JP7416017B2 - pressure vessel - Google Patents

pressure vessel Download PDF

Info

Publication number
JP7416017B2
JP7416017B2 JP2021098932A JP2021098932A JP7416017B2 JP 7416017 B2 JP7416017 B2 JP 7416017B2 JP 2021098932 A JP2021098932 A JP 2021098932A JP 2021098932 A JP2021098932 A JP 2021098932A JP 7416017 B2 JP7416017 B2 JP 7416017B2
Authority
JP
Japan
Prior art keywords
liner
neck
anchor
tubular member
pressure vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021098932A
Other languages
Japanese (ja)
Other versions
JP2022190560A (en
Inventor
翔太 渡邉
統 澤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2021098932A priority Critical patent/JP7416017B2/en
Priority to CN202210465263.4A priority patent/CN115539822A/en
Priority to DE102022114491.7A priority patent/DE102022114491A1/en
Publication of JP2022190560A publication Critical patent/JP2022190560A/en
Application granted granted Critical
Publication of JP7416017B2 publication Critical patent/JP7416017B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/02Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge involving reinforcing arrangements
    • F17C1/04Protecting sheathings
    • F17C1/06Protecting sheathings built-up from wound-on bands or filamentary material, e.g. wires
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/16Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge constructed of plastics materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/005Storage of gas or gaseous mixture at high pressure and at high density condition, e.g. in the single state phase
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/02Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge involving reinforcing arrangements
    • F17C1/04Protecting sheathings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/002Details of vessels or of the filling or discharging of vessels for vessels under pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/04Arrangement or mounting of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0104Shape cylindrical
    • F17C2201/0109Shape cylindrical with exteriorly curved end-piece
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/056Small (<1 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0604Liners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0614Single wall
    • F17C2203/0619Single wall with two layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0626Multiple walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/066Plastics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/0663Synthetics in form of fibers or filaments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/03Fluid connections, filters, valves, closure means or other attachments
    • F17C2205/0302Fittings, valves, filters, or components in connection with the gas storage device
    • F17C2205/0305Bosses, e.g. boss collars
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/21Shaping processes
    • F17C2209/2154Winding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/012Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0107Single phase
    • F17C2223/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/036Very high pressure (>80 bar)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0165Applications for fluid transport or storage on the road
    • F17C2270/0168Applications for fluid transport or storage on the road by vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0165Applications for fluid transport or storage on the road
    • F17C2270/0184Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Description

本開示は、圧力容器に関する。 TECHNICAL FIELD This disclosure relates to pressure vessels.

従来から水素等のガスを高圧にて充填するガスタンクが知られている。下記特許文献1は、口金部材が取り付けられたライナーの外周側に、フィラメントワインディング法によって繊維を積層した繊維強化層を有するガスタンクを開示している。この従来のガスタンクの繊維強化層の内層部分には、繊維間に生じた微細な空隙を有する通気層が設けられている(特許文献1、要約、請求項1、第0007段落、図3)。 BACKGROUND ART Gas tanks filled with gas such as hydrogen at high pressure have been known. Patent Document 1 listed below discloses a gas tank that has a fiber-reinforced layer formed by laminating fibers by a filament winding method on the outer peripheral side of a liner to which a cap member is attached. The inner layer of the fiber-reinforced layer of this conventional gas tank is provided with a ventilation layer having fine voids formed between the fibers (Patent Document 1, Abstract, Claim 1, Paragraph 0007, FIG. 3).

この従来のガスタンクによれば、高圧状態にてライナーを透過したガスが、ライナーと繊維強化層との間に溜まることなく、繊維強化層を構成する繊維間に生じた微細な空隙からなる通気層を介してライナーと口金部材との隙間から徐々に外部へ放出される。これにより、繊維強化層に溝部を形成する場合と比較して、十分な強度を確保しつつライナーと繊維強化層との間に溜まった高濃度のガスが短時間に外部へ流出する不具合を抑制することができる。また、ガスタンク内が減圧された際に、ライナーと繊維強化層との間の高圧ガスによりライナーが内側に変形することも抑制できる(特許文献1、第0008段落)。 According to this conventional gas tank, the gas that permeates through the liner under high pressure does not accumulate between the liner and the fiber-reinforced layer, and the ventilation layer is made up of fine voids created between the fibers that make up the fiber-reinforced layer. It is gradually released to the outside through the gap between the liner and the cap member. Compared to forming grooves in the fiber-reinforced layer, this ensures sufficient strength while suppressing the problem of high-concentration gas accumulated between the liner and the fiber-reinforced layer flowing out in a short time. can do. Furthermore, when the pressure inside the gas tank is reduced, it is possible to suppress the liner from deforming inward due to the high pressure gas between the liner and the fiber reinforced layer (Patent Document 1, paragraph 0008).

この従来のガスタンクにおいて、ライナーの口部は、内側延出部と、円筒状の被嵌合部とを有しており、この被嵌合部の内側が口部となっている。内側延出部は、ライナーの肩部の内端縁から中心軸線側に小径側ほどライナー内側に位置するように傾斜しつつ延出する。円筒状の被嵌合部は、内側延出部の肩部とは反対側からライナーの軸線方向に沿ってライナー内に突出する。この被嵌合部の外周には、インサートリングが一体に設けられている。インサートリングは、被嵌合部と、この被嵌合部に圧入される口金部材の嵌合部との間に装着されるOリングを締め付ける(特許文献1、第0028段落-第0029段落、図2)。 In this conventional gas tank, the mouth of the liner has an inwardly extending part and a cylindrical fitted part, and the inside of this fitted part serves as the mouth. The inner extending portion extends from the inner end edge of the shoulder portion of the liner toward the center axis while being inclined so that the smaller the diameter side, the closer to the inner side of the liner. The cylindrical fitted portion protrudes into the liner along the axial direction of the liner from the side opposite to the shoulder of the inwardly extending portion. An insert ring is integrally provided on the outer periphery of this fitted portion. The insert ring tightens the O-ring installed between the fitted part and the fitting part of the base member press-fitted into the fitted part (Patent Document 1, paragraphs 0028 to 0029, FIGS. 2).

特開2009-174700号公報Japanese Patent Application Publication No. 2009-174700

上記従来のガスタンクにおいて、インサートリングは、前述のように、ライナーの口部の一部である円筒状の被嵌合部の外周にライナーと一体に設けられ、ライナーの被嵌合部と口金部材の嵌合部との間に装着されるOリングを締め付ける。このような構造では、ガスタンクの温度が低下すると、合成樹脂製のライナーと金属製のインサートリングがともに収縮する。すると、ライナーとインサートリングとの間の熱膨張係数の差により、インサートリングからライナーを剥離させる応力が作用して、ガスタンクの信頼性を低下させるおそれがある。 In the above-mentioned conventional gas tank, the insert ring is provided integrally with the liner on the outer periphery of the cylindrical fitted part that is a part of the mouth of the liner, and connects the fitted part of the liner and the mouthpiece member. Tighten the O-ring installed between the fitting part. In such a structure, when the temperature of the gas tank decreases, both the synthetic resin liner and the metal insert ring contract. Then, due to the difference in coefficient of thermal expansion between the liner and the insert ring, stress that causes the liner to peel off from the insert ring may act, reducing the reliability of the gas tank.

本開示は、温度低下時の信頼性を向上させることが可能な圧力容器を提供する。 The present disclosure provides a pressure vessel that can improve reliability during temperature drops.

本開示の一態様は、合成樹脂製のライナーと該ライナーの外面を覆う繊維強化樹脂層とを有し、先端に開口部を有するネック部が設けられたガス収容部と、前記開口部から前記ネック部に挿入される挿入部と該挿入部に設けられて前記ガス収容部の内部空間と外部空間を連通するガス流路とを有するバルブと、前記ネック部と前記挿入部との間を封止するシール部材と、前記ネック部において前記ライナーと前記繊維強化樹脂層との間に設けられて前記シール部材の周囲に配置された金属製の管状部材と、を備え、前記管状部材は、前記ライナーに埋設されて内面および外面が前記ライナーの合成樹脂材料に覆われたアンカー部を有することを特徴とする圧力容器である。 One aspect of the present disclosure includes a liner made of synthetic resin and a fiber-reinforced resin layer covering the outer surface of the liner, and a gas storage portion provided with a neck portion having an opening at the tip, and a gas storage portion provided with a neck portion having an opening at the tip thereof, and A valve having an insertion part inserted into a neck part and a gas flow path provided in the insertion part to communicate an internal space and an external space of the gas storage part, and a seal between the neck part and the insertion part. a metal tubular member provided between the liner and the fiber-reinforced resin layer in the neck portion and disposed around the sealing member; The pressure vessel is characterized in that it has an anchor part embedded in a liner and whose inner and outer surfaces are covered with the synthetic resin material of the liner.

上記態様の圧力容器において、前記ライナーは、前記ネック部の先端部に外径が拡大した拡径部を有し、前記アンカー部は、前記ライナーの前記拡径部に埋設され、前記ネック部の先端に近づくほど拡径されていてもよい。 In the pressure vessel of the above aspect, the liner has an enlarged diameter part whose outer diameter is enlarged at the tip of the neck part, and the anchor part is embedded in the enlarged diameter part of the liner, and the anchor part is embedded in the enlarged diameter part of the liner, and the anchor part is embedded in the enlarged diameter part of the liner. The diameter may be increased closer to the tip.

上記態様の圧力容器において、前記ガス収容部は、前記ネック部の基端部に接続されて前記ネック部よりも拡径されたショルダー部を有し、前記アンカー部は、前記ショルダー部の前記ライナーに埋設され、前記ネック部から遠ざかるほど拡径されており、前記アンカー部の前記外面は、前記ネック部の中心軸に対する傾斜角が、前記ショルダー部の前記ライナーの外面の前記中心軸に対する傾斜角よりも小さくてもよい。 In the pressure vessel according to the above aspect, the gas storage portion has a shoulder portion connected to a proximal end portion of the neck portion and having a diameter larger than the neck portion, and the anchor portion is connected to the liner of the shoulder portion. The outer surface of the anchor portion has an inclination angle with respect to the central axis of the neck portion, and an inclination angle of the outer surface of the liner of the shoulder portion with respect to the central axis. May be smaller than .

上記態様の圧力容器において、前記ライナーは、前記ネック部の先端部に外径が拡大した拡径部を有し、前記アンカー部は、前記ライナーの前記拡径部に埋設され、前記管状部材を径方向に貫通する貫通孔を有してもよい。 In the pressure vessel according to the aspect described above, the liner has an enlarged diameter portion with an enlarged outer diameter at the distal end of the neck portion, and the anchor portion is embedded in the enlarged diameter portion of the liner and supports the tubular member. It may have a through hole that penetrates in the radial direction.

上記態様の圧力容器において、前記アンカー部は、前記内面との間に鋭角を成すとともに前記外面との間に鈍角を成す傾斜面を有し、前記内面および前記傾斜面が前記ライナーの合成樹脂材料に覆われていてもよい。 In the pressure vessel of the above aspect, the anchor portion has an inclined surface forming an acute angle with the inner surface and an obtuse angle with the outer surface, and the inner surface and the inclined surface are made of synthetic resin material of the liner. may be covered by

本開示の上記態様によれば、温度低下時の信頼性を向上させることが可能な圧力容器を提供することができる。 According to the above aspect of the present disclosure, it is possible to provide a pressure vessel that can improve reliability when the temperature decreases.

本開示に係る圧力容器の実施形態1を示す断面図。1 is a sectional view showing Embodiment 1 of a pressure vessel according to the present disclosure. 図1に示す圧力容器のガス収容部のネック部の拡大断面図。FIG. 2 is an enlarged sectional view of the neck portion of the gas storage portion of the pressure vessel shown in FIG. 1; 図2に示すガス収容部のライナーの製造方法を説明する断面図。FIG. 3 is a cross-sectional view illustrating a method of manufacturing the liner of the gas storage section shown in FIG. 2; 本開示に係る圧力容器の実施形態2を示す図2に相当する拡大断面図。FIG. 3 is an enlarged sectional view corresponding to FIG. 2 showing a second embodiment of the pressure vessel according to the present disclosure. 図4に示すガス収容部のライナーの製造方法を説明する断面図。FIG. 5 is a cross-sectional view illustrating a method for manufacturing the liner of the gas storage section shown in FIG. 4;

以下、図面を参照して本開示に係る圧力容器の実施形態を説明する。 Hereinafter, embodiments of a pressure vessel according to the present disclosure will be described with reference to the drawings.

[実施形態1]
図1は、本開示に係る圧力容器の実施形態1を示す断面図である。本実施形態の圧力容器100は、たとえば、燃料電池自動車や水素自動車に搭載され、高圧の水素ガスが充填されるタンクである。圧力容器100は、たとえば、ガス収容部110と、バルブ120と、シール部材130と、管状部材140とを備えている。また、図1に示す例において、圧力容器100は、ガス収容部110にバルブを固定するバルブ固定具150を有している。
[Embodiment 1]
FIG. 1 is a sectional view showing Embodiment 1 of a pressure vessel according to the present disclosure. The pressure vessel 100 of this embodiment is, for example, a tank mounted on a fuel cell vehicle or a hydrogen vehicle and filled with high-pressure hydrogen gas. The pressure vessel 100 includes, for example, a gas storage section 110, a valve 120, a seal member 130, and a tubular member 140. Further, in the example shown in FIG. 1, the pressure vessel 100 includes a valve fixture 150 that fixes the valve to the gas storage section 110.

ガス収容部110は、合成樹脂製のライナー111と、そのライナー111の外面を覆う繊維強化樹脂層112とを有している。また、ガス収容部110は、先端に開口部113を有するネック部114が設けられている。より詳細には、ガス収容部110は、円筒状のネック部114と、そのネック部114に接続されてネック部114よりも拡径されたショルダー部115と、そのショルダー部115に接続された円筒状の胴体部116と、胴体部116に接続されたドーム状または半球状の端部117とを有している。ショルダー部115は、たとえば、ネック部114から胴体部116へ向けて滑らかな曲線を描くように徐々に拡径され、ドーム状または半球状の形状を有している。 The gas storage section 110 includes a liner 111 made of synthetic resin and a fiber-reinforced resin layer 112 covering the outer surface of the liner 111. Further, the gas storage portion 110 is provided with a neck portion 114 having an opening 113 at the tip. More specifically, the gas storage part 110 includes a cylindrical neck part 114, a shoulder part 115 connected to the neck part 114 and having a diameter larger than that of the neck part 114, and a cylindrical cylinder connected to the shoulder part 115. It has a shaped body part 116 and a dome-shaped or hemispherical end part 117 connected to the body part 116. For example, the shoulder portion 115 gradually expands in diameter from the neck portion 114 toward the body portion 116 so as to draw a smooth curve, and has a dome-like or hemispherical shape.

ライナー111は、ガスを収容する内部空間ISを形成するガスバリア性を有する合成樹脂製の内容器である。ライナー111の素材としては、たとえば、ポリアミド、ポリエチレン、エチレン-ビニルアルコール共重合樹脂(EVOH)、ポリエステル、エポキシなどを使用することができる。ライナー111の素材としてポリアミド6を用いる場合、ライナー111の線膨張係数は、たとえば、13×10-5[1/K]程度である。 The liner 111 is an inner container made of synthetic resin that has gas barrier properties and forms an internal space IS that accommodates gas. As the material for the liner 111, for example, polyamide, polyethylene, ethylene-vinyl alcohol copolymer resin (EVOH), polyester, epoxy, etc. can be used. When polyamide 6 is used as the material for the liner 111, the linear expansion coefficient of the liner 111 is, for example, about 13×10 −5 [1/K].

繊維強化樹脂層112は、ガスを収容するライナー111の外面を覆うことで、110の強度を確保する補強層として機能する。繊維強化樹脂層112は、たとえば、未硬化の樹脂が含浸された繊維束をライナー111に巻き付けて、繊維束に含浸された樹脂を硬化させることによって、ライナー111の外面を覆うように設けられている。繊維強化樹脂層112の繊維束の素材としては、たとえば、ガラス繊維、アラミド繊維、ボロン繊維、または炭素繊維を使用することができる。なお、軽量性と機械的強度の観点から、繊維強化樹脂層112の繊維束の素材として炭素繊維を使用することが望ましい。 The fiber reinforced resin layer 112 functions as a reinforcing layer to ensure the strength of the liner 110 by covering the outer surface of the liner 111 that accommodates gas. The fiber reinforced resin layer 112 is provided to cover the outer surface of the liner 111 by, for example, wrapping a fiber bundle impregnated with an uncured resin around the liner 111 and curing the resin impregnated in the fiber bundle. There is. As a material for the fiber bundle of the fiber-reinforced resin layer 112, for example, glass fiber, aramid fiber, boron fiber, or carbon fiber can be used. Note that from the viewpoint of lightness and mechanical strength, it is desirable to use carbon fiber as the material for the fiber bundle of the fiber-reinforced resin layer 112.

繊維強化樹脂層112の繊維束に含浸される樹脂としては、たとえば、ポリエーテルエーテルケトン、ポリフェニレンスルファイド、ポリアクリル酸エステル、ポリイミド、または、ポリアミドなどの熱可塑性樹脂を使用することができる。また、繊維強化樹脂層112の繊維束に含浸される樹脂として、たとえば、フェノール樹脂、メラミン樹脂、ユリア樹脂、または、エポキシ樹脂などの熱硬化性樹脂も使用することができる。 As the resin impregnated into the fiber bundles of the fiber-reinforced resin layer 112, thermoplastic resins such as polyether ether ketone, polyphenylene sulfide, polyacrylic ester, polyimide, or polyamide can be used, for example. Furthermore, as the resin impregnated into the fiber bundles of the fiber-reinforced resin layer 112, thermosetting resins such as phenol resin, melamine resin, urea resin, or epoxy resin can also be used.

バルブ固定具150は、たとえば、ガス収容部110の円筒状のネック部114の外側に取り付けられる円筒状の金属製の部材である。バルブ固定具150は、内周面に設けられた抜け止めの突起がネック部114の外周面に食い込むことで、ネック部114の外側に固定されている。バルブ固定具150の外周面には、バルブ120を固定するためのねじ山が設けられている。 The valve fixture 150 is, for example, a cylindrical metal member attached to the outside of the cylindrical neck portion 114 of the gas storage portion 110. The valve fixture 150 is fixed to the outside of the neck portion 114 by a retaining protrusion provided on the inner circumferential surface biting into the outer circumferential surface of the neck portion 114. A thread for fixing the valve 120 is provided on the outer peripheral surface of the valve fixture 150.

バルブ120は、たとえば、ガス収容部110の開口部113からネック部114に挿入される円筒状の挿入部121と、その挿入部121に設けられてガス収容部110の内部空間ISと外部空間OSとを連通するガス流路122とを有する金属製の部材である。また、バルブ120は、たとえば、ガス収容部110のネック部114の先端部に取り付けられる凹状の取付部123を有している。取付部123は、バルブ固定具150の外周面に対向する内周面に設けられたねじ山を、バルブ固定具150の外周面に設けられたネジ山に螺合することで、バルブ固定具150を介してガス収容部110の円筒状のネック部114の先端部に固定される。 The valve 120 includes, for example, a cylindrical insertion portion 121 that is inserted into the neck portion 114 from an opening 113 of the gas storage portion 110, and a cylindrical insertion portion 121 that is provided in the insertion portion 121 to connect an internal space IS and an external space OS of the gas storage portion 110. It is a metal member having a gas flow path 122 that communicates with the gas flow path 122. Further, the valve 120 includes, for example, a concave attachment portion 123 that is attached to the tip of the neck portion 114 of the gas storage portion 110. The mounting portion 123 attaches to the valve fixture 150 by screwing a thread provided on the inner peripheral surface opposite the outer peripheral surface of the valve fixture 150 to a thread provided on the outer peripheral surface of the valve fixture 150. It is fixed to the distal end of the cylindrical neck portion 114 of the gas storage portion 110 via.

バルブ120の挿入部121は、取付部123のねじ山がバルブ固定具150のねじ山に螺合された状態で、ガス収容部110の円筒状のネック部114のライナー111の内側に挿入されている。挿入部121は、ガス収容部110の内部空間ISと外部空間OSを連通するガス流路122を有している。 The insertion portion 121 of the valve 120 is inserted inside the liner 111 of the cylindrical neck portion 114 of the gas storage portion 110 with the thread of the mounting portion 123 screwed into the thread of the valve fixture 150. There is. The insertion section 121 has a gas flow path 122 that communicates the internal space IS of the gas storage section 110 with the external space OS.

シール部材130は、ガス収容部110のネック部114と、バルブ120の挿入部121との間を封止する。より具体的には、シール部材130は、たとえば、挿入部121の外周面とネック部114のライナー111との間に配置されたOリングであり、ガス収容部110のネック部114とバルブ120の挿入部121との間を気密に封止する。シール部材130は、たとえば、バルブ120の挿入部121の外周面に形成された凹溝に配置されている。 The seal member 130 seals between the neck portion 114 of the gas storage portion 110 and the insertion portion 121 of the valve 120. More specifically, the sealing member 130 is, for example, an O-ring disposed between the outer peripheral surface of the insertion portion 121 and the liner 111 of the neck portion 114, and the sealing member 130 is an O-ring disposed between the outer peripheral surface of the insertion portion 121 and the liner 111 of the neck portion 114, and The space between the insertion portion 121 and the insertion portion 121 is airtightly sealed. The seal member 130 is arranged, for example, in a groove formed in the outer peripheral surface of the insertion portion 121 of the valve 120.

管状部材140は、ガス収容部110のネック部114においてライナー111と繊維強化樹脂層112との間に設けられ、シール部材130の周囲に配置された金属製の管状または環状の部材である。管状部材140は、インサートリングと呼ばれることもある。管状部材140は、たとえば、ガス収容部110の内部空間ISにガスが充填されてガス収容部110の内圧が上昇したときに、繊維強化樹脂層112の膨張によるシール部材130のシール性低下を防止するために設けられる。 The tubular member 140 is a metal tubular or annular member provided between the liner 111 and the fiber-reinforced resin layer 112 in the neck portion 114 of the gas storage portion 110 and disposed around the sealing member 130. Tubular member 140 is sometimes referred to as an insert ring. The tubular member 140 prevents the sealing performance of the seal member 130 from deteriorating due to expansion of the fiber reinforced resin layer 112, for example, when the internal space IS of the gas storage section 110 is filled with gas and the internal pressure of the gas storage section 110 increases. established for the purpose of

金属製の管状部材140の線膨張係数は、合成樹脂製のライナー111の線膨張係数よりも小さい。管状部材140の材料は、特に限定されないが、たとえば、ステンレス鋼を使用することができる。管状部材140の素材がステンレス鋼(SUS316L)である場合、管状部材140の線膨張係数は、たとえば、約1.6×10-5[1/K]程度であり、ライナー111の線膨張係数の8分の1以下である。そのため、圧力容器100の温度低下時に、ライナー111の収縮量は、管状部材140の収縮量よりも大きくなる。 The linear expansion coefficient of the metal tubular member 140 is smaller than that of the synthetic resin liner 111. The material of the tubular member 140 is not particularly limited, but stainless steel can be used, for example. When the material of the tubular member 140 is stainless steel (SUS316L), the linear expansion coefficient of the tubular member 140 is, for example, approximately 1.6×10 −5 [1/K], which is equal to or greater than that of the liner 111. It is less than one-eighth. Therefore, when the temperature of the pressure vessel 100 decreases, the amount of contraction of the liner 111 becomes larger than the amount of contraction of the tubular member 140.

図2は、図1に示す圧力容器100のガス収容部110のネック部114の拡大断面図である。管状部材140は、ライナー111に埋設されて内面141および外面142がライナー111の合成樹脂材料に覆われたアンカー部143,144を有している。なお、管状部材140は、アンカー部143,144のいずれか一方のみを有してもよい。アンカー部143,144は、たとえば、管状部材140の周方向の全周にわたって設けられていてもよく、管状部材140の周方向において部分的に設けられていてもよい。 FIG. 2 is an enlarged sectional view of the neck portion 114 of the gas storage portion 110 of the pressure vessel 100 shown in FIG. The tubular member 140 has anchor portions 143 and 144 embedded in the liner 111 and having an inner surface 141 and an outer surface 142 covered with the synthetic resin material of the liner 111. Note that the tubular member 140 may have only one of the anchor portions 143 and 144. The anchor portions 143 and 144 may be provided, for example, over the entire circumference of the tubular member 140 in the circumferential direction, or may be provided partially in the circumferential direction of the tubular member 140.

第1のアンカー部143は、管状部材140の中心軸CA方向において、ネック部114の先端の開口部113の近傍に位置する管状部材140の先端部に設けられている。また、第2のアンカー部144は、管状部材140の中心軸CA方向において、ガス収容部110のネック部114の基端部からショルダー部115の先端部にかけて位置する管状部材140の基端部に設けられている。 The first anchor portion 143 is provided at the distal end of the tubular member 140 located near the opening 113 at the distal end of the neck portion 114 in the direction of the central axis CA of the tubular member 140 . Further, the second anchor portion 144 is located at the proximal end of the tubular member 140 located from the proximal end of the neck portion 114 of the gas storage portion 110 to the distal end of the shoulder portion 115 in the direction of the central axis CA of the tubular member 140. It is provided.

図2に示す例において、ライナー111は、ネック部114の先端部に外径が拡大した拡径部111aを有している。拡径部111aは、たとえば、ネック部114の中心軸CA方向において、ネック部114の先端の開口部113からアンカー部143が形成された管状部材140の先端部まで設けられている。なお、ネック部114および管状部材140の中心軸CAは、たとえば、ガス収容部110の中心軸CAに一致している。 In the example shown in FIG. 2, the liner 111 has an enlarged diameter portion 111a at the distal end of the neck portion 114, the outer diameter of which is enlarged. The enlarged diameter portion 111a is provided, for example, in the direction of the central axis CA of the neck portion 114, from the opening 113 at the tip of the neck portion 114 to the tip of the tubular member 140 in which the anchor portion 143 is formed. Note that the central axis CA of the neck portion 114 and the tubular member 140 coincides with the central axis CA of the gas storage portion 110, for example.

図2に示す例において、ライナー111の肉厚は、たとえば、拡径部111aにおいて他の部分よりも厚くされている。第1のアンカー部143は、ライナー111の拡径部111aに埋設され、ネック部114の先端に近づくほど拡径されている。第1のアンカー部143の内面141および外面142は、ライナー111の合成樹脂材料によって覆われている。すなわち、図2に示す例において、第1のアンカー部143の外面142と繊維強化樹脂層112との間には、ライナー111の合成樹脂材料の薄い層が形成されている。 In the example shown in FIG. 2, the wall thickness of the liner 111 is, for example, thicker at the expanded diameter portion 111a than at other portions. The first anchor portion 143 is embedded in the enlarged diameter portion 111a of the liner 111, and its diameter increases as it approaches the tip of the neck portion 114. The inner surface 141 and outer surface 142 of the first anchor portion 143 are covered by the synthetic resin material of the liner 111. That is, in the example shown in FIG. 2, a thin layer of the synthetic resin material of the liner 111 is formed between the outer surface 142 of the first anchor part 143 and the fiber reinforced resin layer 112.

また、ライナー111は、たとえば、ネック部114の基端部に接続されたショルダー部115の先端部に、拡径部111aと同様に他の部分よりも厚くされた厚肉部111bを有している。第2のアンカー部144は、ガス収容部110のショルダー部115に設けられたライナー111の厚肉部111bに埋設され、ネック部114から遠ざかるほど拡径されている。 Further, the liner 111 has, for example, a thickened portion 111b that is thicker than other portions, similar to the enlarged diameter portion 111a, at the distal end of the shoulder portion 115 connected to the proximal end of the neck portion 114. There is. The second anchor part 144 is embedded in the thick part 111b of the liner 111 provided in the shoulder part 115 of the gas storage part 110, and its diameter increases as it moves away from the neck part 114.

この第2のアンカー部144の外面142は、ネック部114の中心軸CAに対する傾斜角αが、ライナー111の厚肉部111bの外面のネック部114の中心軸CAに対する傾斜角βよりも小さい。これにより、アンカー部144の外面142がライナー111の合成樹脂材料に覆われて、アンカー部144と繊維強化樹脂層112との間にライナー111の合成樹脂材料の層が形成されている。 An inclination angle α of the outer surface 142 of the second anchor portion 144 with respect to the central axis CA of the neck portion 114 is smaller than an inclination angle β of the outer surface of the thick portion 111b of the liner 111 with respect to the central axis CA of the neck portion 114. As a result, the outer surface 142 of the anchor part 144 is covered with the synthetic resin material of the liner 111, and a layer of the synthetic resin material of the liner 111 is formed between the anchor part 144 and the fiber-reinforced resin layer 112.

図3は、図2に示すガス収容部110のライナー111の製造方法を説明する断面図である。ライナー111は、たとえば、ガス収容部110の中心軸CA方向において、いくつかの部分に分けて成形され、成形された複数の部分を溶着等によって接合することにより一体化される。ここでは、ガス収容部110のネック部114、ショルダー部115、および胴体部116の一部を構成するライナー111の先端部の製造方法を説明する。 FIG. 3 is a cross-sectional view illustrating a method of manufacturing the liner 111 of the gas storage section 110 shown in FIG. 2. As shown in FIG. The liner 111 is, for example, formed into several parts in the direction of the central axis CA of the gas storage section 110, and is integrated by joining the plurality of molded parts by welding or the like. Here, a method for manufacturing the tip portion of the liner 111 that constitutes a part of the neck portion 114, shoulder portion 115, and body portion 116 of the gas storage portion 110 will be described.

まず、ライナー111の金型Dに、管状部材140を固定する。このとき、金型Dの内壁面と管状部材140のアンカー部143,144の外面142との間に空隙Gを形成する。アンカー部143,144の間の管状部材140の直管部145の外面142は、金型Dの内壁面に密着させる。この状態で、溶融させたライナー111の合成樹脂材料を金型DのゲートD1から注入して矢印の方向に流動させる射出成形を行う。 First, the tubular member 140 is fixed to the mold D of the liner 111. At this time, a gap G is formed between the inner wall surface of the mold D and the outer surface 142 of the anchor parts 143 and 144 of the tubular member 140. The outer surface 142 of the straight pipe portion 145 of the tubular member 140 between the anchor portions 143 and 144 is brought into close contact with the inner wall surface of the mold D. In this state, injection molding is performed in which the molten synthetic resin material of the liner 111 is injected from the gate D1 of the mold D and flows in the direction of the arrow.

この射出成形時に、溶融したライナー111の合成樹脂材料が、空隙Gと管状部材140のアンカー部143,144との間の空隙Gに入り込む。これにより、アンカー部143,144の内面141と外面142が、ライナー111の合成樹脂材料に覆われる。このように、ライナー111と管状部材140とは、インサート成形によって一体化される。ここで、金型Dの内壁面に密着させた管状部材140の直管部145の外面142は、ライナー111の合成樹脂材料によって覆われず、ライナー111から露出して、繊維強化樹脂層112に接した状態になる。 During this injection molding, the molten synthetic resin material of the liner 111 enters the gap G between the gap G and the anchor portions 143, 144 of the tubular member 140. As a result, the inner surface 141 and outer surface 142 of the anchor parts 143 and 144 are covered with the synthetic resin material of the liner 111. In this way, the liner 111 and the tubular member 140 are integrated by insert molding. Here, the outer surface 142 of the straight pipe part 145 of the tubular member 140 that is brought into close contact with the inner wall surface of the mold D is not covered with the synthetic resin material of the liner 111, but is exposed from the liner 111 and covered with the fiber-reinforced resin layer 112. become in contact.

なお、アンカー部143,144の間の管状部材140の直管部145の外面142と、金型Dの内壁面との間に、空隙Gを形成してもよい。この場合、アンカー部143,144の内面141と外面142だけでなく、管状部材140の直管部145の内面141と外面142も、ライナー111の合成樹脂材料によって覆われる。すなわち、管状部材140の全体がライナー111の合成樹脂材料に埋設され、管状部材140の外表面の全体がライナー111の合成樹脂材料によって覆われる。 Note that a gap G may be formed between the outer surface 142 of the straight pipe portion 145 of the tubular member 140 between the anchor portions 143 and 144 and the inner wall surface of the mold D. In this case, not only the inner surface 141 and the outer surface 142 of the anchor parts 143 and 144 but also the inner surface 141 and the outer surface 142 of the straight pipe part 145 of the tubular member 140 are covered with the synthetic resin material of the liner 111. That is, the entire tubular member 140 is embedded in the synthetic resin material of the liner 111, and the entire outer surface of the tubular member 140 is covered with the synthetic resin material of the liner 111.

以下、本実施形態の圧力容器100の作用を、上記従来のガスタンクと対比しつつ、説明する。上記従来のガスタンクにおいて、インサートリングは、前述のように、ライナーの口部の一部である円筒状の被嵌合部の外周にライナーと一体に設けられ、ライナーの被嵌合部と口金部材の嵌合部との間に装着されるOリングを締め付ける。このような構造では、ガスタンクの温度が低下すると、合成樹脂製のライナーと金属製のインサートリングがともに収縮する。すると、ライナーとインサートリングとの間の熱膨張係数の差により、インサートリングからライナーを剥離させる応力が作用して、ガスタンクの信頼性を低下させるおそれがある。 Hereinafter, the operation of the pressure vessel 100 of this embodiment will be explained in comparison with the conventional gas tank described above. In the above-mentioned conventional gas tank, the insert ring is provided integrally with the liner on the outer periphery of the cylindrical fitted part that is a part of the mouth of the liner, and connects the fitted part of the liner and the mouthpiece member. Tighten the O-ring installed between the fitting part. In such a structure, when the temperature of the gas tank decreases, both the synthetic resin liner and the metal insert ring contract. Then, due to the difference in coefficient of thermal expansion between the liner and the insert ring, stress that causes the liner to peel off from the insert ring may act, reducing the reliability of the gas tank.

これに対し、本実施形態の圧力容器100は、ガス収容部110と、バルブ120と、シール部材130と、金属製の管状部材140と、を備えている。ガス収容部110は、合成樹脂製のライナー111とそのライナー111の外面を覆う繊維強化樹脂層112とを有し、先端に開口部113を有するネック部114が設けられている。バルブ120は、開口部113からネック部114に挿入される挿入部121と、その挿入部121に設けられてガス収容部110の内部空間ISと外部空間OSを連通するガス流路122とを有する。シール部材130は、ネック部114と挿入部121との間を封止する。管状部材140は、ネック部114においてライナー111と繊維強化樹脂層112との間に設けられてシール部材130の周囲に配置されている。そして、管状部材140は、ライナー111に埋設されて内面141および外面142がライナー111の合成樹脂材料に覆われたアンカー部143,144を有する。 In contrast, the pressure vessel 100 of this embodiment includes a gas storage section 110, a valve 120, a seal member 130, and a metal tubular member 140. The gas storage section 110 has a liner 111 made of synthetic resin and a fiber-reinforced resin layer 112 covering the outer surface of the liner 111, and is provided with a neck section 114 having an opening 113 at the tip. The valve 120 includes an insertion portion 121 that is inserted into the neck portion 114 from an opening 113, and a gas flow path 122 that is provided in the insertion portion 121 and communicates the internal space IS and the external space OS of the gas storage portion 110. . The seal member 130 seals between the neck portion 114 and the insertion portion 121. The tubular member 140 is provided between the liner 111 and the fiber-reinforced resin layer 112 in the neck portion 114 and is disposed around the seal member 130. The tubular member 140 has anchor portions 143 and 144 embedded in the liner 111 and having an inner surface 141 and an outer surface 142 covered with the synthetic resin material of the liner 111.

このような構成により、本実施形態の圧力容器100は、繊維強化樹脂層112の内側でシール部材130の周囲に配置された管状部材140によって、ガス収容部110の内圧上昇時の繊維強化樹脂層112の膨張によるシール部材130のシール性低下を抑制できる。また、管状部材140のアンカー部143,144がライナー111に埋設され、アンカー部143,144の内面141および外面142がライナー111の合成樹脂材料に覆われている。そのため、圧力容器100の温度低下時に、ライナー111の収縮量が管状部材140の収縮量よりも大きくなっても、ライナー111がアンカー部143,144によって管状部材140に拘束され、管状部材140からライナー111が剥離することが防止される。これにより、圧力容器100の温度低下時の信頼性を向上させることができる。 With such a configuration, the pressure vessel 100 of the present embodiment has the tubular member 140 disposed around the sealing member 130 inside the fiber-reinforced resin layer 112 to prevent the fiber-reinforced resin layer from increasing when the internal pressure of the gas storage section 110 increases. Deterioration in sealing performance of the seal member 130 due to expansion of the seal member 112 can be suppressed. Further, anchor portions 143 and 144 of the tubular member 140 are embedded in the liner 111, and the inner surface 141 and outer surface 142 of the anchor portions 143 and 144 are covered with the synthetic resin material of the liner 111. Therefore, even if the amount of contraction of the liner 111 becomes larger than the amount of contraction of the tubular member 140 when the temperature of the pressure vessel 100 decreases, the liner 111 is restrained to the tubular member 140 by the anchor portions 143 and 144, and the liner 111 is prevented from peeling off. Thereby, reliability when the temperature of the pressure vessel 100 decreases can be improved.

また、本実施形態の圧力容器100において、ライナー111は、ネック部114の先端部に外径が拡大した拡径部111aを有している。また、管状部材140のアンカー部143は、ライナー111の拡径部111aに埋設され、ネック部114の先端に近づくほど拡径されている。 Furthermore, in the pressure vessel 100 of the present embodiment, the liner 111 has an enlarged diameter portion 111a at the tip of the neck portion 114 with an enlarged outer diameter. Further, the anchor portion 143 of the tubular member 140 is embedded in the expanded diameter portion 111a of the liner 111, and its diameter increases as it approaches the tip of the neck portion 114.

このような構成により、本実施形態の圧力容器100は、ライナー111の合成樹脂材料によって覆われるアンカー部143の内面141および外面142の面積を拡大することができ、アンカー部143によってライナー111を強固に拘束することができる。また、ライナー111と管状部材140との線膨張係数の差によって管状部材140の中心軸CA方向に応力が作用しても、ネック部114の先端側が拡径されたアンカー部143によってライナー111をより確実に拘束して、ライナー111の剥離を防止できる。 With such a configuration, the pressure vessel 100 of the present embodiment can expand the area of the inner surface 141 and outer surface 142 of the anchor part 143 covered by the synthetic resin material of the liner 111, and the liner 111 can be strengthened by the anchor part 143. can be restrained. Furthermore, even if stress is applied in the direction of the central axis CA of the tubular member 140 due to the difference in linear expansion coefficients between the liner 111 and the tubular member 140, the anchor portion 143 whose diameter is enlarged at the distal end of the neck portion 114 makes the liner 111 more stable. It is possible to securely restrain the liner 111 and prevent it from peeling off.

また、本実施形態の圧力容器100において、ガス収容部110は、ネック部114の基端部に接続されてネック部114よりも拡径されたショルダー部115を有している。管状部材140のアンカー部144は、ショルダー部115のライナー111に埋設され、ネック部114から遠ざかるほど拡径されている。そして、アンカー部144の外面142は、ネック部114の中心軸CAに対する傾斜角αが、ショルダー部115のライナー111の外面の中心軸CAに対する傾斜角βよりも小さい。 Furthermore, in the pressure vessel 100 of this embodiment, the gas storage section 110 has a shoulder section 115 that is connected to the base end of the neck section 114 and has a diameter larger than that of the neck section 114 . The anchor portion 144 of the tubular member 140 is embedded in the liner 111 of the shoulder portion 115 and increases in diameter as it moves away from the neck portion 114. An inclination angle α of the outer surface 142 of the anchor portion 144 with respect to the central axis CA of the neck portion 114 is smaller than an inclination angle β of the outer surface of the liner 111 of the shoulder portion 115 with respect to the central axis CA.

このような構成により、本実施形態の圧力容器100は、ライナー111の合成樹脂材料によって覆われるアンカー部144の内面141および外面142の面積を拡大することができ、アンカー部144によってライナー111を強固に拘束することができる。また、ライナー111と管状部材140との線膨張係数の差によって管状部材140の中心軸CA方向に応力が作用しても、ネック部114から遠ざかるほど拡径されたアンカー部144によってライナー111をより確実に拘束して、ライナー111の剥離を防止できる。 With such a configuration, the pressure vessel 100 of the present embodiment can expand the area of the inner surface 141 and outer surface 142 of the anchor part 144 covered by the synthetic resin material of the liner 111, and the liner 111 can be strengthened by the anchor part 144. can be restrained. Furthermore, even if stress is applied in the direction of the central axis CA of the tubular member 140 due to the difference in linear expansion coefficient between the liner 111 and the tubular member 140, the anchor portion 144 whose diameter increases as the distance from the neck portion 114 increases, makes the liner 111 more stable. It is possible to securely restrain the liner 111 and prevent it from peeling off.

さらに、アンカー部144の外面142は、ネック部114の中心軸CAに対する傾斜角αが、ショルダー部115のライナー111の外面の中心軸CAに対する傾斜角βよりも小さい。そのため、ネック部114から遠ざかるほど、アンカー部144の外面142を覆うライナー111の合成樹脂材料の厚さを増加させ、アンカー部144によってライナー111をより強固に拘束することが可能になる。 Furthermore, the inclination angle α of the outer surface 142 of the anchor portion 144 with respect to the central axis CA of the neck portion 114 is smaller than the inclination angle β of the outer surface of the liner 111 of the shoulder portion 115 with respect to the central axis CA. Therefore, as the distance from the neck portion 114 increases, the thickness of the synthetic resin material of the liner 111 that covers the outer surface 142 of the anchor portion 144 increases, making it possible to more firmly restrain the liner 111 by the anchor portion 144.

以上説明したように、本実施形態によれば、管状部材140のアンカー部143,144によってライナー111を拘束して、温度低下時の信頼性を向上させることが可能な圧力容器100を提供することができる。 As described above, according to the present embodiment, it is possible to provide a pressure vessel 100 in which the liner 111 is restrained by the anchor portions 143 and 144 of the tubular member 140 to improve reliability when the temperature decreases. I can do it.

[実施形態2]
次に、実施形態1の図1を援用し、図4および図5を参照して、本開示に係る圧力容器の実施形態2を説明する。図4は、本開示に係る圧力容器の実施形態2を示す実施形態1の図2に相当する拡大断面図である。図5は、図4に示すガス収容部110のライナー111の製造方法を説明する断面図である。
[Embodiment 2]
Next, Embodiment 2 of the pressure vessel according to the present disclosure will be described with reference to FIG. 1 of Embodiment 1 and FIGS. 4 and 5. FIG. 4 is an enlarged sectional view corresponding to FIG. 2 of Embodiment 1, showing Embodiment 2 of the pressure vessel according to the present disclosure. FIG. 5 is a cross-sectional view illustrating a method of manufacturing the liner 111 of the gas storage section 110 shown in FIG. 4.

本実施形態の圧力容器100は、管状部材140のアンカー部146,147の構成が、前述の実施形態1の圧力容器100と異なっている。本実施形態の圧力容器100のその他の構成は、前述の実施形態1の圧力容器100と同様であるため、同様の部分には同一の符号を付して説明を省略する。 The pressure vessel 100 of this embodiment differs from the pressure vessel 100 of the above-described first embodiment in the structure of the anchor portions 146 and 147 of the tubular member 140. The rest of the configuration of the pressure vessel 100 of this embodiment is the same as that of the pressure vessel 100 of the above-described first embodiment, so the same parts are given the same reference numerals and the explanation will be omitted.

前述の実施形態1の圧力容器100と同様に、本実施形態の圧力容器100において、ライナー111は、ネック部114の先端部に外径が拡大した拡径部111aを有している。そして、本実施形態の圧力容器100において、管状部材140の第1のアンカー部146は、ライナー111の拡径部111aに埋設され、管状部材140を径方向に貫通する貫通孔148を有している。 Similar to the pressure vessel 100 of the first embodiment described above, in the pressure vessel 100 of the present embodiment, the liner 111 has an enlarged diameter portion 111a at the distal end of the neck portion 114 with an enlarged outer diameter. In the pressure vessel 100 of this embodiment, the first anchor portion 146 of the tubular member 140 is embedded in the expanded diameter portion 111a of the liner 111 and has a through hole 148 that radially penetrates the tubular member 140. There is.

このような構成により、図5に示すように、金型DのゲートD1から溶融したライナー111の合成樹脂材料を注入して、ライナー111に管状部材140をインサート成形するときに、アンカー部146の内面141および外面142が合成樹脂材料に覆われる。さらに、溶融した合成樹脂材料は、貫通孔148に充填される。これにより、成形後のライナー111を管状部材140のアンカー部146に強固に固定することが可能になる。 With such a configuration, as shown in FIG. 5, when the molten synthetic resin material of the liner 111 is injected from the gate D1 of the mold D and the tubular member 140 is insert-molded into the liner 111, the anchor portion 146 is Inner surface 141 and outer surface 142 are covered with synthetic resin material. Further, the through hole 148 is filled with the molten synthetic resin material. This makes it possible to firmly fix the molded liner 111 to the anchor portion 146 of the tubular member 140.

また、前述の実施形態1の圧力容器100と同様に、本実施形態の圧力容器100において、第2のアンカー部147は、ガス収容部110のショルダー部115のライナー111に埋設されている。さらに、本実施形態のガス収容部110において、第2のアンカー部147は、内面141との間に鋭角を成すとともに外面142との間に鈍角を成す傾斜面149を有している。そして、アンカー部147は、内面141および傾斜面149がライナー111の合成樹脂材料に覆われている。 Furthermore, similarly to the pressure vessel 100 of the first embodiment described above, in the pressure vessel 100 of this embodiment, the second anchor part 147 is embedded in the liner 111 of the shoulder part 115 of the gas storage part 110. Furthermore, in the gas storage section 110 of this embodiment, the second anchor section 147 has an inclined surface 149 that forms an acute angle with the inner surface 141 and an obtuse angle with the outer surface 142. The anchor portion 147 has an inner surface 141 and an inclined surface 149 covered with the synthetic resin material of the liner 111.

このような構成により、図5に示すように、金型DのゲートD1から溶融したライナー111の合成樹脂材料を注入して、ライナー111に管状部材140をインサート成形するときに、内面141側から回り込んだ合成樹脂材料によって、アンカー部147の外側の傾斜面149が覆われる。その結果、図4に示すように、アンカー部147がライナー111の合成樹脂材料に食い込んだ状態になり、アンカー部147の外側にライナー111の合成樹脂材料が存在する状態になる。これにより、成形後のライナー111を管状部材140のアンカー部147に強固に固定することが可能になる。 With this configuration, as shown in FIG. 5, when insert-molding the tubular member 140 into the liner 111 by injecting the molten synthetic resin material for the liner 111 from the gate D1 of the mold D, it is possible to insert the tubular member 140 from the inner surface 141 side. The outer inclined surface 149 of the anchor portion 147 is covered by the wrapped synthetic resin material. As a result, as shown in FIG. 4, the anchor portion 147 bites into the synthetic resin material of the liner 111, and the synthetic resin material of the liner 111 is present outside the anchor portion 147. This makes it possible to firmly fix the molded liner 111 to the anchor portion 147 of the tubular member 140.

したがって、本実施形態によれば、前述の実施形態1と同様に、管状部材140のアンカー部146,147によってライナー111を拘束して、温度低下時の信頼性を向上させることが可能な圧力容器100を提供することができる。 Therefore, according to the present embodiment, similarly to the first embodiment described above, the liner 111 can be restrained by the anchor parts 146 and 147 of the tubular member 140, and the pressure vessel can improve reliability when the temperature decreases. 100 can be provided.

以上、図面を用いて本開示に係る圧力容器の実施形態を詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本開示の要旨を逸脱しない範囲における設計変更等があっても、それらは本開示に含まれるものである。 Although the embodiment of the pressure vessel according to the present disclosure has been described above in detail using the drawings, the specific configuration is not limited to this embodiment, and design changes may be made within the scope of the gist of the present disclosure. Even if there are, they are included in this disclosure.

100 圧力容器
110 ガス収容部
111 ライナー
111a 拡径部
112 繊維強化樹脂層
113 開口部
114 ネック部
115 ショルダー部
120 バルブ
121 挿入部
122 ガス流路
130 シール部材
140 管状部材
141 内面
142 外面
143 アンカー部
144 アンカー部
146 アンカー部
147 アンカー部
148 貫通孔
149 傾斜面
CA 中心軸
IS 内部空間
OS 外部空間
α 傾斜角
β 傾斜角
100 Pressure vessel 110 Gas storage section 111 Liner 111a Expanded diameter section 112 Fiber reinforced resin layer 113 Opening section 114 Neck section 115 Shoulder section 120 Valve 121 Insertion section 122 Gas flow path 130 Seal member 140 Tubular member 141 Inner surface 142 Outer surface 143 Anchor section 144 Anchor part 146 Anchor part 147 Anchor part 148 Through hole 149 Inclined surface CA Central axis IS Internal space OS External space α Inclination angle β Inclination angle

Claims (4)

合成樹脂製のライナーと該ライナーの外面を覆う繊維強化樹脂層とを有し、先端に開口部を有するネック部が設けられたガス収容部と、
前記開口部から前記ネック部に挿入される挿入部と該挿入部に設けられて前記ガス収容部の内部空間と外部空間を連通するガス流路とを有するバルブと、
前記ネック部と前記挿入部との間を封止するシール部材と、
前記ネック部において前記ライナーと前記繊維強化樹脂層との間に設けられて前記シール部材の周囲に配置された金属製の管状部材と、を備え、
前記管状部材は、前記ライナーに埋設されて内面および外面が前記ライナーの合成樹脂材料に覆われたアンカー部を有し
前記ライナーは、前記ネック部の先端部に外径が拡大した拡径部を有し、
前記アンカー部は、前記ライナーの前記拡径部に埋設され、前記ネック部の先端に近づくほど拡径されていることを特徴とする圧力容器。
a gas storage section having a liner made of synthetic resin and a fiber-reinforced resin layer covering the outer surface of the liner, and provided with a neck section having an opening at the tip;
a valve having an insertion part inserted into the neck part from the opening part, and a gas flow path provided in the insertion part to communicate an internal space and an external space of the gas storage part;
a sealing member that seals between the neck portion and the insertion portion;
a metal tubular member provided between the liner and the fiber-reinforced resin layer in the neck portion and disposed around the sealing member,
The tubular member has an anchor portion embedded in the liner and whose inner and outer surfaces are covered with a synthetic resin material of the liner ,
The liner has an enlarged diameter portion with an enlarged outer diameter at the tip of the neck portion,
The pressure vessel is characterized in that the anchor portion is embedded in the expanded diameter portion of the liner, and the diameter increases as it approaches the tip of the neck portion .
合成樹脂製のライナーと該ライナーの外面を覆う繊維強化樹脂層とを有し、先端に開口部を有するネック部が設けられたガス収容部と、
前記開口部から前記ネック部に挿入される挿入部と該挿入部に設けられて前記ガス収容部の内部空間と外部空間を連通するガス流路とを有するバルブと、
前記ネック部と前記挿入部との間を封止するシール部材と、
前記ネック部において前記ライナーと前記繊維強化樹脂層との間に設けられて前記シール部材の周囲に配置された金属製の管状部材と、を備え、
前記管状部材は、前記ライナーに埋設されて内面および外面が前記ライナーの合成樹脂材料に覆われたアンカー部を有し
前記ライナーは、前記ネック部の先端部に外径が拡大した拡径部を有し、
前記アンカー部は、前記ライナーの前記拡径部に埋設され、前記管状部材を径方向に貫通する貫通孔を有することを特徴とする圧力容器。
a gas storage section having a liner made of synthetic resin and a fiber-reinforced resin layer covering the outer surface of the liner, and provided with a neck section having an opening at the tip;
a valve having an insertion part inserted into the neck part from the opening part, and a gas flow path provided in the insertion part to communicate an internal space and an external space of the gas storage part;
a sealing member that seals between the neck portion and the insertion portion;
a metal tubular member provided between the liner and the fiber-reinforced resin layer in the neck portion and disposed around the sealing member,
The tubular member has an anchor portion embedded in the liner and whose inner and outer surfaces are covered with a synthetic resin material of the liner ,
The liner has an enlarged diameter portion with an enlarged outer diameter at the tip of the neck portion,
The pressure vessel is characterized in that the anchor portion is embedded in the enlarged diameter portion of the liner and has a through hole that radially penetrates the tubular member .
前記ガス収容部は、前記ネック部の基端部に接続されて前記ネック部よりも拡径されたショルダー部を有し、
前記アンカー部は、前記ショルダー部の前記ライナーに埋設され、前記ネック部から遠ざかるほど拡径されており、
前記アンカー部の前記外面は、前記ネック部の中心軸に対する傾斜角が、前記ショルダー部の前記ライナーの外面の前記中心軸に対する傾斜角よりも小さいことを特徴とする請求項1に記載の圧力容器。
The gas storage part has a shoulder part connected to a base end part of the neck part and having a diameter larger than that of the neck part,
The anchor part is embedded in the liner of the shoulder part, and the diameter increases as the distance from the neck part increases,
The pressure vessel according to claim 1, wherein the outer surface of the anchor part has a smaller inclination angle with respect to the central axis of the neck part than the inclination angle of the outer surface of the liner of the shoulder part with respect to the central axis. .
前記アンカー部は、前記内面との間に鋭角を成すとともに前記外面との間に鈍角を成す傾斜面を有し、前記内面および前記傾斜面が前記ライナーの合成樹脂材料に覆われていることを特徴とする請求項1または2に記載の圧力容器。 The anchor part has an inclined surface forming an acute angle with the inner surface and an obtuse angle with the outer surface, and the inner surface and the inclined surface are covered with the synthetic resin material of the liner. The pressure vessel according to claim 1 or 2 , characterized in that:
JP2021098932A 2021-06-14 2021-06-14 pressure vessel Active JP7416017B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021098932A JP7416017B2 (en) 2021-06-14 2021-06-14 pressure vessel
CN202210465263.4A CN115539822A (en) 2021-06-14 2022-04-29 Pressure vessel
DE102022114491.7A DE102022114491A1 (en) 2021-06-14 2022-06-09 PRESSURE VESSEL

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021098932A JP7416017B2 (en) 2021-06-14 2021-06-14 pressure vessel

Publications (2)

Publication Number Publication Date
JP2022190560A JP2022190560A (en) 2022-12-26
JP7416017B2 true JP7416017B2 (en) 2024-01-17

Family

ID=84192175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021098932A Active JP7416017B2 (en) 2021-06-14 2021-06-14 pressure vessel

Country Status (3)

Country Link
JP (1) JP7416017B2 (en)
CN (1) CN115539822A (en)
DE (1) DE102022114491A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011102614A (en) 2009-11-11 2011-05-26 Yachiyo Industry Co Ltd Sealing structure of pressure vessel
US20110210128A1 (en) 2010-02-26 2011-09-01 Gm Global Technology Operations, Inc. Embedded reinforcement sleeve for a pressure vessel
JP2013137092A (en) 2011-11-29 2013-07-11 Yachiyo Industry Co Ltd Pressure container, and method for manufacturing pressure container
JP2020076490A (en) 2018-11-01 2020-05-21 トヨタ自動車株式会社 High-pressure tank

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009174700A (en) 2007-06-14 2009-08-06 Toyota Motor Corp Gas tank

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011102614A (en) 2009-11-11 2011-05-26 Yachiyo Industry Co Ltd Sealing structure of pressure vessel
US20110210128A1 (en) 2010-02-26 2011-09-01 Gm Global Technology Operations, Inc. Embedded reinforcement sleeve for a pressure vessel
JP2013137092A (en) 2011-11-29 2013-07-11 Yachiyo Industry Co Ltd Pressure container, and method for manufacturing pressure container
JP2020076490A (en) 2018-11-01 2020-05-21 トヨタ自動車株式会社 High-pressure tank

Also Published As

Publication number Publication date
CN115539822A (en) 2022-12-30
DE102022114491A1 (en) 2022-12-15
JP2022190560A (en) 2022-12-26

Similar Documents

Publication Publication Date Title
JP7027439B2 (en) Pole cap with pressure port element for pressure vessel
JP5179458B2 (en) Pressure vessel seal structure
JP5985522B2 (en) Pressure vessel
JP4193492B2 (en) Pressure vessel
JP4599380B2 (en) Seal structure of high pressure vessel
US8640910B2 (en) Pressure container
US7556171B2 (en) Tank
WO2013008719A1 (en) Pressure vessel
CN108779894A (en) Outlet fitting for pressure vessel boss
CN108953985A (en) High-pressure composite containers with sealing structure
JP7416017B2 (en) pressure vessel
US11441732B2 (en) Manufacturing method for high-pressure tank and high-pressure tank
US20210221081A1 (en) Manufacturing method for high-pressure tank
CN110173618B (en) High-pressure tank and method for manufacturing same
JP2023056875A (en) Tank fastening structure
JP3218918U (en) Base for gas container, and gas container with base
JP6409531B2 (en) tank
JP6617034B2 (en) Pressure vessel
JP2023058914A (en) Pressure container
JP6678460B2 (en) Pressure vessel
US20230017919A1 (en) High-pressure tank unit
JP2017129155A (en) Pressure container
KR20230071821A (en) High pressure storage container
CN115930101A (en) High-pressure composite material hydrogen cylinder interface reinforcing seal structure
KR20220160148A (en) High pressure storage container and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231218

R151 Written notification of patent or utility model registration

Ref document number: 7416017

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151