(1a)および式(1b)が挙げられる。 Specific examples of aralkyl-type epoxy resins include the following formulas (1a) and (1b).

Figure 0007424401000002
(式(1a)中、nは、1~5の整数を示す。)
Figure 0007424401000002
(In formula (1a), n represents an integer from 1 to 5.)

Figure 0007424401000003
(式(1b)中、nは、1~5の整数を示す。)
Figure 0007424401000003
(In formula (1b), n represents an integer from 1 to 5.)

上記以外のエポキシ樹脂としては縮合環芳香族炭化水素構造を有するノボラック型エポキシ樹脂が好ましい。これにより、耐熱性、低熱膨張性をさらに向上させることができる。 As the epoxy resin other than the above, a novolac type epoxy resin having a condensed ring aromatic hydrocarbon structure is preferable. Thereby, heat resistance and low thermal expansion properties can be further improved.

縮合環芳香族炭化水素構造を有するノボラック型エポキシ樹脂は、ナフタレン、アントラセン、フェナントレン、テトラセン、クリセン、ピレン、トリフェニレン、テトラフェン、またはその他の縮合環芳香族炭化水素構造を有するノボラック型エポキシ樹脂である。縮合環芳香族炭化水素構造を有するノボラック型エポキシ樹脂は、複数の芳香環が規則的に配列することができるため低熱膨張性に優れる。また、ガラス転移温度も高いため耐熱性に優れる。さらに、繰返し構造の分子量が大きいため従来のノボラック型エポキシ樹脂に比べ難燃性に優れる。 The novolac type epoxy resin having a condensed ring aromatic hydrocarbon structure is naphthalene, anthracene, phenanthrene, tetracene, chrysene, pyrene, triphenylene, tetraphene, or other novolac type epoxy resin having a condensed ring aromatic hydrocarbon structure. . Novolak-type epoxy resins having a condensed ring aromatic hydrocarbon structure have excellent low thermal expansion properties because a plurality of aromatic rings can be regularly arranged. In addition, it has a high glass transition temperature, so it has excellent heat resistance. Furthermore, because the molecular weight of the repeating structure is large, it has superior flame retardancy compared to conventional novolak-type epoxy resins.

縮合環芳香族炭化水素構造を有するノボラック型エポキシ樹脂は、フェノール類化合物、アルデヒド類化合物、および縮合環芳香族炭化水素化合物から合成された、ノボラック型フェノール樹脂をエポキシ化したものである。 A novolak type epoxy resin having a condensed ring aromatic hydrocarbon structure is an epoxidized novolak type phenol resin synthesized from a phenol compound, an aldehyde compound, and a condensed ring aromatic hydrocarbon compound.

マレイミド化合物のマレイミド基は、5員環の平面構造を有し、マレイミド基の二重結合が分子間で相互作用しやすく極性が高いため、マレイミド基、ベンゼン環、その他の平面構造を有する化合物等と強い分子間相互作用を示し、分子運動を抑制することができる。そのため、樹脂組成物は、マレイミド化合物を含むことにより、得られる硬化物の線膨張係数を下げ、ガラス転移温度を向上させることができ、さらに、耐熱性を向上させることができる。 The maleimide group of a maleimide compound has a five-membered ring planar structure, and the double bond of the maleimide group easily interacts between molecules and is highly polar. It exhibits strong intermolecular interactions and can suppress molecular movement. Therefore, by containing the maleimide compound, the resin composition can lower the linear expansion coefficient of the resulting cured product, improve the glass transition temperature, and further improve heat resistance.

マレイミド化合物としては、分子内に少なくとも2つのマレイミド基を有するマレイミド化合物が好ましい。分子内に少なくとも2つのマレイミド基を有するマレイミド化合物としては、例えば、4,4’-ジフェニルメタンビスマレイミド、m-フェニレンビスマレイミド、p-フェニレンビスマレイミド、2,2-ビス[4-(4-マレイミドフェノキシ)フェニル]プロパン、ビス-(3-エチル-5-メチル-4-マレイミドフェニル)メタン、4-メチル-1,3-フェニレンビスマレイミド、N,N’-エチレンジマレイミド、N,N’-ヘキサメチレンジマレイミド、ビス(4-マレイミドフェニル)エーテル、ビス(4-マレイミドフェニル)スルホン、3,3-ジメチル-5,5-ジエチル-4,4-ジフェニルメタンビスマレイミド、ビスフェノールAジフェニルエーテルビスマレイミド等の分子内に2つのマレイミド基を有する化合物、ポリフェニルメタンマレイミド等の分子内に3つ以上のマレイミド基を有する化合物等が挙げられる。 As the maleimide compound, a maleimide compound having at least two maleimide groups in the molecule is preferred. Examples of maleimide compounds having at least two maleimide groups in the molecule include 4,4'-diphenylmethane bismaleimide, m-phenylene bismaleimide, p-phenylene bismaleimide, 2,2-bis[4-(4-maleimide) phenoxy)phenyl]propane, bis-(3-ethyl-5-methyl-4-maleimidophenyl)methane, 4-methyl-1,3-phenylenebismaleimide, N,N'-ethylene dimaleimide, N,N'- Hexamethylene dimaleimide, bis(4-maleimidophenyl) ether, bis(4-maleimidophenyl) sulfone, 3,3-dimethyl-5,5-diethyl-4,4-diphenylmethane bismaleimide, bisphenol A diphenyl ether bismaleimide, etc. Examples include compounds having two maleimide groups in the molecule, and compounds having three or more maleimide groups in the molecule such as polyphenylmethane maleimide.

これらの中の1種類を単独で用いることもできるし、2種類以上を併用することもできる。これらのマレイミド化合物の中でも、低吸水率である点等から、4,4’-ジフェニルメタンビスマレイミド、2,2-ビス[4-(4-マレイミドフェノキシ)フェニル]プロパン、ビス-(3-エチル-5-メチル-4-マレイミドフェニル)メタン、ポリフェニルメタンマレイミド、ビスフェノールAジフェニルエーテルビスマレイミドが好ましい。 One of these can be used alone, or two or more can be used in combination. Among these maleimide compounds, 4,4'-diphenylmethane bismaleimide, 2,2-bis[4-(4-maleimidophenoxy)phenyl]propane, and bis-(3-ethyl- Preferred are 5-methyl-4-maleimidophenyl)methane, polyphenylmethanemaleimide, and bisphenol A diphenyl ether bismaleimide.

フェノキシ樹脂としては、例えば、ビスフェノール骨格を有するフェノキシ樹脂、ナフタレン骨格を有するフェノキシ樹脂、アントラセン骨格を有するフェノキシ樹脂、ビフェニル骨格を有するフェノキシ樹脂などが挙げられる。また、これらの骨格を複数種有した構造のフェノキシ樹脂を用いることもできる。 Examples of the phenoxy resin include phenoxy resins having a bisphenol skeleton, phenoxy resins having a naphthalene skeleton, phenoxy resins having an anthracene skeleton, and phenoxy resins having a biphenyl skeleton. Furthermore, a phenoxy resin having a structure having multiple types of these skeletons can also be used.

これらの中でも、フェノキシ樹脂には、ビフェニル骨格およびビスフェノールS骨格を有するフェノキシ樹脂を用いるのが好ましい。ビフェニル骨格が有する剛直性により、フェノキシ樹脂のガラス転移温度を高くすることができるとともに、ビスフェノールS骨格の存在により、フェノキシ樹脂と金属との密着性を向上させることができる。その結果、樹脂組成物の硬化物の耐熱性の向上を図ることができるとともに、樹脂組成物の硬化物を樹脂絶縁層として用いて回路基板を製造する際に、樹脂絶縁層に対する配線層の密着性を向上させることができる。また、フェノキシ樹脂には、ビスフェノールA骨格およびビスフェノールF骨格を有するフェノキシ樹脂を用いるのも好ましい。これにより、回路基板の製造時に、樹脂絶縁層に対する配線層の密着性をさらに向上させることができる。 Among these, it is preferable to use a phenoxy resin having a biphenyl skeleton and a bisphenol S skeleton. The rigidity of the biphenyl skeleton can increase the glass transition temperature of the phenoxy resin, and the presence of the bisphenol S skeleton can improve the adhesion between the phenoxy resin and metal. As a result, it is possible to improve the heat resistance of the cured product of the resin composition, and when manufacturing a circuit board using the cured product of the resin composition as a resin insulating layer, it is possible to improve the adhesion of the wiring layer to the resin insulating layer. can improve sex. Furthermore, it is also preferable to use a phenoxy resin having a bisphenol A skeleton and a bisphenol F skeleton. Thereby, it is possible to further improve the adhesion of the wiring layer to the resin insulating layer when manufacturing the circuit board.

また、下記一般式(X)で表されるビスフェノールアセトフェノン構造を有するフェノキシ樹脂を用いるのも好ましい。 Further, it is also preferable to use a phenoxy resin having a bisphenolacetophenone structure represented by the following general formula (X).

Figure 0007424401000004
Figure 0007424401000004

(式中、R1は互いに同一であっても異なっていてもよく、水素原子、炭素数1以上10以下の炭化水素基またはハロゲン元素から選ばれる基であり、R2は、水素原子、炭素数1以上10以下の炭化水素基またはハロゲン元素から選ばれる基であり、R3は、水素原子または炭素数1以上10以下の炭化水素基であり、mは0以上5以下の整数である。) (In the formula, R1 may be the same or different from each other and is a group selected from a hydrogen atom, a hydrocarbon group having 1 to 10 carbon atoms, or a halogen element, and R2 is a hydrogen atom, a group having 1 or less carbon atoms, (R3 is a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, and m is an integer of 0 to 5.)

ビスフェノールアセトフェノン構造を含むフェノキシ樹脂は、嵩高い構造を持っているため、溶剤溶解性や、配合する熱硬化性樹脂成分との相溶性に優れる。また、低粗度で均一な粗面を形成することができるため微細配線形成性に優れる。 Since the phenoxy resin containing the bisphenolacetophenone structure has a bulky structure, it has excellent solvent solubility and compatibility with the thermosetting resin component to be blended. Furthermore, since a uniform rough surface with low roughness can be formed, it is excellent in forming fine wiring.

ビスフェノールアセトフェノン構造を有するフェノキシ樹脂は、エポキシ樹脂とフェノール樹脂を触媒で高分子量化させる方法などの公知の方法で合成することができる。 A phenoxy resin having a bisphenolacetophenone structure can be synthesized by a known method such as a method of increasing the molecular weight of an epoxy resin and a phenol resin with a catalyst.

ビスフェノールアセトフェノン構造を有するフェノキシ樹脂は、一般式(X)のビスフェノールアセトフェノン構造以外の構造が含まれていても良く、その構造はとくに限定されないが、ビスフェノールA型、ビスフェノールF型、ビスフェノールS型、ビフェニル型、フェノールノボラック型、クレゾールノボラック型の構造などが挙げられる。中でも、ビフェニル型の構造を含むものが、ガラス転移温度が高く好ましい。 The phenoxy resin having a bisphenolacetophenone structure may contain a structure other than the bisphenolacetophenone structure of general formula (X), and the structure is not particularly limited, but may include bisphenol A type, bisphenol F type, bisphenol S type, biphenyl type, phenol novolac type, and cresol novolac type structures. Among these, those containing a biphenyl type structure are preferred because they have a high glass transition temperature.

ビスフェノールアセトフェノン構造を含むフェノキシ樹脂中の一般式(X)のビスフェノールアセトフェノン構造の含有量はとくに限定されないが、好ましくは5モル%以上95モル%以下であり、より好ましくは10モル%以上85モル%以下であり、さらに好ましくは15モル%以上75モル%以下である。含有量が上記下限値以上であると、得られる樹脂組成物の硬化物の耐熱性や耐湿信頼性を向上させる効果を十分に発揮させることができる。また、含有量が上記上限値以下であると、樹脂組成物の溶剤溶解性を向上させることができる。 The content of the bisphenolacetophenone structure of general formula (X) in the phenoxy resin containing a bisphenolacetophenone structure is not particularly limited, but is preferably 5 mol% or more and 95 mol% or less, more preferably 10 mol% or more and 85 mol%. or less, more preferably 15 mol% or more and 75 mol% or less. When the content is at least the above lower limit, the effect of improving the heat resistance and moisture resistance reliability of the cured product of the resulting resin composition can be sufficiently exhibited. Moreover, the solvent solubility of a resin composition can be improved as content is below the said upper limit.

フェノキシ樹脂の重量平均分子量(Mw)は、とくに限定されないが、Mw5,000以上100,000以下が好ましく、10,000以上70,000以下がより好ましく20,000以上50,000以下がさらに好ましい。Mwが上記上限値以下であると、他の樹脂との相溶性や溶剤への溶解性を向上させることができる。上記下限値以上であると、製膜性が向上し、回路基板の製造に用いる場合に不具合が発生するのを抑制することができる。 The weight average molecular weight (Mw) of the phenoxy resin is not particularly limited, but is preferably 5,000 or more and 100,000 or less, more preferably 10,000 or more and 70,000 or less, and even more preferably 20,000 or more and 50,000 or less. When Mw is below the above upper limit, compatibility with other resins and solubility in solvents can be improved. When it is at least the above lower limit, film formability is improved and it is possible to suppress occurrence of defects when used for manufacturing circuit boards.

フェノキシ樹脂の含有量は、とくに限定されないが、充填材を除く樹脂組成物の0.5重量%以上40重量%以下が好ましく、1重量%以上20重量%以下がより好ましい。含有量が上記下限値以上であると絶縁樹脂層の機械強度の低下や、導体回路とのメッキ密着性の低下を抑制することができる。上記上限値以下であると、樹脂絶縁層の熱膨張率の増加を抑制でき、耐熱性を低下させることができる。 The content of the phenoxy resin is not particularly limited, but is preferably 0.5% to 40% by weight of the resin composition excluding fillers, and more preferably 1% to 20% by weight. When the content is at least the above lower limit, it is possible to suppress a decrease in the mechanical strength of the insulating resin layer and a decrease in plating adhesion to the conductor circuit. When it is below the above upper limit, an increase in the coefficient of thermal expansion of the resin insulating layer can be suppressed, and the heat resistance can be reduced.

本実施形態の樹脂組成物に用いられる無機充填材としては、タルク、焼成クレー、未焼成クレー、マイカ、ガラスなどのケイ酸塩;酸化チタン、アルミナ、ベーマイト、シリカ、溶融シリカなどの酸化物;炭酸カルシウム、炭酸マグネシウム、ハイドロタルサイトなどの炭酸塩;水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウムなどの水酸化物;硫酸バリウム、硫酸カルシウム、亜硫酸カルシウムなどの硫酸塩または亜硫酸塩;ホウ酸亜鉛、メタホウ酸バリウム、ホウ酸アルミニウム、ホウ酸カルシウム、ホウ酸ナトリウムなどのホウ酸塩;窒化アルミニウム、窒化ホウ素、窒化ケイ素、窒化炭素などの窒化物;チタン酸ストロンチウム、チタン酸バリウムなどのチタン酸塩などが挙げられる。充填材は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。充填材としては、シリカを用いることが好ましい。 Inorganic fillers used in the resin composition of the present embodiment include silicates such as talc, fired clay, unfired clay, mica, and glass; oxides such as titanium oxide, alumina, boehmite, silica, and fused silica; Carbonates such as calcium carbonate, magnesium carbonate, hydrotalcite; hydroxides such as aluminum hydroxide, magnesium hydroxide, calcium hydroxide; sulfates or sulfites such as barium sulfate, calcium sulfate, calcium sulfite; zinc borate , borates such as barium metaborate, aluminum borate, calcium borate, sodium borate; nitrides such as aluminum nitride, boron nitride, silicon nitride, carbon nitride; titanates such as strontium titanate, barium titanate Examples include. The fillers may be used alone or in combination of two or more. It is preferable to use silica as the filler.

本実施形態の樹脂組成物に用いられる黒色顔料としては、黒色酸化チタンなどの無機酸化物;カーボンブラック、グラファイト、フラーレン、カーボンファイバーなどの炭素化合物などが挙げられる。中でも、黒色顔料としては、黒色酸化チタンが好ましい。黒色酸化チタンは、Ti2n-1(nは正の整数)で表されるチタン酸化物であり、この黒色酸化チタンTi2n-1(nは正の整数)は、例えば、黒色酸化チタンTi2n-1(nは2以上6以下の整数)を含むことが好ましい。このような黒色酸化チタンは、樹脂組成物中に高分散するため、得られる樹脂組成物の光透過率を低減することができる。 Examples of the black pigment used in the resin composition of the present embodiment include inorganic oxides such as black titanium oxide; carbon compounds such as carbon black, graphite, fullerene, and carbon fiber. Among these, black titanium oxide is preferred as the black pigment. Black titanium oxide is a titanium oxide represented by Ti n O 2n-1 ( n is a positive integer). It is preferable to include titanium oxide Ti n O 2n-1 (n is an integer of 2 or more and 6 or less). Since such black titanium oxide is highly dispersed in the resin composition, it is possible to reduce the light transmittance of the resulting resin composition.

黒色酸化チタンの平均粒径の上限値は、特に限定されないが、例えば、2.0μm以下が好ましく、1.9μm以下がより好ましく、1.8μm以下がさらに好ましい。これにより、黒色酸化チタンの樹脂組成物中への分散性を高めることができる。また、黒色酸化チタンの平均粒径の下限値は、特に限定されないが、例えば、0.1μm以上が好ましく、0.2μm以上がさらに好ましい。このような平均粒径を有する黒色酸化チタンは、製造容易性および取扱い性の観点から好ましい。 The upper limit of the average particle diameter of black titanium oxide is not particularly limited, but is preferably 2.0 μm or less, more preferably 1.9 μm or less, and even more preferably 1.8 μm or less. Thereby, the dispersibility of black titanium oxide in the resin composition can be improved. Further, the lower limit of the average particle diameter of black titanium oxide is not particularly limited, but is preferably 0.1 μm or more, and more preferably 0.2 μm or more, for example. Black titanium oxide having such an average particle size is preferable from the viewpoint of ease of manufacture and handling.

本実施形態において、黒色酸化チタンは、樹脂組成物の固形分全体に対して、1重量%以上10重量%以下の量で配合されることが好ましい。このような含有量で黒色酸化チタンを用いることにより、得られる樹脂組成物の光透過率を所望の範囲に調整することができる。 In this embodiment, black titanium oxide is preferably blended in an amount of 1% by weight or more and 10% by weight or less based on the entire solid content of the resin composition. By using black titanium oxide in such a content, the light transmittance of the resulting resin composition can be adjusted to a desired range.

本実施形態の樹脂組成物は、必要に応じて、硬化剤を含んでもよい。使用できる硬化剤としては、例えば、フェノール樹脂、ベンゾオキサジン樹脂、シアネート樹脂、活性エステル樹脂などを用いることができる。硬化剤としては、例えば、シアネート樹脂を用いることが好ましい。これにより、黒色酸化チタンを樹脂組成物中に好適に分散させることができ、また得られる樹脂組成物の硬化物は高ガラス転移温度Tg、高剛性、低線膨張性を有する。 The resin composition of this embodiment may contain a curing agent, if necessary. As curing agents that can be used, for example, phenol resins, benzoxazine resins, cyanate resins, active ester resins, etc. can be used. As the curing agent, for example, it is preferable to use cyanate resin. Thereby, the black titanium oxide can be suitably dispersed in the resin composition, and the cured product of the resin composition obtained has a high glass transition temperature Tg, high rigidity, and low linear expansion.

上記フェノール樹脂は、一分子内にフェノール性水酸基を2個以上有するモノマー、オリゴマー、ポリマーであり、具体的には、フェノールノボラック樹脂、クレゾールノボラック樹脂、ナフトールノボラック樹脂などのノボラック型フェノール樹脂;トリフェノールメタン型フェノール樹脂などの多官能型フェノール樹脂;テルペン変性フェノール樹脂、ジシクロペンタジエン変性フェノール樹脂などの変性フェノール樹脂;フェニレン骨格および/またはビフェニレン骨格を有するフェノールアラルキル樹脂、フェニレンおよび/またはビフェニレン骨格を有するナフトールアラルキル樹脂などのアラルキル型樹脂;ビスフェノールA、ビスフェノールFなどのビスフェノール化合物などが挙げられる。フェノール樹脂は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。なお、フェノール樹脂としては、室温25℃で液状である液状フェノール樹脂を含むことが好ましい。 The above-mentioned phenolic resins are monomers, oligomers, and polymers having two or more phenolic hydroxyl groups in one molecule, and specifically include novolak-type phenolic resins such as phenol novolac resins, cresol novolac resins, and naphthol novolac resins; Polyfunctional phenolic resins such as methane-type phenolic resins; modified phenolic resins such as terpene-modified phenolic resins and dicyclopentadiene-modified phenolic resins; phenolic aralkyl resins having a phenylene skeleton and/or biphenylene skeleton, and phenol aralkyl resins having a phenylene and/or biphenylene skeleton Aralkyl type resins such as naphthol aralkyl resins; bisphenol compounds such as bisphenol A and bisphenol F; and the like. The phenol resins may be used alone or in combination of two or more. Note that the phenol resin preferably includes a liquid phenol resin that is liquid at room temperature of 25°C.

上記ベンゾオキサジン樹脂としては、具体的には、o-クレゾールアニリン型ベンゾオキサジン樹脂、m-クレゾールアニリン型ベンゾオキサジン樹脂、p-クレゾールアニリン型ベンゾオキサジン樹脂、フェノール-アニリン型ベンゾオキサジン樹脂、フェノール-メチルアミン型ベンゾオキサジン樹脂、フェノール-シクロヘキシルアミン型ベンゾオキサジン樹脂、フェノール-m-トルイジン型ベンゾオキサジン樹脂、フェノール-3,5-ジメチルアニリン型ベンゾオキサジン樹脂、ビスフェノールA-アニリン型ベンゾオキサジン樹脂、ビスフェノールA-アミン型ベンゾオキサジン樹脂、ビスフェノールF-アニリン型ベンゾオキサジン樹脂、ビスフェノールS-アニリン型ベンゾオキサジン樹脂、ジヒドロキシジフェニルスルホン-アニリン型ベンゾオキサジン樹脂、ジヒドロキシジフェニルエーテル-アニリン型ベンゾオキサジン樹脂、ベンゾフェノン型ベンゾオキサジン樹脂、ビフェニル型ベンゾオキサジン樹脂、ビスフェノールAF-アニリン型ベンゾオキサジン樹脂、ビスフェノールA-メチルアニリン型ベンゾオキサジン樹脂、フェノール-ジアミノジフェニルメタン型ベンゾオキサジン樹脂、トリフェニルメタン型ベンゾオキサジン樹脂、およびフェノールフタレイン型ベンゾオキサジン樹脂などが挙げられる。
また、ベンゾオキサジン樹脂の市販品としては、例えば、BF-BXZ、BS-BXZ、BA-BXZ(以上、小西化学工業社製)などを用いることができる。
Specifically, the above-mentioned benzoxazine resins include o-cresolaniline type benzoxazine resin, m-cresolaniline type benzoxazine resin, p-cresolaniline type benzoxazine resin, phenol-aniline type benzoxazine resin, phenol-methyl Amine type benzoxazine resin, phenol-cyclohexylamine type benzoxazine resin, phenol-m-toluidine type benzoxazine resin, phenol-3,5-dimethylaniline type benzoxazine resin, bisphenol A-aniline type benzoxazine resin, bisphenol A- Amine type benzoxazine resin, bisphenol F-aniline type benzoxazine resin, bisphenol S-aniline type benzoxazine resin, dihydroxydiphenylsulfone-aniline type benzoxazine resin, dihydroxydiphenyl ether-aniline type benzoxazine resin, benzophenone type benzoxazine resin, biphenyl type benzoxazine resin, bisphenol AF-aniline type benzoxazine resin, bisphenol A-methylaniline type benzoxazine resin, phenol-diaminodiphenylmethane type benzoxazine resin, triphenylmethane type benzoxazine resin, and phenolphthalein type benzoxazine resin, etc. can be mentioned.
Furthermore, as commercially available benzoxazine resins, for example, BF-BXZ, BS-BXZ, BA-BXZ (all manufactured by Konishi Kagaku Kogyo Co., Ltd.), etc. can be used.

上記シアネート樹脂としては、シアネートエステル樹脂を用いることができる。
シアネートエステル樹脂としては、具体的には、ビスフェノールAジシアネート、ポリフェノールシアネート(オリゴ(3-メチレン-1,5-フェニレンシアネート)、4,4’-メチレンビス(2,6-ジメチルフェニルシアネート)、4,4’-エチリデンジフェニルジシアネート、ヘキサフルオロビスフェノールAジシアネート、2,2-ビス(4-シアネート)フェニルプロパン、1,1-ビス(4-シアネートフェニルメタン)、ビス(4-シアネート-3,5-ジメチルフェニル)メタン、1,3-ビス(4-シアネートフェニル-1-(メチルエチリデン))ベンゼン、ビス(4-シアネートフェニル)チオエーテル、ビス(4-シアネートフェニル)エーテルなどの2官能シアネート樹脂;フェノールノボラック、クレゾールノボラック、ジシクロペンタジエン構造含有フェノール樹脂などから誘導される多官能シアネート樹脂;上記例示したシアネートエステル樹脂の一部がトリアジン化したプレポリマーなどが挙げられる。
ここで、シアネートエステル樹脂の市販品としては、例えば、ロンザジャパン社製のPT30、BA230、DT-4000、DT-7000などを用いることができる。
As the cyanate resin, cyanate ester resin can be used.
Specifically, the cyanate ester resins include bisphenol A dicyanate, polyphenol cyanate (oligo(3-methylene-1,5-phenylene cyanate), 4,4'-methylenebis(2,6-dimethylphenyl cyanate), 4, 4'-ethylidene diphenyl dicyanate, hexafluorobisphenol A dicyanate, 2,2-bis(4-cyanate) phenylpropane, 1,1-bis(4-cyanate phenylmethane), bis(4-cyanate-3,5- Difunctional cyanate resins such as dimethylphenyl)methane, 1,3-bis(4-cyanatophenyl-1-(methylethylidene))benzene, bis(4-cyanatophenyl)thioether, and bis(4-cyanatophenyl)ether; phenol Polyfunctional cyanate resins derived from novolak, cresol novolac, phenolic resins containing dicyclopentadiene structures, etc.; prepolymers in which a portion of the above-exemplified cyanate ester resins are triazinized, and the like.
Here, as commercially available cyanate ester resins, for example, PT30, BA230, DT-4000, DT-7000 manufactured by Lonza Japan, etc. can be used.

上記活性エステル樹脂としては、具体的には、フェノールエステル化合物、チオフェノールエステル化合物、N-ヒドロキシアミンエステル化合物、複素環ヒドロキシ基がエステル化された化合物等の反応活性の高いエステル基を有し、エポキシ樹脂の硬化作用を有するものを用いることができる。
活性エステル樹脂としては、上記具体例のうち、例えば、カルボン酸化合物とヒドロキシ化合物とから得られるものを用いることが好ましい。ここで、ヒドロキシ化合物としては、具体的には、フェノール化合物、ナフトール化合物などが挙げられる。
Specifically, the active ester resin has an ester group with high reaction activity such as a phenol ester compound, a thiophenol ester compound, an N-hydroxyamine ester compound, a compound in which a heterocyclic hydroxy group is esterified, An epoxy resin having a curing effect can be used.
As the active ester resin, it is preferable to use, for example, one obtained from a carboxylic acid compound and a hydroxy compound among the above specific examples. Here, specific examples of the hydroxy compound include phenol compounds, naphthol compounds, and the like.

上記カルボン酸化合物としては、具体的には、安息香酸、酢酸、コハク酸、マレイン酸、イタコン酸、フタル酸、イソフタル酸、テレフタル酸、ピロメリット酸などが挙げられる。
また、上記フェノール化合物としては、具体的には、ヒドロキノン、レゾルシン、ビスフェノールA、ビスフェノールF、ビスフェノールS、フェノールフタリン、メチル化ビスフェノールA、メチル化ビスフェノールF、メチル化ビスフェノールS、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、カテコール、ジヒドロキシベンゾフェノン、トリヒドロキシベンゾフェノン、テトラヒドロキシベンゾフェノン、フロログルシン、ベンゼントリオール、ジシクロペンタジエニルジフェノール、フェノールノボラックなどが挙げられる。
また、上記ナフトール化合物としては、具体的には、α-ナフトール、β-ナフトール、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレンなどが挙げられる。
Specific examples of the carboxylic acid compound include benzoic acid, acetic acid, succinic acid, maleic acid, itaconic acid, phthalic acid, isophthalic acid, terephthalic acid, and pyromellitic acid.
In addition, specific examples of the above-mentioned phenol compounds include hydroquinone, resorcinol, bisphenol A, bisphenol F, bisphenol S, phenolphthalin, methylated bisphenol A, methylated bisphenol F, methylated bisphenol S, phenol, and o-cresol. , m-cresol, p-cresol, catechol, dihydroxybenzophenone, trihydroxybenzophenone, tetrahydroxybenzophenone, phloroglucin, benzenetriol, dicyclopentadienyl diphenol, phenol novolak, and the like.
Further, specific examples of the naphthol compounds include α-naphthol, β-naphthol, 1,5-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, and 2,6-dihydroxynaphthalene.

本実施形態の樹脂組成物は、必要に応じて、硬化促進剤、着色剤、カップリング剤、レベリング剤、難燃剤等のさらなる成分を含んでもよい。 The resin composition of this embodiment may contain further components such as a curing accelerator, a coloring agent, a coupling agent, a leveling agent, and a flame retardant, as necessary.

上記硬化促進剤としては、エポキシ樹脂と、硬化剤との反応を促進させるものを用いることができる。硬化促進剤の具体例としては、ナフテン酸亜鉛、ナフテン酸コバルト、オクチル酸スズ、オクチル酸コバルト、オクチル酸亜鉛、ビスアセチルアセトナートコバルト(II)、トリスアセチルアセトナートコバルト(III)などの有機金属塩、トリエチルアミン、トリブチルアミン、ジアザビシクロ[2,2,2]オクタンなどの3級アミン類、テトラフェニルホスホニウム・テトラフェニルボレート(TPP-K)、テトラフェニルホスホニウム・テトラキス(4-メチルフェニル)ボレート(TPP-MK)、テトラフェニルホスホニウムのビス(ナフタレン-2,3-ジオキシ)フェニルシリケート付加物のような四級ホスホニウム系化合物、2-フェニル-4-メチルイミダゾール、2-エチル-4-エチルイミダゾール、2-フェニル-4-エチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシイミダゾール、2-フェニル-4,5-ジヒドロキシイミダゾールなどのイミダゾール類、フェノール、ビスフェノールA、ノニルフェノールなどのフェノール化合物、酢酸、安息香酸、サリチル酸、パラトルエンスルホン酸などの有機酸、およびオニウム塩化合物などが挙げられる。 As the curing accelerator, one that accelerates the reaction between the epoxy resin and the curing agent can be used. Specific examples of curing accelerators include organic metals such as zinc naphthenate, cobalt naphthenate, tin octylate, cobalt octylate, zinc octylate, cobalt (II) bisacetylacetonate, and cobalt (III) trisacetylacetonate. salts, triethylamine, tributylamine, tertiary amines such as diazabicyclo[2,2,2]octane, tetraphenylphosphonium tetraphenylborate (TPP-K), tetraphenylphosphonium tetrakis(4-methylphenyl)borate (TPP -MK), quaternary phosphonium compounds such as bis(naphthalene-2,3-dioxy)phenylsilicate adduct of tetraphenylphosphonium, 2-phenyl-4-methylimidazole, 2-ethyl-4-ethylimidazole, 2 - Imidazoles such as phenyl-4-ethylimidazole, 2-phenyl-4-methyl-5-hydroxyimidazole, and 2-phenyl-4,5-dihydroxyimidazole, phenolic compounds such as phenol, bisphenol A, and nonylphenol, acetic acid, benzoic Examples thereof include acids, organic acids such as salicylic acid and para-toluenesulfonic acid, and onium salt compounds.

硬化促進剤として用いられるオニウム塩化合物は、特に限定されないが、例えば、下記一般式(2)で表される化合物を用いることができる。 The onium salt compound used as the curing accelerator is not particularly limited, but for example, a compound represented by the following general formula (2) can be used.

Figure 0007424401000005
(上記一般式(2)中、Pはリン原子、R3、R4、R5およびR6は、それぞれ、置換もしくは無置換の芳香環または複素環を有する有機基、あるいは置換もしくは無置換の脂肪族基を示し、互いに同一であっても異なっていてもよい。A-は分子外に放出しうるプロトンを少なくとも1個以上分子内に有するn(n≧1)価のプロトン供与体のアニオン、またはその錯アニオンを示す)
Figure 0007424401000005
(In the above general formula (2), P is a phosphorus atom, R3, R4, R5 and R6 are each an organic group having a substituted or unsubstituted aromatic ring or a heterocycle, or a substituted or unsubstituted aliphatic group. A- is an anion of an n-valent proton donor (n≧1) that has at least one proton that can be released outside the molecule, or a complex thereof. (indicates anion)

硬化促進剤の含有量の下限値は、例えば、熱硬化性樹脂組成物の全固形分100重量%に対して、たとえば、0.01重量%以上としてもよく、好ましくは0.05重量%以上としてもよい。硬化促進剤の含有量を上記下限値以上とすることにより、熱硬化性樹脂組成物の硬化性をより効果的に向上させることができる。一方、硬化促進剤の含有量の上限値は、例えば、熱硬化性樹脂組成物の全固形分100重量%に対して、2.5重量%以下としてもよく、好ましくは1重量%以下としてもよい。硬化促進剤の含有量を上記上限値以下とすることにより、熱硬化性樹脂組成物の保存性を向上させることができる。 The lower limit of the content of the curing accelerator may be, for example, 0.01% by weight or more, preferably 0.05% by weight or more, based on 100% by weight of the total solid content of the thermosetting resin composition. You can also use it as By setting the content of the curing accelerator to the above lower limit or more, the curability of the thermosetting resin composition can be improved more effectively. On the other hand, the upper limit of the content of the curing accelerator may be, for example, 2.5% by weight or less, preferably 1% by weight or less, based on 100% by weight of the total solid content of the thermosetting resin composition. good. By controlling the content of the curing accelerator to be less than or equal to the above upper limit, the storage stability of the thermosetting resin composition can be improved.

上記着色剤としては、上述の黒色顔料以外の黒色染料または黒色色素を用いることができる。黒色染料としては、具体的には、アゾ系等の金属錯塩黒色染料、または、アントラキノン系化合物等の有機黒色染料などが挙げられ、より具体的には、Kayaset Black A-N(日本化薬社製)、Kayaset Black G(日本化薬社製)等が挙げられる。本実施形態において、黒色染料は1種または2種以上用いてもよい。 As the coloring agent, a black dye or a black pigment other than the above-mentioned black pigment can be used. Specific examples of the black dye include metal complex black dyes such as azo-based, organic black dyes such as anthraquinone-based compounds, and more specifically, Kayaset Black A-N (Nippon Kayaku Co., Ltd.). (manufactured by Nippon Kayaku Co., Ltd.), Kayaset Black G (manufactured by Nippon Kayaku Co., Ltd.), and the like. In this embodiment, one or more types of black dye may be used.

上記カップリング剤としては、エポキシシランカップリング剤、カチオニックシランカップリング剤、アミノシランカップリング剤などのシランカップリング剤、チタネート系カップリング剤およびシリコーンオイル型カップリング剤などが挙げられる。カップリング剤は、1種単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 Examples of the coupling agent include silane coupling agents such as epoxy silane coupling agents, cationic silane coupling agents, and aminosilane coupling agents, titanate coupling agents, and silicone oil type coupling agents. The coupling agents may be used alone or in combination of two or more.

本実施形態における回路基板用樹脂組成物は、ポリイミド樹脂、ポリアミドイミド樹脂、ポリフェニレンオキサイド樹脂、ポリエーテルスルホン樹脂、ポリエステル樹脂、ポリエチレン樹脂、ポリスチレン樹脂などの熱可塑性樹脂、スチレン-ブタジエン共重合体、スチレン-イソプレン共重合体などのポリスチレン系熱可塑性エラストマー、ポリオレフィン系熱可塑性エラストマー、ポリアミド系エラストマー、ポリエステル系エラストマーなどの熱可塑性エラストマ-、ポリブタジエン、エポキシ変性ポリブタジエン、アクリル変性ポリブタジエン、メタクリル変性ポリブタジエンなどのジエン系エラストマーをさらに併用してもよい。 The resin composition for circuit boards in this embodiment includes thermoplastic resins such as polyimide resin, polyamideimide resin, polyphenylene oxide resin, polyethersulfone resin, polyester resin, polyethylene resin, and polystyrene resin, styrene-butadiene copolymer, and styrene. - Thermoplastic elastomers such as polystyrene-based thermoplastic elastomers such as isoprene copolymers, polyolefin-based thermoplastic elastomers, polyamide-based elastomers, and polyester-based elastomers - Diene systems such as polybutadiene, epoxy-modified polybutadiene, acrylic-modified polybutadiene, and methacrylic-modified polybutadiene An elastomer may also be used in combination.

本実施形態の樹脂組成物は、原料成分を溶媒に溶解、分散させることにより、ワニス状の組成物として提供される。
溶媒としては、具体的には、アセトン、メチルエチルケトン、メチルイソブチルケトン、トルエン、酢酸エチル、ヘプタン、シクロヘキサン、シクロヘキサノン、テトラヒドロフラン、ジメチルホルムアミド、ジメチルアセトアミド、ジメチルスルホキシド、エチレングリコール、セルソルブ系、カルビトール系、アニソール、およびN-メチルピロリドンなどが挙げられる。溶媒は、1種単独で用いても、2種以上を組み合わせて用いてもよい。
The resin composition of this embodiment is provided as a varnish-like composition by dissolving and dispersing the raw ingredients in a solvent.
Specific examples of the solvent include acetone, methyl ethyl ketone, methyl isobutyl ketone, toluene, ethyl acetate, heptane, cyclohexane, cyclohexanone, tetrahydrofuran, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, ethylene glycol, cellosolve series, carbitol series, and anisole. , and N-methylpyrrolidone. The solvents may be used alone or in combination of two or more.

(基板材料用樹脂組成物の製造方法)
本実施形態の熱硬化性樹脂組成物は、上述した原料成分を、例えば、超音波分散方式、高圧衝突式分散方式、高速回転分散方式、ビーズミル方式、高速せん断分散方式、および自転公転式分散方式などの各種混合機を用いて溶剤中に溶解、混合、撹拌することにより調製することができる。
基板材料用樹脂組成物の製造方法としては、黒色顔料を溶媒中に溶解、分散させた後、黒色顔料以外の基板材料用樹脂組成物の原料成分を溶解、分散させることが重要である。これにより、従来の基板材料用樹脂組成物と比べて、黒色顔料を基板材料用樹脂組成物中に高度に分散させることができる。
黒色顔料を溶媒に溶解、分散させる方法としては、例えば、超音波分散を用いることが好ましい。これにより、黒色顔料を基板材料用樹脂組成物中にさらに高度に分散させることができる。
なお、黒色顔料の分散性を向上する観点から、超音波分散させる時間は、例えば、30分間以上60分間以下とすることが好ましい。これにより、黒色顔料の含有量を低減しつつ、光の透過率を低減することができる。
(Method for producing resin composition for substrate material)
The thermosetting resin composition of this embodiment can be prepared using the above-mentioned raw material components, for example, by an ultrasonic dispersion method, a high-pressure collision dispersion method, a high-speed rotation dispersion method, a bead mill method, a high-speed shear dispersion method, and a rotation-revolution dispersion method. It can be prepared by dissolving, mixing, and stirring in a solvent using various mixers such as.
As a method for producing a resin composition for a substrate material, it is important to dissolve and disperse the black pigment in a solvent, and then dissolve and disperse raw components of the resin composition for the substrate material other than the black pigment. This allows the black pigment to be highly dispersed in the resin composition for substrate materials compared to conventional resin compositions for substrate materials.
As a method for dissolving and dispersing the black pigment in a solvent, it is preferable to use, for example, ultrasonic dispersion. Thereby, the black pigment can be more highly dispersed in the resin composition for substrate material.
In addition, from the viewpoint of improving the dispersibility of the black pigment, the time for ultrasonic dispersion is preferably 30 minutes or more and 60 minutes or less, for example. Thereby, it is possible to reduce the light transmittance while reducing the content of the black pigment.

本実施形態の樹脂組成物は、基板材料を作製するために用いることができる。例えば、本実施形態の樹脂組成物は、樹脂組成物の成形体を作製するために用いられる。樹脂組成物を成形する方法としては、特に限定されないが、トランスファー成形、射出成形、ポッティング成形(液注成形)が挙げられる。トランスファー成形法により成形体を得るための成形の一態様としては、任意の大きさのタブレット状に予備成形した前記硬化性樹脂組成物を、あらかじめ加熱したトランスファー成形機へと投入し、取り付けた任意の形状および材質の型へプランジャーによる加圧によって移送する方法が挙げられる。 The resin composition of this embodiment can be used to produce a substrate material. For example, the resin composition of this embodiment is used to produce a molded article of the resin composition. Methods for molding the resin composition include, but are not particularly limited to, transfer molding, injection molding, and potting molding (liquid injection molding). As one mode of molding to obtain a molded body by the transfer molding method, the curable resin composition preformed into a tablet of an arbitrary size is charged into a preheated transfer molding machine, and the attached arbitrary An example of this method is to transfer the material to a mold having the same shape and material by applying pressure with a plunger.

または、本実施形態の樹脂組成物は、プリプレグを作製するために用いることができる。プリプレグは、例えば、繊維基材を、本実施形態の樹脂組成物(ワニス状)に浸漬することにより作製される。プリプレグに用いられる繊維基材としては、ガラス織布、ガラス不織布等のガラス繊維基材、ポリアミド樹脂繊維、芳香族ポリアミド樹脂繊維、全芳香族ポリアミド樹脂繊維等のポリアミド系樹脂繊維、ポリエステル樹脂繊維、芳香族ポリエステル樹脂繊維、全芳香族ポリエステル樹脂繊維等のポリエステル系樹脂繊維、ポリイミド樹脂繊維、フッ素樹脂繊維等を主成分とする織布または不織布で構成される合成繊維基材、クラフト紙、コットンリンター紙、リンターとクラフトパルプの混抄紙等を主成分とする紙基材等の有機繊維基材等が挙げられる。 Alternatively, the resin composition of this embodiment can be used to produce prepreg. The prepreg is produced, for example, by immersing a fiber base material in the resin composition (varnish-like) of this embodiment. The fiber base materials used for prepreg include glass fiber base materials such as glass woven fabric and glass non-woven fabric, polyamide resin fibers such as polyamide resin fibers, aromatic polyamide resin fibers, and fully aromatic polyamide resin fibers, polyester resin fibers, Synthetic fiber base materials consisting of woven or nonwoven fabrics whose main components are aromatic polyester resin fibers, polyester resin fibers such as fully aromatic polyester resin fibers, polyimide resin fibers, fluororesin fibers, etc., kraft paper, and cotton linters. Examples include organic fiber base materials such as paper base materials whose main components are paper, mixed paper of linter and kraft pulp, and the like.

一実施形態において、プリプレグは、上述の樹脂組成物が含浸された上記繊維基材からなる繊維基材層と、上述の樹脂組成物からなる樹脂層とが積層された構造を有してもよい。樹脂層の厚みは、1μm以上50μm以下であり、好ましくは10μm以上40μm以下である。樹脂層の厚みを上記下限値以上とすることにより、樹脂層の透過率を低くすることができる。また、樹脂層の厚みが上記上限値を超えると、樹脂層の吸水率が上昇する。そのため、樹脂層の厚みを上記上限値以下とすることで、吸湿耐熱性の悪化を回避することができる。 In one embodiment, the prepreg may have a structure in which a fiber base material layer made of the above fiber base material impregnated with the above resin composition and a resin layer made of the above resin composition are laminated. . The thickness of the resin layer is 1 μm or more and 50 μm or less, preferably 10 μm or more and 40 μm or less. By setting the thickness of the resin layer to be equal to or greater than the above lower limit, the transmittance of the resin layer can be lowered. Moreover, when the thickness of the resin layer exceeds the above upper limit, the water absorption rate of the resin layer increases. Therefore, by setting the thickness of the resin layer to be equal to or less than the above upper limit, deterioration of moisture absorption and heat resistance can be avoided.

一実施形態において、上述の樹脂組成物は、金属張積層板を作製するために用いられる。本実施形態において、金属張積層板は、上述のプリプレグの硬化物の少なくとも一面に金属箔を積層して、金属張積層板を作製することができる。金属張積層板は、例えば、上述のプリプレグまたはプリプレグを2枚以上重ねた積層体の外側の上下両面または片面に金属箔を重ね、ラミネーター装置やベクレル装置を用いて高真空条件下でこれらを接合するか、あるいはそのままプリプレグの外側の上下両面または片面に金属箔を重ね、次いで、プリプレグと金属箔とを重ねた積層体を加熱加圧成形することにより作製することができる。 In one embodiment, the resin composition described above is used to make a metal clad laminate. In this embodiment, the metal-clad laminate can be produced by laminating metal foil on at least one surface of the cured prepreg described above. Metal-clad laminates are produced, for example, by layering metal foil on both upper and lower surfaces or on one side of the outside of the above-mentioned prepreg or a laminate made of two or more prepregs, and bonding these together under high vacuum conditions using a laminator or Becquerel device. Alternatively, it can be produced by directly stacking metal foil on both upper and lower surfaces or on one side of the outside of the prepreg, and then heating and press-molding a laminate in which the prepreg and metal foil are stacked.

上記金属箔を構成する金属としては、例えば、銅、銅系合金、アルミ、アルミ系合金、銀、銀系合金、金、金系合金、亜鉛、亜鉛系合金、ニッケル、ニッケル系合金、錫、錫系合金、鉄、鉄系合金、コバール(商標名)、42アロイ、インバー、スーパーインバー等のFe-Ni系の合金、W、Mo等が挙げられる。これらの中でも、導電性に優れ、エッチングによる回路形成が容易であり、また安価であることから銅または銅合金が好ましい。 Examples of metals constituting the metal foil include copper, copper alloy, aluminum, aluminum alloy, silver, silver alloy, gold, gold alloy, zinc, zinc alloy, nickel, nickel alloy, tin, Examples include tin-based alloys, iron, iron-based alloys, Fe-Ni-based alloys such as Kovar (trade name), 42 alloy, Invar, and Super Invar, W, and Mo. Among these, copper or a copper alloy is preferred because it has excellent conductivity, is easy to form a circuit by etching, and is inexpensive.

一実施形態において、上述のプリプレグまたは金属張積層板を用いて、プリント配線板が作製される。本実施形態のプリント配線板は、上述のプリプレグの成形体と、成形体の両面または片面に設けられた配線パターンとを備える。本実施形態のプリント配線板におけるその他の構成は特に限定されず、従来公知の種々の部品を備えていてもよく、種々の加工が施されていてもよい。本実施形態のプリント配線板は、LSI、抵抗素子、キャパシタ、インダクタ等の半導体素子(電子部品)を固定し、該半導体素子(電子部品)間を配線で接続するための部品として用いることができる。本発明のプリント配線板は、上述のプリプレグの成形体または上述の金属張積層板の片面又は両面に、サブトラクティブ法、アディティブ法、セミアディティブ法等の公知の方法を用いて配線パターンを形成することにより製造することができる。 In one embodiment, a printed wiring board is produced using the prepreg or metal-clad laminate described above. The printed wiring board of this embodiment includes the above-described prepreg molded body and a wiring pattern provided on both sides or one side of the molded body. Other configurations of the printed wiring board of this embodiment are not particularly limited, and may include various conventionally known parts or may be subjected to various processing. The printed wiring board of this embodiment can be used as a component for fixing semiconductor elements (electronic components) such as LSIs, resistive elements, capacitors, and inductors, and for connecting the semiconductor elements (electronic components) with wiring. . In the printed wiring board of the present invention, a wiring pattern is formed on one or both sides of the above-mentioned prepreg molded body or the above-mentioned metal-clad laminate using a known method such as a subtractive method, an additive method, or a semi-additive method. It can be manufactured by

一実施形態において、上述のプリント配線板と、当該プリント配線板に搭載された半導体素子とを備える半導体装置が提供される。半導体素子の具体例としては、LSI、抵抗素子、キャパシタ、インダクタ等が挙げられる。本発明の半導体装置におけるその他の構成は特に限定されず、半導体素子のほかに従来公知の半導体装置部材を備えていてもよい。そのような半導体装置部材の一例としては、例えば、引き出し配線、ワイヤー配線、制御素子、ヒートシンク、導電部材、ダイボンド材、ボンディングパッド等が挙げられる。 In one embodiment, a semiconductor device is provided that includes the above-described printed wiring board and a semiconductor element mounted on the printed wiring board. Specific examples of semiconductor elements include LSIs, resistance elements, capacitors, and inductors. Other configurations of the semiconductor device of the present invention are not particularly limited, and may include conventionally known semiconductor device members in addition to the semiconductor element. Examples of such semiconductor device members include lead wiring, wire wiring, control elements, heat sinks, conductive members, die bonding materials, bonding pads, and the like.

以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することができる。 Although the embodiments of the present invention have been described above, these are merely examples of the present invention, and various configurations other than those described above can be adopted.

以下、実施例を用いて本発明を詳細に説明するが、本発明はこれらの実施例の記載に限定されるものではない。 EXAMPLES Hereinafter, the present invention will be explained in detail using Examples, but the present invention is not limited to the description of these Examples.

(実施例1~5、比較例1、および参考例1)
(熱硬化性樹脂組成物の調製)
実施例および比較例について、ワニス状の熱硬化性樹脂組成物を調製した。
まず、表1に記載した配合量の黒色顔料を、高速撹拌装置を用いて、メチルイソブチルケトンと、シクロヘキサノンとの混合溶剤(メチルイソブチルケトン:シクロヘキサノン=26:9)に溶解させ、次いで、30分間超音波分散させることでスラリーとした。次いで、表1に記載した配合量の黒色顔料以外の成分を、高速撹拌装置を用いて、スラリーに溶解、分散させ、実施例、比較例の樹脂ワニスを調製した。
(Examples 1 to 5, Comparative Example 1, and Reference Example 1)
(Preparation of thermosetting resin composition)
For Examples and Comparative Examples, varnish-like thermosetting resin compositions were prepared.
First, the black pigment in the amount listed in Table 1 was dissolved in a mixed solvent of methyl isobutyl ketone and cyclohexanone (methyl isobutyl ketone: cyclohexanone = 26:9) using a high-speed stirring device, and then for 30 minutes. It was made into a slurry by ultrasonic dispersion. Next, components other than the black pigment in the amounts listed in Table 1 were dissolved and dispersed in the slurry using a high-speed stirring device to prepare resin varnishes of Examples and Comparative Examples.

(熱硬化性樹脂)
熱硬化性樹脂1:ビフェニレン骨格を有するフェノールアラルキル型エポキシ樹脂(日本化薬株式会社製、NC-3000H、エポキシ当量275、重量平均分子量2000)
熱硬化性樹脂2:変性ビフェノール型エポキシ樹脂(三菱化学社製、YX6900BH45)
熱硬化性樹脂3:下記式(3)において、nが0以上3以下、Xが「-CH-」で表される基、aが0、bが0であるマレイミド化合物(BMI-2300、大和化成工業社製、Mw=750)

Figure 0007424401000006
(thermosetting resin)
Thermosetting resin 1: Phenol aralkyl type epoxy resin having a biphenylene skeleton (manufactured by Nippon Kayaku Co., Ltd., NC-3000H, epoxy equivalent weight 275, weight average molecular weight 2000)
Thermosetting resin 2: Modified biphenol type epoxy resin (manufactured by Mitsubishi Chemical Corporation, YX6900BH45)
Thermosetting resin 3 : A maleimide compound ( BMI- 2300, manufactured by Daiwa Kasei Kogyo Co., Ltd., Mw=750)
Figure 0007424401000006

(硬化剤)
フェノール系硬化剤1:シアネート樹脂(LONZA社製、Primaset PT-30)
フェノール系硬化剤2:フェノール樹脂系硬化剤(日本化薬社製、GPH-103)
フェノール系硬化剤3:フェノール樹脂系硬化剤(大和化成工業社製、DABPA)
(無機充填材)
無機充填材1:シリカ粒子(アドマテックス社製、SC4050-KNR)
無機充填材2:シリカ粒子(アドマテックス社製、YA050C-HHA)
(着色剤)
黒色染料1:アントラキノン系化合物(日本化薬社製、Kayaset Black A-N)
黒色顔料2:黒色酸化チタン(赤穂化成社製、Tilack D)
黒色顔料3:カーボンブラック(三菱化学社製、MA600)
(硬化促進剤)
硬化促進剤1:テトラフェニルホスホニウムのビス(ナフタレン-2,3-ジオキシ)フェニルシリケート付加物(住友ベークライト社製)
(カップリング剤)
カップリング剤1:エポキシシラン型カップリング剤(モメンティブ・パフォーマンス・マテリアルズ社製、A-187)
(レベリング剤)
レベリング剤1:レベリング剤(ビックケミー社製)
(hardening agent)
Phenolic curing agent 1: Cyanate resin (manufactured by LONZA, Primaset PT-30)
Phenol curing agent 2: Phenol resin curing agent (manufactured by Nippon Kayaku Co., Ltd., GPH-103)
Phenol curing agent 3: Phenol resin curing agent (manufactured by Daiwa Kasei Kogyo Co., Ltd., DABPA)
(Inorganic filler)
Inorganic filler 1: Silica particles (manufactured by Admatex, SC4050-KNR)
Inorganic filler 2: Silica particles (manufactured by Admatex, YA050C-HHA)
(colorant)
Black dye 1: Anthraquinone compound (Nippon Kayaku Co., Ltd., Kayaset Black AN)
Black pigment 2: Black titanium oxide (manufactured by Ako Kasei Co., Ltd., Tilack D)
Black pigment 3: Carbon black (manufactured by Mitsubishi Chemical Corporation, MA600)
(hardening accelerator)
Curing accelerator 1: Bis(naphthalene-2,3-dioxy)phenylsilicate adduct of tetraphenylphosphonium (manufactured by Sumitomo Bakelite)
(coupling agent)
Coupling agent 1: Epoxysilane type coupling agent (manufactured by Momentive Performance Materials, A-187)
(Leveling agent)
Leveling agent 1: Leveling agent (manufactured by BIC Chemie)

(プリプレグ)
実施例および比較例において、得られた樹脂ワニスをガラスクロス(クロスタイプ#1078、Eガラス、坪量48g/m)に塗布することにより、当該樹脂ワニスをガラスクロスに含浸させた。その後、180℃の加熱炉で2分間乾燥させて、厚み70μmのプリプレグを得た。
(prepreg)
In Examples and Comparative Examples, the glass cloth (cloth type #1078, E glass, basis weight 48 g/m 2 ) was impregnated with the resin varnish by applying the obtained resin varnish to a glass cloth. Thereafter, it was dried in a heating oven at 180° C. for 2 minutes to obtain a prepreg with a thickness of 70 μm.

実施例および比較例において、次のような評価を行った。評価結果を表1に示す。 In Examples and Comparative Examples, the following evaluations were performed. The evaluation results are shown in Table 1.

(調合後24時間後における分散性)
得られた樹脂ワニスを24時間静置後、分散具合を目視で確認した。樹脂固形分が均一に分散しているものを「○」、樹脂固形分の沈降が見られるものを「×」として表1に示す。
(Dispersibility 24 hours after preparation)
After the obtained resin varnish was allowed to stand still for 24 hours, the degree of dispersion was visually confirmed. In Table 1, the results are shown in Table 1 as "○" indicates that the resin solid content is uniformly dispersed, and as "x" indicates that the resin solid content is sedimented.

(プリプレグの硬化物)
得られたプリプレグを220℃で2時間熱処理し、熱硬化性樹脂組成物のプリプレグ硬化物(厚み60μm)を得た。
(cured prepreg product)
The obtained prepreg was heat-treated at 220° C. for 2 hours to obtain a cured prepreg (thickness: 60 μm) of a thermosetting resin composition.

(透過率)
各実施例及び比較例のプリプレグの硬化物について透過率を評価した。以下に詳細を説明する。
紫外可視近赤外分光光度計(日本分光社製、V-670)を用いて、当該測定サンプルの透過率を測定した。なお、測定波長は400nm~1100nmとした。評価結果を下記表1に示す。なお、最大透過率の単位は%である。
(transmittance)
Transmittance was evaluated for the cured prepregs of each Example and Comparative Example. Details will be explained below.
The transmittance of the measurement sample was measured using an ultraviolet-visible near-infrared spectrophotometer (manufactured by JASCO Corporation, V-670). Note that the measurement wavelength was 400 nm to 1100 nm. The evaluation results are shown in Table 1 below. Note that the unit of maximum transmittance is %.

(ガラス転移温度、30℃での貯蔵弾性率)
得られたプリプレグ硬化物から8mm×40mmのテストピースを切り出し、そのテストピースに対し、動的粘弾性測定(DMA装置、TAインスツルメント社製、Q800)を用いて、昇温速度5℃/min、周波数1Hzで動的粘弾性測定を行い、30℃での貯蔵弾性率を算出した。また、ガラス転移温度は、損失正接tanδが最大値を示す温度とした。
(Glass transition temperature, storage modulus at 30°C)
A test piece of 8 mm x 40 mm was cut out from the obtained prepreg cured product, and the test piece was subjected to dynamic viscoelasticity measurement (DMA device, TA Instruments, Q800) at a heating rate of 5°C/ Dynamic viscoelasticity was measured at a frequency of 1 Hz and a storage modulus at 30°C was calculated. Moreover, the glass transition temperature was set as the temperature at which the loss tangent tan δ shows the maximum value.

(線膨張係数(CTE))
得られたプリプレグ硬化物から4mm×20mmの試験片を作製した。この試験片について、熱機械分析装置TMA(TAインスツルメント社製、Q400)を用いて、温度範囲30~300℃、昇温速度10℃/min、荷重10g、引張モードの条件で熱機械分析(TMA)を2サイクル測定した。この結果から、2サイクル目の30℃から250℃の範囲における平面方向(XY方向)の線膨張係数(CTE)の平均値を算出した。なお、線膨脹係数は、2サイクル目の値を採用した。
(Coefficient of linear expansion (CTE))
A 4 mm x 20 mm test piece was prepared from the obtained prepreg cured product. This test piece was subjected to thermomechanical analysis using a thermomechanical analyzer TMA (manufactured by TA Instruments, Q400) under the conditions of a temperature range of 30 to 300°C, a heating rate of 10°C/min, a load of 10 g, and a tensile mode. (TMA) was measured for two cycles. From this result, the average value of the coefficient of linear expansion (CTE) in the plane direction (XY direction) in the range from 30° C. to 250° C. in the second cycle was calculated. In addition, the value of the second cycle was adopted as the linear expansion coefficient.

(体積抵抗率の測定)
体積抵抗率はJIS K 6911に準拠して行った。試験片は実施例および比較例から得られたプリプレグ硬化物から10cm×10cmになるように切り出したものを用いた。結果を表1に示す。

Figure 0007424401000007
(Measurement of volume resistivity)
Volume resistivity was measured in accordance with JIS K 6911. The test pieces used were those cut out to a size of 10 cm x 10 cm from the prepreg cured products obtained in Examples and Comparative Examples. The results are shown in Table 1.
Figure 0007424401000007

表1に示すように、各実施例の樹脂ワニスは分散性が優れていた。また、各実施例のプリプレグ硬化物は、400nm~1100nmの波長の光に対する透過率が、10%以下であるとともに、高体積抵抗率、高ガラス転移温度、低線膨張性、高剛性といった優れた物理特性を備えていた。これにより、各実施例のプリプレグ硬化物を絶縁層として備えるプリント配線板に光学素子を搭載して半導体装置を作製した場合、光学素子の誤作動が抑制された信頼性の高い半導体装置を実現できると考えられる。 As shown in Table 1, the resin varnishes of each example had excellent dispersibility. In addition, the prepreg cured products of each example have a transmittance of 10% or less for light with a wavelength of 400 nm to 1100 nm, and also have excellent properties such as high volume resistivity, high glass transition temperature, low linear expansion, and high rigidity. It had physical properties. As a result, when a semiconductor device is manufactured by mounting an optical element on a printed wiring board having the prepreg cured product of each example as an insulating layer, a highly reliable semiconductor device in which malfunction of the optical element is suppressed can be realized. it is conceivable that.

Claims (8)

熱硬化性樹脂と、
無機充填材と、
黒色顔料と、を含むプリプレグ用樹脂組成物であって、
当該プリプレグ用樹脂組成物の硬化物の、厚み60μmにおける400nm~1100nmの波長の光に対する透過率の最大値が、10%以下であるプリプレグ用樹脂組成物。
thermosetting resin;
Inorganic filler and
A resin composition for prepreg comprising a black pigment,
A resin composition for prepregs, wherein the cured product of the resin composition for prepregs has a maximum transmittance of 10% or less for light with a wavelength of 400 nm to 1100 nm at a thickness of 60 μm.
前記熱硬化性樹脂が、エポキシ樹脂を含む、請求項1に記載のプリプレグ用樹脂組成物。 The resin composition for prepreg according to claim 1 , wherein the thermosetting resin contains an epoxy resin. 硬化剤をさらに含む、請求項1または2に記載のプリプレグ用樹脂組成物。 The resin composition for prepreg according to claim 1 or 2 , further comprising a curing agent. 樹脂組成物が含浸された繊維基材からなる繊維基材層を備えるプリプレグであって、
前記樹脂組成物は、請求項1~のいずれかに記載のプリプレグ用樹脂組成物である、プリプレグ。
A prepreg comprising a fiber base material layer made of a fiber base material impregnated with a resin composition,
A prepreg, wherein the resin composition is the prepreg resin composition according to any one of claims 1 to 3 .
前記繊維基材層の少なくとも一方の面に積層された樹脂層をさらに備え、
前記樹脂層は、請求項1~のいずれかに記載のプリプレグ用樹脂組成物からなり、
前記樹脂層の厚みは、1μm以上50μm以下である、請求項に記載のプリプレグ。
Further comprising a resin layer laminated on at least one surface of the fiber base layer,
The resin layer is made of the prepreg resin composition according to any one of claims 1 to 3 ,
The prepreg according to claim 4 , wherein the resin layer has a thickness of 1 μm or more and 50 μm or less.
請求項またはに記載のプリプレグと、
前記プリプレグに積層された金属箔とを備える、金属張積層板。
The prepreg according to claim 4 or 5 ,
A metal-clad laminate, comprising a metal foil laminated on the prepreg.
請求項に記載のプリプレグの成形体と、前記成形体の両面または片面に設けられた配線パターンとを備える、プリント配線板。 A printed wiring board comprising the prepreg molded body according to claim 5 and a wiring pattern provided on both surfaces or one side of the molded body. 請求項に記載のプリント配線板と、
前記プリント配線板に搭載された半導体素子と、を備える半導体装置。
The printed wiring board according to claim 7 ,
A semiconductor device comprising: a semiconductor element mounted on the printed wiring board.
JP2022051796A 2018-03-29 2022-03-28 Resin compositions for prepregs, prepregs, metal-clad laminates, printed wiring boards, and semiconductor devices Active JP7424401B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022051796A JP7424401B2 (en) 2018-03-29 2022-03-28 Resin compositions for prepregs, prepregs, metal-clad laminates, printed wiring boards, and semiconductor devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018063814A JP7052482B2 (en) 2018-03-29 2018-03-29 Resin compositions for prepregs, prepregs, metal-clad laminates, printed wiring boards, and semiconductor devices
JP2022051796A JP7424401B2 (en) 2018-03-29 2022-03-28 Resin compositions for prepregs, prepregs, metal-clad laminates, printed wiring boards, and semiconductor devices

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018063814A Division JP7052482B2 (en) 2018-03-29 2018-03-29 Resin compositions for prepregs, prepregs, metal-clad laminates, printed wiring boards, and semiconductor devices

Publications (2)

Publication Number Publication Date
JP2022100320A JP2022100320A (en) 2022-07-05
JP7424401B2 true JP7424401B2 (en) 2024-01-30

Family

ID=68169494

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018063814A Active JP7052482B2 (en) 2018-03-29 2018-03-29 Resin compositions for prepregs, prepregs, metal-clad laminates, printed wiring boards, and semiconductor devices
JP2022051796A Active JP7424401B2 (en) 2018-03-29 2022-03-28 Resin compositions for prepregs, prepregs, metal-clad laminates, printed wiring boards, and semiconductor devices

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2018063814A Active JP7052482B2 (en) 2018-03-29 2018-03-29 Resin compositions for prepregs, prepregs, metal-clad laminates, printed wiring boards, and semiconductor devices

Country Status (1)

Country Link
JP (2) JP7052482B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7052482B2 (en) 2018-03-29 2022-04-12 住友ベークライト株式会社 Resin compositions for prepregs, prepregs, metal-clad laminates, printed wiring boards, and semiconductor devices

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000345007A (en) 1999-06-07 2000-12-12 Nippon Kayaku Co Ltd Epoxy resin composition for coating electric or electronic part
JP2008050546A (en) 2006-08-28 2008-03-06 Matsushita Electric Works Ltd Resin composition for sealing optical semiconductor and optical semiconductor device
JP2008133412A (en) 2006-10-26 2008-06-12 Hitachi Chem Co Ltd Thermosetting resin composition, prepreg, metal-clad laminate and printed wiring board
JP2014185221A (en) 2013-03-22 2014-10-02 Mitsubishi Gas Chemical Co Inc Resin composition, prepreg, laminate, and printed wiring board
JP2017043649A (en) 2015-08-24 2017-03-02 住友ベークライト株式会社 Resin composition, resin film, circuit board and semiconductor device
JP2017052884A (en) 2015-09-10 2017-03-16 三菱瓦斯化学株式会社 Resin composition, prepreg, metal foil-clad laminate, resin sheet, and printed wiring board
JP7052482B2 (en) 2018-03-29 2022-04-12 住友ベークライト株式会社 Resin compositions for prepregs, prepregs, metal-clad laminates, printed wiring boards, and semiconductor devices

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02219642A (en) * 1989-02-22 1990-09-03 Matsushita Electric Works Ltd Uv shielding metal clad lamina
JP2001036243A (en) * 1999-07-22 2001-02-09 Matsushita Electric Works Ltd Laminated board with interlayer circuit and its manufacture
JP5233135B2 (en) * 2007-03-13 2013-07-10 住友ベークライト株式会社 LAMINATED PLATE, METHOD FOR PRODUCING LAMINATED PLATE, AND SEMICONDUCTOR DEVICE
JP4994923B2 (en) * 2007-04-06 2012-08-08 太陽ホールディングス株式会社 Black solder resist composition and cured product thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000345007A (en) 1999-06-07 2000-12-12 Nippon Kayaku Co Ltd Epoxy resin composition for coating electric or electronic part
JP2008050546A (en) 2006-08-28 2008-03-06 Matsushita Electric Works Ltd Resin composition for sealing optical semiconductor and optical semiconductor device
JP2008133412A (en) 2006-10-26 2008-06-12 Hitachi Chem Co Ltd Thermosetting resin composition, prepreg, metal-clad laminate and printed wiring board
JP2014185221A (en) 2013-03-22 2014-10-02 Mitsubishi Gas Chemical Co Inc Resin composition, prepreg, laminate, and printed wiring board
JP2017043649A (en) 2015-08-24 2017-03-02 住友ベークライト株式会社 Resin composition, resin film, circuit board and semiconductor device
JP2017052884A (en) 2015-09-10 2017-03-16 三菱瓦斯化学株式会社 Resin composition, prepreg, metal foil-clad laminate, resin sheet, and printed wiring board
JP7052482B2 (en) 2018-03-29 2022-04-12 住友ベークライト株式会社 Resin compositions for prepregs, prepregs, metal-clad laminates, printed wiring boards, and semiconductor devices

Also Published As

Publication number Publication date
JP7052482B2 (en) 2022-04-12
JP2022100320A (en) 2022-07-05
JP2019172859A (en) 2019-10-10

Similar Documents

Publication Publication Date Title
JP5381438B2 (en) Thermosetting insulating resin composition, and prepreg, film with resin, laminated board, and multilayer printed wiring board using the same
JP2003506514A (en) Cyanate ester-based thermosetting composition
CN111087809B (en) Thermosetting resin composition, prepreg, metal foil laminate and printed wiring board using the same
JP2024050556A (en) Curable composition, prepreg, resin sheet, metal foil-clad laminate, and printed wiring board
US10994516B2 (en) Resin composition, and pre-preg, metal-clad laminate and printed circuit board prepared using the same
JP2010043253A (en) Thermosetting insulating resin composition, and prepreg, film with resin, laminate and multilayer printed wiring board using the same
JP6229439B2 (en) Metal-clad laminate, printed wiring board, and semiconductor device
JP7424401B2 (en) Resin compositions for prepregs, prepregs, metal-clad laminates, printed wiring boards, and semiconductor devices
JP7269537B2 (en) Resin composition, prepreg, laminate, metal foil-clad laminate, printed wiring board and multilayer printed wiring board
JP7307896B2 (en) Thermosetting composition, prepreg, laminate, metal foil clad laminate, printed wiring board and multilayer printed wiring board
JP7274105B2 (en) Thermosetting composition, prepreg, laminate, metal foil clad laminate, printed wiring board and multilayer printed wiring board
JP7316551B2 (en) Resin composition for printed wiring board, prepreg, laminate, metal foil-clad laminate, printed wiring board and multilayer printed wiring board
JP2004315705A (en) Modified polyimide resin composition and prepreg and laminate using the same
JP2017193614A (en) Prepreg, metal-clad laminate, and printed wiring board
JPS6354419A (en) Thermosetting resin composition
JP7411170B2 (en) Curable compositions, prepregs, resin sheets, metal foil-clad laminates, and printed wiring boards
JP7284945B1 (en) Curable composition, prepreg, metal foil-clad laminate, and printed wiring board
JP7428981B2 (en) Curable compositions, prepregs, resin sheets, metal foil-clad laminates, and printed wiring boards
JP7276674B1 (en) Prepregs, metal foil clad laminates and printed wiring boards
JP2003147170A (en) Resin composition, and prepreg and laminate made of it
JP2019119812A (en) Resin composition, prepreg, metal foil clad laminate, resin sheet, and printed wiring board
WO2023013711A1 (en) Thermosetting resin composition, prepreg, and printed wiring board
WO2023243676A1 (en) Resin composition, prepreg, laminate, resin film, printed wiring board, and semiconductor package
JP2019178198A (en) Thermosetting resin composition, coreless substrate, printed wiring board, and semiconductor device
TW202409181A (en) Resin compositions, prepregs, laminates, resin films, printed wiring boards and semiconductor packages

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240101

R151 Written notification of patent or utility model registration

Ref document number: 7424401

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151