JP7418293B2 - Field water management device - Google Patents

Field water management device Download PDF

Info

Publication number
JP7418293B2
JP7418293B2 JP2020108101A JP2020108101A JP7418293B2 JP 7418293 B2 JP7418293 B2 JP 7418293B2 JP 2020108101 A JP2020108101 A JP 2020108101A JP 2020108101 A JP2020108101 A JP 2020108101A JP 7418293 B2 JP7418293 B2 JP 7418293B2
Authority
JP
Japan
Prior art keywords
water level
water
field
fields
water supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020108101A
Other languages
Japanese (ja)
Other versions
JP2022002484A (en
Inventor
康則 末吉
仁 森田
巨壹 陳
好宏 藤本
利樹 武内
雅司 ▲高▼橋
一浩 三木
直毅 山森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP2020108101A priority Critical patent/JP7418293B2/en
Publication of JP2022002484A publication Critical patent/JP2022002484A/en
Application granted granted Critical
Publication of JP7418293B2 publication Critical patent/JP7418293B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sewage (AREA)

Description

本発明は、圃場水管理装置に関する。 The present invention relates to a field water management device.

特許文献1には、圃場への給水または圃場からの排水を制御するための変位機構を作動させる圃場用電動アクチュエータを備えた給水栓や排水栓が開示されている。これらの給水栓や排水栓を用いることにより、圃場水管理装置を介して圃場への給水や圃場からの排水を遠隔制御することが可能になる。 Patent Document 1 discloses a water supply faucet and a drain faucet equipped with a field electric actuator that operates a displacement mechanism for controlling water supply to or drainage from a field. By using these water taps and drain plugs, it becomes possible to remotely control the water supply to and drainage from the field via the field water management device.

当該圃場用電動アクチュエータは、給水栓や排水栓を制御する制御装置であり、給水栓または排水栓を作動させる電動モータを備えたアクチュエータと、アクチュエータを制御するとともに圃場水管理装置と交信する電子制御回路を備えた制御部を備えている。 The field electric actuator is a control device that controls water faucets and drain valves, and includes an actuator equipped with an electric motor that operates the water faucet or drain valve, and an electronic control that controls the actuator and communicates with the field water management device. It has a control section with a circuit.

そして、各圃場商用電源設備から離隔した圃場では商用電源を利用するのが困難なため、制御部及びアクチュエータに給電する蓄電池と、蓄電池の充電状態の低下を回避するため充電用のソーラーセルを備えている。 Since it is difficult to use commercial power in fields that are far away from each field's commercial power supply equipment, the system is equipped with a storage battery that supplies power to the control unit and actuators, and a solar cell for charging to avoid a drop in the state of charge of the storage battery. ing.

圃場水管理装置は、各圃場の給水栓を制御するために各圃場の水位を把握する必要があり、そのために例えば給水栓の近傍に水位センサを設置して、水位センサにより検出された水位を給水栓に備えた電子制御回路を介して圃場水管理装置に送信するように構成されている。 The field water management device needs to know the water level in each field in order to control the water taps in each field. For this purpose, for example, a water level sensor is installed near the water tap, and the water level detected by the water level sensor is monitored. The information is configured to be transmitted to the field water management device via an electronic control circuit provided in the water tap.

特開2017-193914号公報Japanese Patent Application Publication No. 2017-193914

しかし、圃場水管理装置が各圃場に設置された水位センサの値に基づいて各圃場の給水栓の開閉を遠隔制御する場合、水位センサの値が正確な水位を表していない場合には目標とする設定水位を下回り、或いは設定水位以上の水位になる虞があった。 However, when a field water management device remotely controls the opening and closing of water taps in each field based on the values of water level sensors installed in each field, if the water level sensor values do not represent accurate water levels, the target may not be met. There was a risk that the water level would fall below the set water level or exceed the set water level.

例えば、風の影響を受けるような場合には、同じ圃場であっても風上側では水位が低くなり、風下側では水位が高くなるという水位勾配が生じるため、水位センサが設置された位置によって検出する水位に差が生じることになる。 For example, if the field is affected by wind, a water level gradient will occur where the water level will be lower on the windward side and higher on the leeward side, even in the same field. This can be detected by the position where the water level sensor is installed. There will be a difference in the water level.

水位勾配の影響を回避するために、一つの圃場に複数の水位センサを設置すると設備費が嵩み、圃場の中央部に水位センサを設置すると当該水位センサから圃場の隅に設置した給水栓や排水栓まで信号線を引き延ばす必要があり、設置作業が煩雑となるばかりか、信号線が断線する虞もある。また、信号線に代えて水位センサに無線信号機能を付加する場合には設備コストが嵩むことにもなる。 In order to avoid the influence of water level gradients, installing multiple water level sensors in one field will increase equipment costs, and if a water level sensor is installed in the center of the field, the water level sensor will be connected to the water tap installed in the corner of the field. It is necessary to extend the signal line to the drain plug, which not only complicates the installation work but also poses a risk of the signal line breaking. Furthermore, if a wireless signal function is added to the water level sensor instead of a signal line, equipment costs will increase.

本発明の目的は、上述した問題に鑑み、水位勾配の影響を受けることなく各圃場の水位を正確に検出できる圃場水管理装置を提供する点にある。 SUMMARY OF THE INVENTION In view of the above-mentioned problems, an object of the present invention is to provide a field water management device that can accurately detect water levels in each field without being affected by water level gradients.

上述の目的を達成するため、本発明による圃場水管理装置の第一の特徴構成は、複数の圃場で構成される圃場群を単位として各圃場への給水を管理する圃場水管理装置であって、給水対象圃場の現在水位を算出する水位演算部と、前記水位演算部により算出された現在水位が設定水位となるように、前記給水対象圃場に備えた自動給水栓を開閉制御する給水制御部と、を備え、前記水位演算部は、給水管を挟んで対向するように配置された一対の圃場のうち前記給水管の上流側で前記給水管に近接した隅に設置したセンサと、前記給水管を挟んで前記一対の圃場に隣接する一対の圃場のうち前記給水管の下流側で前記給水管に近接した隅に設置したセンサとを含む少なくとも三つの水位センサにより検出された各水位情報に基づいて、風に起因する水位勾配の影響を抑制した圃場水位を算出する点にある。 In order to achieve the above object, the first characteristic configuration of the field water management device according to the present invention is a field water management device that manages water supply to each field in a field group consisting of a plurality of fields. , a water level calculation unit that calculates the current water level of the water supply target field; and a water supply control unit that controls the opening and closing of an automatic hydrant provided in the water supply target field so that the current water level calculated by the water level calculation unit becomes a set water level. and, the water level calculation unit includes a sensor installed in a corner of a pair of fields facing each other with a water supply pipe in between, on the upstream side of the water supply pipe and close to the water supply pipe; Each water level information detected by at least three water level sensors including a sensor installed in a corner of a pair of fields adjacent to the pair of fields with a pipe in between, on the downstream side of the water supply pipe and close to the water supply pipe. The purpose of this method is to calculate field water levels based on the above-mentioned results, while suppressing the influence of water level gradients caused by wind.

水位演算部は、圃場群に備えた複数の水位センサ、つまり複数の圃場に備えた複数の水位センサにより検出された各水位情報を取得して、それらの水位情報に基づいて風に起因する水位勾配の影響を抑制した圃場水位を算出し、給水制御部は水位演算部が算出した圃場水位が設定水位となるように自動給水栓を開閉制御するため、風の影響を受けることなく各圃場の水位を適正に調整することができる。そして、同一の配列方向に配列された各圃場は、同じ風の影響を受けて同様の水位勾配が生じる。そのため、各圃場に設置する水位センサの位置を異ならせると、実質的に同一の圃場で水位勾配に対応した複数の水位を検出することができるようになる。例えば、そのような複数の水位センサによる検出水位を演算処理することにより、適切な水位を求めることができる。例えば、全値の平均処理、上限値と下限値の平均処理、中央値の抽出処理などである。 The water level calculation unit acquires water level information detected by a plurality of water level sensors installed in a group of fields, that is, a plurality of water level sensors installed in a plurality of fields, and calculates the water level caused by wind based on the water level information. The field water level that suppresses the influence of slope is calculated, and the water supply control unit automatically opens and closes the water taps so that the field water level calculated by the water level calculation unit becomes the set water level. The water level can be adjusted appropriately. Each field arranged in the same arrangement direction is affected by the same wind and has a similar water level gradient. Therefore, by changing the position of the water level sensor installed in each field, it becomes possible to detect a plurality of water levels corresponding to the water level gradient in substantially the same field. For example, an appropriate water level can be determined by arithmetic processing of the water levels detected by such a plurality of water level sensors. Examples include averaging processing of all values, averaging processing of upper and lower limit values, and processing of extracting the median value.

各圃場の四隅のうち、其々異なる隅に水位センサを設置し、各水位センサにより得られる水位情報に基づけば、実質的に同一圃場の異なる三隅における水位が得られ、水位演算部により他の一隅の水位も演算処理により推定することができ、当該圃場の水位が適切に求まる。そして、演算により得られた水位が各圃場の水位となる。By installing water level sensors at different corners of the four corners of each field, and based on the water level information obtained by each water level sensor, the water levels at the three different corners of the same field can be obtained, and the water level calculation section can be used to calculate the The water level in one corner can also be estimated through arithmetic processing, and the water level in the field can be appropriately determined. Then, the water level obtained by the calculation becomes the water level of each field.

そして、給水管の延出方向に沿って給水管を挟むように複数枚の圃場が配される場合が多い。そのような圃場では、給水管を挟んで対向するように配置された一対の圃場のうち給水管の上流側で給水管に近接した隅に設置した少なくとも一つのセンサと、給水管を挟んで一対の圃場に隣接する一対の圃場のうち給水管の下流側で給水管に近接した隅に設置した一つのセンサを含むことが好ましい。In many cases, a plurality of fields are arranged so as to sandwich the water supply pipe along the direction in which the water supply pipe extends. In such fields, at least one sensor is installed in a corner close to the water supply pipe on the upstream side of a pair of fields facing each other with the water supply pipe in between; It is preferable to include one sensor installed in a corner of a pair of fields adjacent to the field on the downstream side of the water supply pipe and close to the water supply pipe.

同第二の特徴構成は、上述した第一の特徴構成に加えて、前記水位演算部は、前記圃場群のうち同一の配列方向に配列された複数の圃場に備えた複数の水位センサにより検出された各水位情報に基づいて、風に起因する水位勾配の影響を抑制した圃場水位を算出する点にある。 In addition to the first characteristic configuration described above, the second characteristic configuration is such that the water level calculation unit detects the water level using a plurality of water level sensors provided in a plurality of fields arranged in the same arrangement direction among the field group. The purpose of this method is to calculate field water levels that suppress the influence of water level gradients caused by wind, based on each piece of water level information obtained.

同一の配列方向に配列された各圃場は、同じ風の影響を受けて同様の水位勾配が生じる。そのため、各圃場に設置する水位センサの位置を異ならせると、実質的に同一の圃場で水位勾配に対応した複数の水位を検出することができるようになる。例えば、そのような複数の水位センサによる検出水位を演算処理することにより、適切な水位を求めることができる。例えば、全値の平均処理、上限値と下限値の平均処理、中央値の抽出処理などである。 Each field arranged in the same arrangement direction is affected by the same wind, resulting in a similar water level gradient. Therefore, by changing the position of the water level sensor installed in each field, it becomes possible to detect a plurality of water levels corresponding to the water level gradient in substantially the same field. For example, an appropriate water level can be determined by arithmetic processing of the water levels detected by such a plurality of water level sensors. Examples include averaging processing of all values, averaging processing of upper and lower limit values, and processing of extracting the median value.

同第三の特徴構成は、上述した第一または第二の特徴構成に加えて、前記複数の水位センサは少なくとも風上の水位を検出する第1水位センサと風下の水位を検出する第2水位センサを含む点にある。 The third characteristic configuration is that, in addition to the first or second characteristic configuration described above, the plurality of water level sensors include at least a first water level sensor that detects a windward water level and a second water level sensor that detects a leeward water level. The point is that it includes a sensor.

水位勾配に対応した複数の水位を検出するためには、少なくとも風上の水位を検出する第1水位センサと風下の水位を検出する第2水位センサを備えることが好ましい。第1水位センサと第2水位センサが同一の圃場に設置されていてもよいし、異なる圃場に設置されていてもよい。 In order to detect a plurality of water levels corresponding to the water level gradient, it is preferable to include at least a first water level sensor that detects the windward water level and a second water level sensor that detects the leeward water level. The first water level sensor and the second water level sensor may be installed in the same field, or may be installed in different fields.

同第四の特徴構成は、上述した第一から第三の何れかの特徴構成に加えて、前記複数の水位センサの少なくとも一つは前記給水対象圃場以外の圃場に設置した水位センサである点にある。 The fourth characteristic configuration is that, in addition to any one of the first to third characteristic configurations described above, at least one of the plurality of water level sensors is a water level sensor installed in a field other than the water supply target field. It is in.

給水対象圃場とは異なる圃場に設置された水位センサの値に基づいて給水対象圃場の水位を算出できるようになり、各圃場に設置する水位センサの数を増やす必要がない。 The water level of a field to be watered can now be calculated based on the value of a water level sensor installed in a field different from the field to be watered, and there is no need to increase the number of water level sensors installed in each field.

同第の特徴構成は、上述した第一から第の何れかの特徴構成に加えて、前記水位演算部は気象データセンタから取得した風速が基準風速以上のときに前記圃場水位を算出し、基準風速未満のときに予め設定した一つの水位センサの計測水位を前記圃場水位として採用する点にある。 The fifth characteristic configuration is that, in addition to any one of the first to fourth characteristic configurations described above, the water level calculation unit calculates the field water level when the wind speed acquired from the meteorological data center is equal to or higher than the reference wind speed. , the water level measured by one preset water level sensor when the wind speed is less than the reference wind speed is employed as the field water level.

気象データセンタから取得した風速が基準風速以上のときに圃場に無視できない水位勾配が生じていると判断して、水位演算部が圃場水位を算出することが好ましく、基準風速未満のときには水位勾配が問題にならないと判断して予め設定した一つの水位センサの計測水位を圃場水位に採用することが好ましい。 It is preferable that when the wind speed obtained from the meteorological data center is equal to or higher than the standard wind speed, it is determined that a non-negligible water level gradient has occurred in the field, and the water level calculation unit calculates the field water level, and when the wind speed is less than the standard wind speed, the water level gradient is determined to be present in the field. It is preferable to use the measured water level of one water level sensor, which has been determined in advance and determined not to be a problem, as the field water level.

以上説明した通り、本発明によれば、風の影響を受けることなく各圃場の水位を正確に検出できる圃場水管理装置を提供することができるようになった。 As explained above, according to the present invention, it has become possible to provide a field water management device that can accurately detect the water level in each field without being affected by wind.

灌漑用水設備の説明図Illustration of irrigation water equipment 圃場の説明図Explanatory diagram of the field 圃場水管理システムの説明図Diagram of field water management system (a),(b)は圃場に設置される水位センサの配置を示す説明図(a) and (b) are explanatory diagrams showing the arrangement of water level sensors installed in the field. 別実施形態を示し、圃場に設置される水位センサの配置を示す説明図An explanatory diagram showing another embodiment and showing the arrangement of water level sensors installed in a field

以下に、本発明による圃場水管理装置を図面に基づいて説明する。以下の説明で用いる圃場との用語は水田及び畑の双方を意味し、水源から分水工などで分水された共通の配水系統から灌漑用水が供給される複数の圃場を圃場群という。また、規模の大きな圃場群は複数のブロック圃場群の集合で構成され、ブロック圃場群単位で給水の要否が管理される。通常、共通の水源から取水された灌漑用水は分水工などにより分水された複数の配水系統によって其々異なる圃場群に給水される。以下の実施形態では稲作用の圃場について説明するが、畑用の圃場であっても同様である。 Below, a field water management device according to the present invention will be explained based on the drawings. The term "field" used in the following explanation refers to both rice paddies and fields, and a field group refers to a plurality of fields that are supplied with irrigation water from a common water distribution system that is divided from a water source by a diversion works or the like. Furthermore, a large-scale field group is composed of a plurality of block field groups, and the necessity of water supply is managed for each block field group. Normally, irrigation water taken from a common water source is supplied to different groups of fields through multiple water distribution systems separated by diversion works or the like. In the following embodiments, a field for growing rice will be described, but the same applies to a field for cultivation.

[灌漑用水設備の構成]
図1に示すように、灌漑用水設備は、河川や湖沼などの水源池130に設置された揚水機場131で取水された灌漑用水を幹線となる配水管120及び支線となる配水管121、さらに配水管121に接続された給水管100を介して各圃場1に送水するための設備である。
[Configuration of irrigation water equipment]
As shown in FIG. 1, the irrigation water equipment includes a main water pipe 120, a branch water pipe 121, and a water pipe 121, which is a main water pipe, and a water pipe 121 that is a branch pipe. This is equipment for sending water to each field 1 via a water supply pipe 100 connected to a water pipe 121.

なお、本実施形態では、便宜上、灌漑用水管理装置により管理される灌漑用水の送水を配水と称し、圃場水管理装置により管理される灌漑用水の圃場への送水を給水と称している。 In this embodiment, for convenience, the delivery of irrigation water managed by the irrigation water management device is referred to as water distribution, and the delivery of irrigation water to the field managed by the field water management device is referred to as water supply.

揚水機場131で取水された灌漑用水は、圧送ポンプ131Pを介して排水管120に直接圧送され、或いは揚水ポンプ131Pを介して調整槽である配水池122(図1では破線で示されている。)に揚水された後に配水池122から配水管120に自然流下により送水される。何れの場合もポンプ131Pは原則として交互運転される2基のポンプを単一または複数備えて構成され、送水量が多くなる場合には双方が同時運転される。 Irrigation water taken at the pumping station 131 is directly pumped to the drain pipe 120 via the pressure pump 131P, or via the pump 131P to the distribution reservoir 122 (indicated by a broken line in FIG. 1) which is a regulating tank. ), the water is then conveyed from the water distribution reservoir 122 to the water distribution pipes 120 by gravity. In either case, the pump 131P is basically configured with a single or a plurality of two pumps that are operated alternately, and when the amount of water to be fed increases, both pumps are operated simultaneously.

幹線となる配水管120は各圃場群10に向けてそれぞれ分岐され、分岐された各配水管121への配水量を調整するための分水工として機能する分水装置140が設けられている。つまり、揚水機場131から圧送された灌漑用水は、分水装置140によって配水量が調整された後に給水管100を介して各圃場群10へ送水される。 The main water distribution pipe 120 is branched toward each field group 10, and a water diversion device 140 is provided that functions as a water diversion facility for adjusting the amount of water distributed to each branched water distribution pipe 121. That is, the irrigation water pumped from the pump station 131 is sent to each field group 10 via the water supply pipe 100 after the water distribution amount is adjusted by the water distribution device 140.

給水管100に沿って配された各圃場1には、給水管100から給水可能に接続された給水栓を備えた給水装置2が設けられている。また、各圃場1には排水栓を備えた排水装置4が設けられ、排水装置4を介した各圃場1からの放水が排水路9を経由して河川に放流されるように構成されている。 Each field 1 arranged along the water supply pipe 100 is provided with a water supply device 2 equipped with a water tap connected to the water supply pipe 100 so that water can be supplied thereto. Furthermore, each field 1 is provided with a drainage device 4 equipped with a drain plug, and is configured such that water discharged from each field 1 via the drainage device 4 is discharged into the river via a drainage channel 9. .

[圃場設備の構成]
図2に示すように、圃場1には、給水管100に流れる灌漑用水を、導水路3を介してして圃場1に導く給水栓を備えた給水装置2と、圃場1の水を、放水路5を介して排水路9に排水する排水栓を備えた排水装置4と、圃場1の水位を計測する水位センサ6などが設けられている。
[Composition of field equipment]
As shown in FIG. 2, a field 1 includes a water supply device 2 equipped with a water tap that guides irrigation water flowing into a water supply pipe 100 to the field 1 via a water conduit 3, and a water supply system 2 that discharges water from the field 1. A drainage device 4 equipped with a drain plug for discharging water into a drainage channel 9 via a waterway 5, a water level sensor 6 for measuring the water level in the field 1, and the like are provided.

給水装置12及び排水装置16にはソーラーパネルSPを備えた蓄電器、給水栓または排水栓を駆動する電動モータ、電動モータを制御する制御回路、無線中継器7を介して無線通信する通信回路などが設けられ、ソーラーパネルSPによる発電電力が蓄積された蓄電器の電力によって給水栓や排水栓を駆動するモータや通信回路などが作動するように構成されている。 The water supply device 12 and the drainage device 16 include a power storage device equipped with a solar panel SP, an electric motor that drives a water tap or a drain tap, a control circuit that controls the electric motor, a communication circuit that performs wireless communication via a wireless repeater 7, and the like. A motor for driving a water tap and a drain tap, a communication circuit, etc. are configured to operate using the electric power of a condenser in which electric power generated by the solar panel SP is stored.

圃場1の近傍にはインターネットなどの通信ネットワークに接続可能な無線中継器7が設置され、給水装置2及び排水装置4に備えた通信回路は無線中継器7を介して圃場水管理装置として機能する圃場水管理サーバ21と通信可能に構成されている。給水栓または排水栓の状態や水位センサ6で検出された各圃場1の水位などが圃場水管理サーバ21に送信されるとともに、圃場水管理サーバ21により給水栓を介した給水量及び/または排水栓を介した排水水位が遠隔制御により調整可能に構成されている。 A wireless repeater 7 that can be connected to a communication network such as the Internet is installed near the field 1, and the communication circuits provided in the water supply device 2 and the drainage device 4 function as a field water management device via the wireless repeater 7. It is configured to be able to communicate with the field water management server 21. The status of the hydrant or drain valve and the water level in each field 1 detected by the water level sensor 6 are transmitted to the field water management server 21, and the field water management server 21 determines the amount of water supplied and/or drained through the hydrant. The drainage water level through the tap can be adjusted by remote control.

[給配水管理システムの構成]
図1に戻り、揚水機場131に備えた圧送ポンプ131Pには、制御回路及び通信回路が設けられ、通信回路を介して灌漑用水管理装置として機能する灌漑用水管理サーバ31と通信可能に構成されている。揚水機場131と各圃場群10を結ぶ配水管120,121に備えた各分水装置140には分水のための流量調整弁と、流量調整弁を制御する制御回路及び通信回路が設けられ、通信回路を介して灌漑用水管理サーバ31と通信可能に構成されている。灌漑用水管理サーバ31により揚水機場に備えた圧送ポンプ131Pや分水装置140に備えた流量調整弁が遠隔制御される。
[Configuration of water supply and distribution management system]
Returning to FIG. 1, the pressure pump 131P provided at the pumping station 131 is provided with a control circuit and a communication circuit, and is configured to be able to communicate with the irrigation water management server 31 functioning as an irrigation water management device via the communication circuit. There is. Each water diversion device 140 provided in the water distribution pipes 120, 121 connecting the pumping station 131 and each field group 10 is provided with a flow rate adjustment valve for water diversion, a control circuit and a communication circuit for controlling the flow rate adjustment valve, It is configured to be able to communicate with the irrigation water management server 31 via a communication circuit. The irrigation water management server 31 remotely controls the pressure pump 131P provided at the pump station and the flow rate adjustment valve provided in the water diversion device 140.

水稲栽培を例に挙げると、圃場に十分な量の水を供給して代掻きを行ない、田植え後のしばらくは稲の保護のために深水管理を継続し、ある程度安定すると浅水管理を経て間断灌水して根の成長を促し、茎の増加を抑制すべく中干した後に間断灌水を再開し、収穫時期に落水する、といったように稲の成長に伴って圃場の水位を調整する必要がある。 Taking paddy rice cultivation as an example, a sufficient amount of water is supplied to the field and puddling is performed, deep water management is continued for a while after rice planting to protect the rice, and once the rice has stabilized to a certain extent, shallow water management is followed by intermittent watering. It is necessary to adjust the water level in the field as the rice grows, such as restarting intermittent watering after drying the rice for a period of time to encourage root growth and suppress the growth of stems, and draining water at harvest time.

代掻きの時期など、各圃場の給水時期が重なり同時期に大量の用水を供給する必要がある場合には、水源で確保された一定量の灌漑用水を各圃場に公平に配水するべく、輪番制を採用するなど圃場群単位で給水日程を計画して管理する必要がある。 When the water supply periods for each field overlap, such as during the puddling season, and it is necessary to supply a large amount of water at the same time, a rotation system is used to ensure that a certain amount of irrigation water secured at the water source is distributed fairly to each field. It is necessary to plan and manage water supply schedules for each field group.

深水管理や浅水管理などのように、各圃場1の水位を設定水位に維持する一定灌水モードでは、蒸発や蒸散さらには浸透など減水深の影響により設定水位から低下した水量を日々補充する必要もある。 In constant irrigation modes such as deep water management and shallow water management, where the water level in each field is maintained at the set water level, it is also necessary to replenish the amount of water that has dropped from the set water level on a daily basis due to the effects of reduced water depth such as evaporation, transpiration, and infiltration. be.

しかし、同一の圃場群の圃場でも給水管の水圧によってはそのときに十分な量の給水ができない場合があり、所定量の給水後も給水栓が解放され続けていると他の圃場への給水量が不足する場合もある。 However, depending on the water pressure of the water supply pipes, it may not be possible to supply a sufficient amount of water even to fields in the same field group, and if the water tap continues to be opened even after the specified amount of water has been supplied, water will not be supplied to other fields. Sometimes the quantity is insufficient.

また、稲作であっても品種が異なると給水時期が異なる場合もあり、それぞれの圃場の固有の条件によって適切な時期に適切な量の給水を計画管理するのは非常に困難な状況にある。 Furthermore, even in rice cultivation, water supply times may vary depending on the variety of rice, making it extremely difficult to plan and manage the supply of water in the right amount at the right time, depending on the unique conditions of each field.

給配水管理システムは、この様な問題に柔軟に対処すべく、上述した灌漑用水管理サーバ31と圃場水管理サーバ21をインターネットなどの通信媒体を介して連系させることにより、営農者が管理する個々の圃場の状況に応じて適切に灌漑用水を供給することを可能とするシステムである。 In order to deal with such problems flexibly, the water supply and distribution management system is managed by farmers by linking the above-mentioned irrigation water management server 31 and field water management server 21 via communication media such as the Internet. This system makes it possible to supply irrigation water appropriately according to the conditions of individual fields.

例えば、圃場水管理サーバ21から圃場群10ごとの必要給水量が灌漑用水管理サーバ31に送られると、灌漑用水管理サーバ31が圧送ポンプ131Pの運転台数や分水装置140に備えた流量調整弁を制御することにより、適切に配水できるように管理される。 For example, when the required water supply amount for each field group 10 is sent from the field water management server 21 to the irrigation water management server 31, the irrigation water management server 31 determines the number of operating pressure pumps 131P and the flow rate adjustment valve installed in the water diversion device 140. By controlling water, water can be managed to be distributed appropriately.

[圃場水管理システムの構成]
図3には、圃場水管理システム20の構成が示されている。
圃場水管理システム20は、圃場管理装置である圃場水管理サーバ21と、営農者などが所有する端末装置8と、各圃場1に備えた給水装置2、排水装置4、水位センサ6などを備えて構成されている。端末装置8には、スマートフォンやタブレットコンピュータなどの可搬性の端末装置やデスクトップコンピュータのような据置型の端末装置が含まれる。
[Configuration of field water management system]
FIG. 3 shows the configuration of the field water management system 20.
The field water management system 20 includes a field water management server 21 which is a field management device, a terminal device 8 owned by a farmer, etc., a water supply device 2, a drainage device 4, a water level sensor 6, etc. provided in each field 1. It is composed of The terminal device 8 includes a portable terminal device such as a smartphone or a tablet computer, and a stationary terminal device such as a desktop computer.

圃場水管理サーバ21には、各圃場1の状態を管理する圃場管理部21Aを備えており、圃場管理部21Aには水位管理部21B、水位演算部21C、給水制御部21Dなどの機能ブロックを備えている。 The field water management server 21 includes a field management section 21A that manages the status of each field 1, and the field management section 21A includes functional blocks such as a water level management section 21B, a water level calculation section 21C, and a water supply control section 21D. We are prepared.

圃場水管理サーバ21には、CPUボード、メモリボード、通信ボード、記憶装置などが設けられ、メモリボードに備えたメモリに格納されたアプリケーションプログラムがCPUボードに搭載されたCPUによって実行されることにより、上述した各機能ブロックが具現化される。 The field water management server 21 is equipped with a CPU board, a memory board, a communication board, a storage device, etc., and the application program stored in the memory provided on the memory board is executed by the CPU mounted on the CPU board. , each of the above-mentioned functional blocks is implemented.

圃場管理部21Aは、各圃場1の状態を管理する機能ブロックで、各圃場1を固有に識別する識別情報と稼働情報と給水情報を管理する。識別情報には、管理番号、圃場の位置を示す所在地情報、圃場面積、所有者情報などが含まれる。稼働情報とは栽培中または休耕中の何れかを識別する情報、栽培中の場合には栽培品種、代掻き、深水管理、浅水管理、中干し、間断灌水、落水などの育成ステージ、及び各育成ステージの目標スケジュールなどを管理する情報が含まれる。また、水温が以上の高い場合や異常に低い場合には、かけ流しなどのイレギュラーな管理情報も含まれる。 The field management unit 21A is a functional block that manages the state of each field 1, and manages identification information that uniquely identifies each field 1, operation information, and water supply information. The identification information includes a management number, location information indicating the position of the field, field area, owner information, and the like. Operation information is information that identifies whether cultivation is in progress or fallow, and if cultivation is in progress, the cultivar, cultivation stage such as puddling, deep water management, shallow water management, mid-drying, intermittent watering, falling water, etc., and information on each cultivation stage. Contains information for managing target schedules, etc. In addition, if the water temperature is higher than the above or abnormally low, irregular management information such as running water is also included.

給水情報とは、各圃場1の給水状態を示す情報であり、各育成ステージに応じて適切な目標とする設定水位、現在水位、給水栓の開度などを含む。設定水位は営農者の端末装置8から入力され、排水装置4に備えた排水栓を調節する排水水位をいう。識別情報と稼働情報と給水情報を含む管理情報はメモリに管理され、営農者が所持する端末装置8からの初期入力及びその後の更新入力、さらには水位演算部21Cや給水制御部21Dからの入力に基づいて管理される。 The water supply information is information indicating the water supply status of each field 1, and includes a set water level that is an appropriate target according to each growth stage, the current water level, the opening degree of the water tap, and the like. The set water level is input from the farmer's terminal device 8 and refers to the drainage water level at which the drain plug provided in the drainage device 4 is adjusted. Management information including identification information, operation information, and water supply information is managed in memory, and is input from the initial input and subsequent update input from the terminal device 8 owned by the farmer, as well as input from the water level calculation unit 21C and the water supply control unit 21D. managed based on

水位演算部21Cは、各圃場1に備えた水位センサ6からの水位情報を受けて各圃場1の水位を算出する機能ブロックであり、給水制御部21Dは各圃場1に備えた給水装置2に組み込まれる自動給水栓を遠隔により開閉制御して水位演算部21Cで算出された現在水位を目標水位である設定水位になるように調整する機能ブロックであり、水位管理部21Bは各圃場1の水位を管理する機能ブロックであり、各圃場1に備えた配水装置4を遠隔制御して排水栓による配水高さを目標水位に調整する。 The water level calculation unit 21C is a functional block that receives water level information from the water level sensor 6 provided in each field 1 and calculates the water level of each field 1. This is a functional block that remotely controls the opening and closing of the built-in automatic water faucet to adjust the current water level calculated by the water level calculation unit 21C to the set water level, which is the target water level.The water level management unit 21B controls the water level of each field 1. This is a functional block that remotely controls the water distribution device 4 provided in each field 1 to adjust the height of water distribution by the drain valve to the target water level.

[水位演算の詳細]
通常は、給水管100に沿って配された圃場のうち、給水管100の近傍の一隅に給水装置4が配されるとともにその近傍に水位センサ6が配されている。そして、減水深の影響を受けて低下した圃場の水位を設定水位に回復させるように、必要に応じて各圃場1に対して給水制御を実行するように構成されている。
[Details of water level calculation]
Usually, in a field arranged along the water supply pipe 100, the water supply device 4 is arranged at one corner near the water supply pipe 100, and the water level sensor 6 is arranged near the corner. The system is configured to perform water supply control for each farm field 1 as necessary so that the water level in the farm field, which has decreased due to the influence of the water reduction depth, is restored to the set water level.

しかし、風の影響を受けるような場合には、同一の圃場1であっても風上側では水位が低くなり、風下側では水位が高くなるという水位勾配が生じる。そのため、水位センサ6が設置された位置によって検出する水位に差が生じると、圃場1の水位を設定水位に調整することが困難になる場合がある。 However, when the field is affected by wind, a water level gradient occurs in which the water level is lower on the windward side and higher on the leeward side even in the same field 1. Therefore, if there is a difference in the water level detected depending on the position where the water level sensor 6 is installed, it may become difficult to adjust the water level in the field 1 to the set water level.

そこで、水位演算部21Cは、圃場群10に備えた複数の水位センサ6により検出された各水位情報に基づいて、風に起因する水位勾配の影響を抑制した圃場水位を算出するように構成されている。 Therefore, the water level calculation unit 21C is configured to calculate a field water level that suppresses the influence of the water level gradient caused by wind, based on the water level information detected by the plurality of water level sensors 6 provided in the field group 10. ing.

図4(a)には圃場群10の一例が示されている。水源地130から取水した灌漑用水が2基の圧送ポンプ131Pにより配水管120,122及び給水管100を介して二つの圃場群10A,10Bに配水されている。各圃場群10A,10Bは其々12枚の圃場1で構成され、各圃場1には自動給水栓が組み込まれた給水装置2及び自動排水水栓が組み込まれた排水装置4が設置されている。給水装置2の近傍には水位センサ6が設置されている。 An example of the field group 10 is shown in FIG. 4(a). Irrigation water taken from a water source 130 is distributed to two field groups 10A, 10B via water distribution pipes 120, 122 and water supply pipe 100 by two pressure pumps 131P. Each field group 10A, 10B is composed of 12 fields 1, and each field 1 is equipped with a water supply device 2 incorporating an automatic water supply tap and a drainage device 4 incorporating an automatic drain tap. . A water level sensor 6 is installed near the water supply device 2.

何れの圃場群10A,10Bでも、給水管100に沿って上流側から下流側に向けて両側に圃場1が配され、給水管100と接する畔とは反対側の畔に排水路9が設けられている。そして、各圃場1のうち、給水管100と接する畔に近い隅に給水装置2が設置され、排水路9と接する畔に近い隅に排水装置4が設置されている。 In both of the field groups 10A and 10B, the fields 1 are arranged on both sides along the water supply pipe 100 from the upstream side to the downstream side, and the drainage channel 9 is provided on the opposite side of the bank from the bank in contact with the water supply pipe 100. ing. In each field 1, a water supply device 2 is installed in a corner close to the ridge in contact with the water supply pipe 100, and a drainage device 4 is installed in a corner close to the ridge in contact with the drainage channel 9.

図4(a)に示す二つの圃場群10A,10Bはともに、給水管100を挟んで南北に対向し、東西に整列するように圃場1が配されている。つまり、複数の圃場が同一の配列方向に配列されている。東西南北に隣接する四枚の圃場1に着目すると、北西の圃場1では南西隅に水位センサ6aが配され、北東の圃場1では南東隅に水位センサ6bが配され、南西の圃場1では北西隅に水位センサ6cが配され、南東の圃場1では北東隅に水位センサ6dが配されている。 Both of the two farm fields 10A and 10B shown in FIG. 4(a) face each other in the north and south with the water supply pipe 100 in between, and the farm fields 1 are arranged so as to be aligned in the east and west directions. In other words, a plurality of fields are arranged in the same arrangement direction. Focusing on the four fields 1 adjacent to each other in the north, south, east, and west, in the northwest field 1, the water level sensor 6a is placed in the southwest corner, in the northeast field 1, the water level sensor 6b is placed in the southeast corner, and in the southwest field 1, the water level sensor 6b is placed in the southwest corner. A water level sensor 6c is arranged at the corner, and in the southeastern field 1, a water level sensor 6d is arranged at the northeast corner.

これら東西南北に隣接する四枚の圃場1の設定水位及び減水深に大きな差がない場合には、各水位センサ6a,6b,6c,6dにより検出された水位は、図4(b)に示すように、同一の圃場1の四隅に水位センサ6a,6b,6c,6dを設置した場合の水位と同じ水位であるとみなすことができる。 If there is no large difference in the set water level and water reduction depth of these four fields 1 adjacent to each other in the north, south, east, and west, the water levels detected by each water level sensor 6a, 6b, 6c, and 6d are shown in FIG. 4(b). Thus, the water level can be considered to be the same as the water level when the water level sensors 6a, 6b, 6c, and 6d are installed at the four corners of the same field 1.

水位演算部21Cは、このような水位センサ6a,6b,6c,6dの値を入力してそれらの平均値を各圃場1の水位とすることで、風に起因する水位勾配の影響を抑制した圃場水位を得ることができ、各圃場1に設置した水位センサ6の数は一つであっても、実質的に四つの水位センサ6を設置したと同等の効果が得られるようになる。 The water level calculation unit 21C inputs the values of the water level sensors 6a, 6b, 6c, and 6d and sets the average value thereof as the water level of each field 1, thereby suppressing the influence of the water level gradient caused by the wind. The field water level can be obtained, and even if only one water level sensor 6 is installed in each field 1, substantially the same effect as four water level sensors 6 can be obtained.

このようにして水位演算部21Cにより算出された水位に基づいて給水制御部21Dが給水制御することにより、各圃場1に設定水位まで給水することができるようになる。 The water supply control unit 21D performs water supply control based on the water level calculated by the water level calculation unit 21C in this way, so that each field 1 can be supplied with water up to the set water level.

この例では、水位センサ6a,6b,6c,6dを其々圃場1の隅に設置し、水位演算部21Cが算出した平均値を各圃場の1の水位として取り扱う例を示したが、水位センサ6a,6b,6c,6dは其々圃場1の相対的に異なる位置に設置していればよく、隅に設置する必要はない。また、水位センサ6a,6b,6c,6dは給水装置2の近傍に設置することが好ましいが、給水装置2の近傍でなくてもよい。 In this example, the water level sensors 6a, 6b, 6c, and 6d are installed at each corner of the field 1, and the average value calculated by the water level calculation unit 21C is treated as the water level 1 of each field. 6a, 6b, 6c, and 6d may be installed at relatively different positions in the field 1, and do not need to be installed at the corners. Further, although it is preferable that the water level sensors 6a, 6b, 6c, and 6d be installed near the water supply device 2, they do not need to be near the water supply device 2.

予め圃場1の形状と水位センサ6の設置位置が分かっていれば、各水位センサ6により検出された水位とそのロケーションから水位勾配を算出することができるので、それらの値から圃場1の平均水位を算出することができる。このように、圃場1で生じている水位勾配を算出する場合には、少なくとも三つの水位センサ6の値が検出できれば十分であり、例えば、東西南北に隣接する四枚の圃場1のうちの三枚の圃場1で相対的に異なる位置に其々水位センサ6を設置すればよい。 If the shape of the field 1 and the installation position of the water level sensor 6 are known in advance, the water level gradient can be calculated from the water level detected by each water level sensor 6 and its location, so the average water level of the field 1 can be calculated from these values. can be calculated. In this way, when calculating the water level gradient occurring in the field 1, it is sufficient that the values of at least three water level sensors 6 can be detected. The water level sensors 6 may be installed at relatively different positions in each field 1.

即ち、三つの水位センサ6は、給水管100を挟んで対向するように配置された一対の圃場1のうち給水管100の上流側で給水管100に近接した隅に設置した少なくとも一つのセンサ6と、給水管100を挟んで一対の圃場1に隣接する一対の圃場1のうち給水管の下流側で給水管に近接した隅に設置した一つのセンサとを含むように構成すればよい。 That is, the three water level sensors 6 are at least one sensor 6 installed in a corner close to the water supply pipe 100 on the upstream side of the water supply pipe 100 in a pair of fields 1 arranged to face each other with the water supply pipe 100 in between. and one sensor installed in a corner of the pair of fields 1 adjacent to the pair of fields 1 with the water supply pipe 100 in between, on the downstream side of the water supply pipe and close to the water supply pipe.

二つの圃場群10A,10Bを構成する12枚の圃場1は、はともに給水管100を挟んで南北に対向し、東西に整列するように圃場1が配されているので、設定水位及び減水深に大きな差がない場合には、12枚の圃場の其々に水位センサ6a,6b,6c,6dを備えることなく、例えば東西南北に隣接する三枚の圃場1の一組にのみ水位センサ6a,6b,6cを備え、水位演算部21Cで算出された水位を12枚の圃場1の水位として採用することも可能である。 The 12 fields 1 constituting the two field groups 10A and 10B face north and south across the water supply pipe 100, and the fields 1 are arranged so as to be aligned east to west, so the set water level and water reduction depth can be adjusted. If there is no large difference between the water level sensors 6a, 6b, 6c, and 6d for each of the 12 fields, for example, the water level sensors 6a are installed only in one set of three fields 1 adjacent to each other in the north, south, east, and west. , 6b, 6c, and the water level calculated by the water level calculation unit 21C can be used as the water level of the 12 fields 1.

換言すると、これらの12枚の圃場1のうち、設定水位及び減水深に大きな差がない圃場1に対して、其々相対的に異なる位置に水位センサ6を備えればよい。 In other words, among these 12 fields 1, the water level sensors 6 may be provided at relatively different positions for the fields 1 where there is no large difference in the set water level and the water reduction depth.

同一の圃場群に属する圃場であれば、隣接していない圃場が含まれていてもよい。図4(a)に示す例では、圃場群10Aで給水管100の北側で東西に隣接する三枚の圃場1を一組としてそれぞれの圃場1に相対的な位置を異ならせて水位センサ6を設置してもよい。 As long as the fields belong to the same field group, non-adjacent fields may be included. In the example shown in FIG. 4(a), three fields 1 adjacent in the east and west on the north side of the water pipe 100 in the field group 10A are set as a set, and the water level sensors 6 are installed at different positions relative to each field 1. May be installed.

また、給水管100を挟んで隣接する圃場1でなくてもよい。即ち、複数の水位センサ6は、一枚の圃場1の互いに交差する二辺及び/または角部に対向するように位置する少なくとも三枚の圃場1の其々に設置した三つの水位センサで、各圃場1の其々異なる隅または相対的に異なる位置に設置した水位センサを含んでいればよい。 Further, the fields 1 do not have to be adjacent to each other with the water supply pipe 100 in between. That is, the plurality of water level sensors 6 are three water level sensors installed in each of at least three fields 1 located so as to face two mutually intersecting sides and/or corners of one field 1, It is only necessary to include water level sensors installed at different corners of each field 1 or at relatively different positions.

水位勾配に対応した複数の水位を検出するためには、少なくとも風上の水位を検出する第1水位センサと風下の水位を検出する第2水位センサを含むものであればよい。 In order to detect a plurality of water levels corresponding to the water level gradient, it is sufficient to include at least a first water level sensor that detects the windward water level and a second water level sensor that detects the leeward water level.

第1水位センサと第2水位センサが同一の圃場に設置されていてもよいし、異なる圃場に設置されていてもよい。例えば、図4(a)に示すように、東西南北に隣接する四枚の圃場1の其々に水位センサ6を設けるのではなく、何れか一枚の圃場に、図4(b)に示すような4つの水位センサ6を設置し、他の三枚の圃場1には水位センサ6を設置しないような態様が含まれる。水位センサ6が設置された一枚の圃場が他の三枚の圃場1を代表する圃場として位置付けることができる。 The first water level sensor and the second water level sensor may be installed in the same field, or may be installed in different fields. For example, instead of installing the water level sensor 6 in each of the four fields 1 adjacent to each other in the north, south, east, and west as shown in FIG. This includes a mode in which four water level sensors 6 are installed, and no water level sensors 6 are installed in the other three fields 1. One field where the water level sensor 6 is installed can be positioned as a field representative of the other three fields 1.

複数の水位センサ6の少なくとも一つは給水対象圃場以外の圃場に設置した水位センサであってもよい。給水対象圃場とは異なる圃場に設置された水位センサの値に基づいて給水対象圃場の水位を算出できるようになり、各圃場に設置する水位センサの数を増やす必要がなくなる。 At least one of the plurality of water level sensors 6 may be a water level sensor installed in a field other than the water supply target field. It is now possible to calculate the water level of a field to be watered based on the value of a water level sensor installed in a field different from the field to be watered, and there is no need to increase the number of water level sensors installed in each field.

図5には、同一の配列方向に配列された三つの圃場群10A,10B,10Cが示されている。圃場群10A,10Bを構成する圃場1の配列方向は同一であるが、圃場群10Cを構成する圃場1の配列方向は圃場群10A,10Bとは異なる。 FIG. 5 shows three field groups 10A, 10B, and 10C arranged in the same arrangement direction. The arrangement directions of the fields 1 constituting the field groups 10A and 10B are the same, but the arrangement directions of the fields 1 constituting the field group 10C are different from those of the field groups 10A and 10B.

このような場合には、水位演算部21Cが、配列方向が同一の圃場群ごとに複数の圃場1に其々相対的な位置を異ならせて設置された複数の水位センサ6の検出水位に基づいて、風に起因する水位勾配の影響を抑制した圃場水位を算出するように構成すればよい。 In such a case, the water level calculation unit 21C calculates the water level based on the detected water level of the plurality of water level sensors 6 installed at different relative positions in the plurality of fields 1 for each group of fields having the same arrangement direction. The field water level may be calculated in such a way that the influence of the water level gradient caused by the wind is suppressed.

この例では、圃場群10Aに属する複数の圃場1A、圃場群10Bに属する複数の圃場1B、圃場群10Cに属する複数の圃場1Cの其々で其々相対的な位置を異ならせて複数の水位センサ6を設置すれよい。例えば、圃場群10Bに属する圃場1Bと圃場群10Cに属する圃場1Cとの組み合わせは、水位勾配の現れ方が異なるので排除される。 In this example, a plurality of fields 1A belonging to a field group 10A, a plurality of fields 1B belonging to a field group 10B, and a plurality of fields 1C belonging to a field group 10C have different relative positions, and a plurality of water levels are set. The sensor 6 may be installed. For example, a combination of a field 1B belonging to the field group 10B and a field 1C belonging to the field group 10C is excluded because the water level gradient appears differently.

図5に示す圃場群10Bのうち、南西隅の圃場1は不等辺四角形であり、他の圃場のように長方形にはなっていない。このように実際の圃場1は三角形であったり、五角形であったりと様々である。圃場1の形状や面積が異なれば、発生する水位勾配も異なることになる。従って、本発明が適用される圃場1は、配列方向の同一性に加えて、圃場1がほぼ同一の形状及び面積、或いは形状及び面積が予め設定された許容範囲にある複数の圃場1に適用することが好ましい。 Among the farm fields 10B shown in FIG. 5, the farm field 1 at the southwest corner is shaped like a scalene quadrilateral and is not rectangular like the other fields. In this way, the actual field 1 has various shapes such as a triangle and a pentagon. If the shape and area of the field 1 differ, the generated water level gradient will also differ. Therefore, in addition to the sameness in the arrangement direction, the present invention is applied to a plurality of farm fields 1 that have substantially the same shape and area, or whose shape and area are within a preset tolerance range. It is preferable to do so.

なお、形状や面積が異なる圃場であっても、給水開始前の水位であれば、本発明が適用される圃場に対して算出した水位と同等であると判定することは可能である。その後、給水制御部21Dにより制御される給水栓の開度と給水時間から給水量が算出できるので、算出した給水量を圃場面積で除すれば給水により増加した水位を算出することができる。 Note that even if the field has a different shape or area, it is possible to determine that the water level before the start of water supply is equivalent to the water level calculated for the field to which the present invention is applied. Thereafter, the water supply amount can be calculated from the opening degree of the water tap and the water supply time controlled by the water supply control unit 21D, so by dividing the calculated water supply amount by the field area, the water level increased by water supply can be calculated.

水位演算部21Cは、気象データセンタから取得した風速が基準風速以上のときに圃場水位を算出し、基準風速未満のときに予め設定した一つの水位センサの計測水位を圃場水位として採用することが好ましい。 The water level calculation unit 21C can calculate the field water level when the wind speed acquired from the meteorological data center is equal to or higher than the reference wind speed, and when the wind speed is lower than the reference wind speed, the water level measured by one preset water level sensor can be adopted as the field water level. preferable.

気象データセンタから取得した風速が基準風速以上のときに圃場に無視できない水位勾配が生じていると判断して、水位演算部21Cが圃場水位を算出することが好ましく、基準風速未満のときには水位勾配が問題にならないと判断して予め設定した一つの水位センサの計測水位を圃場水位に採用するものである。 It is preferable that the water level calculation unit 21C calculates the field water level by determining that a non-negligible water level gradient has occurred in the field when the wind speed obtained from the meteorological data center is equal to or higher than the reference wind speed, and when the wind speed is less than the reference wind speed, the water level gradient is calculated. The water level measured by one preset water level sensor is determined to be no problem and is used as the field water level.

以上説明した実施形態は本発明の一例に過ぎず、該記載により本発明の技術的範囲が限定されることを意図するものではなく、本発明による作用効果を奏する範囲において適宜変更設計可能であることはいうまでもない。 The embodiment described above is only an example of the present invention, and the technical scope of the present invention is not intended to be limited by the description, and the design can be modified as appropriate within the scope of achieving the effects of the present invention. Needless to say.

1:圃場
2:給水装置
3:導水路
6:水位センサ
8:端末
10:圃場群
20:圃場水管理システム
21:圃場水管理装置(圃場水管理サーバ)
21A:圃場管理部
21B:水位管理部
21C:水位演算部
21D:給水制御部
100:給水管
120:配水管(幹線)
121:配水管(支線)
122:配水池
130:水源池
131:揚水機場
131P:揚水ポンプ(圧送ポンプ)
200:給排水管理システム
1: Field 2: Water supply device 3: Headrace channel 6: Water level sensor 8: Terminal 10: Field group 20: Field water management system 21: Field water management device (field water management server)
21A: Field management section 21B: Water level management section 21C: Water level calculation section 21D: Water supply control section 100: Water supply pipe 120: Water pipe (main line)
121: Water pipe (branch line)
122: Distribution reservoir 130: Water source pond 131: Pumping station 131P: Lifting pump (pressure pump)
200: Water supply and drainage management system

Claims (5)

複数の圃場で構成される圃場群を単位として各圃場への給水を管理する圃場水管理装置であって、
給水対象圃場の現在水位を算出する水位演算部と、
前記水位演算部により算出された現在水位が設定水位となるように、前記給水対象圃場に備えた自動給水栓を開閉制御する給水制御部と、
を備え、
前記水位演算部は、給水管を挟んで対向するように配置された一対の圃場のうち前記給水管の上流側で前記給水管に近接した隅に設置したセンサと、前記給水管を挟んで前記一対の圃場に隣接する一対の圃場のうち前記給水管の下流側で前記給水管に近接した隅に設置したセンサとを含む少なくとも三つの水位センサにより検出された各水位情報に基づいて、風に起因する水位勾配の影響を抑制した圃場水位を算出することを特徴とする圃場水管理装置。
A field water management device that manages water supply to each field in a field group consisting of a plurality of fields,
a water level calculation unit that calculates the current water level of the field to be watered;
a water supply control unit that controls opening and closing of an automatic water faucet provided in the water supply target field so that the current water level calculated by the water level calculation unit becomes the set water level;
Equipped with
The water level calculation unit includes a sensor installed in a corner of a pair of fields facing each other with a water supply pipe in between, and a sensor installed in a corner close to the water supply pipe on the upstream side of the water supply pipe; Based on water level information detected by at least three water level sensors, including a sensor installed in a corner of a pair of fields adjacent to a pair of fields on the downstream side of the water supply pipe and close to the water supply pipe, A field water management device that calculates a field water level that suppresses the influence of water level gradient caused by the water level gradient.
前記水位演算部は、前記圃場群のうち同一の配列方向に配列された複数の圃場に備えた複数の水位センサにより検出された各水位情報に基づいて、風に起因する水位勾配の影響を抑制した圃場水位を算出することを特徴とする請求項1記載の圃場水管理装置。 The water level calculation unit suppresses the influence of a water level gradient caused by wind, based on water level information detected by a plurality of water level sensors provided in a plurality of fields arranged in the same arrangement direction among the farm fields. The field water management device according to claim 1, wherein the field water management device calculates the field water level. 前記複数の水位センサは少なくとも風上の水位を検出する第1水位センサと風下の水位を検出する第2水位センサを含むことを特徴とする請求項1または2記載の圃場水管理装置。 3. The field water management device according to claim 1, wherein the plurality of water level sensors include at least a first water level sensor that detects a windward water level and a second water level sensor that detects a leeward water level. 前記複数の水位センサの少なくとも一つは前記給水対象圃場以外の圃場に設置した水位センサであることを特徴とする請求項1から3の何れかに記載の圃場水管理装置。 The field water management device according to any one of claims 1 to 3, wherein at least one of the plurality of water level sensors is a water level sensor installed in a field other than the water supply target field. 前記水位演算部は気象データセンタから取得した風速が基準風速以上のときに前記圃場水位を算出し、基準風速未満のときに予め設定した一つの水位センサの計測水位を前記圃場水位として採用することを特徴とする請求項1からの何れかに記載の圃場水管理装置。
The water level calculation unit calculates the field water level when the wind speed obtained from the meteorological data center is equal to or higher than a reference wind speed, and when the wind speed is lower than the reference wind speed, the water level measured by one preset water level sensor is adopted as the field water level. The field water management device according to any one of claims 1 to 4 , characterized by:
JP2020108101A 2020-06-23 2020-06-23 Field water management device Active JP7418293B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020108101A JP7418293B2 (en) 2020-06-23 2020-06-23 Field water management device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020108101A JP7418293B2 (en) 2020-06-23 2020-06-23 Field water management device

Publications (2)

Publication Number Publication Date
JP2022002484A JP2022002484A (en) 2022-01-11
JP7418293B2 true JP7418293B2 (en) 2024-01-19

Family

ID=79247146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020108101A Active JP7418293B2 (en) 2020-06-23 2020-06-23 Field water management device

Country Status (1)

Country Link
JP (1) JP7418293B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7288722B1 (en) 2022-12-27 2023-06-08 にいがた制御株式会社 Systems and methods for controlling the pressure of water supplied to fields

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3458995B2 (en) * 1997-06-13 2003-10-20 株式会社日立製作所 Estimation method of water level distribution in paddy field and water management method based on it

Also Published As

Publication number Publication date
JP2022002484A (en) 2022-01-11

Similar Documents

Publication Publication Date Title
JP3871218B2 (en) Paddy field water management system
JP7418288B2 (en) Water supply and distribution management systems, field water management equipment, and irrigation water management equipment
US10039242B1 (en) Automated irrigation gate system and method for regulating water in an irrigation channel and conserving water in an agricultural region
JP7418293B2 (en) Field water management device
CN106342430A (en) Saline-alkali land improving system with automatic salt control function
JP2001161192A (en) Water tending system for paddy field
JP6613077B2 (en) Field water management method
US20110226800A1 (en) Fluid drainage system and methods
JP2023021422A (en) Farm field drain plug and farm field water storage management system
US10577755B1 (en) Wireless sensor-based turf heating and cooling
KR102210129B1 (en) System for managing the agricultural water
JP7418299B2 (en) Field water management device
JP7005689B2 (en) Water supply and distribution management system, field water management device and irrigation water management device
CN107675753A (en) A kind of pump house flood system and its flood method
JP7454598B2 (en) Field water management equipment, water supply and distribution management equipment, and irrigation water equipment
JP7358230B2 (en) Field water management system, wide field water supply management system, and irrigation water management system
JP2732770B2 (en) Water control mechanism in paddy field and water management mechanism in district
JP2021087388A (en) Sluice gate control apparatus, sluice gate, sluice gate control method, and sluice gate control system
JP2004275147A (en) Management system for paddy field
CN205827531U (en) Radio-frequency card measurement controller
JP2022002485A (en) Field water storage system and application method of field water storage system
JP2024053926A (en) Irrigation Systems and Control Devices
CN211430428U (en) Irrigation system for inhibiting land salinization
CN219762111U (en) Water-saving irrigation system for farmland water conservancy management
JP2011217619A (en) Watering system for greening

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240109

R150 Certificate of patent or registration of utility model

Ref document number: 7418293

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150