KR101655719B1 - Fuel gas tank and manufacturing method its - Google Patents

Fuel gas tank and manufacturing method its Download PDF

Info

Publication number
KR101655719B1
KR101655719B1 KR1020160001822A KR20160001822A KR101655719B1 KR 101655719 B1 KR101655719 B1 KR 101655719B1 KR 1020160001822 A KR1020160001822 A KR 1020160001822A KR 20160001822 A KR20160001822 A KR 20160001822A KR 101655719 B1 KR101655719 B1 KR 101655719B1
Authority
KR
South Korea
Prior art keywords
liner
composite material
fuel gas
metal coil
metal
Prior art date
Application number
KR1020160001822A
Other languages
Korean (ko)
Other versions
KR20160009088A (en
Inventor
정재한
Original Assignee
현대자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR1020160001822A priority Critical patent/KR101655719B1/en
Publication of KR20160009088A publication Critical patent/KR20160009088A/en
Application granted granted Critical
Publication of KR101655719B1 publication Critical patent/KR101655719B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/02Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge involving reinforcing arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/30Shaping by lay-up, i.e. applying fibres, tape or broadsheet on a mould, former or core; Shaping by spray-up, i.e. spraying of fibres on a mould, former or core
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K15/00Arrangement in connection with fuel supply of combustion engines or other fuel consuming energy converters, e.g. fuel cells; Mounting or construction of fuel tanks
    • B60K15/03Fuel tanks
    • B60K15/03006Gas tanks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/02Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge involving reinforcing arrangements
    • F17C1/08Integral reinforcements, e.g. ribs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0604Liners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/21Shaping processes
    • F17C2209/2109Moulding
    • F17C2209/2118Moulding by injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • F17C2260/011Improving strength

Abstract

본 발명은 고압의 기체상태 연료를 안전하게 저장하는 탱크 및 이 탱크를 제조하는 방법에 관한 것이다.
본 발명은 폴리머 라이너 몸통부 사출/압출성형 시 금속 코일과 일체 성형을 하여 라이너 원주 방향 및 반지름 방향에 대한 강성을 강화시킨 새로운 타입의 연료가스 저장탱크를 구현함으로써, 복합재료와 폴리머 라이너 사이에 공간이 발생되지 않도록 할 수 있고, 투과된 연료가스의 가압에 의한 좌굴현상을 방지할 수 있는 한편, 복합재료와 폴리머 라이너 사이의 계면에 가스확산층 등과 같은 다공층을 조성함으로써, 투과된 가스를 임시로 저장할 수 있음과 더불어 투과된 가스가 다공층 내 기포 사이를 통해 자연스럽게 이동 및 방출시킬 수 있는 등 종전과 같은 순간 방출로 인한 폭발소음 발생을 배제할 수 있는 연료가스 저장탱크 및 제조방법을 제공한다.
The present invention relates to a tank for safely storing high pressure gaseous fuel and a method of manufacturing the tank.
The present invention realizes a new type of fuel gas storage tank in which the rigidity of the liner in the circumferential direction and the radial direction is enhanced by integrally molding the metal liner body with the metal coil during the injection / extrusion molding of the polymer liner body, It is possible to prevent buckling caused by the pressurization of the permeated fuel gas while forming a porous layer such as a gas diffusion layer at the interface between the composite material and the polymer liner to temporarily permeate the permeated gas The present invention also provides a fuel gas storage tank and a method of manufacturing the fuel gas storage tank, which can eliminate the generation of explosion noise due to the instantaneous discharge, such that the permeated gas can naturally move and discharge through the bubbles in the porous layer.

Description

연료가스 저장탱크 및 제조방법{Fuel gas tank and manufacturing method its}Technical Field [0001] The present invention relates to a fuel gas storage tank,

본 발명은 연료가스 저장탱크 및 제조방법에 관한 것으로서, 더욱 상세하게는 고압의 기체상태 연료를 안전하게 저장하는 탱크와 이것을 제조하는 방법에 관한 것이다.
The present invention relates to a fuel gas storage tank and a method of manufacturing the same, and more particularly, to a tank for safely storing high-pressure gaseous fuel and a method of manufacturing the same.

일반적으로 연료전지 차량이나 압축천연가스 차량 등과 같은 대체 연료가스 차량은 연료가스의 저장방식에 따라 저장시스템의 구조가 달라진다. Generally, the structure of a storage system differs depending on the storage method of the fuel gas in an alternative fuel gas vehicle such as a fuel cell vehicle or a compressed natural gas vehicle.

현재에는 저장시스템의 단가, 무게 및 단순함을 고려하여 압축가스 형태의 저장방식이 각광받고 있다. At present, compression gas type storage systems are attracting attention in consideration of the unit price, weight and simplicity of the storage system.

그러나, 기체상태의 연료는 에너지 저장밀도가 낮아 더 많은 운행거리를 확보하려면 저장량을 늘리거나 저장압력을 높여야 한다. However, gaseous fuels have low energy storage densities and require more storage or increased storage pressure to achieve greater travel.

차량의 경우, 가스 저장시스템 탑재 공간이 한정되어 있기 때문에 저장탱크의 크기를 늘리는 것은 한계가 있으므로, 보다 고압의 가스를 안전하게 저장하는 것이 탱크기술의 핵심이다. In the case of vehicles, since the space for installing the gas storage system is limited, there is a limit to increase the size of the storage tank. Therefore, storing the higher-pressure gas safely is the key to the tank technology.

연료가스 저장탱크 중 복합재 탱크의 경우, 압축가스로 인한 내압을 감당하기 위해 비강도 및 비강성이 높은 섬유강화 복합재료로 외피를 보강하며, 내부에는 가스의 기밀성을 유지하는 라이너(Liner)가 삽입된다. In the case of composite fuel tanks in fuel gas storage tanks, reinforcement is made of fiber-reinforced composite materials with high strength and non-rigidity in order to withstand internal pressure due to compressed gas, and a liner do.

그리고, 연료가스 저장탱크는 라이너의 재질에 따라 형태가 나누어지며, 알루미늄과 같은 금속재질의 라이너가 삽입되어 있는 타입, 고밀도 폴리머 라이너가 삽입되어 있는 타입 등으로 구분된다. The fuel gas storage tank is classified into a type in which the liner material is divided, a type in which a metal liner such as aluminum is inserted, and a type in which a high-density polymer liner is inserted.

여기서, 금속재질의 라이너가 삽입된 타입의 경우 안전성을 상대적으로 높일 수 있으나, 고가이고 내피로 특성이 떨어지는 단점이 있다. Here, in the case of a type in which a metallic material liner is inserted, the safety can be relatively increased, but it is expensive and the endothelial property is deteriorated.

도 5에서는 종래의 고밀도 폴리머 라이너가 삽입된 타입의 연료가스 저장탱크를 보여주고 있으며, 도면부호 100은 복합재료를 나타내고 도면부호 110은 폴리머 라이너를 나타낸다. FIG. 5 shows a conventional fuel gas storage tank with a high-density polymer liner inserted therein. Reference numeral 100 denotes a composite material, and reference numeral 110 denotes a polymer liner.

이러한 고밀도 폴리머 라이너가 삽입된 타입의 경우 가격이 상대적으로 저렴하고 내피로특성이 우수하나, 수소의 내투과성능이 떨어지는 등 안전성의 문제가 있다. In the case of the type in which the high-density polymer liner is inserted, the price is relatively inexpensive and the endothelial property is excellent, but there is a problem of safety such as poor permeation resistance of hydrogen.

특히, 도 5에 도시한 바와 같이, 투과된 가스가 폴리머 라이너(110)와 복합재료(100) 사이의 계면에 머물러 있다가 가스 소모로 인한 탱크 압력 저하 시 복합재료 층과 폴리머 라이너 층을 분리시키며, 이렇게 분리된 계면을 타고 탱크 보스로 순간 방출되면서 운전자에게 공포감을 조성하거나, 복합재료 내 유로를 거쳐 탱크 외부로 가스가 누출되기도 한다. In particular, as shown in FIG. 5, the permeated gas stays at the interface between the polymer liner 110 and the composite material 100, separating the composite layer and the polymer liner layer when the tank pressure is lowered due to gas consumption , The instant release of the tank to the tank boss at such a separate interface may create a sense of panic to the driver or may cause gas to leak out of the tank through the flow path in the composite.

또한, 계면에 머물러 있던 투과가스가 폴리머 라이너(110)를 안쪽 방향으로 가압하여, 도 6에 도시한 바와 같이, 좌굴(Buckling)시키는 사례가 발생한다. Also, there is a case where the permeation gas staying at the interface presses the polymer liner 110 inward and buckles as shown in Fig.

본 발명의 배경이 되는 기술은 일본공개특허 2005-273724호, 한국공개특허 2013-0032186호, 일본공개특허 2004-347042호에 개시되어 있다.
BACKGROUND ART [0002] Techniques that serve as the background of the present invention are disclosed in Japanese Patent Application Laid-Open Nos. 2005-273724, 2013-0032186, and 2004-347042.

따라서, 본 발명은 이와 같은 점을 감안하여 안출한 것으로서, 폴리머 라이너 몸통부 사출/압출성형 시 금속 코일과 일체 성형을 하여 라이너 원주 방향 및 반지름 방향에 대한 강성을 강화시킨 새로운 타입의 연료가스 저장탱크를 구현함으로써, 복합재료와 폴리머 라이너 사이에 공간이 발생되지 않도록 할 수 있고, 투과된 연료가스의 가압에 의한 좌굴현상을 방지할 수 있는 연료가스 저장탱크 및 제조방법을 제공하는데 그 목적이 있다. SUMMARY OF THE INVENTION Accordingly, the present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a new type of fuel gas storage tank which is strengthened in the liner circumferential direction and the radial direction by integrally molding the metal liner body with the metal coil during injection / And it is an object of the present invention to provide a fuel gas storage tank and a method of manufacturing the same that can prevent a space from being generated between a composite material and a polymer liner and prevent a buckling phenomenon by pressurized permeated fuel gas.

또한, 본 발명의 다른 목적은 복합재료와 폴리머 라이너 사이의 계면에 가스확산층 등과 같은 다공층을 조성함으로써, 투과된 가스를 임시로 저장할 수 있음과 더불어 투과된 가스가 다공층 내 기포 사이를 통해 자연스럽게 이동 및 방출시킬 수 있는 등 종전과 같은 순간 방출로 인한 폭발소음 발생을 배제할 수 있는 연료가스 저장탱크 및 제조방법을 제공하는데 있다.
Another object of the present invention is to provide a porous layer such as a gas diffusion layer at the interface between the composite material and the polymer liner to temporarily store the permeated gas and to allow the permeated gas to flow naturally between the bubbles in the porous layer And a method of manufacturing the fuel gas storage tank and a method of manufacturing the fuel gas storage tank that can exclude the occurrence of explosion noise due to the instantaneous discharge as in the past.

상기 목적을 달성하기 위하여 본 발명에서 제공하는 연료가스 저장탱크는 다음과 같은 특징이 있다. In order to achieve the above object, the fuel gas storage tank provided in the present invention has the following features.

상기 연료가스 저장탱크는 탱크 외피를 이루는 복합재와, 상기 복합재의 내부에 삽입되는 라이너를 포함하며, 상기 라이너의 내부에는 금속 코일이 일체 성형되어 원주 방향 및 반지름 방향에 대한 강성을 높일 수 있는 구조로 이루어진다. The fuel gas storage tank includes a composite material forming a tank shell and a liner inserted into the composite material. A metallic coil is integrally formed in the liner to increase the rigidity in the circumferential direction and the radial direction .

따라서, 상기 연료가스 저장탱크는 내장형의 금속 코일 일체형 구조를 통해 라이너 원주 방향 및 반지름 방향에 대한 강성을 높일 수 있는 특징이 있다. Therefore, the fuel gas storage tank is characterized in that the rigidity with respect to the circumferential direction and the radial direction of the liner can be enhanced through the built-in metal coil integral structure.

여기서, 상기 라이너에 일체 성형되는 금속 코일은 라이너 사출성형 또는 사출성형 시 인서트되어 함께 일체형으로 성형될 수 있도록 된 것이며, 이때의 라이너에 일체 성형되는 금속 코일은 라이너 몸통부에 형성될 수 있다. The metal coils integrally formed with the liner may be inserted into the liner injection molding or injection molding to be integrally formed together. A metal coil integrally molded with the liner may be formed on the liner body.

그리고, 상기 연료가스 저장탱크는 복합재와 라이너 사이의 계면에 형성되어 가스의 자연스러운 확산 및 이동이 이루어지면서 외부로 방출될 수 있도록 해주는 가스확산층을 더 포함할 수 있다. The fuel gas storage tank may further include a gas diffusion layer formed at an interface between the composite material and the liner so that natural diffusion and movement of the gas can be performed and released to the outside.

한편, 상기 목적을 달성하기 위하여 본 발명에서 제공하는 연료가스 저장탱크의 제조방법은 다음과 같은 특징이 있다. In order to achieve the above object, a method of manufacturing a fuel gas storage tank according to the present invention has the following features.

상기 연료가스 저장탱크의 제조방법은 사출 또는 압출 몰드를 이용하여 금속 코일이 내장되어 있는 금속 코일 일체형의 라이너를 성형하는 단계와, 필라멘트 와인딩 장비를 이용하여 금속 코일 일체형의 라이너 표면에 복합재를 성형하는 단계를 포함할 수 있다. The method of manufacturing the fuel gas storage tank includes the steps of: forming a liner having a metal coil integral type in which a metal coil is embedded using an injection or extrusion mold; molding the composite material on the liner surface of a metal coil integral type using filament winding equipment Step < / RTI >

여기서, 상기 금속 코일 일체형의 라이너 표면에 복합재를 성형하는 단계 전(前) 단계에서는 발포 몰드를 이용하여 금속 코일 일체형의 라이너 표면에 다공층 재료를 발포 성형하여 가스확산층을 형성하는 과정을 실시할 수 있다. Here, in the step before the step of forming the composite material on the surface of the liner with the metal coil integrated body, a process of foaming and forming the porous layer material on the surface of the liner integrated with the metal coil using the foam mold to form the gas diffusion layer have.

그리고, 상기 금속 코일 일체형의 라이너를 성형하는 단계는 사출 또는 압출 몰드를 이용하여 금속 코일이 내장되어 있는 금속 코일 일체형의 라이너 몸통부를 성형하는 과정 및 금속 보스가 내장되어 있는 금속 보스 일체형의 라이너 돔부를 성형하는 과정과, 상기 라이너 몸통부와 라이너 돔부를 융착하여 접합하는 과정으로 이루어질 수 있다. The step of forming the liner with the metal coil integrated type may include a process of forming a liner body part of a metal coil integrated type in which a metal coil is embedded using an injection or extrusion mold and a liner dome part having a metal boss- And laminating the liner body portion and the liner dome portion to each other.

또한, 상기 금속 코일 일체형의 라이너 표면에 복합재를 성형하는 단계 후(後) 단계에서는 자긴처리(Autofrettage)를 통해 복합재와 라이너 간의 잔류응력을 형성시키는 과정을 실시하는 것이 바람직하고, 또 상기 금속 코일 일체형의 라이너 표면에 복합재를 성형하는 단계에서는 복합재 성형 시 라이너 양쪽 끝의 보스부를 완전히 덮지 않도록 하는 과정을 실시하는 것이 바람직하다.
In addition, it is preferable to carry out a process of forming a residual stress between the composite material and the liner through autofrettage in the step of forming the composite material on the surface of the liner with the metal coil integrated body, It is preferable that the step of forming the composite material on the surface of the liner of the liner does not completely cover the bosses on both ends of the liner when the composite material is molded.

본 발명에서 제공하는 연료가스 저장탱크 및 제조방법은 다음과 같은 효과가 있다. The fuel gas storage tank and the manufacturing method provided by the present invention have the following effects.

1) 라이너의 강성 증대1) Increasing the rigidity of the liner

- 금속재 코일과 복합재층의 상호 잔류응력에 의해 기존의 문제점인 라이너-복합재 사이의 박리 공간을 제거함으로써, 라이너를 투과하여 박리공간 내 머물게 되는 연료가스의 트랩을 방지할 수 있다. - It is possible to prevent trapping of the fuel gas that permeates the liner and remains in the peeling space by removing the peeling space between the liner and composites which is a conventional problem by the mutual residual stress between the metal coil and the composite layer.

- 라이너의 원주방향 강성보강을 통해 라이너-복합재 박리공간 내 트랩된 가스에 의한 라이너 좌굴을 방지할 수 있다. - circumferential rigid reinforcement of the liner can prevent liner buckling by the trapped gas in the liner-composite release area.

2) 투과된 연료가스의 배출2) Emission of permeated fuel gas

- 라이너-복합재 계면에 다공층 재료로 구성된 가스확산층을 조성함으로써, 라이너 벽을 투과한 연료가스는 가스확산층 내 기공과 기공 사이의 유로를 통해 탱크 양쪽 끝 보스로 자연스럽게 이동하여, 대기 중으로 방출될 수 있다. - By forming a gas diffusion layer composed of a porous layer material at the liner-composite interface, the fuel gas permeating through the liner wall can naturally move to both end bosses of the tank through the flow path between the pores and the pores in the gas diffusion layer, have.

- 라이너-복합재 박리공간에 머물던 투과가스가 보스로 순간 방출되어 폭발음이 발생되거나, 복합재 유로를 통해 방출되면서 탱크 표면으로 누기되는 현상을 방지할 수 있다.
- The permeate gas remaining in the liner-composite separating space is instantly discharged to the boss to generate an explosive sound, or it can be prevented from leaking to the tank surface while being discharged through the composite flow path.

도 1은 본 발명의 일 실시예에 따른 연료가스 저장탱크를 나타내는 단면도
도 2는 본 발명의 일 실시예에 따른 연료가스 저장탱크에서 복합재층과 폴리머 라이너 간의 응력곡선 및 밀착구조를 나타내는 개략도
도 3은 본 발명의 일 실시예에 따른 연료가스 저장탱크에서 투과가스 배출상태를 나타내는 단면도
도 4는 본 발명의 일 실시예에 따른 연료가스 저장탱크의 제조방법을 나타내는 개략도
도 5는 종래의 연료가스 저장탱크를 나타내는 단면도
도 6은 종래의 연료가스 저장탱크의 좌굴현상을 나타내는 사진
1 is a cross-sectional view showing a fuel gas storage tank according to an embodiment of the present invention;
2 is a schematic view showing a stress curve and a close contact structure between a composite material layer and a polymer liner in a fuel gas storage tank according to an embodiment of the present invention;
3 is a cross-sectional view showing a state of permeated gas discharge in a fuel gas storage tank according to an embodiment of the present invention
4 is a schematic view showing a method of manufacturing a fuel gas storage tank according to an embodiment of the present invention.
5 is a cross-sectional view showing a conventional fuel gas storage tank
6 is a photograph showing a buckling phenomenon of a conventional fuel gas storage tank

이하, 첨부한 도면을 참조하여 본 발명을 상세히 설명하면 다음과 같다. Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

도 1은 본 발명의 일 실시예에 따른 연료가스 저장탱크를 나타내는 단면도이다. 1 is a cross-sectional view showing a fuel gas storage tank according to an embodiment of the present invention.

도 1에 도시한 바와 같이, 상기 연료가스 저장탱크는 폴리머 라이너의 몸통부에 코일 형태의 금속보강부재를 일체 내장하여 강성을 강화함으로써, 튜브 형태와 같은 이종(異種) 재료 계면 사이의 박리를 막을 수 있는 구조로 이루어진다. As shown in FIG. 1, the fuel gas storage tank is constructed by integrally incorporating a coil-shaped metal reinforcement member in the body of the polymer liner to strengthen the rigidity, thereby preventing peeling between different kinds of material interfaces such as a tube shape .

이를 위하여, 상기 연료가스 저장탱크는 탱크의 외피를 이루는 복합재(10)와 상기 복합재(10)의 내부에 삽입되는 폴리머 재질의 라이너(11)를 포함한다. For this purpose, the fuel gas storage tank includes a composite material 10 constituting the outer surface of the tank and a liner 11 made of a polymer material inserted into the composite material 10.

여기서, 상기 복합재(10)와 라이너(11)는 외측과 내측에서 서로 두 겹으로 접합되어 하나의 탱크 형상을 이루면서 고압의 연료가스를 안전하게 저장할 수 있는 공간을 제공하게 된다. The composite material 10 and the liner 11 are joined to each other in two layers on the outer side and the inner side to form a single tank shape, thereby providing a space for safely storing high-pressure fuel gas.

특히, 상기 라이너(11)의 내부에는 금속 코일(12), 예를 들면 금속 재질의 코일 스프링 형태로 이루어진 금속 코일(12)이 내장되어 라이너(11)의 원주 방향 및 반지름 방향에 대한 강성을 높여줄 수 있게 된다. Particularly, the metal coil 12, for example, a metal coil 12 made of a metal coil spring is embedded in the liner 11 to increase the rigidity of the liner 11 in the circumferential direction and the radial direction You can give.

이때의 금속 코일(12)은 알루미늄, 스테인레스 스틸 등 연신율과 항복강도를 고려한 다양한 재질을 사용할 수 있게 된다. At this time, the metal coil 12 can be made of various materials such as aluminum and stainless steel considering elongation and yield strength.

이러한 금속 코일(12)은 라이너(11)의 사출성형 또는 사출성형 시 함께 인서트되어 일체형으로 성형될 수 있게 되며, 이렇게 일체 인서트되어 성형되는 금속 코일(12)은 라이너(11)의 라이너 몸통부(11a)에 동심원상으로 배치되면서 외부 노출없이 몸통부 내에 완전히 파뭍힌 형태로 일체 내장될 수 있게 된다. The metal coil 12 is integrally formed with the metal coil 12 by injection molding or injection molding of the liner 11. The metal coil 12 is integrally formed and inserted into the liner body 11 of the liner 11 11a in a concentric circle, and can be integrally embedded in the body without being exposed to the outside.

그리고, 상기 라이너(11)의 경우 라이너 몸통부(11a)와 라이너 돔부(11b)의 일체형 구조로 이루어지게 되며, 이때의 라이너 몸통부(11a)와 라이너 돔부(11b)는 각각 사출 또는 압출 성형된 후에 서로 융착 접합되는 형태로 일체의 라이너를 이룰 수 있게 된다. In the case of the liner 11, the liner body 11a and the liner dome 11b are integrally formed. In this case, the liner body 11a and the liner dome 11b are formed by injection molding or extrusion molding It is possible to form an integral liner in the form of fusion bonding with each other.

이와 같이, 상기 라이너(11)에 금속 코일(12)이 일체 내장되므로서, 라이너(11)의 원주 방향 및 반지름 방향의 강성이 향상될 수 있게 된다. Since the metal coil 12 is integrated in the liner 11, the rigidity in the circumferential direction and the radial direction of the liner 11 can be improved.

한편, 상기 금속 코일(12)을 대신하여 튜브 형태의 박막 금속을 삽입하여 샌드위치 형태로 제작이 가능하나, 이럴 경우 재료 간의 투과도 차이로 인해 폴리머와 금속층 사이의 박리가 발생할 수 있게 된다. In place of the metal coil 12, a thin metal film in the form of a tube may be inserted to form a sandwich. In this case, peeling between the polymer and the metal layer may occur due to the difference in permeability between the materials.

하지만, 본 발명에서 적용하는 금속 코일(12)의 경우, 강성은 보완하되 투과된 수소는 코일 사이, 즉 폴리머 모재(母材) 사이로 자연스럽게 빠져나가도록 유도할 수 있게 된다. However, in the case of the metal coil 12 according to the present invention, it is possible to induce the permeated hydrogen to smoothly escape between the coils, that is, between the polymer base material (base material) while the rigidity is complemented.

따라서, 튜브 형태와 같은 이종 재료 계면 사이의 대규모 박리는 발생하지 않게 된다. Thus, large-scale peeling between the interfaces of dissimilar materials such as the tube shape does not occur.

또한, 상기 복합재(10)와 라이너(11) 사이의 계면에는 가스확산층(13)이 형성되며, 이때의 가스확산층(13)은 라이너(11)를 투과한 가스가 자연스러운 확산 및 이동이 이루어지도록 하면서 외부로 방출될 수 있도록 해주는 역할을 하게 된다.A gas diffusion layer 13 is formed at an interface between the composite material 10 and the liner 11. The gas diffusion layer 13 is formed in such a manner that the gas permeated through the liner 11 is diffused and moved So that it can be discharged to the outside.

예를 들면, 상기 복합재(10)와 라이너(11)의 계면에는 폴리우레탄폼 등의 다공층 재질로 이루어진 가스확산층(13)이 형성되고, 이때의 가스확산층(13)으로 들어온 가스, 즉 라이너(11)를 투과하여 나온 가스는 가스확산층(12)의 다공층 내에 임시로 저장됨과 더불어 다공층 내 기공을 통해 자연스럽게 확산, 이동되면서 외부로 방출될 수 있게 된다. For example, a gas diffusion layer 13 made of a porous layer material such as polyurethane foam is formed at the interface between the composite material 10 and the liner 11, and a gas introduced into the gas diffusion layer 13 at this time, that is, 11 is temporarily stored in the porous layer of the gas diffusion layer 12, and is diffused and moved naturally through the pores in the porous layer, so that the gas can be discharged to the outside.

도 2는 본 발명의 일 실시예에 따른 연료가스 저장탱크에서 복합재층과 폴리머 라이너 간의 응력곡선 및 밀착구조를 나타내는 개략도이다. 2 is a schematic view showing a stress curve and a close contact structure between a composite material layer and a polymer liner in a fuel gas storage tank according to an embodiment of the present invention.

도 2에 도시한 바와 같이, 폴리머 라이너(11)의 몸통부(11a)에 사출/압출 시 금속 코일(12)을 일체 성형하여 라이너 원주 방향 및 반지름 방향에 대한 강성을 높이는 한편, 라이너(11)의 전면에 대해 복합재 보강(Filament winding) 후, 즉 라이너(11)와 복합재(10)를 내외층으로 형성한 후, 자긴처리(Autofrettage)를 통해 복합재(10)와 라이너(11) 간의 잔류응력을 생성시키게 된다. 2, the metal coil 12 is integrally formed on the body 11a of the polymer liner 11 during injection / extrusion to increase the rigidity with respect to the liner circumferential direction and the radial direction, The residual stress between the composite material 10 and the liner 11 is reduced through autofrettage after the filament winding of the front surface of the composite material 10, that is, the liner 11 and the composite material 10 are formed as inner and outer layers. Respectively.

이렇게 하면 복합재(10)는 인장응력이, 라이너(11)는 압축응력이 발생되며, 두 층은 상호 반발하는 응력이 작용하고 있어 계면에 공간이 발생되지 않게 된다. As a result, tensile stress is generated in the composite material 10, compressive stress is generated in the liner 11, and mutual repulsive stress acts on the two layers, so that no space is generated in the interface.

또한, 압축응력 상태의 금속 코일(12)은 충전 시 연신되어도 응력이 (-) 상태에서 증대됨으로 최대 응력은 항복강도 이내로 제어할 수 있어 내구성능이 증대된다. In addition, even when the metal coil 12 in the compressive stress state is elongated during charging, the stress is increased in the negative (-) state, so that the maximum stress can be controlled within the yield strength, thereby increasing the durability.

이때의 삽입되는 코일의 경우, 연신율과 항복강도를 고려하여 다양한 금속재질을 사용하는 것이 가능하다. In the case of the coil to be inserted at this time, it is possible to use various metal materials in consideration of elongation and yield strength.

도 3은 본 발명의 일 실시예에 따른 연료가스 저장탱크에서 투과가스 배출상태를 나타내는 단면도이다. 3 is a cross-sectional view illustrating a state of permeated gas discharge in a fuel gas storage tank according to an embodiment of the present invention.

도 3에 도시한 바와 같이, 여기서는 연료가스 저장탱크의 층 구조를 보여주며, 내측에서부터 외측으로 폴리머 라이너층, 가스확산층, 복합재층이 배치되는 구조를 보여준다. As shown in FIG. 3, the structure of the fuel gas storage tank is shown here, and the structure in which the polymer liner layer, the gas diffusion layer, and the composite material layer are disposed from the inside to the outside is shown.

연료가스의 내압에 의해 연료가스는 폴리머 라이너층을 투과하여, 가스확산층으로 유입되고, 이렇게 가스확산층 내에 임시로 모인 연료가스는 가스확산층의 다공층 내 기포 사이사이를 통과하여 확산되면서 양쪽의 보스 방향(라이너 돔부에 있는 보스 방향)으로 자연스럽게 이동하여 외부로 방출될 수 있게 된다. The fuel gas permeates through the polymer liner layer and flows into the gas diffusion layer by the internal pressure of the fuel gas. The fuel gas thus temporarily collected in the gas diffusion layer passes through the space between the bubbles in the porous layer of the gas diffusion layer and diffuses, (Direction of the boss in the liner dome portion) and can be discharged to the outside.

이렇게 투과된 연료가스가 연속적으로 방출되므로서 순간 방출에 의한 폭발소음이 발생하지 않게 되고, 이와 더불어 복합재층을 타고 탱크 외부로 방출되지 않아 가스 누기라는 오해를 피할 수 있게 된다. As the permeated fuel gas is continuously discharged, the explosion noise due to the instantaneous discharge is not generated, and the composite material layer is not discharged to the outside of the tank, thereby avoiding the misunderstanding of gas leakage.

도 4는 본 발명의 일 실시예에 따른 연료가스 저장탱크의 제조방법을 나타내는 개략도이다. 4 is a schematic view showing a method of manufacturing a fuel gas storage tank according to an embodiment of the present invention.

도 4에 도시한 바와 같이, 여기서는 연료가스 저장탱크를 이루는 금속 코일 일체형 라이너와 복합재를 성형하는 방법을 보여준다. As shown in Fig. 4, here, a method of molding a metal coil integral liner and a composite material constituting a fuel gas storage tank is shown.

여기서, 금속 코일 일체형의 라이너(11) 성형은 사출 방식 또는 압출 방식을, 가스확산층(13)의 성형은 발포 방식을, 복합재(10)의 성형은 필라멘트 와인딩 방식을 적용할 수 있으며, 이때의 사출 방식 또는 압출 방식, 발포 방식, 필라멘트 와인딩 방식에 사용되는 사출/압출 몰드(14), 사출/압출기(15), 발포 몰드(17), 필라멘트 와인딩 장비(16) 등은 각 방식에 사용되는 통상적인 구조이므로 그 구체적인 설명은 생략하기로 한다. The gas diffusion layer 13 may be formed by a foaming method and the composite material 10 may be formed by a filament winding method. In this case, the liner 11 may be formed by injection molding or extrusion, Extruder 15, foaming mold 17 and filament winding equipment 16 used in the extrusion, extrusion, extrusion, extrusion, extrusion, extrusion, extrusion, extrusion, The detailed description thereof will be omitted.

먼저, 사출 또는 압출 몰드(14)와 사출/압출기(15)를 이용하여 금속 코일(12)이 내장되어 있는 금속 코일 일체형의 라이너(11)를 성형하는 단계를 수행한다. First, a step of molding a metal coil integral liner 11 having a metal coil 12 therein is carried out by using an injection or extrusion mold 14 and an injection / extruder 15.

즉, 라이너(11)의 성형 시 몰드 내에 금속 코일(12)을 인서트한 상태에서 함께 성형하여 금속 코일(12)이 내장되어 있는 일체형의 라이너(11)를 성형한다. That is, when the liner 11 is molded, the metal coil 12 is inserted into the mold together with the metal coil 12 to form an integral liner 11 having the metal coil 12 embedded therein.

이때의 금속 코일 일체형의 라이너를 성형하는 단계는 사출 또는 압출 몰드(14)를 이용하여 금속 코일(12)이 내장되어 있는 금속 코일 일체형의 라이너 몸통부(11a)를 성형하고, 이와 더불어 사출 또는 압출 몰드(14)를 이용하여 금속 보스(미도시)가 내장되어 있는 금속 보스 일체형의 라이너 돔부(11b)를 성형한 다음, 이러게 성형한 라이너 몸통부(11a)의 양단부에 라이너 돔부(11b)를 각각 융착하여 접합하는 과정을 포함한다. At this time, the step of forming the liner with the metal coil integral type is performed by molding the liner body portion 11a of the metal coil integrated type in which the metal coil 12 is embedded using the injection or extrusion mold 14, A metal boss-integrated liner dome portion 11b in which a metal boss (not shown) is embedded is molded using the mold 14 and then a liner dome portion 11b is formed at both ends of the thus formed liner body portion 11a And fusing and joining them.

다음, 후술하는 금속 코일 일체형의 라이너 표면에 복합재(10)를 성형하는 단계를 수행하기 전(前) 단계로서 발포 몰드(17)를 이용하여 금속 코일 일체형의 라이너 표면에 다공층 재료를 발포 성형하여 가스확산층(13)을 형성하는 과정을 수행한다. Next, the porous layer material is foam-molded on the surface of the liner of the metal coil integrated type using the foam mold 17 as a (pre) step before the step of molding the composite material 10 on the liner surface of the metallic coil integrated body to be described later Thereby forming a gas diffusion layer 13.

즉, 라이너 성형 후 외면 전체에 다공층 재료를 도포하여 가스를 다공층 내 임시로 저장할 수 있고, 다공층 내 기공을 통해 자연스럽게 확산, 이동되도록 하기 위하여, 가스확산층(13)의 두께만큼의 공간을 가지는 발포 몰드에 라이너를 넣고 폴리우레탄폼 등의 재료를 발포한다. That is, after forming the liner, the porous layer material may be applied to the entire outer surface to temporarily store the gas in the porous layer. In order to naturally diffuse and move through the pores in the porous layer, a space corresponding to the thickness of the gas diffusion layer 13 A liner is placed in a foam mold and the material such as a polyurethane foam is foamed.

이후 복합재료 성형 시 필라멘트 와인딩 장력에 의해 가스확산층이 압축되어 가스 유로가 막힐 수 있으므로, 와인딩 장력을 고려하여 다공층 재료에 적절한 보강재, 예를 들면 유리섬유 등을 혼입하여 강성을 보강할 수 있다. Since the gas diffusion layer is compressed by the filament winding tension during the forming of the composite material, the gas flow path can be clogged. Therefore, rigidity can be reinforced by incorporating an appropriate reinforcing material such as glass fiber into the porous layer material in consideration of the winding tension.

그리고, 이 단계에서는 복합재 성형 시 라이너 양쪽 끝의 보스부를 완전히 덮지 않도록 하는 과정을 실시할 수 있다. In this step, it is possible to prevent the bosses on both ends of the liner from being completely covered when the composite material is molded.

즉, 가스확산층은 탱크 양쪽 끝의 보스부까지 완벽히 발포되어야 하며, 가스확산층 외면에 복합재 성형 시 수지가 양쪽 보스부를 완전히 덮지 않도록 해야 이동된 투과 가스가 방출될 수 있다. That is, the gas diffusion layer must be completely foamed to the boss portions at both ends of the tank, and the transferred gas may be released to the outer surface of the gas diffusion layer so that the resin does not completely cover both boss portions when the composite material is molded.

여기서, 가스확산층 적용으로 인한 탱크 보온효과로 충전 시 상승되는 탱크온도는 프리쿨링(Pre-cooling) 충전으로 감소시킬 수 있다. Here, the temperature of the tank, which is raised at the time of filling by the effect of the tank warming due to the application of the gas diffusion layer, can be reduced by pre-cooling charging.

다음, 필라멘트 와인딩 장비(16)를 이용하여 금속 코일 일체형의 라이너 표면에 복합재(10)를 성형하는 단계를 수행한다. Next, the step of molding the composite material 10 on the liner surface of the metal coil integral type is performed using the filament winding equipment 16.

즉, 필라멘트 와인딩 장비(16)를 사용하여 가스확산층(13)의 바깥둘레면에 수지 함침 보강섬유를 와인딩함으로써 복합재를 성형할 수 있다. That is, the composite material can be formed by winding the resin impregnated reinforcing fiber on the outer circumferential surface of the gas diffusion layer 13 using the filament winding equipment 16.

이렇게 금속 코일 일체형의 라이너 표면에 복합재를 성형하는 단계 후(後)에는 자긴처리(Autofrettage)를 실시하여 복합재와 라이너 간의 잔류응력을 형성시키는 과정을 실시한다. After the step of forming the composite material on the surface of the liner having the metal coil integrated body, a process of autofrettage is performed to form a residual stress between the composite material and the liner.

따라서, 위와 같은 제조방법에 의해 제조되는 연료가스 저장탱크는 일체형 금속 코일을 통해 라이너 강성을 보완할 수 있고, 라이너 외면 확산층을 통해 자연스러운 가스 배출을 이룰 수 있다. Accordingly, the fuel gas storage tank manufactured by the above-described manufacturing method can compensate the liner rigidity through the integral metal coil, and natural gas discharge can be achieved through the liner outer surface diffusion layer.

예를 들면, 기존에는 금속재 및 폴리머 등 한가지 재질로만 라이너를 제작하였으나, 본 발명은 금속재와 폴리머의 장점을 혼합한 하이브리드(Hybrid) 라이너를 제공한다. For example, in the past, a liner was made of only one material such as a metal material and a polymer. However, the present invention provides a hybrid liner combining the advantages of a metal material and a polymer.

즉, 모재로 폴리머를 사용하고, 보강재로 금속 코일을 사용함으로써, 부족한 금속 라이너의 내피로 특성은 폴리머 모재로 보완할 수 있고, 상대적으로 부족한 폴리머 라이너의 강성은 금속재 코일로 보완할 수 있다. That is, by using a polymer as a base material and using a metal coil as a reinforcing material, the endurance characteristics of the deficient metal liner can be complemented by the polymer base material, and the rigidity of the relatively inadequate polymer liner can be supplemented by the metal coil.

또, 기존 폴리머 라이너가 삽입된 라이너의 경우, 라이너와 복합재 사이의 박리를 방지하고자 양 층을 접착하는 시도를 하였으나, 피로로 인한 접착층 분리 및 분리된 계면으로 연료가스가 침투하여 계면분리 전파가 더욱 급속하게 확산되는 문제점이 있었다. In addition, in the case of a liner having a conventional polymer liner inserted therein, attempts were made to bond both layers to prevent peeling between the liner and the composite material. However, the adhesive layer separation due to fatigue and the fuel gas penetrate into the separated interface, There was a problem that it spread rapidly.

이러한 기존 기술의 문제점을 방지하기 위해 금속재 코일을 라이너와 일체 성형하고, 자긴처리 기법을 도입하여 계면박리를 방지할 수 있다. In order to prevent the problems of the conventional technology, it is possible to prevent the interface peeling by integrally forming the metal coil with the liner and introducing a self-treatment technique.

이때의 삽입되는 금속 보강재의 경우, 금속재 튜브형상과는 다른 코일형상으로서, 모재가 되는 폴리머층을 통해 연료가스가 투과됨으로 가스로 인한 이종재료 간의 대규모 박리를 피할 수 있다. In the case of the inserted metal reinforcement, the fuel gas is permeated through the polymer layer serving as the base material in a coil shape different from the shape of the metal tube, so that large-scale separation between the different materials due to the gas can be avoided.

또한, 기존 폴리머 라이너를 가지는 탱크의 경우, 폴리머 라이너와 복합재 사이의 계면이 이종재료 간의 접합성 문제로 평소 박리가 되어 있고, 폴리머 라이너 두께방향으로 투과된 연료가스는 이러한 박리공간에 머물러 있다가 탱크 보스로 순간 빠져나가면서 폭발소음을 내거나, 복합재 유로 사이로 빠져 나와 가스누출로 오인을 받는다. In the case of a tank having an existing polymer liner, the interface between the polymer liner and the composite material is usually peeled off due to the problem of bonding between the different materials. The fuel gas permeated in the thickness direction of the polymer liner stays in this separation space, , Making explosive noises or escaping through the composite flowpaths and being mistaken for gas leaks.

이를 방지하기 위해 성형 시 라이너 표면에 접착제를 도포하여 복합재와의 접합을 시도하여 연료가스의 트랩을 방지하거나, 라이너와 복합재 층 사이에 국부적으로 이형물질을 삽입하여 유로를 생성시켜서 투과된 연료가스가 생성된 유로를 타고 양쪽 보스쪽으로 배출되도록 유도하는 방법도 있지만, 접착제 처리의 경우에는 충방전으로 인한 피로로 접착층이 쉽게 파괴되는 단점이 있고, 유로를 형성하는 경우에는 유로의 수가 한정적이고, 유로의 파괴 시 박리의 시발점을 제공할 수 있다는 단점이 있다. In order to prevent this, an adhesive is applied to the surface of the liner during molding to prevent trapping of the fuel gas by attempting to bond with the composite material, or locally releasing material is inserted between the liner and the composite material layer, There is a method in which the generated flow path is led to be discharged toward both bosses. However, in the case of the adhesive treatment, there is a disadvantage in that the adhesive layer is easily broken by fatigue due to charge and discharge. There is a disadvantage that it is possible to provide a starting point of peeling at the time of destruction.

본 발명에서는 라이너와 복합재 사이에 가스확산층을 형성하여 투과된 가스를 확산층 내 기공과 기공을 통해 빠르게 확산되도록 하며, 확산된 가스가 탱크 양쪽 끝 보스로 빠져나가도록 할 수 있다. In the present invention, a gas diffusion layer is formed between the liner and the composite material so that the permeated gas is rapidly diffused through the pores and pores in the diffusion layer, and the diffused gas is allowed to escape to both end bosses of the tank.

이때, 투과된 가스는 계면 사이에 머물러 있지 않고 확산층 내 기공 사이를 통해 지속적으로 빠져나가므로 폭발소음이 발생되지 않으며, 미처 복합재 유로로 가스가 빠져나가기 전에 확산층을 통해 가스가 배출됨으로써 탱크 표면으로 가스누출이 되지 않아 탱크 누기로 오인받지 않도록 할 수 있다. In this case, since the permeated gas does not remain between the interfaces and continuously escapes through the pores in the diffusion layer, explosion noise is not generated and the gas is discharged through the diffusion layer before the gas is discharged into the composite composite flow path, It can be prevented from being mistaken as leakage of the tank due to leakage.

이와 같이, 본 발명에서는 라이너 내 금속 코일 및 복합재와의 계면에 가스확산층을 조성함으로써, 라이너 강성 보강을 통한 박리층 제거 및 좌굴을 방지할 수 있고, 가스확산층에 의한 투과 연료가스를 이동시켜 보스측을 통해 외부로 자연스럽게 배출시킬 수 있다.
As described above, according to the present invention, by forming the gas diffusion layer at the interface between the metallic coil and the composite material in the liner, the removal of the release layer and the buckling can be prevented by reinforcing the liner rigidity, So that it can be discharged naturally to the outside.

10 : 복합재
11 : 라이너
11a : 라이너 몸통부
11b : 라이너 돔부
12 : 금속 코일
13 : 가스확산층
14 : 사출/압출 몰드
15 : 사출/압출기
16 : 필라멘트 와인딩 장비
17 : 발포 몰드
10: Composite
11: Liner
11a: liner body part
11b: liner dome portion
12: Metal coil
13: gas diffusion layer
14: injection / extrusion mold
15: Injection / Extruder
16: Filament winding equipment
17: foam mold

Claims (5)

사출 또는 압출 몰드를 이용하여 금속 코일이 내장되어 있는 금속 코일 일체형의 라이너를 성형하는 단계와;
필라멘트 와인딩 장비를 이용하여 금속 코일 일체형의 라이너 표면에 복합재를 성형하는 단계를 포함하는 연료가스 저장탱크의 제조방법에 있어서,
상기 금속 코일 일체형의 라이너 표면에 복합재를 성형하는 단계 전(前) 단계에서 발포 몰드를 이용하여 금속 코일 일체형의 라이너 표면에 다공층 재료를 발포 성형하여 가스확산층을 형성하는 과정을 실시하도록 구성되며,
상기 발포 몰드에는 상기 복합재의 와인딩 장력에 저항하여 다공층 구조를 유지하기 위한 보강재가 혼입된 다공층 재료가 주입되는 것을 특징으로 하는 연료가스 저장탱크의 제조방법.
Molding a metal coil integral liner in which a metal coil is embedded using an injection or extrusion mold;
A method of manufacturing a fuel gas storage tank, comprising: forming a composite material on a liner surface of a metal coil integral type using filament winding equipment,
A step of forming a gas diffusion layer by foaming and forming a porous layer material on the surface of a liner of a metal coil integral type using a foam mold in a step before a step of molding a composite material on the surface of the liner of the metal coil integrated type,
Wherein a porous layer material in which a reinforcing material for retaining the porous layer structure is injected is inserted into the foamed mold against the winding tension of the composite material.
청구항 1에 있어서,
상기 금속 코일 일체형의 라이너를 성형하는 단계는 사출 또는 압출 몰드를 이용하여 금속 코일이 내장되어 있는 금속 코일 일체형의 라이너 몸통부를 성형하는 과정 및 금속 보스가 내장되어 있는 금속 보스 일체형의 라이너 돔부를 성형하는 과정과, 상기 라이너 몸통부와 라이너 돔부를 융착하여 접합하는 과정을 포함하는 것을 특징으로 하는 연료가스 저장탱크의 제조방법.
The method according to claim 1,
The step of forming the liner with the metal coil integral type may include a process of forming a liner body part of a metal coil integral type in which a metal coil is embedded by using an injection or extrusion mold and a process of molding a liner dome part of a metal boss- And fusing and bonding the liner body and the liner dome.
청구항 1에 있어서,
상기 금속 코일 일체형의 라이너 표면에 복합재를 성형하는 단계 후(後) 단계에서는 자긴처리(Autofrettage)를 통해 복합재와 라이너 간의 잔류응력을 형성시키는 과정을 실시하는 것을 특징으로 하는 연료가스 저장탱크의 제조방법.
The method according to claim 1,
And a step of forming a residual stress between the composite material and the liner through autofrettage in the step of forming the composite material on the surface of the liner of the metal-coil integrated type, .
청구항 1에 있어서,
상기 금속 코일 일체형의 라이너 표면에 복합재를 성형하는 단계에서는 복합재 성형 시 라이너 양쪽 끝의 보스부를 완전히 덮지 않도록 하는 과정을 실시하는 것을 특징으로 하는 연료가스 저장탱크의 제조방법.
The method according to claim 1,
Wherein the step of forming the composite material on the surface of the liner of the metal-coil integrated type is performed so that the bosses on both ends of the liner are not completely covered when the composite material is molded.
청구항 1에 있어서,
상기 보강재는 유리섬유인 것을 특징으로 하는 연료가스 저장탱크의 제조방법.

The method according to claim 1,
Wherein the reinforcing material is glass fiber.

KR1020160001822A 2016-01-07 2016-01-07 Fuel gas tank and manufacturing method its KR101655719B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020160001822A KR101655719B1 (en) 2016-01-07 2016-01-07 Fuel gas tank and manufacturing method its

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160001822A KR101655719B1 (en) 2016-01-07 2016-01-07 Fuel gas tank and manufacturing method its

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020140035019A Division KR20150121730A (en) 2014-03-26 2014-03-26 Fuel gas tank and manufacturing method its

Publications (2)

Publication Number Publication Date
KR20160009088A KR20160009088A (en) 2016-01-25
KR101655719B1 true KR101655719B1 (en) 2016-09-07

Family

ID=55306924

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160001822A KR101655719B1 (en) 2016-01-07 2016-01-07 Fuel gas tank and manufacturing method its

Country Status (1)

Country Link
KR (1) KR101655719B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101856323B1 (en) 2016-05-18 2018-05-10 현대자동차주식회사 Pressure vessel having degassing structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005003127A (en) * 2003-06-12 2005-01-06 Toyoda Gosei Co Ltd High pressure gas container
JP2006275223A (en) * 2005-03-30 2006-10-12 Jfe Container Co Ltd Pressure vessel, its manufacturing method, damage detecting method and damage detecting device of pressure vessel
JP2009174700A (en) * 2007-06-14 2009-08-06 Toyota Motor Corp Gas tank

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010062097A1 (en) * 2010-11-29 2012-05-31 Siemens Aktiengesellschaft Flameproof fluid encapsulation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005003127A (en) * 2003-06-12 2005-01-06 Toyoda Gosei Co Ltd High pressure gas container
JP2006275223A (en) * 2005-03-30 2006-10-12 Jfe Container Co Ltd Pressure vessel, its manufacturing method, damage detecting method and damage detecting device of pressure vessel
JP2009174700A (en) * 2007-06-14 2009-08-06 Toyota Motor Corp Gas tank

Also Published As

Publication number Publication date
KR20160009088A (en) 2016-01-25

Similar Documents

Publication Publication Date Title
KR20150121730A (en) Fuel gas tank and manufacturing method its
US11898701B2 (en) Composite pressure vessel assembly and method of manufacturing
US10544901B2 (en) Pressure vessel vented boss with sintered metal plug
KR102298962B1 (en) High-pressure tank for enabling radation of heat and discharging permeated gas from thereof and the method for the same
CA2849096C (en) Operating fluid tank for a motor vehicle
US10767814B2 (en) Pressure vessel equipped with permeated gas discharging structure
JP2002188794A (en) High pressure hydrogen tank and manufacturing method thereof
EP0638759A1 (en) Dual chamber composite pressure vessel and method of fabrication thereof
JP2014081014A (en) Pressure gas container and vehicle including the same
JP2010071444A (en) High pressure tank, manufacturing method for the same and manufacturing equipment
US11473725B2 (en) High-pressure gas tank and method for producing high-pressure gas tank
US20180238491A1 (en) Hydrogen tank body and method of producing the same, and hydrogen tank and method of producing the same
KR102322371B1 (en) Pressure vessel including reinforced cylinder part
EP3385597B1 (en) A composite vessel assembly and method of manufacture
KR101655719B1 (en) Fuel gas tank and manufacturing method its
JP2005273724A (en) Pressure vessel
CN106239984B (en) Method for insulating the interior of a sandwich structure of a grooved core
JP2010038216A (en) Pressure vessel
JP2022157430A (en) High-pressure tank and manufacturing method thereof
US11873947B2 (en) High pressure composite pressure vessel method of manufacture and product
KR20220052322A (en) Pressure vessel and manufacturing method of pressure vessel
JP4941732B2 (en) Pressure vessel
JP2006250172A (en) Gas cylinder and method for manufacturing the same

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190827

Year of fee payment: 4