JP2009174700A - Gas tank - Google Patents

Gas tank Download PDF

Info

Publication number
JP2009174700A
JP2009174700A JP2008134184A JP2008134184A JP2009174700A JP 2009174700 A JP2009174700 A JP 2009174700A JP 2008134184 A JP2008134184 A JP 2008134184A JP 2008134184 A JP2008134184 A JP 2008134184A JP 2009174700 A JP2009174700 A JP 2009174700A
Authority
JP
Japan
Prior art keywords
layer
fiber
gas tank
fiber reinforced
liner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008134184A
Other languages
Japanese (ja)
Inventor
Tsutomu Otsuka
力 大塚
Motohiro Mizuno
基弘 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008134184A priority Critical patent/JP2009174700A/en
Publication of JP2009174700A publication Critical patent/JP2009174700A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • B29C70/32Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core on a rotating mould, former or core
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0089Impact strength or toughness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/712Containers; Packaging elements or accessories, Packages
    • B29L2031/7154Barrels, drums, tuns, vats
    • B29L2031/7156Pressure vessels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas tank capable of restraining the outflow of high concentration gas in a short time, while securing sufficient strength. <P>SOLUTION: In the gas tank 11, the outer peripheral side of a liner 12 attached with a base member 16 is covered with a fiber-reinforced resin layer 13. A vent layer 31 having a fine void generated between fibers included therein and communicating in the axial direction, is arranged in an inner layer part of the fiber reinforced resin layer 13. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、水素等のガスを高圧にて充填するガスタンクに関する。   The present invention relates to a gas tank that is filled with a gas such as hydrogen at a high pressure.

水素をはじめとするガスを充填する高圧ガスタンクは、樹脂から成形されたライナーの周囲をガラス繊維や炭素繊維などからなる繊維強化樹脂層によって覆ったタンク本体を有しており、このタンク本体にバルブが接続可能な口金部材が取り付けられ、これらタンク本体と口金部材とがシールされている。
また、内層と外層との間に流路を形成し、内層を透過したガスを、流路を介して外部へ導く容器が知られている(例えば、特許文献1参照)。
A high-pressure gas tank filled with gas such as hydrogen has a tank body in which the periphery of a liner molded from resin is covered with a fiber reinforced resin layer made of glass fiber, carbon fiber, or the like. A base member that can be connected is attached, and the tank body and the base member are sealed.
A container is also known in which a flow path is formed between an inner layer and an outer layer, and gas that has permeated through the inner layer is guided to the outside through the flow path (for example, see Patent Document 1).

特開2004−176885号公報JP 2004-176885 A

ところで、上記ガスタンクでは、高圧のガスが封入されると、当該ガスがライナーを透過し、ライナーと繊維強化樹脂層との間に滞留することがある。例えば高圧状態にてライナーを透過したガスがライナーと繊維強化樹脂層との間に溜まり、この状態から減圧状態となると、圧力低下によってシールが弱まったライナーと口金部材との隙間から、ライナーと繊維強化樹脂層との間に溜まった高濃度のガスが短時間に外部へ流出してしまう。
この場合、特許文献1のように、流路を形成すれば良いが、高圧にてガスが充填されるガスタンクでは、繊維強化樹脂層に流路を形成すると、この繊維強化樹脂層の強度が低下してしまう。
By the way, in the gas tank, when a high-pressure gas is sealed, the gas may permeate the liner and stay between the liner and the fiber reinforced resin layer. For example, gas that has permeated through the liner in a high pressure state collects between the liner and the fiber reinforced resin layer, and when this state is reduced to a reduced pressure state, the liner and the fiber are removed from the gap between the liner and the base member where the seal is weakened due to pressure reduction A high-concentration gas accumulated between the reinforced resin layers flows out to the outside in a short time.
In this case, a flow path may be formed as in Patent Document 1, but in a gas tank filled with gas at a high pressure, if the flow path is formed in the fiber reinforced resin layer, the strength of the fiber reinforced resin layer decreases. Resulting in.

また、ライナーと繊維強化樹脂層との間に高圧のガスが滞留すると、ガスタンクのガス放出後に生じる、滞留ガスの圧力とライナー内圧との圧力差により、ライナーが内側に変形することが懸念される。   Further, if high-pressure gas stays between the liner and the fiber reinforced resin layer, there is a concern that the liner may be deformed inward due to the pressure difference between the pressure of the staying gas and the liner internal pressure that occurs after gas release from the gas tank. .

本発明は、かかる事情に鑑みてなされたものであり、十分な強度を確保しつつ、高濃度のガスの短時間での流出を抑制し、またライナーと繊維強化層との間の高圧ガスの滞留によるライナーの変形を抑制することが可能なガスタンクを提供することを目的としている。   The present invention has been made in view of such circumstances, suppresses outflow of a high concentration gas in a short time while ensuring sufficient strength, and prevents high-pressure gas between the liner and the fiber reinforced layer. It aims at providing the gas tank which can suppress the deformation | transformation of the liner by retention.

前記目的を達成するため、本発明に係るガスタンクは、口金部材が取り付けられたライナーの外周側に、フィラメントワインディング法によって繊維を積層した繊維強化層を有するガスタンクであって、前記繊維強化層の内層部分には、繊維間に生じた微細な空隙を有する通気層が設けられていることを特徴とする。   In order to achieve the above object, a gas tank according to the present invention is a gas tank having a fiber reinforced layer in which fibers are laminated by a filament winding method on an outer peripheral side of a liner to which a cap member is attached, and an inner layer of the fiber reinforced layer. The portion is provided with a ventilation layer having fine voids formed between the fibers.

かかる構成によれば、高圧状態にてライナーを透過したガスが、ライナーと繊維強化層との間に溜まることなく、繊維強化層を構成する繊維間に生じた微細な空隙からなる通気層を介してライナーと口金部材との隙間から徐々に外部へ放出される。これにより、繊維強化層に溝部を形成する場合と比較して、十分な強度を確保しつつライナーと繊維強化層との間に溜まった高濃度のガスが短時間に外部へ流出する不具合を抑制することができる。また、ガスタンク内が減圧された際に、ライナーと繊維強化層との間の高圧ガスによりライナーが内側に変形することも抑制できる。   According to such a configuration, the gas that has permeated through the liner in a high-pressure state does not collect between the liner and the fiber reinforced layer, but passes through the ventilation layer formed of fine voids formed between the fibers constituting the fiber reinforced layer. Is gradually discharged to the outside through the gap between the liner and the base member. As a result, compared with the case where grooves are formed in the fiber reinforced layer, the high concentration gas accumulated between the liner and the fiber reinforced layer is prevented from flowing out to the outside in a short time while ensuring sufficient strength. can do. Moreover, when the inside of a gas tank is decompressed, it can also suppress that a liner deform | transforms inside by the high pressure gas between a liner and a fiber reinforcement layer.

ここで、上記構成にあっては、前記口金部材の首部は、前記繊維を少なくとも1層以上フープ巻きしたフープ層を有する態様が好ましい。   Here, in the said structure, the aspect with which the neck part of the said base member has the hoop layer which carried out the hoop winding of the said fiber at least 1 layer or more is preferable.

また、上記構成にあっては、前記繊維強化層は、前記繊維を少なくとも1層以上フープ巻きしたフープ層と、該フープ層の上に前記繊維をヘリカル巻きしたヘリカル層とを有する態様がさらに好ましい。   Further, in the above configuration, it is more preferable that the fiber reinforcing layer includes a hoop layer in which at least one layer of the fiber is hoop-wound, and a helical layer in which the fiber is helically wound on the hoop layer. .

さらに、上記構成にあっては、前記フープ層を形成する繊維の厚みは、前記ヘリカル層を形成する繊維の厚みよりも厚いことが好ましい。   Furthermore, in the said structure, it is preferable that the thickness of the fiber which forms the said hoop layer is thicker than the thickness of the fiber which forms the said helical layer.

また、本発明に係るガスタンクは、口金部材が取り付けられたライナーの外周側に、フィラメントワインディング法によって繊維を積層した繊維強化層を有するガスタンクであって、前記ライナー外周面には複数の溝が形成されていることを特徴とする。   The gas tank according to the present invention is a gas tank having a fiber reinforced layer in which fibers are laminated by a filament winding method on the outer peripheral side of a liner to which a base member is attached, and a plurality of grooves are formed on the outer peripheral surface of the liner. It is characterized by being.

ここで、上記構成にあっては、前記繊維強化層は、前記繊維を少なくとも1層以上フープ巻きしたフープ層と、該フープ層の上に前記繊維をヘリカル巻きしたヘリカル層とを有する態様が好ましい。   Here, in the above configuration, it is preferable that the fiber reinforcing layer has a hoop layer in which at least one layer of the fiber is hoop-wound and a helical layer in which the fiber is helically wound on the hoop layer. .

さらに、上記構成にあっては、前記フープ層を形成する繊維の厚みは、前記ヘリカル層を形成する繊維の厚みよりも厚いことが好ましい。   Furthermore, in the said structure, it is preferable that the thickness of the fiber which forms the said hoop layer is thicker than the thickness of the fiber which forms the said helical layer.

別の観点による本発明は、口金部材が取り付けられたライナーの外周面に、繊維を巻き付けて積層した繊維強化層を有するガスタンクであって、前記繊維強化層の繊維の一部に、多孔質の繊維が用いられていることを特徴とする。   According to another aspect of the present invention, there is provided a gas tank having a fiber reinforced layer in which fibers are wound and laminated on an outer peripheral surface of a liner to which a base member is attached, and a porous fiber is formed on a part of the fibers of the fiber reinforced layer It is characterized in that fibers are used.

本発明によれば、ライナーを透過したガスが、繊維強化層の多孔質の繊維を通じて誘導され、徐々に外部へ放出されるので、ライナーと繊維強化層との間に高圧ガスが溜まることを抑制できる。これにより、ライナーと繊維強化層との間に溜まった高濃度のガスが一気に外部へ流出するような不具合を抑制することができる。また、繊維強化層に多孔質の繊維を含めるものなので、例えば繊維強化層に溝部を形成するような場合と比較して十分な強度を確保できる。さらに、ガスタンク内が減圧された際に、ライナーと繊維強化層との間の高圧ガスによりライナーが内側に変形することも抑制できる。   According to the present invention, the gas that has permeated the liner is guided through the porous fibers of the fiber reinforced layer and gradually released to the outside, so that high-pressure gas is prevented from accumulating between the liner and the fiber reinforced layer. it can. Thereby, the malfunction that the high concentration gas collected between the liner and the fiber reinforcement layer flows out to the exterior at a stretch can be suppressed. In addition, since the fiber reinforced layer includes porous fibers, for example, sufficient strength can be ensured as compared with a case where a groove is formed in the fiber reinforced layer. Furthermore, when the inside of the gas tank is depressurized, the liner can be prevented from being deformed inward by the high-pressure gas between the liner and the fiber reinforced layer.

また、前記多孔質の繊維は、フィラメントワインディング法によりライナーの外周面に巻き付けられて、繊維強化層の内周層から外周層に一繋がりで通じているようにしてもよい。かかる場合、ライナーを透過したガスが、多孔質の繊維を通じて確実に外部に誘導される。   Further, the porous fiber may be wound around the outer peripheral surface of the liner by a filament winding method, and may be connected to the outer peripheral layer from the inner peripheral layer of the fiber reinforced layer. In such a case, the gas that has passed through the liner is reliably guided to the outside through the porous fiber.

また、前記繊維強化層は、樹脂を含むものであり、前記多孔質の繊維には、前記繊維強化層の樹脂が透過しないものが用いられてもよい。かかる場合、多孔質の繊維によるガス流路が樹脂により詰まることが防止される。   Moreover, the said fiber reinforcement layer contains resin, The thing which resin of the said fiber reinforcement layer does not permeate | transmit may be used for the said porous fiber. In such a case, it is possible to prevent the gas flow path made of porous fibers from being clogged with the resin.

また、前記繊維強化層における前記多孔質の繊維の体積割合は、0.1%〜10%の範囲に設定されていてもよい。かかる場合、ライナーを透過したガスを外部に適正に誘導しつつ、繊維強化層の十分な強度を確保できる。   Moreover, the volume ratio of the porous fiber in the fiber reinforced layer may be set in a range of 0.1% to 10%. In such a case, it is possible to ensure sufficient strength of the fiber reinforced layer while appropriately guiding the gas that has passed through the liner to the outside.

別の観点による本発明は、口金部材が取り付けられたライナーの外周面に、繊維を巻き付けて積層した繊維強化層を有するガスタンクであって、前記繊維強化層の全体に気泡が形成されていることを特徴とする。  According to another aspect of the present invention, there is provided a gas tank having a fiber reinforced layer in which fibers are wound and laminated on an outer peripheral surface of a liner to which a base member is attached, and bubbles are formed in the entire fiber reinforced layer. It is characterized by.

また、前記気泡は、発泡樹脂又は揮発性粒子が付着した繊維をフィラメントワイディング法によりライナーの外周面に巻き付け、その後当該繊維を加熱することにより形成されていてもよい。   In addition, the bubbles may be formed by winding a fiber having a foamed resin or volatile particles attached around the outer peripheral surface of the liner by a filament wiping method, and then heating the fiber.

別の観点による本発明は、口金部材が取り付けられたライナーの外周面に、樹脂を含浸した繊維を巻き付けて積層した繊維強化層を有するガスタンクであって、前記繊維強化層にマイクロクラックが形成されていることを特徴とする。   According to another aspect of the present invention, there is provided a gas tank having a fiber reinforced layer in which fibers impregnated with a resin are wound and laminated on an outer peripheral surface of a liner to which a base member is attached, and microcracks are formed in the fiber reinforced layer. It is characterized by.

また、前記樹脂に低靭性の材料が用いられ、ガスタンクの耐圧試験時に前記マイクロクラックが形成されていてもよい。   In addition, a low toughness material may be used for the resin, and the microcracks may be formed during a pressure test of the gas tank.

本発明によれば、十分な強度を確保しつつ高濃度のガスの短時間での流出を抑制し、またライナーと繊維強化層との間の高圧ガスの滞留によるライナーの変形を抑制することができる。   According to the present invention, it is possible to suppress the outflow of a high-concentration gas in a short time while ensuring sufficient strength, and to suppress deformation of the liner due to retention of high-pressure gas between the liner and the fiber reinforced layer. it can.

以下、図面を参照して、本発明の実施形態に係るガスタンクについて説明する。   Hereinafter, a gas tank according to an embodiment of the present invention will be described with reference to the drawings.

図1は、内部に高圧ガス(例えば水素ガス)を充填保管するためのガスタンク11を示すもので、このガスタンク11は、合成樹脂製のライナー12の外周側を、ガラス繊維や炭素繊維などからなる繊維強化樹脂層(繊維強化層)13によって覆った構成のタンク本体14を有している。タンク本体14を構成するライナー12は、一対のライナー分割体12aを互いに突き合わせてレーザ溶着などで接合して一体化したものである。   FIG. 1 shows a gas tank 11 for filling and storing a high-pressure gas (for example, hydrogen gas) inside, and this gas tank 11 is made of glass fiber, carbon fiber, or the like on the outer peripheral side of a liner 12 made of synthetic resin. A tank body 14 having a configuration covered with a fiber reinforced resin layer (fiber reinforced layer) 13 is provided. The liner 12 constituting the tank main body 14 is formed by abutting a pair of liner divided bodies 12a with each other and joining them together by laser welding or the like.

タンク本体14の両端には、ライナー12に形成された口部15に、口金部材16が取り付けられており、バルブが取り付け可能な口金部材16を有する側がバルブ側とされ、その反対側がエンド側とされている。   At both ends of the tank body 14, a base member 16 is attached to a mouth portion 15 formed on the liner 12, and the side having the base member 16 to which the valve can be attached is a valve side, and the opposite side is an end side. Has been.

次に、口金部材16のライナー12への取り付け箇所の構造について、バルブ側を例にとって説明する。
図2に示すように、ライナー12の口部15は、肩部17の内端縁から中心軸線側に小径側ほどライナー12内側に位置するように傾斜しつつ延出する内側延出部18と、内側延出部18の肩部17とは反対側からライナー12の軸線方向に沿ってライナー12内に突出する円筒状の被嵌合部19とを有しており、この被嵌合部19の内側が口部15となっている。また、この被嵌合部19の外周には、被嵌合部19と後述の嵌合部23との間に装着される図示しないOリングを締め付けるインサートリング20が一体に設けられている。
Next, the structure of the attachment location of the base member 16 to the liner 12 will be described taking the valve side as an example.
As shown in FIG. 2, the mouth portion 15 of the liner 12 includes an inner extension portion 18 that extends from the inner end edge of the shoulder portion 17 while being inclined so as to be located on the inner side of the liner 12 toward the center axis line side. The inner extending portion 18 has a cylindrical fitted portion 19 that protrudes into the liner 12 along the axial direction of the liner 12 from the side opposite to the shoulder portion 17. The inside is a mouth 15. Further, an insert ring 20 for tightening an O-ring (not shown) mounted between the fitted portion 19 and a fitting portion 23 described later is integrally provided on the outer periphery of the fitted portion 19.

口金部材16は、中央に一定径の貫通穴21が形成されるとともに、外周における中間部には、フランジ部(首部)22が形成され、このフランジ部22よりもライナー12内側への突出部分が嵌合部23とされている。ここで、口金部材16は、フランジ部22が内側延出部18に当接するまで被嵌合部19に圧入して嵌合させることによってライナー12に取り付けられる。   The base member 16 is formed with a through hole 21 having a constant diameter at the center, and a flange portion (neck portion) 22 is formed at an intermediate portion on the outer periphery, and a protruding portion inside the liner 12 from the flange portion 22 is formed. The fitting portion 23 is used. Here, the base member 16 is attached to the liner 12 by being press-fitted into and fitted into the fitted portion 19 until the flange portion 22 comes into contact with the inner extending portion 18.

ここで、図3に示すように、ライナー12及び口金部材16と繊維強化樹脂層13との間には、通気層31が形成されている。この通気層31は、ライナー12及び口金部材16と接触する繊維強化樹脂層13の内層部分からなるもので、繊維強化樹脂層13を形成するための繊維間に生じた微細な空隙を有している。これにより、タンク本体14では、ライナー12及び口金部材16との接触箇所にて、タンク本体14の両端にわたって通気層31によって連通されている。   Here, as shown in FIG. 3, a ventilation layer 31 is formed between the liner 12 and the base member 16 and the fiber reinforced resin layer 13. The ventilation layer 31 is composed of an inner layer portion of the fiber reinforced resin layer 13 that comes into contact with the liner 12 and the cap member 16, and has fine voids generated between the fibers for forming the fiber reinforced resin layer 13. Yes. Thereby, in the tank main body 14, the air-permeable layer 31 communicates with both ends of the tank main body 14 at the contact point between the liner 12 and the base member 16.

次に、上記のガスタンク11における通気層31の形成の仕方について説明する。
まず、図4(a)に示すように、口金部材16を取り付けたライナー12にて、口金部材16のフランジ部22を含む外周面に、フィラメントワインディング法によって繊維S1をコンビ巻き(フープ巻き)で巻き付ける。このとき、巻き付ける繊維S1は、樹脂含有量を少なくしたり、あるいは撚ることにより拡幅を抑えたものを用いる。なお、口金部材16のフランジ部22を含む外周面には、フィラメントワインディング法によって繊維S1を少なくとも1層以上コンビ巻きするのが好ましい。
Next, how to form the ventilation layer 31 in the gas tank 11 will be described.
First, as shown in FIG. 4A, the fiber S1 is combined (hoop-wound) by the filament winding method on the outer peripheral surface including the flange portion 22 of the base member 16 with the liner 12 to which the base member 16 is attached. Wrap. At this time, as the fiber S1 to be wound, a fiber whose content is suppressed by reducing the resin content or twisting it is used. In addition, it is preferable that at least one or more layers of fibers S1 are wound around the outer peripheral surface including the flange portion 22 of the base member 16 by a filament winding method.

このように、拡幅を抑えつつ繊維S1を、ライナー12の外周面及び口金部材16のフランジ部22に巻き付けたら、図4(b)(c)に示すように、十分に拡幅した繊維S2をフィラメントワインディング法によってヘリカル巻にて緊密に巻き付ける。具体的には、まず、図4(b)に示すように、軸方向に対して高角度にて螺旋状に巻き付ける高角度ヘリカル巻を行い、その後、図4(c)に示すように、軸方向に対して低角度にて螺旋状に巻き付ける低角度ヘリカル巻を行う。
なお、口金部材16のフランジ部22を除く部分は、繊維S2をフープ巻にて巻き付ける。ただし、当該部分については、繊維S2をヘリカル巻にて巻き付けても良い。
As described above, when the fiber S1 is wound around the outer peripheral surface of the liner 12 and the flange portion 22 of the base member 16 while suppressing widening, the sufficiently widened fiber S2 is filamented as shown in FIGS. Wind tightly with helical winding by winding method. Specifically, first, as shown in FIG. 4 (b), high-angle helical winding is performed in a spiral manner at a high angle with respect to the axial direction, and thereafter, as shown in FIG. A low-angle helical winding is performed in which a spiral is wound at a low angle with respect to the direction.
In addition, the part except the flange part 22 of the nozzle | cap | die member 16 winds the fiber S2 by hoop winding. However, about the said part, you may wind the fiber S2 by helical winding.

そして、繊維S1,S2を巻き付けたら、加熱して繊維S1,S2を硬化させて繊維強化樹脂層13とする。
このようにすると、図5に示すように、拡幅を抑えてコンビ巻きした繊維S1と十分に拡幅してヘリカル巻きした繊維S2の1層目の部分とが、繊維S1に沿う微細な空隙Pを有する通気層31となる。言い換えれば、コンビ巻きした繊維S1の厚みを、ヘリカル巻きした繊維S2の厚みよりも厚くすることで、繊維S1に沿う微細な空隙Pを有する通気層31となる。
When the fibers S1 and S2 are wound, the fibers S1 and S2 are cured by heating to form the fiber reinforced resin layer 13.
In this way, as shown in FIG. 5, the combined fiber S1 that suppresses widening and the first layer portion of the fiber S2 that is sufficiently widened and helically wound have fine voids P along the fiber S1. It becomes the ventilation layer 31 which has. In other words, the thickness of the combined wound fiber S1 is made larger than the thickness of the helically wound fiber S2, so that the ventilation layer 31 having fine voids P along the fiber S1 is obtained.

このように、上記実施形態に係るガスタンクによれば、高圧状態にてライナー12を透過したガスが、ライナー12と繊維強化樹脂層13との間に溜まることなく、繊維強化樹脂層13を構成する繊維S1,S2間に生じた軸方向に連通する微細な空隙Pからなる通気層31を介して徐々に外部へ放出される。これにより、減圧となった際に、ライナー12と繊維強化樹脂層13との間に溜まった高濃度のガスが短時間に外部へ流出する不具合を抑制することができる。   Thus, according to the gas tank concerning the above-mentioned embodiment, the gas which permeate | transmitted the liner 12 in the high pressure state does not accumulate between the liner 12 and the fiber reinforced resin layer 13, but comprises the fiber reinforced resin layer 13. The air is gradually discharged to the outside through a ventilation layer 31 composed of fine voids P communicating between the fibers S1 and S2 in the axial direction. Thereby, when it becomes pressure reduction, the malfunction which the high concentration gas collected between the liner 12 and the fiber reinforced resin layer 13 flows out outside in a short time can be suppressed.

つまり、繊維強化樹脂層13を構成する繊維S1,S2間に軸方向に連通する微細な空隙Pを生じさせて通気層31としたので、繊維強化樹脂層13に溝部を形成する場合と比較して、強度低下を招くことがなく、したがって、十分な強度を確保しつつ高濃度のガスの短時間での流出を抑制することができる。   That is, since the fine air gap P communicating in the axial direction is generated between the fibers S1 and S2 constituting the fiber reinforced resin layer 13 to form the ventilation layer 31, compared with the case where the groove portion is formed in the fiber reinforced resin layer 13. Therefore, the strength is not lowered, and therefore, the outflow of the high-concentration gas in a short time can be suppressed while ensuring the sufficient strength.

なお、上記の例では、繊維強化樹脂層13の内層部分に微細な空隙Pを生じさせて通気層31を形成したが、図6に示すように、予めライナー12の外周面に、軸方向に沿った複数の溝部(溝)32を周方向に間隔をあけて形成し、その外周に、図7に示すように、繊維S1,S2を巻き付けることにより、ライナー12と繊維強化樹脂層13との間に、図8に示すように、複数の溝部32からなる微細な空隙Pを有する通気層31を形成しても良い。   In the above example, the fine air gap P is formed in the inner layer portion of the fiber reinforced resin layer 13 to form the air-permeable layer 31. However, as shown in FIG. A plurality of groove portions (grooves) 32 are formed at intervals in the circumferential direction, and the fibers S1 and S2 are wound around the outer periphery thereof as shown in FIG. In the meantime, as shown in FIG. 8, a ventilation layer 31 having a fine gap P composed of a plurality of grooves 32 may be formed.

また、ライナー12に溝部32を形成し、さらに、このライナー12に、前述したように、拡幅を抑えて繊維S1をコンビ巻きし、その後、十分に拡幅して繊維S2ヘリカル巻きしても良い。このようにすると、繊維S1に沿う微細な空隙Pとライナー12の溝部32からなる微細な空隙Pとを併せ持った通気層31を有するガスタンク11を得ることができる。なお、予めライナー12の外周面に複数の溝部32を形成した場合には、繊維S1、S2のいずれかの繊維のみを利用して繊維強化樹脂層13を形成しても良く、また、該繊維S1、S2の巻き方についてもコンビ巻き、ヘリカル巻きのいずれか一方のみを採用しても良い。   Further, the groove portion 32 may be formed in the liner 12, and further, the fiber S1 may be wound around the liner 12 while suppressing the widening, and then the fiber S2 may be helically wound after sufficiently widening. In this way, it is possible to obtain the gas tank 11 having the ventilation layer 31 having both the fine gap P along the fiber S1 and the fine gap P formed of the groove portion 32 of the liner 12. In addition, when the some groove part 32 is previously formed in the outer peripheral surface of the liner 12, you may form the fiber reinforced resin layer 13 using only any fiber of fiber S1, S2, and this fiber As for the winding method of S1 and S2, only one of combination winding and helical winding may be adopted.

以上の実施の形態の形態では、繊維強化樹脂層13の内層部分に通気層31を形成したり、ライナー12の外周面に溝部32を形成していたが、繊維強化樹脂層13の繊維の一部に、多孔質の繊維を用いるようにしてもよい。   In the embodiment described above, the ventilation layer 31 is formed in the inner layer portion of the fiber reinforced resin layer 13 or the groove portion 32 is formed in the outer peripheral surface of the liner 12. You may make it use a porous fiber for a part.

例えば、図9及び図10に示すように繊維強化樹脂層13の繊維の一部に、多孔質繊維S3を入れる。その他の繊維には、例えば炭素繊維S4が用いられる。多孔質繊維S3には、例えば繊維強化樹脂層13の樹脂(例えばエポキシ樹脂)が透過しない穴径を有するものが用いられる。また、繊維強化樹脂層13における多孔質繊維S3の体積割合は、例えば0.1%〜10%の範囲に設定される。   For example, as shown in FIGS. 9 and 10, porous fiber S <b> 3 is put into a part of the fibers of the fiber reinforced resin layer 13. For example, carbon fiber S4 is used for the other fibers. As the porous fiber S3, for example, one having a hole diameter through which a resin (for example, epoxy resin) of the fiber reinforced resin layer 13 does not pass is used. Moreover, the volume ratio of the porous fiber S3 in the fiber reinforced resin layer 13 is set in the range of 0.1% to 10%, for example.

この例によれば、ライナー12を透過したガスが、繊維強化樹脂層13の多孔質繊維S3を通じて徐々に外部に排出される。この結果、ライナー12と繊維強化樹脂層13との間に高圧ガスが溜まることを抑制できる。これにより、例えばライナーと繊維強化樹脂層との間に溜まった高濃度のガスが一気に外部へ流出するような不具合を抑制できる。また、この例によれば、繊維強化樹脂層13の強度も確保できる。さらに、ガスタンク11内が減圧された際に、ライナー12と繊維強化樹脂層13との間の高圧ガスによりライナー12が内側に変形することも抑制できる。   According to this example, the gas that has passed through the liner 12 is gradually discharged to the outside through the porous fibers S3 of the fiber reinforced resin layer 13. As a result, it is possible to suppress the accumulation of high-pressure gas between the liner 12 and the fiber reinforced resin layer 13. Thereby, for example, it is possible to suppress a problem that a high-concentration gas accumulated between the liner and the fiber reinforced resin layer flows out to the outside at once. Moreover, according to this example, the strength of the fiber reinforced resin layer 13 can be secured. Furthermore, when the inside of the gas tank 11 is depressurized, the liner 12 can be prevented from being deformed inward by the high-pressure gas between the liner 12 and the fiber reinforced resin layer 13.

また、上記例では、多孔質繊維S3に繊維強化樹脂層13の樹脂が透過しないものが用いられるので、多孔質繊維S3によるガス流路が樹脂により詰まることが防止される。   In the above example, since the porous fiber S3 does not allow the resin of the fiber reinforced resin layer 13 to pass therethrough, the gas flow path by the porous fiber S3 is prevented from being clogged with the resin.

また、繊維強化樹脂層13における多孔質繊維S3の体積割合が、0.1%〜10%の範囲に設定されるので、ライナー12を透過したガスを適正に外部に誘導しつつ、繊維強化樹脂層13の十分な強度を確保できる。   Moreover, since the volume ratio of the porous fiber S3 in the fiber reinforced resin layer 13 is set in the range of 0.1% to 10%, the fiber reinforced resin is appropriately guided to the outside through the gas that has passed through the liner 12. A sufficient strength of the layer 13 can be ensured.

上記実施の形態において、多孔質繊維S3は、フィラメントワインディング法により巻き付けられて、図11及び図12に示すように繊維強化樹脂層S3の内周層から外周層に一繋がりで通じているようにしてもよい。かかる場合、ライナー12を透過したガスが、多孔質繊維S3を通じて繊維強化樹脂層S3の内周面から外周面に確実に誘導されるので、ライナー12を透過したガスの排出を好適に行うことができる。   In the above embodiment, the porous fiber S3 is wound by the filament winding method so as to be connected to the outer peripheral layer from the inner peripheral layer of the fiber reinforced resin layer S3 as shown in FIGS. May be. In such a case, the gas that has passed through the liner 12 is reliably guided from the inner peripheral surface to the outer peripheral surface of the fiber reinforced resin layer S3 through the porous fibers S3, so that the gas that has passed through the liner 12 can be suitably discharged. it can.

また、前記実施の形態では、繊維強化樹脂層13の一部に多孔質繊維層を形成していたが、繊維強化樹脂層13の全体に気泡を形成してもよい。   Moreover, in the said embodiment, although the porous fiber layer was formed in a part of fiber reinforced resin layer 13, you may form a bubble in the whole fiber reinforced resin layer 13. FIG.

かかる場合、例えばフィラメントワインディング法により繊維強化樹脂層13が形成される際に、微小な発泡樹脂又は揮発性粒子が付着した繊維がライナー12の外周面に巻き付けられる。その後、当該繊維が加熱硬化され、図13に示すように繊維強化樹脂層13の全体に多数の微細な気泡50が形成される。   In such a case, for example, when the fiber reinforced resin layer 13 is formed by the filament winding method, the fiber to which minute foamed resin or volatile particles are attached is wound around the outer peripheral surface of the liner 12. Thereafter, the fibers are cured by heating, and a large number of fine bubbles 50 are formed in the entire fiber reinforced resin layer 13 as shown in FIG.

この例によれば、例えば図14に示すように繊維強化樹脂層13に気泡50による通気路が形成されるので、ライナー12を透過したガスは、樹脂強化繊維層13を通過し、速やかにガスタンク1の外部に放出される。この結果、ライナー12と繊維強化樹脂層13との間に高圧ガスが溜まることが抑制されるので、当該高圧ガスによるライナー12の変形、破損等が防止される。また、ガスタンク1の表面全体に通気路が形成されるので、ガスタンク1全体で高圧ガスの滞留が抑制され、ガスタンク1の品質が向上する。  According to this example, for example, as shown in FIG. 14, the air passage by the bubbles 50 is formed in the fiber reinforced resin layer 13, so that the gas that has permeated the liner 12 passes through the resin reinforced fiber layer 13 and is quickly supplied to the gas tank. 1 is released to the outside. As a result, since the high-pressure gas is suppressed from being accumulated between the liner 12 and the fiber reinforced resin layer 13, deformation, breakage, and the like of the liner 12 due to the high-pressure gas are prevented. Further, since the air passage is formed on the entire surface of the gas tank 1, the high-pressure gas is prevented from staying in the entire gas tank 1, and the quality of the gas tank 1 is improved.

前記実施の形態では、繊維強化樹脂層13に気泡50が形成されていたが、繊維強化樹脂層13にマイクロクラックが形成されていてもよい。   In the above embodiment, the bubbles 50 are formed in the fiber reinforced resin layer 13, but micro cracks may be formed in the fiber reinforced resin layer 13.

かかる場合、フィラメントワインディング法により繊維強化樹脂層13が形成される際に、繊維が含浸される樹脂に破壊靭性値の低い材料、例えば破壊靭性値が2.0MPa√(m)以下の例えばエキシポ樹脂が用いられる。こうすることにより、例えば出荷時の耐圧試験時に、図15に示すような繊維強化樹脂層13の樹脂部分に多数のマイクロクラック60が形成される。   In this case, when the fiber reinforced resin layer 13 is formed by the filament winding method, the resin impregnated with the fiber is a material having a low fracture toughness value, for example, an epoxy resin having a fracture toughness value of 2.0 MPa√ (m) or less. Is used. By doing so, a large number of microcracks 60 are formed in the resin portion of the fiber reinforced resin layer 13 as shown in FIG.

この例によれば、繊維強化樹脂層13のマイクロクラック60間の距離が短く、樹脂内でもガスが透過しやすくなるため、ライナー12を透過したガスが、繊維強化樹脂層13のマイクロクラック60と、マイクロクラック60間の樹脂内を通って、ガスタンク1の外部に放出される。この結果、ライナー12と繊維強化樹脂層13との間に高圧ガスが溜まることが抑制されるので、当該高圧ガスによるライナー12の変形や破損が防止される。また、ガスタンク1の表面全体に通気路が形成されるので、ガスタンク1全体で高圧ガスの滞留が抑制され、ガスタンク1の品質が向上する。   According to this example, since the distance between the microcracks 60 of the fiber reinforced resin layer 13 is short and gas easily permeates within the resin, the gas that has permeated the liner 12 is separated from the microcracks 60 of the fiber reinforced resin layer 13. Then, it passes through the resin between the microcracks 60 and is released to the outside of the gas tank 1. As a result, the high-pressure gas is prevented from accumulating between the liner 12 and the fiber reinforced resin layer 13, so that the liner 12 is prevented from being deformed or damaged by the high-pressure gas. Further, since the air passage is formed on the entire surface of the gas tank 1, the high-pressure gas is prevented from staying in the entire gas tank 1, and the quality of the gas tank 1 is improved.

ガスタンクの全体構造を示す断面図である。It is sectional drawing which shows the whole structure of a gas tank. ガスタンクの口金部分の断面図である。It is sectional drawing of the nozzle | cap | die part of a gas tank. ガスタンクの構造を示す一部の断面図である。It is a partial sectional view showing the structure of a gas tank. ガスタンクの繊維の巻き付け工程を示す斜視図であり、(a)はコンビ巻きを示す図、(b)は高角度ヘリカル巻きを示す図、(c)は低角度ヘリカル巻きを示す図である。It is a perspective view which shows the winding process of the fiber of a gas tank, (a) is a figure which shows combination winding, (b) is a figure which shows high angle helical winding, (c) is a figure which shows low angle helical winding. 通気層部分の構造を示す断面図である。It is sectional drawing which shows the structure of a ventilation layer part. 溝部を形成したライナーの側面図である。It is a side view of the liner which formed the groove part. ライナーの周囲に繊維を巻き付けた状態のタンク本体の側面図である。It is a side view of the tank main body of the state which wound the fiber around the liner. 通気層部分の構造を示す断面図である。It is sectional drawing which shows the structure of a ventilation layer part. タンク本体を周方向から見たときのタンク本体の内部構造を示す説明図である。It is explanatory drawing which shows the internal structure of a tank main body when a tank main body is seen from the circumferential direction. タンク本体を軸方向から見たときのタンク本体の部分断面を示す説明図である。It is explanatory drawing which shows the partial cross section of a tank main body when a tank main body is seen from an axial direction. タンク本体を周方向から見たときのタンク本体の内部構造を示す説明図である。It is explanatory drawing which shows the internal structure of a tank main body when a tank main body is seen from the circumferential direction. タンク本体を軸方向から見たときのタンク本体の内部構造を示す説明図である。It is explanatory drawing which shows the internal structure of a tank main body when a tank main body is seen from an axial direction. ガスタンクの一部の断面図である。It is sectional drawing of a part of gas tank. 気泡を通じて繊維強化樹脂層をガスが通過する様子を示す説明図である。It is explanatory drawing which shows a mode that gas passes through a fiber reinforced resin layer through a bubble. マイクロクラックを通じて繊維強化樹脂層をガスが通過する様子を示す説明図である。It is explanatory drawing which shows a mode that gas passes through a fiber reinforced resin layer through a micro crack.

符号の説明Explanation of symbols

1…ガスタンク、12…ライナー、13…繊維強化樹脂層、16…口金部材、31…通
気層、32…溝部、P…空隙、S1,S2…繊維。
DESCRIPTION OF SYMBOLS 1 ... Gas tank, 12 ... Liner, 13 ... Fiber reinforced resin layer, 16 ... Base member, 31 ... Ventilation layer, 32 ... Groove part, P ... Air gap, S1, S2 ... Fiber.

Claims (15)

口金部材が取り付けられたライナーの外周側に、フィラメントワインディング法によって繊維を積層した繊維強化層を有するガスタンクであって、
前記繊維強化層の内層部分には、繊維間に生じた微細な空隙を有する通気層が設けられていることを特徴とするガスタンク。
A gas tank having a fiber reinforced layer in which fibers are laminated by a filament winding method on the outer peripheral side of a liner to which a base member is attached,
A gas tank, wherein an inner layer portion of the fiber reinforced layer is provided with a ventilation layer having fine voids formed between fibers.
前記口金部材の首部は、前記繊維を少なくとも1層以上フープ巻きしたフープ層を有することを特徴とする請求項1に記載のガスタンク。   2. The gas tank according to claim 1, wherein a neck portion of the base member has a hoop layer in which at least one layer of the fiber is hoop-wound. 前記繊維強化層は、前記繊維を少なくとも1層以上フープ巻きしたフープ層と、該フープ層の上に前記繊維をヘリカル巻きしたヘリカル層とを有することを特徴とする請求項1または2に記載のガスタンク。   The said fiber reinforcement layer has the hoop layer which hoop-wrapped the said fiber at least 1 layer or more, and the helical layer which helically wound the said fiber on this hoop layer, The Claim 1 or 2 characterized by the above-mentioned. Gas tank. 前記フープ層を形成する繊維の厚みは、前記ヘリカル層を形成する繊維の厚みよりも厚いことを特徴とする請求項3に記載のガスタンク。   The gas tank according to claim 3, wherein the thickness of the fiber forming the hoop layer is thicker than the thickness of the fiber forming the helical layer. 口金部材が取り付けられたライナーの外周側に、フィラメントワインディング法によって繊維を積層した繊維強化層を有するガスタンクであって、
前記ライナー外周面には複数の溝が形成されていることを特徴とするガスタンク。
A gas tank having a fiber reinforced layer in which fibers are laminated by a filament winding method on the outer peripheral side of a liner to which a base member is attached,
A gas tank, wherein a plurality of grooves are formed on the outer peripheral surface of the liner.
前記繊維強化層は、前記繊維を少なくとも1層以上フープ巻きしたフープ層と、該フープ層の上に前記繊維をヘリカル巻きしたヘリカル層とを有することを特徴とする請求項5に記載のガスタンク。   The gas tank according to claim 5, wherein the fiber reinforced layer includes a hoop layer in which at least one layer of the fiber is hoop-wound, and a helical layer in which the fiber is helically wound on the hoop layer. 前記フープ層を形成する繊維の厚みは、前記ヘリカル層を形成する繊維の厚みよりも厚いことを特徴とする請求項6に記載のガスタンク。   The gas tank according to claim 6, wherein a thickness of a fiber forming the hoop layer is thicker than a thickness of a fiber forming the helical layer. 口金部材が取り付けられたライナーの外周面に、繊維を巻き付けて積層した繊維強化層を有するガスタンクであって、
前記繊維強化層の繊維の一部に、多孔質の繊維が用いられていることを特徴とする、ガスタンク。
A gas tank having a fiber reinforced layer in which fibers are wound and laminated on an outer peripheral surface of a liner to which a base member is attached,
A gas tank, wherein porous fibers are used as a part of the fibers of the fiber reinforced layer.
前記多孔質の繊維は、フィラメントワインディング法によりライナーの外周面に巻き付けられて、繊維強化層の内周層から外周層に一繋がりで通じていることを特徴とする、請求項8に記載のガスタンク。   The gas tank according to claim 8, wherein the porous fiber is wound around the outer peripheral surface of the liner by a filament winding method, and is connected to the outer peripheral layer from the inner peripheral layer of the fiber reinforced layer. . 前記繊維強化層は、樹脂を含むものであり、
前記多孔質の繊維には、前記繊維強化層の樹脂が透過しないものが用いられることを特徴とする、請求項8又は9に記載のガスタンク。
The fiber reinforced layer contains a resin,
10. The gas tank according to claim 8, wherein a resin that does not allow the resin of the fiber reinforced layer to permeate is used as the porous fiber. 11.
前記繊維強化層における前記多孔質の繊維の体積割合は、0.1%〜10%の範囲に設定されていることを特徴とする、請求項8〜10のいずれかに記載のガスタンク。   11. The gas tank according to claim 8, wherein a volume ratio of the porous fibers in the fiber reinforced layer is set in a range of 0.1% to 10%. 口金部材が取り付けられたライナーの外周面に、繊維を巻き付けて積層した繊維強化層を有するガスタンクであって、
前記繊維強化層の全体に気泡が形成されていることを特徴とする、ガスタンク。
A gas tank having a fiber reinforced layer in which fibers are wound and laminated on an outer peripheral surface of a liner to which a base member is attached,
A gas tank, wherein air bubbles are formed in the entire fiber reinforced layer.
前記気泡は、発泡樹脂又は揮発性粒子が付着した繊維をフィラメントワイディング法によりライナーの外周面に巻き付け、その後当該繊維を加熱することにより形成されていることを特徴とする、請求項12に記載のガスタンク。   The air bubbles are formed by winding a fiber to which a foamed resin or volatile particles are attached around an outer peripheral surface of a liner by a filament wiping method, and then heating the fiber. Gas tank. 口金部材が取り付けられたライナーの外周面に、樹脂を含浸した繊維を巻き付けて積層した繊維強化層を有するガスタンクであって、
前記繊維強化層にマイクロクラックが形成されていることを特徴とする、ガスタンク。
A gas tank having a fiber reinforced layer in which fibers impregnated with a resin are wound around and laminated on an outer peripheral surface of a liner to which a base member is attached,
A gas tank, wherein microcracks are formed in the fiber reinforced layer.
前記樹脂に低靭性の材料が用いられ、ガスタンクの耐圧試験時に前記マイクロクラックが形成されていることを特徴とする、請求項14に記載のガスタンク。   The gas tank according to claim 14, wherein a low-toughness material is used for the resin, and the microcracks are formed during a pressure test of the gas tank.
JP2008134184A 2007-06-14 2008-05-22 Gas tank Pending JP2009174700A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008134184A JP2009174700A (en) 2007-06-14 2008-05-22 Gas tank

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007157867 2007-06-14
JP2007334352 2007-12-26
JP2008134184A JP2009174700A (en) 2007-06-14 2008-05-22 Gas tank

Publications (1)

Publication Number Publication Date
JP2009174700A true JP2009174700A (en) 2009-08-06

Family

ID=41029989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008134184A Pending JP2009174700A (en) 2007-06-14 2008-05-22 Gas tank

Country Status (1)

Country Link
JP (1) JP2009174700A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011106514A (en) * 2009-11-13 2011-06-02 Toyota Motor Corp High-pressure tank
JP2012506519A (en) * 2008-10-25 2012-03-15 ダイムラー・アクチェンゲゼルシャフト Pressure vessel for storing pressurized gaseous media
JP2012127468A (en) * 2010-12-17 2012-07-05 Nagoya Oil Chem Co Ltd High-pressure gas container
JP2012127467A (en) * 2010-12-17 2012-07-05 Nagoya Oil Chem Co Ltd High-pressure gas container
JP2013011305A (en) * 2011-06-29 2013-01-17 Nippon Soken Inc High pressure gas tank and method for manufacturing the same
EP2591907A1 (en) 2011-09-16 2013-05-15 Murata Machinery, Ltd. Filament winding method and filament winding apparatus
JP2013532809A (en) * 2010-08-06 2013-08-19 ダイムラー・アクチェンゲゼルシャフト Low molecular gas storage device
FR3017441A1 (en) * 2014-02-12 2015-08-14 Air Liquide COMPOSITE TANK AND METHOD FOR MANUFACTURING THE SAME
CN104948902A (en) * 2014-03-26 2015-09-30 现代自动车株式会社 Fuel gas tank and manufacturing method thereof
US9233489B2 (en) 2011-10-18 2016-01-12 Toyota Jidosha Kabushiki Kaisha Manufacturing method and manufacturing apparatus of high-pressure gas tank
KR20160009088A (en) * 2016-01-07 2016-01-25 현대자동차주식회사 Fuel gas tank and manufacturing method its
KR101619630B1 (en) * 2014-10-30 2016-05-10 현대자동차주식회사 hydrogen storage device of fuel cell vehicle
WO2016189664A1 (en) * 2015-05-26 2016-12-01 日産自動車株式会社 High pressure gas container
WO2017161085A1 (en) * 2016-03-16 2017-09-21 Brian Yeggy Vented fitting for pressure vessel boss
WO2017200713A1 (en) * 2016-05-17 2017-11-23 Hexagon Technology As Pressure vessel liner venting via nanotextured surface
CN108626564A (en) * 2017-03-24 2018-10-09 现代自动车株式会社 Pressure pan with heat radiation and residual gas discharge structure and its manufacturing method
KR102006330B1 (en) * 2018-04-02 2019-08-01 동해금속(주) Hydrogen storage device for fuel cell vehicle
JP2020085012A (en) * 2018-11-15 2020-06-04 トヨタ自動車株式会社 High-pressure tank and mounting structure thereof
KR20220039421A (en) 2020-09-22 2022-03-29 지오네이션 주식회사 Gas storage tank having enhanced bonding property and method for manufacturing the same
CN114909598A (en) * 2018-11-02 2022-08-16 本田技研工业株式会社 High pressure vessel
US11473727B2 (en) 2019-06-28 2022-10-18 Honda Motor Co., Ltd. High pressure gas container
DE102022114491A1 (en) 2021-06-14 2022-12-15 Toyota Jidosha Kabushiki Kaisha PRESSURE VESSEL
JP7197400B2 (en) 2019-02-21 2022-12-27 トヨタ自動車株式会社 High-pressure gas tank and method for manufacturing high-pressure gas tank
US11660982B2 (en) 2019-12-06 2023-05-30 Honda Motor Co., Ltd. Method of controlling fuel cell vehicle and the fuel cell vehicle

Cited By (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013238319A (en) * 2008-10-25 2013-11-28 Daimler Ag Pressure vessel for storing compressed gas medium
JP2012506519A (en) * 2008-10-25 2012-03-15 ダイムラー・アクチェンゲゼルシャフト Pressure vessel for storing pressurized gaseous media
JP2011106514A (en) * 2009-11-13 2011-06-02 Toyota Motor Corp High-pressure tank
US8998024B2 (en) 2010-08-06 2015-04-07 Daimler Ag Device for storing low-molecular gases
JP2013532809A (en) * 2010-08-06 2013-08-19 ダイムラー・アクチェンゲゼルシャフト Low molecular gas storage device
JP2012127467A (en) * 2010-12-17 2012-07-05 Nagoya Oil Chem Co Ltd High-pressure gas container
JP2012127468A (en) * 2010-12-17 2012-07-05 Nagoya Oil Chem Co Ltd High-pressure gas container
US9371964B2 (en) 2011-06-29 2016-06-21 Toyota Jidosha Kabushiki Kaisha High pressure gas tank and manufacturing method of high pressure gas tank
JP2013011305A (en) * 2011-06-29 2013-01-17 Nippon Soken Inc High pressure gas tank and method for manufacturing the same
US9156202B2 (en) 2011-09-16 2015-10-13 Murata Machinery, Ltd. Filament winding method and filament winding apparatus
EP2591907A1 (en) 2011-09-16 2013-05-15 Murata Machinery, Ltd. Filament winding method and filament winding apparatus
EP2607053A1 (en) 2011-09-16 2013-06-26 Murata Machinery, Ltd. Filament winding method and filament winding apparatus
US8980033B2 (en) 2011-09-16 2015-03-17 Murata Machinery, Ltd. Filament winding method and filament winding apparatus
DE112011105750B9 (en) 2011-10-18 2018-08-09 Toyota Jidosha Kabushiki Kaisha Production process for a high-pressure gas tank
US9233489B2 (en) 2011-10-18 2016-01-12 Toyota Jidosha Kabushiki Kaisha Manufacturing method and manufacturing apparatus of high-pressure gas tank
DE112011105750B4 (en) 2011-10-18 2018-05-30 Toyota Jidosha Kabushiki Kaisha Production process for a high-pressure gas tank
FR3017441A1 (en) * 2014-02-12 2015-08-14 Air Liquide COMPOSITE TANK AND METHOD FOR MANUFACTURING THE SAME
EP2910840A3 (en) * 2014-02-12 2016-06-15 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Composite container and method for manufacturing same
CN104948902A (en) * 2014-03-26 2015-09-30 现代自动车株式会社 Fuel gas tank and manufacturing method thereof
US9656543B2 (en) 2014-03-26 2017-05-23 Hyundai Motor Company Fuel gas tank manufacturing method
KR101619630B1 (en) * 2014-10-30 2016-05-10 현대자동차주식회사 hydrogen storage device of fuel cell vehicle
WO2016189664A1 (en) * 2015-05-26 2016-12-01 日産自動車株式会社 High pressure gas container
KR20190028576A (en) * 2015-05-26 2019-03-18 닛산 지도우샤 가부시키가이샤 High pressure gas container
EP3447357A1 (en) * 2015-05-26 2019-02-27 Nissan Motor Co., Ltd. High-pressure gas container
JPWO2016189664A1 (en) * 2015-05-26 2018-04-26 日産自動車株式会社 High pressure gas container
US10415753B2 (en) 2015-05-26 2019-09-17 Nissan Motor Co., Ltd. High-pressure gas container
KR102116268B1 (en) * 2015-05-26 2020-05-29 닛산 지도우샤 가부시키가이샤 High pressure gas container
KR20160009088A (en) * 2016-01-07 2016-01-25 현대자동차주식회사 Fuel gas tank and manufacturing method its
KR101655719B1 (en) * 2016-01-07 2016-09-07 현대자동차주식회사 Fuel gas tank and manufacturing method its
JP2019512650A (en) * 2016-03-16 2019-05-16 ヘキサゴン テクノロジー アーエス Vent fitting for pressure vessel bosses
CN108779894A (en) * 2016-03-16 2018-11-09 陆型技术公司 Outlet fitting for pressure vessel boss
US10648620B2 (en) 2016-03-16 2020-05-12 Hexagon Technology As Vented fitting for pressure vessel boss
RU2737488C2 (en) * 2016-03-16 2020-12-01 Хексагон Текнолоджи Ас Vented insert for vessel projection under pressure
WO2017161085A1 (en) * 2016-03-16 2017-09-21 Brian Yeggy Vented fitting for pressure vessel boss
US10088110B2 (en) 2016-05-17 2018-10-02 Hexagon Technology As Pressure vessel liner venting via nanotextured surface
CN109154418B (en) * 2016-05-17 2019-11-22 陆型技术公司 Via the pressure vessel lining and forming method thereof of nano-textured surface ventilation
CN110878904B (en) * 2016-05-17 2021-07-09 陆型技术公司 Pressure vessel
CN109154418A (en) * 2016-05-17 2019-01-04 陆型技术公司 The pressure vessel lining divulged information via nano-textured surface
RU2703869C1 (en) * 2016-05-17 2019-10-22 Хексагон Текнолоджи Ас Pressure vessel having a ventilation duct, (versions) and a method for production thereof
KR20190122906A (en) * 2016-05-17 2019-10-30 헥사곤 테크놀로지 에이에스 Pressure vessel liner venting via nanotextured surface
KR102038793B1 (en) 2016-05-17 2019-10-31 헥사곤 테크놀로지 에이에스 Pressure vessel liner ejects through nano-textured surface
WO2017200713A1 (en) * 2016-05-17 2017-11-23 Hexagon Technology As Pressure vessel liner venting via nanotextured surface
CN110878904A (en) * 2016-05-17 2020-03-13 陆型技术公司 Pressure vessel
KR20180128501A (en) * 2016-05-17 2018-12-03 헥사곤 테크놀로지 에이에스 Pressure vessel liner discharge through nano-textured surface
KR102175868B1 (en) 2016-05-17 2020-11-09 헥사곤 테크놀로지 에이에스 Pressure vessel liner venting via nanotextured surface
JP2019521289A (en) * 2016-05-17 2019-07-25 ヘキサゴン テクノロジー アーエス Pressure vessel liner venting through a nanotextured surface
CN108626564B (en) * 2017-03-24 2020-10-09 现代自动车株式会社 High pressure tank having heat radiation and residual gas discharge structure and method of manufacturing the same
CN108626564A (en) * 2017-03-24 2018-10-09 现代自动车株式会社 Pressure pan with heat radiation and residual gas discharge structure and its manufacturing method
KR102006330B1 (en) * 2018-04-02 2019-08-01 동해금속(주) Hydrogen storage device for fuel cell vehicle
CN114909598A (en) * 2018-11-02 2022-08-16 本田技研工业株式会社 High pressure vessel
JP2020085012A (en) * 2018-11-15 2020-06-04 トヨタ自動車株式会社 High-pressure tank and mounting structure thereof
JP7035976B2 (en) 2018-11-15 2022-03-15 トヨタ自動車株式会社 High pressure tank and its mounting structure
JP7197400B2 (en) 2019-02-21 2022-12-27 トヨタ自動車株式会社 High-pressure gas tank and method for manufacturing high-pressure gas tank
US11473727B2 (en) 2019-06-28 2022-10-18 Honda Motor Co., Ltd. High pressure gas container
US11660982B2 (en) 2019-12-06 2023-05-30 Honda Motor Co., Ltd. Method of controlling fuel cell vehicle and the fuel cell vehicle
KR20220039421A (en) 2020-09-22 2022-03-29 지오네이션 주식회사 Gas storage tank having enhanced bonding property and method for manufacturing the same
DE102022114491A1 (en) 2021-06-14 2022-12-15 Toyota Jidosha Kabushiki Kaisha PRESSURE VESSEL

Similar Documents

Publication Publication Date Title
JP2009174700A (en) Gas tank
JP5408351B2 (en) High-pressure tank and method for manufacturing high-pressure tank
US11299312B2 (en) Method for producing a leak-tight vessel, and a leak-tight vessel
JP5071801B2 (en) High pressure tank and manufacturing method thereof
US10168002B2 (en) Breather layer for exhausting permeate from pressure vessels
CN109154418B (en) Via the pressure vessel lining and forming method thereof of nano-textured surface ventilation
US20200200328A1 (en) Vented fitting for pressure vessel boss
JP5661636B2 (en) Pressure vessel for storing pressurized gaseous media
KR101856323B1 (en) Pressure vessel having degassing structure
JP2010077995A (en) Gas tank and method of manufacturing the same
JP2010236587A (en) Fiber-reinforced plastic pressure vessel
JP2009216133A (en) Gas cylinder and gas exhaust hole formation method of the gas cylinder
US20220325851A1 (en) Pressure vessel
JP2008261414A (en) Pressure vessel and its manufacturing method
US20110204061A1 (en) Optimized high pressure vessel
JP2005273724A (en) Pressure vessel
EP2189696B1 (en) Fiber-reinforced resin pipe
JP2010038216A (en) Pressure vessel
JP6475077B2 (en) Manufacturing method of pressure vessel liner
DE60207082D1 (en) METHOD FOR PRODUCING A CONTAINER CONTAINING A PRESSURE GAS, AND CONTAINING SUCH CONTAINER
JP5730718B2 (en) Manufacturing method of high-pressure gas tank
JP6941648B2 (en) High pressure tank
JP4263652B2 (en) Manufacturing method of pressure vessel
KR20240001070A (en) Method for producing a composite cylindrical tank and composite tank produced by this method
JP2020118288A (en) Hydrogen tank