JP7414938B1 - エレベータ遠隔点検システムおよびエレベータ遠隔点検方法 - Google Patents

エレベータ遠隔点検システムおよびエレベータ遠隔点検方法 Download PDF

Info

Publication number
JP7414938B1
JP7414938B1 JP2022184154A JP2022184154A JP7414938B1 JP 7414938 B1 JP7414938 B1 JP 7414938B1 JP 2022184154 A JP2022184154 A JP 2022184154A JP 2022184154 A JP2022184154 A JP 2022184154A JP 7414938 B1 JP7414938 B1 JP 7414938B1
Authority
JP
Japan
Prior art keywords
floor
car
signal
state
hall call
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022184154A
Other languages
English (en)
Inventor
英典 山▲崎▼
ヴァン マイン グエン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Building Solutions Corp
Original Assignee
Mitsubishi Electric Building Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Building Solutions Corp filed Critical Mitsubishi Electric Building Solutions Corp
Priority to JP2022184154A priority Critical patent/JP7414938B1/ja
Application granted granted Critical
Publication of JP7414938B1 publication Critical patent/JP7414938B1/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

【課題】通信仕様および信号仕様の異なる様々なエレベータに対応して極力簡易に遠隔点検を行うことができるエレベータ遠隔点検システムおよびエレベータ遠隔点検方法を提供する。【解決手段】制御部152は、DZ信号を含む情報を用いて、1階と5階との間におけるかご10の位置と時刻との対応関係を特定する。制御部152は、対応関係に基づき、1階と5階との間の階床でかご10が停止することなく1階と5階との間をかご10が往復したと判断した場合に、乗場呼び釦の状態が正常状態であると判定する。【選択図】図23

Description

本開示は、エレベータの遠隔点検を行うエレベータ遠隔点検システムおよびエレベータ遠隔点検方法に関する。
近年、エレベータの保守業務において、通信回線を利用してエレベータの遠隔点検を行うエレベータ遠隔点検システムのニーズが高まっている。このような遠隔点検を行うものとして、たとえば、特開2022-019900号公報(特許文献1)に開示された遠隔監視支援装置が挙げられる。この遠隔監視支援装置は、エレベータの制御基板から取得した信号の出力状態に基づいて、エレベータの動作状態が通常動作状態であるか否かを判断する。
遠隔点検の実施により、保守現場での点検作業が軽減されるため、保守業務が大幅に効率化する。加えて、遠隔点検を実施した場合、法定の定期点検作業の実施周期を長くできるといった法律上の規定(たとえば、日本の国土交通省が定める建築保全業務共通仕様書)も存在し、これによりさらに保守業務を効率化することができる。
特に、多種多様なメーカーのエレベータが設置されているグローバル市場において、保守会社は、エレベータのメーカーおよび機種を問わず保守対応を行う(保守をマルチブランド化する)必要がある。一方、保守契約を締結するビルのオーナー側では、設置されているエレベータのメーカーを問わず、自由に保守会社を選択して遠隔点検可能な保守契約を結びたいというニーズが高い。
こういった事情から、エレベータのメーカーおよび機種を問わず、エレベータシステムから取得した信号に基づいて遠隔点検を行うことができるエレベータ遠隔点検システムのニーズが高まっている。
特開2022-019900号公報
ところが、エレベータ業界においては、メーカーおよび機種ごとの通信仕様および信号仕様が共通化されていない。また、これらの仕様も一般に開示されていない。このため、異なるメーカー間で共通のエレベータ遠隔点検システムを利用できないのが通常である。
通信仕様および信号仕様の異なる様々なエレベータに対応したエレベータ遠隔点検システムを開発しようとした場合、たとえば、スイッチの接点信号を取り込むなど、パラレル伝送によりやりとりされる信号を取得するといった工夫が必要となる。加えて、メーカー間で信号仕様が共通化されていないため、共通して利用可能な信号の種類も大きく制限される。
さらには、信号が共通して利用可能であったとしても、エレベータ遠隔点検システムをビルに据え付ける際の据付コストあるいは据付困難性といったハードウェア上の制約から、利用に適さない信号もある。このため、こうしたエレベータ遠隔点検システムを実現するためには、どのような信号を用いてどのような方法によって遠隔点検の点検項目を判断するのか、十分に検討する必要がある。
本開示は、上述の課題を解決するためになされたものであって、その目的は、通信仕様および信号仕様の異なる様々なエレベータに対応して極力簡易に遠隔点検を行うことができるエレベータ遠隔点検システムおよびエレベータ遠隔点検方法を提供することである。
本開示に係るエレベータ遠隔点検システムは、エレベータの遠隔点検を行うシステムである。エレベータ遠隔点検システムは、指示部と、取得部と、制御部と、出力部とを備える。指示部は、エレベータの機器群に対して、エレベータの乗場呼びを発生させる乗場呼び信号を送信する送信処理を行う。取得部は、エレベータの機器群とエレベータの機器群を制御する制御盤との間でパラレル伝送により入出力される信号を判定用信号として取得する。制御部は、送信処理によって送信される乗場呼び信号を生成するとともに、送信処理の結果として取得部によって取得された判定用信号に基づき遠隔点検の点検項目を判定する判定処理を行う。出力部は、点検項目の判定結果を出力する。送信処理は、第1階床において上方向の第1乗場呼びを発生させる第1乗場呼び信号と、第1階床よりも上の第2階床において下方向の第2乗場呼びを発生させる第2乗場呼び信号とを送信する処理である。判定用信号は、エレベータのかごの扉を開閉可能なかごの位置範囲を示すドアゾーン内にかごが位置する第1状態と、第1状態ではない非第1状態とのいずれかであることを示す第1信号を含む。点検項目は、乗場呼びを発生させる乗場呼び釦の状態を含む。制御部は、第1信号を含む情報を用いて、第1階床と第2階床との間におけるかごの位置と時刻との対応関係を特定する。制御部は、対応関係に基づき、第1階床と第2階床との間の階床でかごが停止することなく第1階床と第2階床との間をかごが往復したと判断した場合に、乗場呼び釦の状態が正常状態であると判定する。
本開示に係るエレベータ隔点検方法は、エレベータの遠隔点検を行う方法である。エレベータ隔点検方法は、エレベータの機器群に対して、エレベータの乗場呼びを発生させる乗場呼び信号を送信する送信処理を行うステップと、エレベータの機器群とエレベータの機器群を制御する制御盤との間でパラレル伝送により入出力される信号を判定用信号として取得するステップと、送信処理によって送信される乗場呼び信号を生成するとともに、送信処理の結果として取得するステップによって取得された判定用信号に基づき遠隔点検の点検項目を判定する判定処理を行うステップと、点検項目の判定結果を出力するステップとを備える。送信処理は、第1階床において上方向の第1乗場呼びを発生させる第1乗場呼び信号と、第1階床よりも上の第2階床において下方向の第2乗場呼びを発生させる第2乗場呼び信号とを送信する処理である。判定用信号は、エレベータのかごの扉を開閉可能なかごの位置範囲を示すドアゾーン内にかごが位置する第1状態と、第1状態ではない非第1状態とのいずれかであることを示す第1信号を含む。点検項目は、乗場呼びを発生させる乗場呼び釦の状態を含む。判定処理を行うステップは、第1信号を含む情報を用いて、第1階床と第2階床との間におけるかごの位置と時刻との対応関係を特定するステップと、対応関係に基づき、第1階床と第2階床との間の階床でかごが停止することなく第1階床と第2階床との間をかごが往復したと判断した場合に、乗場呼び釦の状態が正常状態であると判定するステップとを含む。
本開示によれば、遠隔点検の利用に適した第1信号に基づき乗場呼び釦の状態の判定を行うことで、通信仕様および信号仕様の異なる様々なエレベータに対応して極力簡易に遠隔点検を行うことができる。すなわち、遠隔点検において保守のマルチブランド化を実現することができる。これにより、保守会社は、保守現場での保守点検頻度を減らすことができるとともに、保守対応可能なエレベータの台数を増やすことができる。ビルのオーナーは、自由に保守会社を選択して遠隔点検可能な保守契約を締結することができる。
エレベータシステムおよび遠隔点検システムの全体構成の一例を示す図である。 エレベータシステムに従来型の遠隔点検システムを接続した例を示す図である。 エレベータシステムのハードウェア構成の一例を示す図である。 エレベータの構造を概略的に示す図である。 エレベータの乗場の一例を示す図である。 エレベータのかご内の一例を示す図である。 変形例に係るエレベータシステムのハードウェア構成の一例を示す図である。 遠隔点検システムのハードウェア構成および遠隔点検システムで使用される信号を説明するための図である。 診断用運転におけるかごの走行と信号との関係を説明するための図である。 遠隔点検システムの機能ブロック図の一例を示す図である。 遠隔点検システムの表示画面の一例を示す図である。 遠隔点検処理および端末設定処理のフローチャートである。 基準時間DBの一例を示す図である。 基準時間更新処理のフローチャートである。 基準時間取得処理のフローチャートである。 走行状態を説明するためのタイミングチャートである。 走行状態を説明するためのタイミングチャートである。 乗場呼び釦の状態の判定を説明するための図である。 乗場呼び釦の状態の判定を説明するための図である。 乗場呼び釦の状態の判定を説明するための図である。 運転診断時処理のフローチャートである。 走行発生処理のフローチャートである。 かご情報計測処理のフローチャートである。 判定処理のフローチャートである。 マルチカー処理のフローチャートである。
以下、図面を参照しつつ、実施の形態について説明する。以下の説明では、同一の部品には同一の符号を付してある。それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰り返さない。
[エレベータシステム200およびエレベータ遠隔点検システム1の構成]
以下、エレベータシステム200およびエレベータ遠隔点検システム(以下、単に「遠隔点検システム」とも称する)1の構成について説明する。図1は、エレベータシステム200および遠隔点検システム1の全体構成の一例を示す図である。
ビルにエレベータが設置されている場合、ビルのオーナーは、エレベータの保守会社との間で保守契約を締結する必要がある。保守会社の保守員は、保守契約に基づきエレベータの保守点検および定期検査を行う。ビルのオーナーは、保守契約の際に、オプションとして遠隔点検あるいは遠隔監視も含めて契約をすることができる。
遠隔監視は、保守会社の監視センター(情報センター)等が、通信回線等を利用してエレベータの異常や不具合の有無を常時監視することをいう。遠隔点検は、遠隔監視に加え、保守会社の監視センター等が、正常なエレベータ運転のために必要とされる箇所を対象に、通信回線等を利用してエレベータの運行状態や各機器の動作状況が正常であるか否かを点検することをいう。
遠隔点検には、エレベータの、性能点検、各機器の点検、利用状態の点検の3種類の点検がある。性能点検において、かごの、起動状態、加速走行状態、定速走行状態、減速走行状態、着床状態の各点検項目の点検が行われる。各機器の点検において、機械室または制御盤の温度、制御機器の状態、かご内の行先階釦の状態、インターホンの状態、戸開閉状態、乗場釦の状態、ドアスイッチの状態、電磁ブレーキの異常の有無の各点検項目の点検が行われる。利用状態の点検において、かごの走行距離、走行時間または起動回数、ドアの開閉回数の各点検項目の点検が行われる。
このような遠隔点検の実施により、保守現場での点検作業が軽減されるため、保守業務が大幅に効率化する。加えて、遠隔点検を実施した場合、法定の定期点検作業の実施周期を長くできるといった法律上の規定も存在し、これによりさらに保守業務を効率化することができる。たとえば、日本国内においては、上記で列挙した遠隔点検を実施することで、法律で義務付けられた定期点検の実施周期を1ヶ月に1回から3ヶ月に1回に減らすことができる(国土交通省による建築保全業務共通仕様書に規定)。
さらに、後述するように、グローバル市場における保守のマルチブランド化を推進したいという保守会社のニーズ、および、自由に保守会社を選択して遠隔点検可能な保守契約を結びたいというビルのオーナーのニーズが高まっている。本実施の形態に係る遠隔点検システム1は、このようなニーズに答えるべく構成された、エレベータの遠隔点検を行うシステムである。以下、詳細に説明する。
図1に示すように、遠隔点検システム1は、遠隔点検装置100と、管理サーバ300と、端末400とを備える。エレベータシステム200および遠隔点検装置100は、ビル2内に設置されている。遠隔点検装置100は、エレベータシステム200と接続し、エレベータの遠隔点検を行う。遠隔点検装置100は、たとえば、PLC(Programmable Logic Controller)を含んで構成される。
管理サーバ300は、たとえば、保守会社の情報センター(監視センター)に設置されている。端末400は、保守会社の情報センターに設置されてもよいし、任意の場所に設置されてもよい。端末400および遠隔点検装置100は、通信回線を介して管理サーバ300に接続可能である。
管理サーバ300は、エレベータの保守契約を締結した各ビルの顧客情報、ビル情報、当該ビルに設置されたエレベータの情報、遠隔点検結果等の各種データを管理する。管理サーバ300は、遠隔点検装置100を管理する装置であって、遠隔点検装置100に対して遠隔点検の実行指令を送信するとともに、遠隔点検装置100が実行した遠隔点検の点検結果を取得する。
端末400は、たとえば、PC(Personal Computer)、スマートフォンまたはタブレットである。端末400は、各種情報を表示する表示部410と、端末400を使用するユーザからの操作を入力可能な入力部420と備える。本実施の形態において、端末400は、保守会社の保守員が使用する。つまり、端末400を使用する「ユーザ」とは、保守会社の保守員を指すが、これに限らず、端末400を使用する可能性のある者であればどのような者をユーザに含んでもよい。たとえば、ユーザは、保守会社の保守員以外の従業員であってもよいし、ビル2を管理する者であってもよい。端末400は、入力部420からの保守員の操作により、管理サーバ300を介して遠隔点検装置100に対して遠隔点検を実行させることができる。また、端末400は、遠隔点検装置100が実行した遠隔点検の点検結果を表示部410に表示させることができる。
エレベータシステム200は、制御盤210とエレベータ機器群220とを備える。エレベータ機器群220は、エレベータおよびエレベータの乗場装置等を含む各種機器により構成される。制御盤210は、エレベータ機器群220の各種機器を制御する。
制御盤210は、複数の信号線を介してエレベータ機器群220との間で信号を入出力する。エレベータ機器群220と制御盤210との間で送受信される信号には、パラレル伝送(パラレル通信)により送受信されるものと、シリアル伝送(シリアル通信)により送受信されるものを含む。
前者(パラレル伝送)は、たとえば、エレベータ機器群220の各種スイッチあるいは各種センサから直接取得される信号である。本実施の形態においては、スイッチの接点信号(たとえば、スイッチON状態で所定の電圧が検出)を想定しているが、たとえば、ロータリエンコーダから取得されるパルス信号のようなものであってもよい。
後者(シリアル伝送)は、エレベータの乗場側またはかご側に設置された装置に備えられた制御基板と、制御盤210とがシリアル通信により送受信する信号である。たとえば、制御盤210において起動するエレベータの管理ソフトウェア(プログラム)と、かご側の制御基板において起動するソフトウェア(プログラム)との間で通信を確立させ、シリアル通信によりかごの位置、走行方向等のデータ(内部信号)を送受信するような場面が想定される。
本実施の形態において、制御盤210とエレベータ機器群220とを接続する信号線のうち、パラレル伝送により信号を送受信する信号線の一部を分岐させて、遠隔点検装置100が備える端子に接続している。これにより、制御盤210とエレベータ機器群220との間でパラレル伝送により送受信する信号の一部が、遠隔点検装置100側で入出力可能となる。
一方、エレベータシステム200の制御盤210は、エレベータの各種保守装置と接続可能に構成されている。制御盤210に備えられた制御基板には、コネクタ261が設けられている。保守装置に接続されたケーブルのコネクタ262を制御盤210のコネクタ261に接続することで、保守装置と制御盤210との間でシリアル通信(シリアル伝送)による通信接続が可能になる。
エレベータの各種保守装置は、たとえば、エレベータシステム200の専用装置として使用されるメンテナンスコンピュータ、遠隔監視装置、遠隔点検装置等である。これらの保守装置は、エレベータシステム200のメーカーあるいはメーカーの系列の保守会社がエレベータの各機種に対応させて開発し、使用する装置である。このため、これらの保守装置は、メーカーが異なるエレベータとは接続することができない。ここで、メーカーの系列の保守会社とは、たとえば、メーカーの子会社あるいは関連会社であり、以下、「メーカー系保守会社」と称する。
一方で、本実施の形態の遠隔点検装置100は、エレベータシステム200のメーカーを問わずエレベータシステム200と接続可能に構成される。ただし、後述するように、遠隔点検装置100での利用に適した信号の種類は、かなり制限される(後述のDZ信号、LB信号、GS信号、DS信号、乗場呼び信号等)。
上記保守装置は、当該保守装置において起動するソフトウェアと制御盤210において起動するエレベータの管理ソフトウェアとが通信を確立することで、エレベータの管理ソフトウェアが保持する内部信号を取得可能である。
これらの内部信号は、制御盤210とエレベータ機器群220との間で入出力されるパラレル伝送による信号(スイッチの接点信号等)、シリアル伝送による信号(各種指令等)、および、これらの信号から生成される信号を含む。
たとえば、制御盤210は、エレベータを駆動する巻上機(モータ)の回転位置を計測するロータリエンコーダから取得した信号に基づき、かごの位置、速度、走行方向、状態(加速走行状態、定速走行状態、減速走行状態)等を算出する。これにより、制御盤210は、ソフトウェア上の内部信号として、これらの情報を保持することが可能となる。
つまり、制御盤210とシリアル通信により接続した保守装置は、パラレル伝送により入出力される接点信号のみならず、シリアル伝送により入出力されるソフトウェアの内部信号をも取得可能となる。また、保守装置は、制御盤210との通信により、たとえば、エレベータに対する休止指令、特定の階床への待機指令等の各種指令の送信、各種動作オプションの設定、各種パラメータの設定変更等が可能である。
シリアル通信により接続可能な保守装置のうち、メンテナンスコンピュータは、現場でのエレベータの保守点検に使用可能なコンピュータ(端末装置)である。メンテナンスコンピュータ上で動作する各種メンテナンスソフトウェアを起動し、エレベータの各種内部信号の確認、エレベータに対する各種指令、設定変更、ソフトウェアの書き換え等が可能である。
メンテナンスコンピュータは現場で使用可能である一方、遠隔監視装置および遠隔点検装置はネットワークを介して遠隔地にて使用する。シリアル通信により接続可能な保守装置のうち遠隔監視装置は、ネットワークを介して遠隔で上記内部信号を取得および表示可能な装置である。シリアル通信により接続可能な保守装置のうち遠隔点検装置は、ネットワークを介して遠隔で上記内部信号を取得および表示するとともに、エレベータに対して遠隔点検のための動作指令を行うことが可能な装置である。
(従来型の遠隔点検システムとの比較)
以下、シリアル通信により接続可能な遠隔点検装置(従来型の遠隔点検装置)と、本実施の形態における遠隔点検装置100との違いについて説明する。図2は、エレベータシステム200,200aに従来型の遠隔点検システムを接続した例を示す図である。
図2の例において、エレベータシステム200はビルAに設置されており、エレベータシステム200aはビルBに設置されているものとする。エレベータシステム200は、X社製のエレベータシステムであり、エレベータの機種は機種Mであるとする。各社のエレベータには、用途、年代等に応じて複数の機種が存在する。エレベータシステム200aは、Y社製のエレベータシステムであり、エレベータの機種は機種Nであるとする。
X社製のエレベータシステム200には、コネクタ261を介してX社製の遠隔点検装置500(従来型)のみが接続可能である。遠隔点検装置500は、ネットワークを介してX社が管理する管理サーバと接続可能である。なお、本例では、X社は、エレベータのメーカーでもあり、エレベータの保守会社(メーカー系保守会社)でもあるものとする。
たとえば、X社のサーバは、X社の情報センター内に設置されている。X社の管理サーバに端末を通信接続させることで、端末の操作によりエレベータシステム200の遠隔点検が可能となる。
Y社製のエレベータシステム200aには、コネクタ261を介してY社製の遠隔点検装置500a(従来型)のみが接続可能である。遠隔点検装置500aは、ネットワークを介してY社が管理する管理サーバと接続可能である。なお、本例では、Y社は、エレベータのメーカーでもあり、エレベータの保守会社(メーカー系保守会社)でもあるものとする。
たとえば、Y社のサーバは、Y社の情報センター内に設置されている。Y社の管理サーバに端末を通信接続させることで、端末の操作によりエレベータシステム200aの遠隔点検が可能となる。
このように構成した場合、上述のように、X社の遠隔点検装置500は、制御盤210と通信接続することで、制御盤210の管理ソフトウェアが生成する各種内部信号を取得できるとともに、エレベータに対する各種指令を制御盤210に対して送信することができる。たとえば、端末操作により、2つの階床間をかごに走行させる指令を送信し、その結果として、2つの階床間の走行時間、速度情報等を取得することが可能である。Y社の遠隔点検装置500aについても同様である。
しかしながら、このように構成した場合、X社製のエレベータシステム200に対しては、機種Mに対応したX社製の遠隔点検装置500を使用する必要があるし、Y社製のエレベータシステム200aに対しては、機種Nに対応したY社製の遠隔点検装置500aを使用する必要がある。このように、シリアル通信による遠隔点検装置を設置しようとした場合、各エレベータのメーカーごとに遠隔点検装置を用意する必要がある上に、メーカーが同じであったとしても、機種に対応した遠隔点検装置を用意する必要がある。
このような遠隔点検装置は、エレベータのメーカーごとに用意されている場合があるが、通常、設置されているエレベータのメーカーあるいはメーカー系保守会社しか使用できない。また、機種が古い場合は、対応する遠隔点検装置が存在しない場合がある。
図2の例で言えば、メーカー系保守会社(メーカー)X社は、X社製の遠隔点検装置500を使用できるが、Y社製の遠隔点検装置500aを使用できない。一方、メーカー系保守会社(メーカー)Y社は、Y社製の遠隔点検装置500aを使用できるが、X社製の遠隔点検装置500を使用できない。
これは、メーカーおよび機種間で通信仕様および信号仕様が共通化されておらず、また、これらの仕様も公開されていないためである。仮に、このような通信仕様、信号仕様あるいはアドレスマップが開示されているならば、制御盤210との通信を確立させることで、基本的にどのような内部信号、内部フラグあるいは設定パラメータも外部装置から取得可能である。
また、エレベータの保守会社には、メーカー系保守会社以外にも、どのメーカーとも関連のない保守会社(「独立系保守会社」と称する)がある。独立系保守会社は、X社製の遠隔点検装置500もY社製の遠隔点検装置500aも使用できない。
図2の例において、ビルAのオーナーは、メーカー系保守会社Xと保守契約を締結した場合は、遠隔点検装置500による遠隔点検を行うことができるが、メーカー系保守会社Yまたは独立系保守会社と保守契約を締結した場合は、遠隔点検装置500による遠隔点検を行うことができない。
一方、ビルBのオーナーは、メーカー系保守会社Yと保守契約を締結した場合は、遠隔点検装置500aによる遠隔点検を行うことができるが、メーカー系保守会社Xまたは独立系保守会社と保守契約を締結した場合は、遠隔点検装置500aによる遠隔点検を行うことができない。仮に、同一ビル内にX社製およびY社製のエレベータが併設されている場合、全てのエレベータの遠隔点検を行うためには、メーカー系保守会社X,Yの双方と保守契約を締結する必要がある。
このように、遠隔点検も含めて保守契約を行いたいビルのオーナーにとっては、従来型の遠隔点検装置を導入した場合、保守契約の選択の幅が狭くなってしまう。こうした事情から、近年、日本国内においては、メーカーおよび機種を問わず適用可能な遠隔点検装置のニーズが高まっている。特に、多種多様なメーカーのエレベータが設置されているグローバル市場において、保守会社は、エレベータのメーカーおよび機種を問わず保守対応(保守のマルチブランド化)を行う必要がある。
そこで、本実施の形態における遠隔点検装置100は、メーカーおよび機種を問わず対応可能な遠隔点検装置として構成した。上述のように、通信仕様および信号仕様がメーカーおよび機種間で共通化されていないため、シリアル伝送による通信を行う遠隔点検装置100を構築することは難しい。
このため、図1を用いて説明したように、遠隔点検装置100は、パラレル伝送(スイッチの接点信号の取り込み等)によりエレベータシステム200と接続する。また、信号仕様がメーカー間で共通化されていないため、共通して利用可能な信号の種類が制限される。さらに、共通して利用可能な信号であったとしても、ハードウェア上の制約(据付容易性、据付コストの観点)から利用に適さない信号もある。このため、遠隔点検装置100を実現するためには、どのような信号を用いてどのような方法によって遠隔点検の点検項目を判断するのか、十分に検討する必要がある。本実施の形態において使用する信号および点検項目の判定方法については、図7以降の図を用いて後述する。
図2の説明に戻り、本実施の形態における遠隔点検装置100は、ビルA内に設置されたX社製のエレベータシステム200およびビルB内に設置されたY社製のエレベータシステム200aのいずれにも接続可能である。ビルA内に設置された遠隔点検装置100およびビルB内に設置された遠隔点検装置100は、ネットワークを介して管理サーバ300と接続する。端末400を用いれば、ビルA内のエレベータシステム200およびビルB内のエレベータシステム200aのいずれの遠隔点検も可能となる。
なお、1つのビル内にX社製のエレベータシステム200およびY社製のエレベータシステム200aが併設されている場合には、エレベータシステム200,200aを1つの遠隔点検装置100で接続するように構成すればよい。
以上のように構成した場合、ビルのオーナーは、どのようなエレベータを設置した場合であっても、メーカー系保守会社であるか独立系保守会社であるかを問わず、自由に保守会社を選択して、遠隔点検を行う保守契約を締結することができる。
なお、管理サーバ300は、1つのサーバ装置によって構成されるものに限らず、複数のサーバ装置によって構成されるものであってもよい。たとえば、地域ごとにサーバ装置を設置して各地域からのアクセス要求に応じるものであってもよい。この場合、各地域のサーバ装置が互いに通信し、互いの情報(顧客情報、エレベータ情報等)を共有可能に構成するものであってもよい。あるいは、各地域のサーバを管理するメインサーバ装置を備え、メインサーバ装置が各地域の情報を管理するものであってもよい。
上記各地域は、1つの国の各地域に限らず、複数の国の地域を含むものであってもよい。たとえば、日本国内にサーバ装置を置いて、日本国外に設置されたサーバ装置と情報を共有するように構成してもよい。また、いずれかの国にメインサーバ装置を設置し、各国に設置されたサーバ装置からメインサーバ装置に記憶された情報を参照させるようにしてもよい。
各国において設置されたサーバ装置は、管理する国または地域ごとに、言語コードを有するように構成してもよい。たとえば、日本国内の建物を管理するサーバ装置には、言語コードとして「日本語」が設定される。中国国内の建物を管理するサーバ装置には、言語コードとして「中国語」が設定される。英語圏の国の建物を管理するサーバ装置には、言語コードとして「英語」が設定される。
サーバ装置は、各言語コードに対応した言語データを有する。たとえば、日本国内の端末からアクセスがあった場合は、これらの端末上には日本語で情報が表示される。中国国内の端末からアクセスがあった場合は、これらの端末上には中国語で情報が表示される。また、言語ごとに情報を管理するようにしてもよい。管理サーバ300は、遠隔点検装置100および端末400と接続する通信サーバ(Webサーバ)、データサーバ、アプリケーションサーバ等のサーバ群によって構成されるものであってもよい。
このように構成した場合、世界各国において遠隔点検システム1を利用可能となる。例えば、図2の例において、第1国(たとえば、アメリカ)のビルAにエレベータシステム200(制御盤210およびエレベータ機器群220)と遠隔点検装置100とが設置されており、第1国とは異なる第2国(たとえば、日本)のビルBにエレベータシステム200a(制御盤210aおよびエレベータ機器群220a)および遠隔点検装置100が設置されているとする。
管理サーバ300は、第2国の情報センターに設置されているとする。第2国に設置された管理サーバ300は、ネットワークを介して第1国に設置された遠隔点検装置100および第2国に設置された遠隔点検装置100と接続可能である。管理サーバ300は、第1国または第2国に設置された遠隔点検装置100に対して遠隔点検の実行指令を送信可能であるとともに、実行指令を受信した遠隔点検装置100から、遠隔点検の各点検項目の判定結果を受信可能である。
端末400は、第1国に設置されていてもよいし、第2国に設置されていてもよい。たとえば、第2国に設置された端末400から第2国に設置された管理サーバ300にアクセスして、第1国または第2国に設置された遠隔点検装置100による遠隔点検を実行してもよい。第1国に設置された端末400から第2国に設置された管理サーバ300にアクセスして、第1国または第2国に設置された遠隔点検装置100による遠隔点検を実行してもよい。
第1国に設置された遠隔点検装置100は、第1国の通信回線網(LTE回線網など)を利用してネットワーク接続を行う。第2国に設置された遠隔点検装置100は、第2国の通信回線網を利用してネットワーク接続を行う。第2国に設置された管理サーバ300は、第2国の通信回線を介して、第1国または第2国に設置された遠隔点検装置100に接続する。
以上のように構成することで、第1国で稼働するエレベータシステム200の遠隔点検を行う遠隔点検装置100の管理を第2国の管理サーバ300にて行うことができる。これにより、いずれの国にエレベータシステム200および遠隔点検装置100が設置されているかを問わず、国を跨いで管理サーバ300により遠隔点検装置100の管理を行うことができる。
なお、遠隔点検装置100が遠隔点検の各点検項目の判定をするものに限らず、管理サーバ300が遠隔点検の各点検項目の判定をするようにしてもよい。この場合、遠隔点検装置100は、エレベータシステム200から取得した判定用の信号データを管理サーバ300に送信する。管理サーバ300は、当該信号データに基づき各点検項目の判定を行うようにすればよい。もちろん、管理サーバ300を国ごとに設置し、国ごとに遠隔点検装置100を管理するように構成してもよい。
(エレベータシステム200の詳細な構成)
図3は、エレベータシステム200のハードウェア構成の一例を示す図である。本実施の形態において、エレベータシステム200が設置されたビル2は5階建てであるとする。また、ビル2内にはエレベータが1台(本エレベータを「1号機」と称する)設置されているものとする。
制御盤210は、各台制御部(car control unit)212を備える。各台制御部212は、エレベータ機器群220を制御する制御基板である。エレベータ機器群220は、1階(1F)から5階(5F)までの各階の乗場に設置された乗場装置230と、エレベータシステム200において使用される各種センサおよび各種スイッチ類(たとえば、後述するスローアップスイッチ、スローダウンスイッチ等)と、1号機の巻上機250およびかご装置240とを備える。
巻上機250は、エレベータのかごを昇降させるために駆動するモータである。かご装置240は、かごに設置された各種機器であって、行先階を登録する行先階釦を含む。乗場装置230は、各階の乗場に設置された各種機器であって、乗場呼びを登録する乗場釦を含む。これらの詳細については、図4以降の図を用いて説明する。
各台制御部212は、複数の信号線を束ねた制御ケーブル21を介して各階の乗場装置230、各種センサおよび各種スイッチ類等と接続されている。また、各台制御部212は、複数の信号線を束ねた制御ケーブル22を介して1号機の巻上機250およびかご装置240等と接続されている。
各台制御部212は、プロセッサとメモリと通信インターフェイスとを備える。プロセッサは、CPU(Central Processing Unit)である。メモリは、たとえば、ROM(Read Only Memory)およびRAM(Random Access Memory)である。これらは、バスを介して相互に通信可能に接続されている。
ROMは、エレベータ機器群220を制御するための管理ソフトウェアのプログラムを格納する。CPUは、ROMに保存されているプログラムをRAMに読み込んで実行し、エレベータ機器群220を制御する。RAMは、CPUがプログラムを実行する際の作業領域となるものであり、プログラムやプログラムを実行する際のデータ等を一時的に記憶する。
各台制御部212は、通信インターフェイスを介して、シリアル通信またはパラレル通信により乗場装置230、巻上機250、かご装置240等のエレベータ機器群220あるいは図1,図2で示した各種保守装置と通信可能に構成されている。
図4は、エレベータの構造を概略的に示す図である。エレベータのかご10は、ビル2内に設けられた昇降路8内に設置されている。かご10は、昇降路8内を昇降して複数の階床間を移動する。本実施の形態では、かご10は、1階(1F)~5階(5F)までの各階に停止可能である。
昇降路8の直上には、機械室5が設けられている。機械室5には、巻上機250と、制御盤210と、遠隔点検装置100とが設けられている。かご装置240は、かご10に設けられている。
本実施の形態において、エレベータは、トラクション式エレベータである。トラクション式エレベータは、ロープ式エレベータの一態様である。本エレベータは、かご10、カウンターウェイト(釣り合い重り)12、ロープ11、巻上機250およびそらせ車13を備える。巻上機250およびそらせ車13にはロープ(主ロープ)11が掛けられている。ロープ11の両端には、かご10およびカウンターウェイト12が吊り下げられた状態になっている。
エレベータは、巻上機250を駆動させることで、昇降路8内に設置されたかご10を上方向(「UP方向」とも称する)または下方向(「DN方向」とも称する)に走行させることができる。
かご10は、UP方向、DN方向および無方向のいずれかの走行方向を持つ。かご10の上方の階床への走行指令に答えるために、かご10がUP方向に走行または停止(UP方向に走行予定である状態で停止)している場合、かご10の走行方向はUP方向となる。かご10の下方の階床への走行指令に答えるために、かご10がDN方向に走行または停止(DN方向に走行予定である状態で停止)している場合、かご10の走行方向はDN方向となる。かご10の走行方向がUP方向およびDN方向のいずれでもない場合、かご10のかご方向を「無方向」と定義する。なお、かご10が最下階で停止している場合は、かご方向がUP方向となり、かご10が最上階で停止している場合は、かご方向がDN方向となるようにしてもよい。
かご10は、巻上機250の電磁ブレーキ(図示なし、単に「ブレーキ」とも称する)が開放されると走行可能となる。かご10は、巻上機250のブレーキが動作すると制動状態(静止状態)となる。巻上機250のブレーキは、ばねの力でブレーキシューをブレーキドラムに押し付けて制動可能に構成される。ブレーキコイルに電力を供給することで、ブレーキシューをブレーキドラムから離れさせ、これによりブレーキが開放される。ブレーキコイルに対する電力の供給を遮断すれば、電磁ブレーキが制動状態となり、かご10は走行できなくなる。
エレベータは、かご10の最大積載重量の50%を積載した状態で、カウンターウェイト12の重さと、乗客を含むかご10の重さが釣り合うように設計されている。たとえば、乗客のいない状態では、かご10よりもカウンターウェイト12の方が重い状態となる。このため、単純にブレーキを開放した場合、かご10はUP方向に走行することになる。一方、かご10内が満員状態であれば、カウンターウェイト12よりもかご10の方が重い状態となる。このため、単純にブレーキを開放した場合、かご10はDN方向に走行することになる。
昇降路8の底部であるピット6には、緩衝器(バッファ)14が設置されている。緩衝器14は、異常の発生によりかご10が落下したような場合に、落下時の衝撃を吸収する装置である。
各台制御部212は、制御ケーブル22(図3)を介してかご装置240と接続される。制御ケーブル22内には、各台制御部212とかご装置240とが通信するための複数の信号線が束ねられている。
各台制御部212は、昇降路8の壁面を這わせた制御ケーブル21(図3)を介して各階に設置された乗場装置230、各種センサおよび各種スイッチと接続する。制御ケーブル21は、各台制御部212と、乗場装置230または各種スイッチ等とが通信するための複数の信号線で構成されている。なお、機械室5がない場合、巻上機250および制御盤210等は、昇降路8内(壁面またはピット6内等)に設置される。
なお、エレベータは、上記のような、かご10とカウンターウェイト12を釣り合わせるトラクション式エレベータに限らない。たとえば、カウンターウェイト12を用いず、ロープ11をドラムに巻き付けてかご10を昇降させる巻胴式エレベータであってもよい。巻胴式エレベータは、ロープ式エレベータの一態様である。また、電動ポンプで油圧ジャッキに油を送り、油圧ジャッキの動作によりかご10を昇降させる油圧式エレベータであってもよい。
油圧式エレベータの場合、油圧ジャッキに送られる油量の制御により、かご10の位置が制御される。油圧式エレベータの場合、季節または温度によって油の特性が変わるため、かご10の走行特性に違いが生じやすい。たとえば、夏場の気温が高いときと比べて、冬場は油が固くなるため、起動に時間がかかる。また、油量(油圧)を制御する油圧式エレベータの場合、モータの回転量を制御するロープ式エレベータに比べて、階床間の走行時間にばらつきが出やすい。さらには、ある階床にかご10が停止している場合に、時間の経過とともにかごが少しずつ沈んでいき、乗場の床面に対してかご10の床面が徐々に下がっていく(停止中にドアゾーンを外れる)ことがある。
図5Aは、エレベータの乗場の一例を示す図である。図5Aには、エレベータの乗場を正面から見た図が示されている。
ここで、本実施の形態では、UP方向(上方向)の乗場呼びを「UP呼び」または「UP乗場呼び」、DN方向(下方向)の乗場呼びを「DN呼び」または「DN乗場呼び」、かご10内での行先階呼びを「かご呼び」とも称する。これらの各呼びを登録するための釦を「呼び釦」と称する。
呼び釦は、かご10内に設けられたかご呼び釦(「行先階釦」とも称する)と、乗場に設けられた乗場呼び釦(「乗場釦」とも称する)を含む。乗場呼び釦(乗場釦)は、乗場に設けられた上方向の乗場呼び釦(「UP呼び釦」または「UP乗場呼び釦」とも称する)と、乗場に設けられた下方向の乗場呼び釦(「DN呼び釦」または「DN乗場呼び釦」とも称する)とを含む。
上述のように、各階には、乗場装置230が備えられている。乗場装置230は、乗場操作盤70を含む。ここでは、1階の乗場を例に挙げて説明する。1階の乗場には、扉61と、乗場操作盤70とが備えられている。
乗場操作盤70には、UP乗場呼び釦81と、DN乗場呼び釦82とが備えられている。たとえば、UP乗場呼び釦81を押すと、1階でのUP乗場呼びが登録される。
乗場操作盤70には、インジケータ71が備えられている。インジケータ71には、かご10の走行方向と、かご10がどの階床にいるか(かご位置)が表示される。図の例では、かご10が2階をUP方向に走行または停止していることが示されている。
次に、かご10内について説明する。図5Bは、エレベータのかご内の一例を示す図である。図5Bには、かご10内の出口方向を見た図が示されている。かご装置240は、かご操作盤50を含む。かご10には、扉60と、かご操作盤50とが設けられている。かご操作盤50には、扉を開くための戸開釦52と、扉を閉じるための戸閉釦53と、1階~5階までの行先階(かご呼び)を登録するためのかご呼び釦が設けられている。
かご呼び釦は、1階へのかご呼びを登録する1階かご呼び釦31と、2階へのかご呼びを登録する2階かご呼び釦32と、3階へのかご呼びを登録する3階かご呼び釦33と、4階へのかご呼びを登録する4階かご呼び釦34と、5階へのかご呼びを登録する5階かご呼び釦35とを含む。また、かご操作盤50には、かご10の走行方向とかご位置が表示されるインジケータ51が備えられている。
乗場呼び釦が押された場合は、制御盤210(各台制御部212)に対して、押された乗場呼びに対応する呼び信号が送信される。制御盤210は、当該乗場呼びを登録する。そして、制御盤210は、登録された乗場呼びに対してかご10を割当てるとともに、制御盤210は、登録された乗場呼びにかご10を応答させる。
たとえば、1階のUP乗場呼び釦81が押されると、1階でのUP乗場呼びに対応する信号が送信され、制御盤210は、1階でのUP乗場呼びを登録する。制御盤210は、1階でのUP乗場呼びに対してかご10の割当を決定する。かご10は、1階でのUP乗場呼びに応答し、1階まで走行した後に停止および戸開する。
かご呼び釦が押された場合は、制御盤210に対して、押されたかご呼びに対応する呼び信号が送信される。制御盤210は、当該かご呼びを登録する。制御盤210は、登録されたかご呼びにかご10を応答させる。
たとえば、2階かご呼び釦32が押された場合は、制御盤210に対して、2階へのかご呼びに対応する呼び信号が送信される。制御盤210は、2階へのかご呼びを登録する。かご10は、2階へのかご呼びに応答し、2階まで走行した後に停止および戸開する。
ここで、「扉が開く」とは、かご10側の扉60および乗場側の扉61の双方が連動して開くことを意味し、以下「戸開する」とも表現する。同様に、「扉が閉まる」とは、かご10側の扉60および乗場側の扉61の双方が連動して閉まることを意味し、以下「戸閉する」とも表現する。
(制御盤210への入出力信号)
ここで、エレベータ機器群220を制御する制御盤210とエレベータ機器群220との間でパラレル伝送により入出力される信号のうち、遠隔点検装置100が取得する信号を「判定用信号」と称する。遠隔点検装置100は、判定用信号を用いて遠隔点検の各項目を判断する。判定用信号は、第1信号~第4信号を含む。各判定用信号は、ON状態とOFF状態とのいずれかの状態を有する。本実施の形態では、第1信号の一態様としてのDZ信号、第2信号の一態様としてのLB信号、第3信号の一態様としてのGS信号、第4信号の一態様としてのDS信号をそれぞれ例示する。
各階に設けられた乗場装置230は、図示しない乗場ドアスイッチ(「インターロックスイッチ」とも称する)を含む。乗場ドアスイッチは、乗場側の扉61が戸閉状態である場合にON状態となり、乗場側の扉61が戸開状態である場合にOFF状態となる。乗場ドアスイッチがOFF状態(戸閉していない状態)である場合、安全のため、かご10が走行できないように制御盤210によって制御される。
本実施の形態においては、乗場の扉61が閉じて乗場ドアスイッチがON状態である(乗場ドアスイッチが押されて接点がON状態となっている)ときにDS信号がON状態となり、乗場の扉61が閉じておらず乗場ドアスイッチがOFF状態であるときにDS信号がOFF状態となって、制御盤210に送信される。
また、かご装置240は、図示しないかごドアスイッチ(「ゲートスイッチ」とも称する)を含む。かごドアスイッチは、かご10側の扉60が戸閉状態となった場合にON状態となり、かご10側の扉60が戸開状態である場合にOFF状態となる。かごドアスイッチがOFF状態(戸閉していない状態)では、安全のため、かご10が走行できないように制御盤210によって制御される。
本実施の形態においては、かご10の扉60が閉じてかごドアスイッチがON状態である(かごドアスイッチが押されて接点がON状態となっている)ときにGS信号がON状態となり、かご10の扉60が閉じておらずかごドアスイッチがOFF状態であるときにGS信号がOFF状態となって、制御盤210に送信される。かご10の扉60は、乗場の扉61に連動して開閉する。
また、かご装置240は、図示しないドアゾーン検出装置(「着床装置」とも称する)を含む。ここで、ドアゾーンは、エレベータのかご10の扉60を開閉可能なかご10の位置範囲を示す。ドアゾーン検出装置は、かご10に設置されており、各階において、戸開可能な位置範囲内(ドアゾーン内)にかご10が位置する場合にドアゾーン検出装置はDZ信号をON状態として検出し、ドアゾーン内にかご10が位置しない場合にDZ信号をOFF状態として検出し、制御盤210に送信される。
たとえば、かご10に設置されたドアゾーン検出装置は、磁気近接センサを備える。一方、昇降路8内の各階の着床位置には、ドアゾーン検出用のプレートが設置されている。たとえば、ドアゾーン検出装置の磁気近接センサが、ドアゾーン検出用のプレートを検出している状態において、DZ信号がONとなるように構成される。たとえば、かご10の床位置が各階乗場の床位置に対して上下それぞれ150mm以内である場合に、DZ信号がONとなるように構成される。
かご10がドアゾーン外にいる状態(DZ信号がOFF状態)では、安全のため、戸開できないように制御盤210によって制御される。なお、ドアゾーン検出装置が昇降路8側に設置され、ドアゾーン検出用のプレートがかご10側に設置されるように構成してもよい。
また、巻上機250のブレーキコイルに電力が供給されることでエレベータのブレーキが開放されたときに、LB信号がON状態になる。巻上機250のブレーキコイルへの電力の供給が停止することでエレベータのブレーキが動作した(ブレーキが開放されていない)ときに、LB信号がOFF状態になる。
また、昇降路8の壁面には、スローアップスイッチ(図示なし)およびスローダウンスイッチ(図示なし)が設置されている。スローアップスイッチは、かご10が昇降路8の頂部に衝突しないように設けられたスイッチである。スローアップスイッチは、UP走行するかご10の位置が5階(最上階)と4階との間の所定の位置になったときに、かご10に取り付けられた所定の部材との接触によりON状態となるように構成されている。
スローアップスイッチがON状態である場合にSUL信号がON状態となり、スローアップスイッチがOFF状態である場合にSUL信号がOFF状態となる。最上階にかご10が近接してスローアップスイッチがON状態となったときに、かご10が規定の速度以上の速度で走行している場合は、安全のため、かご10を減速するように制御盤210によって制御される。
スローダウンスイッチは、かご10が昇降路8の底部に衝突(あるいはピット6内に侵入)しないように設けられたスイッチである。スローアップスイッチは、DN走行するかご10の位置が1階(最下階)と2階との間の所定の位置になったときに、かご10に取り付けられた所定の部材との接触によりON状態となるように構成されている。
スローダウンスイッチがON状態である場合にSDL信号がON状態となり、スローダウンスイッチがOFF状態である場合にSDL信号がOFF状態となる。最下階にかご10が近接してスローダウンスイッチがON状態となったときに、かご10が規定の速度以上の速度で走行している場合は、安全のため、かご10を減速するように制御盤210によって制御される。
なお、スローアップスイッチおよびスローダウンスイッチをかご10側に設置し、昇降路8側に設置された所定の部材との接触によりこれらのスイッチがON状態となるように構成してもよい。
本実施の形態においては、ビル2内には、エレベータが1台(図3の1号機のかご10)のみ設置されている。したがって、乗場呼びが登録された場合は、必ず、1号機が割当てられ、当該乗場呼びに対して1号機が応答することになる。
たとえば、2階の乗場でDN乗場呼びが登録された場合、この2階でのDN乗場呼びに対して1号機が割当てられる。DN方向に走行している1号機は、この2階でのDN乗場呼びに応答して2階で停止した後に戸開する。
以上の構成は、ビル2内において1台のエレベータのみが制御される構成(シングルカーの構成)であるが、以下、ビル2内において複数台のエレベータが制御される設置される構成(マルチカーの構成)についても説明する。図6は、変形例に係るエレベータシステム200bのハードウェア構成の一例を示す図である。
本変形例において、エレベータシステム200bは、「1号機」および「2号機」の2台のエレベータを備えるものとする。エレベータ機器群220bは、1階から5階までの各階の乗場に設置された乗場装置230と、1号機が備える巻上機250およびかご装置240と、1号機の各種センサおよび各種スイッチ等と、2号機が備える巻上機250およびかご装置240と、2号機の各種センサおよび各種スイッチ等とを備える。
制御盤210bは、群管理制御部(group control unit)211と2つの各台制御部(car control unit)212とを備える。群管理制御部211は、複数台のエレベータを管理する制御基板である。各台制御部212は、対応するエレベータの運転を制御する制御基板である。群管理制御部211と2つの各台制御部212とは、互いに通信し、エレベータに関する各種データをやり取りする。
群管理制御部211は、各階の乗場装置230を一括して制御する。群管理制御部211は、制御ケーブル21を介して、1階から5階までの各階の乗場に設置された乗場装置230と接続されている。各台制御部212は、制御ケーブル22,23を介して、巻上機250およびかご装置240と、各号機の各種センサおよび各種スイッチ等とに接続されている。
図6で示す変形例において、各階の乗場装置230は、乗場呼び釦が設けられた乗場操作盤70を含む。ただし、本変形例では、乗場操作盤70にインジケータ71は含まないものとする。本変形例では、各階において、乗場操作盤70が1つ設置され、インジケータ71がエレベータの台数分(2つ)設置されているものとする。
群管理制御部211は、昇降路8の壁面を這わせた制御ケーブル21を介して各階に設置された乗場装置230(乗場呼び釦)と接続する。各台制御部212は、制御ケーブル22を介して、各台制御部212に対応する号機の巻上機250およびかご装置240と接続する。かご装置240は、行先階釦が設けられたかご操作盤50と、かごドアスイッチと、ドアゾーン検出装置とを含む。
各台制御部213は、昇降路8の壁面を這わせた制御ケーブル23を介して、各台制御部213に対応する号機の各種センサおよび各種スイッチ等と接続する。各種センサおよび各種スイッチ等は、号機ごとに設置された、スローアップスイッチと、スローダウンスイッチと、各階の乗場ドアスイッチと、各階のインジケータ71とを含む。
本例において、乗場呼び釦が押されたとき、群管理制御部211は、乗場呼び釦に対応する乗場呼びを登録する。そして、群管理制御部211は、登録された乗場呼びに対して、複数のかご10(1号機、2号機)のうちのいずれかのかご10を割当てる。割当てられたかご10(割当かご)に対応する各台制御部212は、登録された乗場呼びに割当かごを応答させる。
たとえば、1階のUP乗場呼び釦81が押されると、1階UP乗場呼び信号がON状態となる。群管理制御部211は、ON状態である1階UP乗場呼び信号を受信し、1階UP乗場呼びを登録する。群管理制御部211は、1階UP乗場呼びに対して、1号機および2号機のいずれかのかご10を割当てる。
たとえば、群管理制御部211が1号機のかご10を割当てたとする。この場合、群管理制御部211は、1号機の各台制御部212に対して1階UP乗場呼びに応答するよう指令を送信する。1号機の各台制御部212は、1号機のかご10を走行させて1階UP乗場呼びに応答させる。かご10は、1階まで走行した後に1階で停止および戸開する。
なお、制御盤210bは、群管理制御部211を備えず、2つの各台制御部212のみを備えるものであってもよい。この場合、群管理制御部211の機能は、1号機の各台制御部212が備えるようにすればよい。1号機の各台制御部212は、制御ケーブル21を介して乗場装置230を制御するとともに、2号機の各台制御部212と直接通信接続する。
(強制停止および待機動作)
また、エレベータシステム200(200a,200b)は、強制停止階および待機階の設定が可能である。強制停止階の設定がされている場合、かご10が強制停止階を通りがかった場合、かご10は必ず強制停止階で停止して戸開する。たとえば、ホテルのロビーが2階である場合に、2階が強制停止階として設定されるような場面が想定される。かご10が1階から5階へ走行する場合、必ず、かご10は途中の2階で停止して戸開する。
待機階の設定がされている場合、かご10は、全ての乗場呼びおよびかご呼びに応答し終わった(この状態を「利用可能」と称する)後に、設定されている待機階へ走行する。たとえば、待機階として1階(メインフロア)が設定されているとする。かご10は、5階の最終呼びに応答し終わって利用可能となった場合、5階から1階に向けて走行した後に1階(待機階)で待機する。
待機階の設定の際、戸開待機の有無および待機台数も設定可能である。たとえば、図6の例のように、制御盤210bが管理するエレベータが2台ある場合、1台または2台のかご10を待機階に待機させることができる。その際、戸開した状態または戸閉した状態にして待機階で待機させることができる。戸開待機する場合、かご10は、待機階に到着して戸開した後、所定時間(たとえば、1分、あるいは3分)経過後に戸閉する。戸開待機設定がされた待機階を「戸開待機階」とも称する。
また、エレベータシステム200bは、分散待機動作を行ってもよい。たとえば、制御盤210bが管理するエレベータが2台ある場合、利用可能となった2台のかご10が同一階床または近い階床で停止しないように、2台のかご10を分散して待機させる。たとえば、利用可能となった2台のかご10がいずれも1階(メインフロア)で停止している場合、1台を上方階(たとえば、3階)に走行させた後に戸閉待機させる。
このように、乗場呼びまたはかご呼びが存在しない場合であっても、強制停止階の設定、待機階の設定あるいは分散待機動作によって、かご10が走行あるいは戸開することがある。
(遠隔点検システム1の詳細な構成および使用される信号)
以下、図3に示したエレベータシステム200(かご台数が1台)を前提として説明する。図7は、遠隔点検システム1のハードウェア構成および遠隔点検システム1で使用される信号を説明するための図である。
上述のように、エレベータシステム200は、制御盤210とエレベータ機器群220とを備える。エレベータ機器群220は、1階~5階の乗場装置230を含む。制御盤210とエレベータ機器群220とは、複数の信号線で接続されており、これにより、複数の信号を送受信可能である。
これら複数の信号は、上述の、DZ信号、LB信号、GS信号、DS信号、SUL信号、SDL信号、UP信号、DN信号、1階のUP乗場呼び信号、および、5階のDN乗場呼び信号を含む。ここで例示した信号は、いずれもパラレル伝送により送受信される。
DZ信号は、上述のように、ドアゾーン検出装置によって検出される信号である。かご10が各階において戸開可能な位置範囲内(ドアゾーン内)に位置するときにDZ信号がON状態となり、ドアゾーン外に位置するときにDZ信号がOFF状態となる。
LB信号は、上述のように、巻上機250のブレーキコイルに電力が供給されることでブレーキが開放されたときに、ON状態になる信号である。巻上機250のブレーキコイルへの電力の供給が停止することでブレーキが動作したときに、LB信号がOFF状態になる。
GS信号は、上述のように、かごドアスイッチによって検出される信号である。かご側の扉60が戸閉状態である場合にGS信号がON状態となり、かご側の扉60が戸開状態となった場合にGS信号がOFF状態となる。
DS信号は、上述のように、乗場ドアスイッチによって検出される信号である。乗場側の扉61が戸閉状態である場合にDS信号がON状態となり、乗場側の扉61が戸開状態である場合にDS信号OFF状態となる。
SUL信号は、上述のように、スローアップスイッチによって検出される信号である。スローアップスイッチがON状態である場合にSUL信号がON状態となり、スローアップスイッチがOFF状態である場合にSUL信号がOFF状態となる。
SDL信号は、上述のように、スローダウンスイッチによって検出される信号である。スローダウンスイッチがON状態である場合にSUL信号がON状態となり、スローダウンスイッチがOFF状態である場合にSUL信号がOFF状態となる。
かご10の走行方向がUP方向であるときにUP信号がON状態となり、かご10の走行方向がUP方向以外であるときにUP信号がOFF状態となる。かご10の走行方向がDN方向であるときにDN信号がON状態となり、かご10の走行方向がDN方向以外であるときにDN信号がOFF状態となる。
1階のUP乗場呼び信号は、1階の乗場装置230のUP乗場呼び釦81が押下状態であるときにON状態となる信号である。UP乗場呼び釦81の押下状態で接点がON状態となり、UP乗場呼び釦81の押下状態が解除されると接点がOFF状態となる。
5階のDN乗場呼び信号は、5階の乗場装置230のDN乗場呼び釦82が押下状態であるきにON状態となる信号である。DN乗場呼び釦82の押下状態で接点がON状態となり、DN乗場呼び釦82の押下状態が解除されると接点がOFF状態となる。
なお、図示しないが、その他の乗場呼び釦から出力される乗場呼び信号およびかご呼び釦から出力されるかご呼び信号も制御盤210に入力される。
遠隔点検装置100は、制御装置110と、入力IF(インターフェイス)130と、出力IF(インターフェイス)140と、通信IF(インターフェイス)120とを備える。
入力IF130は、制御盤210とエレベータ機器群220との間でパラレル伝送により入出力される信号の一部を判定用信号として入力するための基板である。制御盤210に入力されるDZ信号、LB信号、GS信号、DS信号、SUL信号、SDL信号、UP信号およびDN信号のそれぞれの信号線を分岐させ、分岐したそれぞれの信号線は入力IF130が備える端子に接続されている。入力IF130に入力された各信号は、さらに、制御装置110に送信される。
出力IF140は、エレベータ機器群220に対して信号を出力するための基板である。制御装置110は、出力IF140に対して、1階のUP乗場呼び信号および5階のDN乗場呼び信号を出力することができる。出力IF140は、1階のUP乗場呼び信号を制御装置110から受けると、その受けた1階UP乗場呼び信号をエレベータ機器群220に対して出力し、5階のDN乗場呼び信号を制御装置110から受けると、その受けた5階DN乗場呼び信号をエレベータ機器群220に対して出力する。
1階の乗場装置230には、1階のUP乗場呼び釦81が備えられている。1階の乗場装置230と制御盤210との間には、1階UP乗場呼び信号を送信するための信号線が設けられている。5階の乗場装置230には、5階のDN乗場呼び釦82が備えられている。5階の乗場装置230と制御盤210との間には、5階DN乗場呼び信号を送信するための信号線が設けられている。なお、本実施の形態において、乗場呼び信号はシリアル伝送により乗場装置230から制御盤210に送信されるため、制御盤210側からパラレル伝送線を分岐させて遠隔点検装置100に乗場呼び信号を入出力させることができないものとする。
1階のUP乗場呼び釦81が押されると、接点が短絡してON状態となった信号が1階の乗場装置230に入力される。これにより、1階の乗場装置230は、制御盤210に対してON状態の1階UP乗場呼び信号を送信(シリアル伝送)する。出力IF140の端子には1階UP乗場呼び信号を送信する信号線が接続され、本信号線は乗場装置230と接続されている。そして、出力IF140からON状態となった1階UP乗場呼び信号が出力された場合、1階のUP乗場呼び釦81の接点が短絡するように改造されている。これにより、1階の乗場装置230から制御盤210に対してON状態の1階UP乗場呼び信号が送信される。つまり、出力IF140からON状態の1階UP乗場呼び信号を送信することで、擬似的に、1階のUP乗場呼び釦81が押された状態を作ることができる。
5階のDN乗場呼び釦82が押されると、接点が短絡してON状態となった信号が5階の乗場装置230に入力される。これにより、5階の乗場装置230は、制御盤210に対してON状態の5階DN乗場呼び信号を送信(シリアル伝送)する。出力IF140の端子には5階DN乗場呼び信号を送信する信号線が接続され、本信号線は乗場装置230と接続されている。そして、出力IF140からON状態となった5階DN乗場呼び信号が出力された場合、5階のDN乗場呼び釦82の接点が短絡するように改造されている。これにより、5階の乗場装置230から制御盤210に対してON状態の5階DN乗場呼び信号が送信される。つまり、出力IF140からON状態の5階DN乗場呼び信号を送信することで、擬似的に、5階のDN乗場呼び釦82が押された状態を作ることができる。
本実施の形態において、遠隔点検を行うために、擬似的な乗場呼びを遠隔点検装置100が生成し、これによりかご10を走行させることを「診断用運転」と称する。本例では、遠隔点検装置100は、上記のように擬似的な1階UP乗場呼びおよび5階DN乗場呼びを生成する。この2つの乗場呼びを組み合わせることで、かご10に最下階(1階)と最上階(5階)との間を走行させる診断用運転を実施させることができる。
エレベータ機器群220と、入力IF130および出力IF140とは、パラレル伝送により信号が送受信される。入力IF130および出力IF140と、制御装置110ともパラレル伝送により信号が送受信される。エレベータ機器群220と入力IF130とを繋ぐ各信号線から入力される信号は、メーカーごとに電圧等にばらつきがある(たとえば、24V、48V、100V)ので、入力IF130で共通化して制御装置110に信号を入力する。
また、本実施の形態においては、機械室5に温度センサ15が設置されている。制御装置110は、温度センサ15の検知結果を取得可能に構成されている。これにより、制御装置110は、機械室5の温度を検知することができる。温度センサ15は、機械室に限らず、エレベータの昇降路8内の任意の位置、昇降路8周辺またはエレベータの周辺に設置してもよい。また、本実施の形態においては、制御装置110は、かご10に取り付けられたインターホン16の電圧を取得可能に構成されている。これらの情報を用いて、機械室15等の温度あるいはインターホンの状態が正常か否かを判定することが可能である。
制御装置110は、少なくともプロセッサ(CPU)111とメモリ112とを備えるPLCである。メモリは、たとえば、ROMおよびRAMである。これらは、バスを介して相互に通信可能に接続されている。ROMは、制御装置110を制御するためのプログラムを格納する。CPUは、ROMに保存されているプログラムをRAMに読み込んで実行し、制御装置110を制御する。RAMは、CPUがプログラムを実行する際の作業領域となるものであり、プログラムやプログラムを実行する際のデータ等を一時的に記憶する。制御装置110は、入力IF130、出力IF140および通信IF120と通信可能に構成されている。通信IF120は、ネットワークを介して管理サーバ300と通信するための基板である。
上述のように、端末400は、表示部410と入力部420とを備える。表示部410は、たとえば、ディスプレイである。入力部420は、たとえば、キーボード、マウス、または、表示部410と一体化されたタッチパネルディスプレイである。
管理サーバ300は、通信IF120を介して、制御装置110に対する遠隔点検の指令を行うとともに、制御装置110から遠隔点検の結果を取得する。端末400および管理サーバ300も、制御装置110と同様に、プロセッサ(CPU)およびメモリ(ROM、RAM)を備える。
制御装置110は、出力IF140を介して、1階の乗場装置230に対して1階UP乗場呼び信号を送信することで、擬似的に1階UP乗場呼びを発生させる。制御装置110は、出力IF140を介して、5階の乗場装置230に対して5階DN乗場呼び信号を送信することで、擬似的に5階DN乗場呼びを発生させる。これにより、かご10に1階と5階との間を走行させて、上述の診断用運転を実施させることができる。
制御装置110は、制御盤210に入出力されるDZ信号、LB信号、GS信号、DS信号、SUL信号、SDL信号、UP信号およびDN信号を、入力IF130を介して取得する。また、制御装置110は、温度センサ15の検知結果およびインターホン16の電圧を信号として取得する。制御装置110は、これらの信号に基づき、遠隔点検の各項目を判定し、判定結果を通信IF120を介して管理サーバ300に送信する。判定結果は、端末400上で確認可能である。
ここで、エレベータシステム200から入力される各信号は、エレベータのメーカーあるいはエレベータの機種によって、仕様が異なる場合がある。たとえば、DZ信号、LB信号、GS信号、DS信号に相当する信号を取得する場合、ON状態とOFF状態とが逆になって入力されることがある。たとえば、LB信号に関して、ブレーキがかかった状態(ブレーキが開放されていない状態)で信号がONになる場合と、ブレーキが開放された状態で信号がONになる場合とが想定される。
本実施の形態では、制御装置110のメモリ112は、各メーカーあるいは各機種に対応した変換マップを記憶している。変換マップにより、信号の仕様が共通化されるように、各信号が変換される(たとえば、DZ信号、LB信号、GS信号、DS信号のON/OFFを反転させる変換)。また、SUL信号、SDL信号、UP信号およびDN信号は必須の信号ではなく、これらの信号が取得できなくても差し支えない(詳細は後述する)。
たとえば、巻上機250のロータリエンコーダの信号を取り込み、これに基づきUP信号およびDN信号を生成してもよいし、DZ信号に基づきUP信号およびDN信号を生成してもよい(詳細は後述する)。この場合、上記変換マップを使用して、ロータリエンコーダの信号またはDZ信号を、UP信号およびDN信号に変換するようにすればよい。
なお、図2を用いて説明したように、制御盤210に設けられたコネクタ261を介して、制御盤210とX社製の保守装置とがシリアル通信による通信接続を行うことができるように構成されている。
(診断用運転)
図8は、診断用運転におけるかご10の走行と信号との関係を説明するための図である。上述のように、本実施の形態では、擬似的な1階UP乗場呼びおよび5階DN乗場呼びを生成し、かご10に最下階(1階)と最上階(5階)との間を走行させる診断用運転を実施可能である。これにより、たとえば、1階から5階までの走行時間等を計測可能である。
診断用運転は、かご10が割当て対象かごから除外されない状態、すなわち、エレベータの利用客からの乗場呼びにかご10が応答可能な状態で実施する。このため、診断用運転によってかご10を1階に呼んだ後に5階に走行させようとしても、利用客の乗場呼びによって、1階とは異なる階に走行してしまう可能性もあるし、診断用運転中に、利用客のかご呼びによって、1階と5階の間の階に停止することもある。このため、診断用運転は、たとえば、月に1回、エレベータの利用客がいない深夜時間等に実施される。
遠隔点検の点検項目の判定は、「運転診断」による判定と、「常時診断」による判定とを含む。診断用運転を行い、当該診断用運転に基づき遠隔点検項目の診断を行うことを「運転診断」と称する。運転診断では、遠隔点検装置100の指示部155(後述する)によって送信された乗場呼び信号に応答してかご10が走行した際に取得した判定用信号を用いて判定を行う。
一方、診断用運転に限らず、エレベータの利用客の操作等によりかご10が動作するたびに遠隔点検項目の診断を行うことを「常時診断」と称する。常時診断では、遠隔点検装置100の指示部155によって乗場呼び信号が送信されたか否かを問わず取得した判定用信号を用いて判定を行う。
本例では、時刻t0において、かご10が1階で停止しているものとする。このとき、かご10が最下階(1階)で停止しているため、SUL信号はOFF状態であり、SDL信号はON状態である。巻上機250のブレーキが動作しているため、LB信号はOFF状態である。かご10の位置は、1階において戸開可能な位置範囲(ドアゾーン内)にいるので、DZ信号はON状態である。かご10側の扉60が戸閉状態であるため、GS信号はON状態である。乗場側の扉61が戸閉状態であるため、DS信号はON状態である。
ここで、遠隔点検装置100は、診断用運転を行うため、5階の乗場装置230に対して、5階のDN乗場呼び信号をON状態にして出力したとする。これにより、5階の乗場装置230のDN乗場呼び釦82の押下状態が模擬的に生成される。
これにより、5階DN乗場呼びが登録され、時刻t1において、かご10が5階に向けて走行を開始する。このとき、巻上機250のブレーキが開放され、LB信号はOFF状態からON状態に変化する。かご10の位置が1階のドアゾーンから外れるため、DZ信号はON状態からOFF状態に変化する。さらに、スローダウンスイッチがON状態からOFF状態に変化するため、SDL信号はON状態からOFF状態に変化する。かご10は、加速走行状態となりUP方向に走行している。
その後、かご10は、定速走行状態(かご10の速度が定格速度に達し、定格速度を維持してかご10が走行している状態)となり、時刻t2において、かご10の位置が2階になったとする。このとき、かご10の位置が2階のドアゾーン内に入り、DZ信号はOFF状態からON状態に変化する。さらに、かご10の位置が2階のドアゾーンを外れると、DZ信号はON状態からOFF状態に変化する。
時刻t3においては、かご10の位置が4階になり、かご10の位置が4階のドアゾーン内に入り、DZ信号はOFF状態からON状態に変化している。かご10の位置が4階のドアゾーンを外れると、DZ信号はON状態からOFF状態に変化する。その後、時刻t4において、かご10は、5階に停止するために減速走行状態に変化している。
時刻t5において、かご10が5階(最上階)に停止したとする。スローダウンスイッチがON状態からOFF状態に変化することで、SDL信号はOFF状態からON状態に変化している。かご10の位置が5階のドアゾーン内に入ることで、DZ信号はOFF状態からON状態に変化している。巻上機250のブレーキが動作し(開放状態が解除され)、LB信号はON状態からOFF状態に変化している。
時刻t6において、かご10が戸開状態(かご10側の扉60および乗場側の扉61が戸開状態)になると、GS信号およびDS信号はON状態からOFF状態に変化する。所定時間が経過すると、かご10が戸閉状態となる。これにより、GS信号およびDS信号はOFF状態からON状態に変化する。
このように、かご10が1階で停止している状態で、遠隔点検装置100がエレベータシステム200に対して5階のDN乗場呼び信号をON状態にして出力した場合、かご10を1階から5階まで走行させることができる。その際、変化するエレベータの各種信号を遠隔点検装置100に取得し、これらの信号に基づき遠隔点検を行うことができる。
かご10を1階で停止させるためには、遠隔点検装置100がエレベータシステム200に対して1階のUP乗場呼び信号をON状態にして出力すればよい。これにより、かご10は1階に向けて走行する。
また、かご10が5階で停止している状態で、遠隔点検装置100がエレベータシステム200に対して1階のUP乗場呼び信号をON状態にして出力した場合、かご10を5階から1階まで走行させることができる。その際、変化するエレベータの各種信号を遠隔点検装置100に取得し、これらの信号に基づき遠隔点検を行うことができる。
なお、診断用運転は、最下階のUP乗場呼びおよび最上階のDN乗場呼びを生成させて実施するものに限らず、任意の2階床の乗場呼びにより実施するものであってもよい。たとえば、最上階(5階)に対するエレベータのサービスが行われない(最上階に停止できない)ようにサービス切り離し設定が行われているとする。この場合、1階のUP乗場呼びおよび4階のDN乗場呼びを生成させて診断用運転を実施してもよい。ただし、この場合、図7に示した例において、5階の乗場装置230ではなく、4階の乗場装置230に対して4階DN乗場呼び信号が出力させるように改造する必要がある。
(遠隔点検に適した信号について)
本実施の形態においては、エレベータの安全回路を作動させるための条件判定に使用される信号(DZ信号、LB信号、DS信号、GS信号)を遠隔点検の判定用信号として使用している。また、据付容易性(施工性)の観点から、かご呼びではなく乗場呼びを遠隔点検の運転診断(診断用運転)用の出力信号として使用している。以下、その理由を説明する。
エレベータは、ハードウェアまたはソフトウェアが所定の異常を検出したときにエレベータの動作を停止させる安全回路を備える。たとえば、安全回路が備える複数の接点のうちいずれか1つが開放されたときに、巻上機250および巻上機250の電磁ブレーキのブレーキコイルへの電力の供給が遮断されるように構成される。これにより、巻上機250の駆動力が失われるとともに、電磁ブレーキが制動状態となってかご10が停止する。
エレベータシステム200には、安全装置として、調速機(図示なし)、非常止め装置(図示なし)、緩衝器14等が備えられている。調速機は、かご10に設置され、かご10の速度を物理的に検出する装置である。非常止め装置は、かご10に設置され、調速機が異常な速度を検出したときに、物理的にかご10にブレーキをかける装置である。緩衝器14は、ピット6内に設置され、かご10の落下時の衝撃を吸収する装置である。
たとえば、異常な速度でのかご10の走行がハードウェア(調速機)またはソフトウェア(内部信号)で検出された場合、ソフトウェアによるかご10の停止指令を行うとともに、ハードウェアまたはソフトウェアにより安全回路を作動させる。安全回路が作動することで、エレベータに対して供給される電力が停止してかご10の動作が停止する。さらには、非常止め装置または緩衝器14により物理的にかご10を停止させることができる。
安全回路が作動した場合、巻上機250の電磁ブレーキのブレーキコイルに対する電力の供給が遮断され(LB信号がOFF状態)、これにより、電磁ブレーキが制動状態となってかご10は停止する。
あるいは、スローダウンスイッチの下部またはスローアップスイッチの上部に設置されたリミットスイッチ(ファイナルリミットスイッチ)がON状態となることで、昇降路の頂部または底部への衝突を防止するために、安全回路が作動してかご10が停止する。
また、戸開した状態でかご10が走行した場合、利用客が乗場側から昇降路8内に転落、あるいは、乗場側の出入口とかご10に人が挟まれる危険性がある。このため、乗場側の扉61が開いた状態(乗場ドアスイッチ(DS信号)がOFF状態)あるいはかご側の扉60が開いた状態(かごドアスイッチ(GS信号)がOFF状態)ではかご10が走行しないようエレベータが制御される。
また、かご10がドアゾーン外(DZ信号がOFF)である状態では、戸開しないようにエレベータが制御される。たとえば、かご10がドアゾーン外(DZ信号がOFF)かつ戸開状態(DS信号またはGS信号がOFF状態)である場合には、安全回路が作動してかご10が停止する。
以上説明したエレベータの安全装置、安全回路は、建築基準法等の法規制によって上述のような動作を行う。このため、各メーカーのエレベータは、DS信号(乗場ドアスイッチのON/OFF)、GS信号(かごドアスイッチのON/OFF)、LB信号(電磁ブレーキの開放/制動)、DZ信号(ドアゾーンの検出/非検出)または、それに類する信号を接点信号として出力していることが通常である。これらの信号は、エレベータの安全回路を作動させるための条件判定に使用される信号である。
このため、本実施の形態では、各社共通で使用されているDS信号、GS信号、LB信号、DZ信号またはそれに類する信号を、遠隔点検の点検項目の判定に使用している。その他の信号は、メーカーまたはエレベータの機種によっては、パラレル伝送の信号として取得できる場合と取得できない場合とがある。このような信号を用いた場合、エレベータによっては遠隔点検の項目を判定できる場合と判定できない場合とが生じてしまう。
DZ信号は、階床間の移動時間またはかご位置の算出に用いることが可能である。たとえば、現在、かご10が最下階(1階)で停止しているとする。かご10が走行を開始するとDZ信号がON状態からOFF状態に変化し、かご位置が2階に達すると、DZ信号がOFF状態からON状態に変化する。
このため、かご10が1階で停止している場合、DZ信号がON状態からOFF状態に変化してからOFF状態からON状態に変化するまでの時間を、1階から2階までのかご10の走行時間であると算出することができる。また、DZ信号がOFF状態からON状態になったタイミングで、かご位置を1階から2階に変化させればよい。このように、DZ信号の変化タイミングで、階床間の移動時間および階床位置を算出することが可能である。
その際、SDL信号がON状態である場合にかご位置=1階(最下階)として設定し、SUL信号がON状態である場合にかご位置=5階(最上階)として設定すればよい。また、DZ信号がOFF状態からON状態に変化した場合、UP信号がON状態であればかご位置を1階床分増加させ、DN信号がON状態であればかご位置を1階床分減少させればよい。
ただし、遠隔点検において、SDL信号、SUL信号、UP信号、DN信号は必ずしも必須の信号というわけではない。たとえば、深夜、エレベータの利用客が全くいない状態において、診断用運転により、1階UP乗場呼びを発生させるとする。かご10が1階UP乗場呼びに応答して、停止した階を「1階」と設定することもできる。または、5階DN乗場呼びを発生させる。かご10が5階DN乗場呼びに応答して、停止した階を「5階」と設定することもできる。
また、深夜の診断用運転において、1階UP乗場呼び、5階DN乗場呼び、1階UP乗場呼びを発生させる場合、最初の1階UP乗場呼びに応答した状態において、かご位置=1階、かご方向=UP方向と設定する。次に、5階DN乗場呼びによって走行している状態において、DZ信号がON状態に変化するたびにかご位置の階床を1増やす。5階DN乗場呼びに応答した状態において、かご位置=5階、かご方向=DN方向と設定する。次に、1階UP乗場呼びによって走行している状態において、DZ信号がON状態に変化するたびにかご位置の階床を1減らす。1階UP乗場呼びに応答した状態において、かご位置=1階、かご方向=UP方向と設定する。このように構成した場合、SDL信号、SUL信号、UP信号、DN信号を取り込まなくても、かご位置と走行方向とを把握可能である。
また、UP信号およびDN信号が取得できない場合に、ドアゾーン検出装置の検出結果を使用することも可能である。たとえば、ドアゾーン検出装置が複数のセンサを備え、複数のセンサのそれぞれに対応して複数のドアゾーン検出用のプレートが設置されているものとする。複数のセンサは、かご10の位置によって検出タイミングが異なる。かご方向がUP方向である場合とDN方向である場合とで、各センサがON状態に変化するタイミング(またはOFF状態に変化するタイミング)が異なる場合、各センサの状態変化タイミングを利用してかご方向を特定すればよい。
また、UP信号およびDN信号が取得できない場合に、巻上機250のロータリエンコーダのパルス情報を使用することも可能である。この場合、ロータリエンコーダから制御盤210に出力される信号線を分岐させて、遠隔点検装置100に信号入力可能なように構成する。この場合、A相およびB相のいずれのパルスが先に出力されるかによって、かご方向を判断することができる。たとえば、A相のパルスに1/4周期遅れてB相のパルスが出力される場合にかご方向をUP方向に設定し、B相のパルスに1/4周期遅れてA相のパルスが出力される場合にかご方向をDN方向に設定するようにしてもよい。
なお、ロータリエンコーダからの出力情報を用いた場合、かご10のかご位置、かご速度も算出することが可能となる。ロータリエンコーダから検出されたパルス数からかご10が移動した距離(かご位置)を算出することが可能である。また、単位時間あたりに検出されたパルス数によってかご速度を算出することも可能である。このようにした場合、かご10が、停止状態、加速走行状態、定速走行状態、減速走行状態のいずれであるかを把握することができるし、かご位置およびかご速度が適切であるかを判断することも容易になる。
しかしながら、ロータリエンコーダから出力されるパルス数とかご位置との関係は、エレベータの定格速度、エレベータの機種、エレベータのメーカー、ロータリエンコーダの種類等によってまちまちである。このため、現場ごとにパルス数とかご位置との関係を実測する必要が生じ、遠隔点検システム1の工事設計および据付作業が複雑になってしまう。このため、据付容易性および据付コストの点を鑑みれば、上述のように、エレベータの位置情報の把握にはDZ信号を用いることが望ましい。
また、本実施の形態においては、かご10を走行させる診断用運転を行う場合、遠隔点検装置100は、最上階DN乗場呼びおよび最下階UP乗場呼びを擬似的に出力するように構成している。これにより、最下階と最上階との間でかご10を走行させることが可能となる。
このように最下階と最上階との間でかご10を走行させたい場合、遠隔点検装置100は、乗場呼びではなく、最上階へのかご呼びおよび最下階へのかご呼びを擬似的に出力するように構成してもよい。しかしながら、本実施の形態においては、据付容易性(施工性)の観点から、かご呼びではなく乗場呼びを遠隔点検装置100から出力させるようにしている。
上述のように、乗場呼びを擬似的に生成させるためには、信号入力により乗場に設置された乗場装置230の乗場呼び釦の接点が短絡するように改造する。乗場呼び信号を送信するための信号線(信号ケーブル)は、機械室5に設置された遠隔点検装置100から、昇降路8の壁面を這わせて、昇降路8の壁面に埋め込まれた最上階および最下階の乗場装置230の乗場呼び釦に接続すればよい。このように昇降路8の壁面を這わせて信号線を設置する場合、途中に障害物がないため、比較的設置が容易である。
一方、かご呼びを擬似的に生成させるためには、信号入力によりかご10に設置されかご装置240のかご呼び釦の接点が短絡するように改造する。そのためには、かご呼び信号を送信するための信号線は、機械室5に設置された遠隔点検装置100から、かご10の内部に設置されたかご装置240のかご呼び釦に接続する必要がある。
この場合、かご10内部に信号線を入れる必要があるため、機械室5とかご10とを繋いでいる制御ケーブル22内の信号線のうちの空き線を利用する必要がある。ところが、どの線が空き線であるか確認する必要があるし、空き線がない可能性もある。また、機械室5側とかご10側とで制御ケーブル22の信号線が一致しているか確認する必要もあり、設置が容易ではない。このような事情から、本実施の形態においては、診断用運転において、乗場呼びを擬似的に生成させるようにしており、かご呼びは擬似的に生成させていない。
以上説明したように、本実施の形態では、メーカーおよび機種ごとに通信仕様が異なるシリアル伝送による信号を用いず、パラレル伝送による信号を遠隔点検の点検項目の判定に使用している。特に、本実施の形態では、メーカーおよび機種を問わず共通で用いられる信号であって、据付容易性(施工性)および据付コストの観点から利用に適した信号を遠隔点検の点検項目の判定に使用している。
具体的には、乗場呼び信号、および、エレベータの安全回路を作動させるための条件判定に使用されるDS信号、GS信号、LB信号、DZ信号またはそれに類する信号を遠隔点検の点検項目の判定に使用している。このように、遠隔点検装置100での利用に適した信号が大きく制限される状況下において、いかにして遠隔点検を実施するかが、本実施の形態における大きな課題となっている。
たとえば、シリアル伝送による信号を用いた場合(たとえば、図2に示した制御盤210とのシリアル通信を行うX社製の遠隔点検装置500)、次のように容易に遠隔点検を実施することができる。
エレベータは、機種および定格速度ごとにエレベータ固有の速度パターンを有する。速度パターンは、走行開始階から目的階へ走行する場合に、経過時間とかご速度との関係を示すものである。かご10は、走行開始階から走行を開始した時に加速走行状態となり、次に、定速走行状態となり、目的階への到着直前に減速走行状態となる。制御盤210は、巻上機250のロータリエンコーダから取得したパルス信号を元に、走行開始階から目的階までの速度パターンの実測値を算出および保持可能である。このため、速度パターンの実測値とエレベータ固有の速度パターン(予め用意された値)とを比較することで、エレベータの起動状態、加速走行状態、定速走行状態、減速走行状態のそれぞれが、正常であるか否かを判定することができる。図2に示したように、制御盤210とシリアル通信により接続する遠隔点検装置500であれば、制御盤210の保持する内部信号にアクセス可能であるので、このような方法で容易に遠隔点検を実現可能となる。
一方、本実施の形態においては、遠隔点検装置100は、遠隔点検での利用に適した信号の制約から、位置を特定する信号として「DZ信号」(ドアゾーン内であるか否かを特定する信号)を使用する。DZ信号からでは、かご10が、加速走行状態であるのか、定速走行状態であるのか、減速走行状態であるのか判別がつかない。このため、限られた信号を用いて遠隔点検を行うためには、判定方法に工夫が必要である。言い換えれば、シリアル通信が可能な遠隔点検装置500による遠隔点検を実現する場合には、DS信号、GS信号、LB信号、DZ信号のような信号を組み合わせて遠隔点検の点検項目を判定しようとする動機付けがないし、そのような発想にも思い至らない。
本実施の形態においては、制御盤210が1台のエレベータ(かご10)を制御すること(図3参照)を前提として、図1、図7に示したように、エレベータシステム200に対して、1つの遠隔点検装置100が接続されるように構成されている。これに対して、図6に示したように、制御盤210bが複数台のエレベータ(かご10)を制御する場合(マルチカーの構成)は、複数台のエレベータ(かご10)の各々に遠隔点検装置100を設置するように構成すればよい。あるいは、複数台のエレベータに対して1つの遠隔点検装置100を設置するように構成してもよい。
複数台のエレベータ(かご10)の各々に遠隔点検装置100を設置する場合は、次のように構成すればよい。たとえば、図6に示す構成において、1号機を制御する各台制御部212と1号機のエレベータ機器群220b(かご装置240等)とを繋ぐ制御ケーブル22,23に含まれる信号線の一部を分岐させて、1号機のDZ信号等の判定用信号が1号機に接続される遠隔点検装置100(入力IF130)に入力されるように構成すればよい。
同様に、2号機を制御する各台制御部212と2号機のエレベータ機器群220b(かご装置240等)とを繋ぐ制御ケーブル22,23に含まれる信号線の一部を分岐させて、2号機のDZ信号等の判定用信号が2号機に接続される遠隔点検装置100(入力IF130)に入力されるように構成すればよい。この場合、各遠隔点検装置100は、当該遠隔点検装置100に接続されたエレベータのかご10(制御部152が判定対象とする対象かご)の判定用信号を取得し、対象かごに対して遠隔点検項目の判定を行う。
複数台のエレベータに接続される複数の遠隔点検装置100は、1台の管理サーバ300および1台の端末400に接続されるように構成すればよい。なお、マルチカーの場合は、乗場装置230に対して乗場呼び信号を送信しない。仮に、マルチカーの場合であって、乗場装置230に対して乗場呼び信号を送信する場合は、各遠隔点検装置100(出力IF140)と乗場装置230とを信号線で接続する。そして、いずれの遠隔点検装置100からの信号出力によっても、乗場呼び釦の接点が短絡可能となるように、乗場装置230を構成すればよい。
複数台のエレベータ(かご10)に対して1つの遠隔点検装置100を設置する場合は、次のように構成すればよい。図6に示す構成において、1号機を制御する各台制御部212と1号機のエレベータ機器群220bとを繋ぐ制御ケーブル22,23に含まれる信号線の一部を分岐させた信号線、および、2号機を制御する各台制御部212と2号機のエレベータ機器群220bとを繋ぐ制御ケーブル22,23に含まれる信号線の一部を分岐させた信号線のいずれもが、1つの遠隔点検装置100に入力されるように構成すればよい。この場合、遠隔点検装置100は、号機ごとに遠隔点検項目の判定を行い、各号機の判定結果を管理サーバ300に送信すればよい。
(遠隔点検システム1が実行する処理)
以下、遠隔点検システム1が実行する処理について具体的に説明する。図9は、遠隔点検システム1の機能ブロック図の一例を示す図である。遠隔点検システム1は、取得部151と、制御部152と、出力部153と、受付部154と、指示部155とを備えるとともに、データ群156を記憶する。
受付部154は、端末400の入力部420から、保守員(端末400を操作するユーザ)の操作を受け付ける。たとえば、保守員は、端末400の表示部410の表示画面において、入力部420の操作により、運転診断を実施する日時の設定、手動による運転診断の実行等をすることができる(後述の図10参照)。
制御部152は、データ群156にアクセス可能である。データ群156は、設定データ422と、基準時間データベース(「DB」とも称する)423と、運行履歴424と、判定結果425とを含む。制御部152は、設定データ422、基準時間DB423、運行履歴424および判定結果425の読み込みまたは更新を行う。
設定データ422は、遠隔点検に関する各種情報が記憶されたデータである。たとえば、設定データ422は、遠隔点検に関するビル2およびエレベータの情報等を記録する。入力部420の操作により診断用運転を実施する日時の設定が行われた場合は、制御部152は、当該日時を設定データ422に記録する。
基準時間DB423は、制御部152が遠隔点検の各点検項目の判定に用いる基準時間(たとえば、後述する起動時間の基準時間KA)を記録するデータベースである。詳しくは、図12、図13を用いて後述する。運行履歴424は、遠隔点検システム1が取得したエレベータシステム200の信号の履歴データである。判定結果425は、遠隔点検の各点検項目の判定結果が格納されたデータである。
制御部152は、設定データ422に記録された運転診断の実施日時または保守員の操作(手動)による運転診断の実行指令に基づき、運転診断を実施するために、エレベータの乗場呼びを発生させる乗場呼び信号を生成する。
指示部155は、エレベータシステム200のエレベータ機器群220に対して、制御部152が生成した乗場呼び信号を送信する。この乗場呼びに応答することで、エレベータシステム200は、診断用運転を実行する。
取得部151は、エレベータシステム200のエレベータ機器群220から判定用信号(DZ信号、LB信号、GS信号、DS信号等)を取得する。取得部151は、上記運転診断時の判定用信号のみならず、常に信号をエレベータ機器群220から取得している。
制御部152は、取得部151が取得した判定用信号に基づき遠隔点検の点検項目を判定し(判定処理を行い)、判定結果を生成する。遠隔点検の点検項目は、かご10の、起動状態、加速走行状態、定速走行状態、減速走行状態、着床状態、行先階釦の状態、乗場釦の状態、戸開閉状態、ブレーキ状態(電磁ブレーキの異常の有無)を含む。制御部152は、取得した判定用信号を運行履歴424に記録するとともに、遠隔点検の点検項目の判定結果を判定結果425に記録する。
出力部153は、端末400の表示部410に表示させるために、遠隔点検の点検項目の判定結果等の情報を出力する。これにより、保守員は、端末400の表示部410にて遠隔点検の判定結果等を確認することができる。
本実施の形態において、遠隔点検システム1は、遠隔点検装置100と、管理サーバ300と、端末400とによって構成されるものとした。しかし、これに限らず、遠隔点検システム1は、管理サーバ300および端末400を含まずに構成してもよいし、これらを一体化した装置として構成してもよい。たとえば、遠隔点検システム1は、遠隔点検装置100のみによって構成されるものとしてもよいし、遠隔点検装置100と管理サーバ300とによって構成されるものとしてもよい。また、遠隔点検装置100は、制御装置110、入力IF130、出力IF140および通信IF120とによって構成されるように構成した。しかし、これに限らず、入力IF130、出力IF140および通信IF120の機能が一体化されて、制御装置110において全ての機能が実現されるように構成してもよい。
取得部151、制御部152、出力部153、受付部154および指示部155の各部によって実行される処理は、制御装置110のプロセッサ111によって実行される処理であってもよいし、遠隔点検装置100が備える基板のいずれかのプロセッサによって実行されるものであってもよい。たとえば、取得部151は、入力IF130のプロセッサによって実行される処理であってもよい。指示部155は、出力IF140のプロセッサによって実行される処理であってもよい。出力部153および受付部154は、通信IF120、管理サーバ300および端末400のいずれかのプロセッサによって実行される処理であってもよい。遠隔点検装置100が、取得部151、制御部152、出力部153、受付部154および指示部155を備えるよう構成してもよいし、遠隔点検装置100が、取得部151および指示部155を備え、管理サーバ300が、制御部152、出力部153、受付部154を備えるように構成してもよい。データ群156は、制御装置110のメモリ112に記憶されるものであってもよいし、その一部が管理サーバ300のメモリに記憶されるものであってもよい。
図10は、遠隔点検システム1の表示画面421の一例を示す図である。表示画面421は、端末400の表示部410に表示される。表示画面421には、遠隔点検の設定情報、遠隔点検の各項目の判定結果、設定釦等が表示される。
表示画面421の最上部には、ビル2の物件名称が「ABCビル」であることが示されている。その下には、運転診断関連の判定状況が表示されている。本例では、図8に示したような、1階と5階との間の診断用運転を行った結果が走行方向別に示されている。
「UP方向」の欄は、UP方向で1階から5階まで走行したときの結果である。「走行時間」は、1階から5階への走行に要した時間である。「起動時間」は、1階から走行を開始する際にかご10の起動に要した(ドアゾーンを抜けるまでの)時間である。その他、1階から5階に走行する際に、1階から2階までの走行(加速走行状態を含む)に要した時間、2階から3階までの走行(定速走行状態)に要した時間、3階から4階までの走行(定速走行状態)に要した時間、4階から5階までの走行(減速走行状態を含む)に要した時間がそれぞれ示されている。「DN方向」の欄に関しても同様である。
ここで、「計測時間」は、診断用運転時に実際に計測された時間である。「基準時間」は、計測時間が正常であるか否かを判定するための基準となる時間である。「判定条件」は、基準時間に基づき定められた条件であって、計測時間が判定条件の数値範囲内である場合に、「正常状態」であるとの判断がなされる。一方、計測時間が判定条件の数値範囲外である場合、「変調状態」であると判断される。
本実施において、「変調状態」とは、正常状態に該当しない状態を示す。変調状態は、異常状態とまでは言えないが、エレベータシステム200の何らかの機器の故障または異常状態の予兆を示すような状態を含んだ状態である。「変調状態」であるか否かが判断されることで、故障の予兆(故障に至る前の状態)を捉えることができる。「判定」の欄には、判定結果が「正常状態」である場合に丸印が表示され、「変調状態」である場合に三角印が表示される。
たとえば、表示画面421の「起動時間」において、基準時間がKAであり、計測時間がTAであり、判定条件がKAL~KAHであり、判定結果が正常状態であることが示されている。これは、KAL≦TA≦KAHの条件が満たされたために、起動時間の判定結果として正常状態が得られたことを意味する。
さらにその下部には、運転診断に基づく判定結果が示されている。本例において、起動状態、走行状態、かご呼び釦状態、乗場呼び釦状態が「正常状態」であると判定され、戸開閉状態が「変調状態」であると判定されている。その下部には、常時診断による判定結果が示されている。本例において、ブレーキ状態、着床状態が「正常状態」であると判定されている。
表示画面421の最下部には、入力部420によりクリック可能な各種釦が配置されている。「運転診断設定」において、運転診断を実行する日時の設定が可能である。本例では、「運転診断設定」において、入力部420により23日23時59分が入力されている。「設定」釦がクリックされると、毎月23日の23時59分に運転診断が実行される。本設定情報は、設定データ422に記録される。
また、月に1回の運転診断の自動実行とは別に、「手動運転診断」釦をクリックすることで、即座に運転診断を実行することができる。運転診断が実行されると、実行結果に基づき「計測時間」の表示が更新されるとともに、判定結果として「正常状態」または「変調状態」が示される。
「基準時間」の欄には、原則としては、遠隔点検システム1がビル2に据え付けられたときに運転診断を実施し、その際の計測時間が基準時間として設定されている。ただし、「基準時間保存」釦をクリックすると、直近に実行した運転診断における計測時間が基準時間として更新され、更新された基準時間に基づいて判定条件が更新される。
たとえば、図10の例において、直近の運転診断における起動時間の計測時間は「TA」として計測されており、基準時間は「KU」である。この状態で、「基準時間保存」釦をクリックすると、基準時間が「TA」に更新され、更新された基準時間に基づいて判定条件KAL,KAHが更新される。
以下、フローチャートに基づき、遠隔点検システム1が実行する処理について説明する。図11は、遠隔点検処理および端末設定処理のフローチャートである。遠隔点検システム1は、遠隔点検処理を実行する。遠隔点検処理は、判定用信号に基づき遠隔点検の点検項目を判定する処理である。遠隔点検処理は、周期的(たとえば、100msecごと)に起動するようにすればよい。以下、「ステップ」を単に「S」とも称する。
一方、端末400の表示画面421において、操作釦がクリックされたときに、端末設定処理が実行される。端末設定処理が開始すると、端末400は、S151において、「手動運転診断」釦がクリックされたか否かを判定する。端末400は、「手動運転診断」釦がクリックされた場合(S151でYES)、手動運転診断の要求設定を行い(S152)、S153に処理を進める。この場合、遠隔点検装置100に対して、手動運転診断の要求が送信される。端末400は、「手動運転診断」釦がクリックされていない場合(S151でNO)、そのままS153に処理を進める。
端末400は、S153において、「基準時間保存」釦がクリックされたか否かを判定する。端末400は、「基準時間保存」釦がクリックされた場合(S153でYES)、基準時間保存の要求設定を行い(S154)、S155に処理を進める。この場合、遠隔点検装置100に対して、基準時間保存の要求が送信される。端末400は、「基準時間保存」釦がクリックされていない場合(S153でNO)、そのままS155に処理を進める。
端末400は、S155において、「設定」釦がクリックされたか否かを判定する。端末400は、「設定」釦がクリックされた場合(S155でYES)、運転診断設定時刻の設定要求を行い(S156)、端末設定処理を終了する。この場合、遠隔点検装置100に対して、運転診断設定時刻が送信される。端末400は、「設定」釦がクリックされていない場合(S155でNO)、そのまま端末設定処理を終了する。
一方、遠隔点検処理が開始すると、遠隔点検システム1の制御部152は、S100において、基準時間取得処理(後述の図14参照)を実行する。基準時間取得処理において、遠隔点検の点検項目の判定において使用する基準時間を基準時間DB423から取得して設定する。
制御部152は、S101において、「手動運転診断」要求があったか否か、または、現在の時刻が運転診断設定時刻になったか否かを判定する。「手動運転診断」釦がクリックされた場合、「手動運転診断」の要求が設定される(S152)。運転診断設定時刻は、運転診断設定時刻の設定要求(S156)に基づき設定された時刻である。
制御部152は、上記いずれかの条件が成立した場合(S101でYES)は、S102に処理を進める。一方で、制御部152は、上記いずれかの条件も成立しなかったと判定した場合(S101でNO)は、S104に処理を進める。
制御部152は、S102において、運転診断時処理を実行する。運転診断時処理は、運転診断を行う際の乗場呼び信号の送信および当該乗場呼び信号に基づく判定処理を実行する処理である。運転診断時処理において、乗場呼び信号が生成される。たとえば、図8を用いて説明したように、かご10を1階から5階へ走行および5階から1階へ走行させるための、1階UP乗場呼び信号および5階DN乗場呼び信号が生成される。
そして、指示部155は、制御部152によって生成された乗場呼び信号をエレベータシステム200に対して出力する。これにより、かご10が乗場呼びに応答して走行することになる。そして、この走行結果に基づき判定処理を行う。運転診断時処理の詳細については後述する。
取得部151は、S104において、エレベータシステム200から判定用信号(DZ信号、LB信号、GS信号、DS信号等)を取得する。制御部152は、終了条件が成立する(S105でYES)まで、エレベータシステム200から判定用信号を取得し続ける。
たとえば、かご10が1階と5階との間を往復したタイミングで、終了条件が成立するようにしてもよいし、かご10が所定の動作を完了(たとえば、戸開閉、ブレーキの開放/制動、着床の完了)するたびに終了条件が成立するようにしてもよいし、周期的(たとえば、数分ごと)に終了条件が成立するようにしてもよい。
制御部152は、終了条件成立が成立したと判定した場合(S105でYES)は、判定処理(S106)を実行する。判定処理において、遠隔点検の点検項目の判定を行う。点検項目として、起動状態、加速走行状態、定速走行状態、減速走行状態、着床状態、行先階釦の状態、乗場釦の状態、戸開閉状態、ブレーキ状態を含む項目うちのいずれかまたは複数の項目の判断を行う。
制御部152は、S107において、取得した判定用信号を運行履歴424に記録するとともに、判定処理において得られた判定結果を判定結果425に記録する。
出力部153は、S108において、判定処理において得られた判定結果を出力する。たとえば、出力部153は、ネットワークを介して、管理サーバ300に対して判定結果を出力(送信)する。端末400は、ネットワークを介して管理サーバ300にアクセスすることで、判定結果を取得できる。これにより、図10に示したように、端末400の表示部410において判定結果を確認することができる。
制御部152は、S109において、基準時間更新処理を実行し、遠隔点検処理を終了する。詳しくは、後述の図13を用いて説明するが、本処理により、基準時間DB423におけるモードBの基準時間を更新する。
(基準時間の切り替え)
図12は、基準時間DB423の一例を示す図である。図10に示した「基準時間」は、基準時間DB423に記録された基準時間から読み出された値である。
基準時間DB423には、図10と同様に、「走行時間」、「起動時間」等の値が設定されている。基準時間DB423を読み出す際のモードとして、モードA~Dのいずれかを事前に設定可能である。図示しないが、端末400での保守員の操作によりモードA~Dのいずれかに設定変更可能に構成すればよい。
図10の例では、モードAが設定されている。このため、基準時間DB423におけるUP方向の「走行時間」として時間KU、「起動時間」として時間KAが読み出されて、図10の表示画面421に表示されている。
ここで、モードAは、基準時間として毎回固定値を使用したい場合に設定される。モードAが設定されている場合、基準時間DB423のモードAの項目に設定された基準時間が毎回使用される。これらの基準時間は、原則として、遠隔点検装置100がビル2に据え付けられたときに測定されたものが設定されている。ただし、表示画面421において「基準時間保存」釦がクリックされた場合には、基準時間は直近の運転診断(診断用運転)時の計測時間に置き換えられる。
モードBは、基準時間として前回の値を使用したい場合に設定される。モードBが設定されている場合、基準時間DB423のモードBの項目に設定された基準時間が使用される。モードBの項目に設定された基準時間は、運転診断(診断用運転)が行われるたびに更新される。
図10の例においては、月に1回、23日の23時59分に診断用運転が行われる。たとえば、1月23日23時59分の診断用運転で、UP方向の起動時間において、基準時間が時間KA1、計測時間が時間TXであった場合、基準時間DB423のモードBの基準時間が時間KA1から時間TXに更新される。これにより、次回(翌月)の2月23日23時59分の診断用運転において、UP方向の起動時間の基準時間として時間TXが用いられる。
モードCは、機械室5の温度に応じて基準時間を変更したい場合に設定される。機械室5の温度は、温度センサ15によって測定される。モードCの項目に設定された基準時間は、機械室5の温度が、K1℃未満(~K1℃)である場合と、K1℃以上かつK2℃未満(K1℃~)である場合と、K2℃以上かつK3℃未満(K2℃~)である場合と、K3℃以上(K2℃~)である場合とに分類して計測された値である。たとえば、5℃刻みあるいは10℃刻みで基準時間を変更すればよい。
この基準時間は、診断用運転の結果に基づき設定すればよい。たとえば、基準時間の測定のために診断用運転が行われたときの機械室5の温度がK1℃以上かつK2℃未満であった場合、基準時間DB423のK1℃以上かつK2℃未満(K1℃~)の項目に基準時間を記録する。複数回診断用運転を行ってその平均値を基準時間として設定してもよい。
モードCが設定されている場合、基準時間DB423のモードCの項目に設定された基準時間が現在の機械室5の温度に応じて使用される。たとえば、診断用運転時の機械室5の温度がK1℃未満(~K1℃)であった場合、K1℃未満の項目に設定された基準時間(たとえば、UP方向の起動時間において「KA2」)が使用される。
なお、温度センサ15によって測定される温度は、機械室5の温度に限らない。温度センサ15は、エレベータの昇降路8内の任意の位置、昇降路8周辺またはエレベータの周辺に設置してもよい。
モードDは、季節に応じて基準時間を変更したい場合に設定される。モードDの項目に設定された基準時間は、季節が、春、夏、秋、冬に分類して計測された値である。たとえば、基準時間の測定のために診断用運転が行われたのが夏であった場合、夏の項目に基準時間が記録される。
モードDが設定されている場合、基準時間DB423のモードDの項目に設定された基準時間が季節に応じて使用される。たとえば、診断用運転時の季節が春であった場合、春の項目に設定された基準時間(たとえば、UP方向の起動時間において「KU126」)が使用される。
モードB~Dは、油圧式エレベータ用に用意したモードである。油圧式エレベータの場合、季節や温度によって油の特性が変わるため、かご10の走行特性に違いが生じやすい。たとえば、夏場の気温が高いときと比べて、冬場は油が固くなるため、起動に時間がかかり、走行時間にもばらつきが出やすいためである。このため、油の特性が変わる、季節または温度で基準時間を切り替えるようにしている。また、モードBにおいて前回診断時の値(先月の値)を用いるのは、直近の診断時と温度環境または機器環境が近い基準時間を用いるためである。
また、基準時間DB423に記録されている基準時間には、「ドアゾーン(「DZ」とも表記する)外となる時間」が含まれる。これは、かご10がある階に停止(LB信号がON状態からOFF状態に変化)してから、停止状態においてドアゾーンから外れる(DZ信号がON状態からOFF状態に変化する)までの時間を計測したものである。たとえば、基準時間DB423のモードAの項目には、「DZ外となる時間」として時間KXが設定されている。
油圧エレベータにおいては、かご10がある階床に停止している場合に、時間の経過とともにかごが少しずつ沈んでいき(乗場の床面に対してかごの床面が徐々に下がっていき)、これによりドアゾーンから外れてしまうことがある。そして、この時間は、油の特性により、季節または温度に応じて異なるため、それぞれにおいて、基準時間を変更可能に構成している。
また、基準時間DB423に記録されている基準時間には、1階~5階の戸開時間が含まれる。基準時間DB423における戸開時間は、かご10がある階に停止して、GS信号およびDS信号が、ON状態からOFF状態に変化してから、OFF状態からON状態に変化するまでの時間(戸開時間)を計測したものである。たとえば、基準時間DB423のモードAの項目には、1階の戸開時間として時間KY1が設定されている。基準時間DB423のモードAの項目には、5階の戸開時間として時間KY5が設定されている。
図13は、基準時間更新処理のフローチャートである。基準時間更新処理は、図11に示した遠隔点検処理のS109(判定処理が実行された後)において実行される処理である。また、基準時間更新処理は、基準時間保存要求があった場合(S154)にも実行される。
基準時間更新処理が開始すると、制御部152は、「基準時間保存」要求があると判定した場合(S251でYES)は、基準時間DB423を更新し(S252)、S253に処理を進める。制御部152は、「基準時間保存」要求がない判定した場合(S251でNO)は、そのままS253に処理を進める。
S252(「基準時間保存」釦がクリックされている場合)において、モードA~Dの各基準時間(走行時間、起動時間、階床間の経過時間、DZ外となる時間、戸開時間)を更新する。たとえば、UP方向走行時間において、「基準時間保存」釦がクリックされる直前に実行された運転診断時の季節が夏であり機械室温度がK3℃以上であり、計測時間が「TUX」であった場合、モードAの「KU」、モードBの「KU1」、モードCの「K3℃~」の「KU5」、モードDの「夏」の「KU7」をそれぞれ「TUX」に変更する。これにより、運転診断を実行した場合に、当該運転診断における計測時間を基準時間として更新することができる。
制御部152は、遠隔点検処理における判定処理の後のS109において基準時間更新処理が呼び出された場合(S253でYES)は、基準時間DB423のモードBの各基準時間(走行時間、起動時間、階床間の経過時間、DZ外となる時間、戸開時間)を更新し(S254)、基準時間更新処理を終了する。制御部152は、S109において基準時間更新処理が呼び出された場合ではない場合(S253でNO)は、そのまま基準時間更新処理を終了する。
S254において、たとえば、UP方向走行時間において、運転診断時の計測時間が「TUY」であった場合、モードBの「KU1」を「TUY」に変更する。これにより、運転診断が実行されるたびに測定時間がモードBの基準時間に変更される。このため、モードBが設定されている場合、基準時間として前回(先月)の運転診断が実行されたときの計測時間が使用されることになる。
図14は、基準時間取得処理のフローチャートである。基準時間取得処理は、図11に示した遠隔点検処理のS100において実行される処理である。制御部152は、モードAが設定されている場合(S201でYES)、モードAの基準時間を取得し(S202)、S209に処理を進める。たとえば、UP方向走行時間において、モードAの「KU」が取得される。
制御部152は、モードAが設定されていない場合(S201でNO)であって、モードBが設定されている場合(S203でYES)、モードBの基準時間を取得し(S204)、S209に処理を進める。たとえば、UP方向走行時間において、モードBの「KU1」が取得される。
制御部152は、モードBが設定されていない場合(S203でNO)であって、モードCが設定されている場合(S205でYES)、現在の機械室温度に適合するモードCの基準時間を取得し(S206)、S209に処理を進める。たとえば、現在の機械室温度がK3℃以上である場合、UP方向走行時間において、モードCの「K3℃~」の「KU5」が取得される。
制御部152は、モードCが設定されていない場合(S205でNO)であって、モードDが設定されている場合(S207でYES)、現在の季節に一致するモードCの基準時間を取得し(S208)、S209に処理を進める。たとえば、現在の季節が夏である場合、UP方向走行時間において、モードCの「夏」の「KU7」が取得される。
制御部152は、モードDが設定されていない場合(S207でNO)、S209に処理を進める。制御部152は、S209において、取得した基準時間を、使用する基準時間として設定して、基準時間設定処理を終了する。
基準時間の切り替えに関し、本実施の形態における構成および効果を以下にまとめる。
(A) 制御部152は、運転診断の際に算出(計測)された計測時間を基準時間DB423の基準時間(走行時間、起動時間、階床間の経過時間、DZ外となる時間、戸開時間)として更新可能である。たとえば、制御部152は、運転診断の際に計測された起動時間TAを、基準時間DB423の起動時間の基準時間KA(UP方向の場合)として更新可能である。このようにすることで、現場でのエレベータの動作状態に即した値を用いて遠隔点検の点検項目の判定を行うことができる。
(B) 基準時間DB423に記録された基準時間(走行時間、起動時間、階床間の経過時間、DZ外となる時間、戸開時間)は、季節ごとに計測された複数の値(春、夏、秋、冬の値)を含む。制御部152は、現在の季節に応じて複数の値のいずれかを選択して点検項目を判定する。たとえば、基準時間DB423に記録された起動時間の基準時間は、季節ごとに計測された複数の値(モードDのKA6~KA9(UP方向の場合))を含む。制御部152は、現在の季節が夏である場合にKA7を選択して起動時間を判定する。このようにすることで、ロープ式エレベータのみならず、季節によって油の特性が変化する油圧エレベータも含めて、精度の高い判定結果を得ることができる。
(C) 基準時間DB423に記録された基準時間(走行時間、起動時間、階床間の経過時間、DZ外となる時間、戸開時間)は、温度センサ15によって計測された温度範囲ごとの複数の値(~K1℃、K2℃~、K3℃~、K4℃~の値)を含む。制御部152は、温度センサ15によって計測された現在の温度に応じて複数の値のいずれかを選択して点検項目を判定する。たとえば、基準時間DB423に記録された起動時間の基準時間(基準時間KA)は、温度センサ15によって計測された温度範囲ごとの複数の値(モードCのKA2~KA5(UP方向の場合))を含む。制御部152は、温度センサ15によって計測された現在の温度がK4℃以上である場合にKA5を選択して起動時間を判定する。このようにすることで、ロープ式エレベータのみならず、温度によって油の特性が変化する油圧エレベータも含めて、精度の高い判定結果を得ることができる。
(D) 指示部155は、定期的に乗場呼び信号を送信する。具体的には、S101~S102に示したように、月に1度の運転診断設定時刻になるたびに、乗場呼びを生成して出力する。制御部152は、運転診断を行った後に、基準時間DB423の基準時間(走行時間、起動時間、階床間の経過時間、DZ外となる時間、戸開時間)を運転診断の際に算出された計測時間に変更する(S109)。たとえば、制御部152は、運転診断を行った後に、基準時間DB423の起動時間の基準時間KAを、運転診断の際に算出された起動時間の計測時間TAに変更する。このように、現場での最新のエレベータの動作状態に即した値を用いて、精度の高い判定結果を得ることが出来る。たとえば、機器の経年劣化あるいは油圧エレベータにおけるバルブの調整等に応じて機器の状態が変化するような場合にも、これに対応させることができる。
(E) 受付部154は、保守員(ユーザ)の操作(「手動運転診断」釦のクリック、「基準時間保存」釦のクリック等)を受付ける。制御部152は、「手動運転診断」釦がクリックされたとき(S151、S101)に、乗場呼び信号を生成する。指示部155は、生成された乗場呼び信号を送信する。制御部152は、「基準時間保存」釦がクリックされたとき(S153)に、基準時間DB423の基準時間(走行時間、起動時間、階床間の経過時間、DZ外となる時間、戸開時間)を運転診断の際に算出された計測時間に変更する(S252)。たとえば、制御部152は、「基準時間保存」釦がクリックされたときに、基準時間DB423の起動時間の基準時間KAを運転診断の際に算出された起動時間の計測時間TAに変更する(UP方向の場合)。このように、現場での最新のエレベータの動作状態に即した値に手動で変更させることで、精度の高い判定結果を得ることが出来る。たとえば、機器の経年劣化あるいは油圧エレベータにおけるバルブの調整等に応じて機器の状態が変化するような場合にも、これに対応させることができる。
[遠隔点検の点検項目の判定]
次に、本実施の形態において実行される遠隔点検の点検項目の判定について説明する。遠隔点検の点検項目の判定は、後述する運転診断時処理等で実行される判定処理において行われる。遠隔点検の点検項目は、かご10の、起動状態、加速走行状態、定速走行状態、減速走行状態、着床状態、行先階釦(かご呼び釦)の状態、乗場釦(乗場呼び釦)の状態、戸開閉状態、ブレーキ状態を含む。
判定処理において、上記点検項目うちのいずれかまたは複数の項目の判断が行われる。本実施の形態においては、判定処理において、遠隔点検の点検項目として乗場呼び釦の状態の判定が行われるものとして説明する。以下、図15~図24を用いて乗場呼び釦の状態の判定について説明する。
(乗場呼び釦の状態の判定)
走行状態には、複数の走行状態がある。複数の走行状態は、かご10が加速しながら走行する加速走行状態と、かご10が一定速度で走行する定速走行状態と、かご10が減速しながら走行する減速走行状態とを含む。
以下、指示部155が乗場呼び信号を送信する処理を「送信処理」と称する。送信処理は、第1階床(本実施の形態において、1階)においてUP方向の第1階床の乗場呼びを発生させる第1階床のUP乗場呼び信号と、第1階床よりも上の第2階床(本実施の形態において、5階)においてDN方向の第2階床の乗場呼びを発生させる第2階床のDN乗場呼び信号とを送信する処理である。
送信処理は、第1送信処理と、第2送信処理とを含む。第1送信処理は、第1階床のUP乗場呼び信号の送信に基づいて、かご10が第1階床に到着してから待時間TW(本実施の形態において、30秒)の経過後に、DN方向の第2階床の乗場呼びを発生させる第2階床のDN乗場呼び信号を送信する処理である。第2送信処理は、第2階床のDN乗場呼び信号の送信に基づいて、かご10が第2階床に到着してから待時間TW(30秒)経過後に、第1階床のUP乗場呼び信号を送信する処理である。
なお、待時間TWの経過後に乗場呼びを発生させるものに限らず、単に、第1送信処理は、第1階床のUP乗場呼び信号の送信後に第2階床のDN乗場呼び信号を送信し、第2送信処理は、第2階床のDN乗場呼び信号の送信後に第1階床のUP乗場呼び信号を送信するものであってもよい。
本実施の形態においては、第1階床は、かご10が停止可能な階床のうちの最も下の階(停止可能な最下階)=1階である。第2階床は、かご10が停止可能な階床のうちの最も上の階(停止可能な最上階)=5階である。たとえば、サービス切り放し設定がされている階床あるいは物理的に停止できない階床であるために、1階が停止不能であれば第1階床が2階に設定され、5階が停止不能であれば第2階床が4階に設定される。なお、これに限らず、任意の階床を第1階床として設定し、第1階床より上にある任意の階床を第2階床として設定してもよい。
この場合、第1階床の乗場装置230に対して出力IF140から擬似的に第1階床のUP乗場呼び信号が送信された際に、第1階床のUP乗場呼び釦81の接点が短絡するように改造する(図7参照)。第2階床の乗場装置230に対して出力IF140から擬似的に第2階床のDN乗場呼び信号が送信された際に、第2階床のDN乗場呼び釦82の接点が短絡するように改造する。
制御部152は、送信処理によって送信される乗場呼び信号を生成する。指示部155は、生成された乗場呼び信号を送信する送信処理を行う。本実施の形態では、この送信処理によって送信された乗場呼び信号に基づくかご10の運転を「診断用運転」と呼んでいる。また、制御部152が、上記送信処理の結果として取得部151によって取得された判定用信号に基づき判定処理を行うことを「運転診断」と呼んでいる。
図15、図16は、走行状態を説明するためのタイミングチャートである。図15では、遠隔点検装置100が発生させる5階DN乗場呼び(指示部155が送信する5階DN乗場呼び信号)により、かご10が1階から5階に走行するケースについて説明する。
時刻t0において、かご10は、1階に停止している。このとき、かご10の位置は1階のドアゾーン内にあり(DZ信号がON状態)、かご10の速度は0である(かご10は停止状態)。
ここで、遠隔点検装置100は、5階DN乗場呼びを発生させたとする。かご10は、5階DN乗場呼びに応答するために、走行を開始する。これにより、時刻t1において、かご10の位置は1階のドアゾーン外となり、DZ信号がON状態からOFF状態に変化する。
かご10が走行を開始すると、かご10は加速走行状態となる。時刻t2において、かご10の速度が定格速度に到達すると、かご10は、加速走行状態から定速走行状態に変化する。時刻t1から時間TU12が経過した時刻t3において、かご10の位置は2階のドアゾーン内となり、DZ信号がOFF状態からON状態に変化する。さらに、時刻t4において、かご10の位置は2階のドアゾーン外となり、DZ信号がON状態から状態OFFに変化する。
時刻t3から時間TU23が経過した時刻t5において、かご10の位置は3階のドアゾーン内となり、DZ信号がOFF状態からON状態に変化する。時刻t6において、かご10の位置は3階のドアゾーン外となり、DZ信号がON状態から状態OFFに変化する。
時刻t5から時間TU34が経過した時刻t7において、かご10の位置は4階のドアゾーン内となり、DZ信号がOFF状態からON状態に変化する。時刻t8において、かご10の位置は4階のドアゾーン外となり、DZ信号がON状態から状態OFFに変化する。
時刻t9において、5階に停止するために、かご10は定速走行状態から減速走行状態に変化する。時刻t7から時間TU45が経過した時刻t10において、かご10の位置は5階のドアゾーン内となり、DZ信号がOFF状態からON状態に変化する。かご10は、5階に停止し、かご速度は0となる(停止状態となる)。時刻t11において、かご10の速度は0であり、DZ信号はON状態である。
次に、図16では、1階UP乗場呼びにより、かご10が5階から1階に走行するケースについて説明する。時刻t0において、かご10は、5階に停止している。このとき、かご10の位置は5階のドアゾーン内にあり(DZ信号がON状態)、かご10の速度は0である(かご10は停止状態)。
ここで、遠隔点検装置100が1階UP乗場呼びを発生(指示部155が1階UP乗場呼びを送信)させたとする。かご10は、1階UP乗場呼びに応答するために、走行を開始する。これにより、時刻t1において、かご10の位置は5階のドアゾーン外となり、DZ信号がON状態からOFF状態に変化する。
かご10が走行を開始すると、かご10は加速走行状態となる。時刻t2において、かご10の速度が定格速度に到達すると、かご10は、加速走行状態から定速走行状態に変化する。時刻t1から時間TD54が経過した時刻t3において、かご10の位置は4階のドアゾーン内となり、DZ信号がOFF状態からON状態に変化する。さらに、時刻t4において、かご10の位置は4階のドアゾーン外となり、DZ信号がON状態から状態OFFに変化する。
時刻t3から時間TD43が経過した時刻t5において、かご10の位置は3階のドアゾーン内となり、DZ信号がOFF状態からON状態に変化する。時刻t6において、かご10の位置は3階のドアゾーン外となり、DZ信号がON状態から状態OFFに変化する。
時刻t5から時間TD32が経過した時刻t7において、かご10の位置は2階のドアゾーン内となり、DZ信号がOFF状態からON状態に変化する。時刻t8において、かご10の位置は2階のドアゾーン外となり、DZ信号がON状態から状態OFFに変化する。
時刻t9において、1階に停止するために、かご10は定速走行状態から減速走行状態に変化する。時刻t7から時間TD21が経過した時刻t10において、かご10の位置は1階のドアゾーン内となり、DZ信号がOFF状態からON状態に変化する。かご10は、1階に停止し、かご速度は0となる(停止状態となる)。時刻t11において、かご10の速度は0であり、DZ信号はON状態である。
図17~図19は、乗場呼び釦の状態の判定を説明するための図である。図17において、乗場呼び釦の状態が正しく判定できる場合について説明する。図18において、乗場呼びが発生したために、乗場呼び釦の状態の判定ができない場合について説明する。図19において、乗場呼び釦の不具合のために、乗場呼び釦の状態の判定ができない場合について説明する。
図17の状況において、かご10が2階に停止している場合に、運転診断が行われるものとする。時刻t0において、遠隔点検装置100は、1階UP乗場呼び91を発生させる。これにより、かご10は、1階UP乗場呼び91に応答するため、1階に向けてDN方向に走行する。
かご10は、1階UP乗場呼び91に応答し、1階で停止する。時刻t1において、遠隔点検装置100は、5階DN乗場呼び92を発生させる。これにより、かご10は、5階DN乗場呼び92に応答するため、UP走行を開始する。時刻t2において、かご10は、5階に向けてUP方向に走行している。
かご10は、5階DN乗場呼び92に応答し、5階で停止する。時刻t3において、遠隔点検装置100は、1階UP乗場呼び91を発生させる。これにより、かご10は、1階UP乗場呼び91に応答するため、DN走行を開始する。時刻t4において、かご10は、1階に向けてDN方向に走行している。時刻t5において、かご10は、1階UP乗場呼び91に応答し、1階で停止する。
以上のような手順により、かご10は、時刻t1~t5で、最下階(1階)と最上階(5階)との間を往復運転する。この場合、途中階に停止することなく、1階と5階との間を往復運転するために、乗場呼び釦の状態が正しく判定できる。
次に、乗場呼びが登録されたために、乗場呼び釦の状態が正しく判定できないケースについて、図18を用いて説明する。時刻t0において、かご10は、1階に停止している。時刻t1において、遠隔点検装置100が発生した5階DN乗場呼び92に応答するため、かご10は5階に向けてUP方向に走行している。このケースにおいては、4階の乗場で乗客がいる。そして、この乗客は、5階に向かうために4階UP乗場呼び釦を押し、4階UP乗場呼び95が登録された状態である。
時刻t3において、かご10は、4階UP乗場呼び95に応答して4階に停止した後に戸開している。さらに、5階DN乗場呼び92に応答するために、5階に向けて走行を開始する。時刻t3において、かご10は、5階DN乗場呼び92に応答し、5階で停止する。
この場合、途中階で停止しため、運転診断を再度をやり直す。時刻t4は、再び遠隔点検装置100が1階UP乗場呼び91を発生させて、かご10を1階に停止させた状態である。
そして、再び遠隔点検装置100が5階DN乗場呼び92を発生させ、時刻t5において、かご10は5階に向けてUP方向に走行している。時刻t6において、かご10は、5階DN乗場呼び92に応答し、5階で停止する。この場合、乗場呼びによって途中階で停止していない。
さらに、図17の時刻t3~時刻t5と同様に、遠隔点検装置100が、1階UP乗場呼び91を発生させ、かご10は5階から1階に走行する。これにより、途中階に停止することなく、1階と5階との間を往復運転するために、乗場呼び釦の状態が正しく判定できる。
次に、乗場呼び釦に不具合が発生したために、乗場呼び釦の状態が正しく判定できないケースについて、図19を用いて説明する。時刻t0において、かご10は、1階に停止している。本例では、4階乗場呼び釦の不具合により、4階乗場呼びが常時登録されている状態であるとする。たとえば、釦が押し込まれたまま戻らない状態になっており、4階乗場呼び釦のスイッチが継続的にON状態になっているような場面が想定される。
時刻t1において、遠隔点検装置100が発生した5階DN乗場呼び92に応答するため、かご10は5階に向けてUP方向に走行している。このケースにおいては、かご10内に乗客が乗車していないが、不具合により4階UP乗場呼び96が登録された状態である。
時刻t3において、かご10は、4階UP乗場呼び96に応答して4階に停止した後に戸開している。さらに、5階DN乗場呼び92に応答するために、5階に向けて走行を開始する。時刻t3において、かご10は、5階DN乗場呼び92に応答し、5階で停止する。
この場合、1階から5階までのUP走行時間が正しく計測できないため、再度計測をやり直す。時刻t4は、再び遠隔点検装置100が1階UP乗場呼び91を発生させて、かご10を1階に停止させた状態である。ところが、4階UP乗場呼び96は、登録されたままの状態である。
再び遠隔点検装置100が5階DN乗場呼び92を発生させ、時刻t5において、かご10は5階に向けてUP方向に走行している。ところが、時刻t6において、かご10は、4階UP乗場呼び96に応答して4階に停止する。このように、かご10は、4階に停止してしまうため、何度試行しても、正しく走行時間を計測することができない。この場合、乗場呼び釦の状態が正しく判定できない。
以下、フローチャートを用いて走行状態の判定方法について説明する。図20は、運転診断時処理のフローチャートである。図11に示したように、運転診断時処理は、遠隔運転処理のS102において実行される。つまり、図10に示した表示画面421において、「手動運転診断」釦がクリックされたか、設定された運転診断設定時刻(たとえば、毎月23日の23時59分)になった場合に、運転診断時処理が実行される。
運転診断時処理が開始すると、制御部152は、S301において、走行発生処理を実行する。後述するように、走行発生処理において、制御部152は、複数の乗場呼び信号を生成させる。指示部155は、生成された乗場呼び信号を順次送信する送信処理を行い、これにより診断用運転が実行される。制御部152は、送信処理による診断用運転時に取得部151によって取得された判定用信号に基づき、かご10のかご位置、走行時間、走行状態等を算出する。
制御部152は、S302において、強制停止階を除き、最上階(1階)と最下階(5階)との間の途中階(2階~4階)の停止がなかったか否かを判定する。制御部152は、強制停止階を除き、途中階の停止がなかったと判定した場合(S302でYES)、処理をS303に進める。制御部152は、強制停止階を除き、途中階の停止がなかったと判定しなかった場合(S302でNO)、処理をS305に進める。
制御部152は、DZ信号を含む情報を用いて、1階と5階との間におけるかご10の位置と時刻との対応関係を特定する(後述する)。そして、制御部152は、1階と5階との間におけるかご10の位置と時刻との対応関係に基づき、1階と5階との間の階床でかご10が停止したか否かを判定する。
制御部152は、S303において、判定処理を実行する。後述するように、判定処理において、制御部152は、乗場呼び釦の状態が、正常状態であるか否かを判定する。
制御部152は、S304において、乗場呼び釦の状態を判定済みであるか否かを判定する。制御部152は、乗場呼び釦の状態を判定済みであると判定した場合(S304でYES)、運転診断時処理を終了する。
一方、制御部152は、乗場呼び釦の状態であると判定しなかった場合(S304でNO)、処理をS305に進める。制御部152は、S305において、判定のキャンセル処理を実行する。判定のキャンセル処理において、既に行った走行状態の判定がある場合は、これを取り消す。
このように、制御部152は、1階と5階との間におけるかご10の位置と時刻との対応関係に基づき、1階と5階との間の階床でかご10が停止したと判断した場合、送信処理に基づく判定処理の判定をキャンセルするキャンセル処理を行う。
制御部152は、S306において、判定処理の判定がキャンセル処理によって10回連続でキャンセルされたか否かを判定する。制御部152は、判定処理の判定がキャンセル処理によって10回連続でキャンセルされたと判定した場合(S306でYES)、処理をS307に進める。制御部152は、判定処理の判定がキャンセル処理によって10回連続でキャンセルされたと判断されなかった場合(S306でNO)、処理をS308に進める。
制御部152は、S307において、乗場呼び釦の状態が変調状態であると判定し、運転診断時処理を終了する。つまり、制御部152は、判定処理の判定がキャンセル処理によって10回連続でキャンセルされた場合、乗場呼び釦の状態が変調状態であると判定する。制御部152は、S308において、待ち処理(3分)を実行し、処理をS301に戻す。これにより、3分の待ち時間経過後に走行発生処理と判定処理が再度行われる。
以上説明したように、制御部152は、送信処理に基づき1階と5階との間を走行しているかご10が1階と5階との間の階床で停止した場合、判定処理の判定をキャンセルするキャンセル処理を行う。ここでキャンセルされるのは、走行発生処理において実行される乗場呼び信号の送信処理に基づいて実行される判定処理の判定である。
キャンセル処理が行われた場合、指示部155は、キャンセル処理から特定時間(3分)の経過後に、走行発生処理において乗場呼び信号の送信処理を再度行う。制御部152は、再度行われた送信処理に基づき判定処理を再度行う。なお、UP方向またはDN方向の片方の走行方向のみ途中階に停止した場合は、途中階に停止した走行方向のみについて再度やり直してもよい。
このようにキャンセル処理を行うのは、途中階に停止してしまった場合、走行状態の判定処理において、1階と5階との間の走行時間が妥当であるかどうか判定が行えないからである。また、かご呼び釦の状態の判定および乗場呼び釦の状態の判定を行う場合には、1階と5階との間で利用客によって押されたかご呼び釦あるいは乗場呼び釦によってかご10が停止したのか、かご呼び釦あるいは乗場呼び釦の不具合によってかご10が停止したのか判別がつかないため、キャンセル処理を行った上で再度走行発生処理および判定処理により再確認するようにしている。
また、利用客が登録した他の乗場呼びにかご10が応答してしまったような場合には、乗場呼び釦の状態の判定が行えないことがある(S304でYES)。このような場合にも、キャンセル処理を行った上で再度走行発生処理および判定処理を実行するようにしている。
ただし、制御部152は、1階と5階との間の階床が強制停止階に設定されている場合、強制停止階にかご10が停止してもキャンセル処理を行わない。かご10は、強制停止階に必ず停止し、強制停止階への停止は変調状態か否かの判定とは無関係であるためである。このため、1階から5階までの走行時間の判定においては、強制停止階への停止も含めて事前に基準時間等を設定するようにすればよい(強制停止階に停止することを前提とした走行時間を設定する)。あるいは、強制停止階前後の階床間の走行時間を除外して判定処理を行うようにしてもよい。
診断用運転は、利用者がいない深夜等に実行される。この時間帯にたまたま利用者がいた場合、利用者によってかご呼びまたは乗場呼びが作られて、途中階に停止する可能性がある。この場合は、1階~5階の各階床間の走行時間が正しく計測できないので、キャンセル処理を行って再度判定を行えばよい。このような状況下では、10回連続で利用者によってかご呼びまたは乗場呼びが作られて、途中階に停止する可能性は限りなくゼロに近い。しかし、10回連続で途中階に停止した場合は、何らかの不具合が生じている可能性があるため、変調状態と判定している。
変調状態と判定された場合、保守員は端末400上でその旨を確認することができる。この場合、たとえば、途中階の乗場呼び釦またはかご呼び釦が押し込まれる不具合が発生して、常時これらの釦からのON信号が送信されている可能性がある。このため、保守員は現場に出向いてその状況を確認する。確認した結果、不具合が解消された場合は、表示画面421の「手動運転診断」釦(図10参照)をクリックして手動による運転診断を行えばよい。
図21は、走行発生処理のフローチャートである。運転診断時処理が開始すると、制御部152は、S401において、発生させる乗場呼び信号を生成する。たとえば、指示部155は、最上階(5階)DN乗場呼び信号を送信する。かご10が最上階に到着すると、到着から待時間TW(30秒)後に、指示部155は、最下階(1階)UP乗場呼び信号を送信する。かご10が最下階に到着すると、到着から待時間TW(30秒)後に、指示部155は、最上階DN乗場呼び信号を送信する。これにより、かご10は、最下階と最上階の間を往復する。なお、待時間TW(30秒)の経過を待つことなく、任意のタイミングで乗場呼び信号を送信してもよい。
本実施の形態において、ある階床に「到着」したとは、その階床においてドアゾーン内に入ったタイミング(DZ信号がOFF状態からON状態に変化したタイミング)を指すものとする。本実施の形態においては、DZ信号を用いた判断を行っているが、LB信号も用いて判断を行う場合は、ある階床に「到着」したとは、DZ信号がOFF状態からON状態に変化し、かつ、LB信号がON状態からOFF状態に変化したタイミング(つまり、ブレーキによりかご10が制動されたタイミング)を指すようにしてもよい。
あるいは、次のようにしてもよい。指示部155は、最下階UP乗場呼び信号を送信する。かご10が最下階に到着すると、到着から待時間TW(30秒)後に、指示部155は、最上階DN乗場呼び信号を送信する。かご10が最上階に到着すると、到着から待時間TW(30秒)後に、指示部155は、最下階UP乗場呼び信号を送信する。これにより、かご10は、最下階と最上階の間を往復する。
指示部155は、S402において、次の乗場呼び信号の送信処理を行う。「次の乗場呼び信号」とは、次に送信すべき乗場呼び信号を指す。たとえば、上記のように、最上階DN乗場呼び信号、最下階UP乗場呼び信号、最上階DN乗場呼び信号の順で信号が送信されるとする。この場合、S402において、いずれの乗場呼び信号も未送信であれば、1つ目の最上階DN乗場呼び信号が送信され、1つ目の最上階DN乗場呼び信号が送信済みである場合は、2つ目の最下階UP乗場呼び信号が送信され、2つ目の最下階UP乗場呼び信号も送信済みである場合は、3つ目の最上階DN乗場呼び信号が送信される。
制御部152は、S403において、後述するかご情報計測処理を実行する。かご情報計測処理により、制御部152は、送信処理による診断用運転時に取得部151によって取得された判定用信号に基づき、かご10のかご位置、走行時間、走行状態等を算出する。
制御部152は、S404において、かご10が乗場呼び発生階に到着したか否かを判定する。制御部152は、かご10が乗場呼び発生階に到着したと判定した場合(S404でYES)、処理をS405に進める。制御部152は、かご10が乗場呼び発生階に到着したと判定しなかった場合(S404でNO)、処理をS404に戻す。これにより、かご10が乗場呼び発生階に到着するまで待機する。
制御部152は、S405において、全ての乗場呼び信号を送信したか否かを判定する。全ての乗場呼び信号とは、送信が予定されていた全ての信号を指す。制御部152は、全ての乗場呼び信号を送信したと判定した場合(S405でYES)、運転診断時処理を終了する。制御部152は、全ての乗場呼び信号を送信したと判定しなかった場合(S405でNO)、処理をS402に戻すS402~S405の処理は、送信すべき乗場呼び信号がなくなるまで繰り返される。
図22は、かご情報計測処理のフローチャートである。かご情報計測処理が開始すると、制御部152は、S501において、SDL信号がON状態であるか否かを判定する。S501~S510の処理は、最下階(1階)から最上階(5階)までかご10が走行する場合の処理である。
制御部152は、SDL信号がON状態であると判定した場合(S501でYES)、処理をS502に進める。SDL信号がON状態である場合、かご位置が最下階(1階)であると判定できる。なお、上述のように、SDL信号を用いなくても、かご位置が最下階であるか否かの判定をすることは可能である。
制御部152は、SDL信号がON状態であると判定しなかった場合(S501でNO)、処理をS511に進める。制御部152は、S502において、かご10の階床位置i=最下階と設定する。
制御部152は、S503において、DZ信号がON状態からOFF状態に変化したか否かを判定する。制御部152は、DZ信号がON状態からOFF状態に変化したと判定した場合(S503でYES)、処理をS504に進める。この場合、かご10は、走行状態にある。
制御部152は、DZ信号がON状態からOFF状態に変化したと判定しなかった場合(S503でNO)、処理をS503に戻す。これにより、DZ信号がON状態からOFF状態に変化するまで待機する。
制御部152は、S504において、タイマーを開始する。これにより、DZ信号がON状態からOFF状態に変化したタイミングで、1階からの走行時間の計測を開始する。なお、LB信号も使用する場合は、LB信号がOFF状態からON状態に変化した(ブレーキを開放した)タイミングで、1階からの走行時間の計測を開始してもよい。
制御部152は、S505において、走行方向はUP方向であるか否かを判定する。UP方向であるか否かは、UP信号に基づき判定してもよいし、UP信号を用いず、上述した別の方法により判定してもよい。
制御部152は、走行方向はUP方向であると判定した場合(S505でYES)、処理をS506に進める。制御部152は、走行方向はUP方向であると判定しなかった場合(S505でNO)、かご情報計測処理を終了する。走行方向がUP方向でない場合、別の乗場呼びに応答している可能性がある。この場合、運転診断が行えないため、かご情報計測処理を終了するようにしている。
制御部152は、S506において、DZ信号が所定時間(たとえば、5秒)以上ON状態を継続した場合、階床位置iでの停止フラグを設定する。これにより、1階と5階との間(途中階)で停止があったか否かを判断することができる。このように、DZ信号を含む情報を用いて、1階と5階との間におけるかご10の位置と時刻との対応関係に基づき、1階と5階との間の階床でかご10が停止したか否かを判定する。なお、DZ信号に基づき算出した走行時間が、基準時間よりも所定時間以上長くなった場合に、途中階での停止があったと判断してもよい。
制御部152は、S507において、DZ信号がOFF状態からON状態に変化したか否かを判定する。制御部152は、DZ信号がOFF状態からON状態に変化したと判定した場合(S507でYES)、処理をS508に進める。制御部152は、DZ信号がOFF状態からON状態に変化したと判定しなかった場合(S507でNO)、処理をS505に戻す。これにより、DZ信号がON状態に変化するまで待機する。
制御部152は、S508において、階床位置i~i+1の走行時間、走行状態を設定する。たとえば、階床位置として1階が設定されていた場合、図15における時刻t1~時刻t3の状況がこれに相当する。DZ信号がON状態からOFF状態に変化したタイミング(図15のt1)からDZ信号がOFF状態からON状態に変化したタイミング(図15のt3)で、階床位置1階~2階の走行時間TU12およびこれに対応する走行状態(後述する)が設定される。
制御部152は、S509において、階床位置iを1つ増やす。制御部152は、S510において、階床位置iは最上階であるか否かを判定する。制御部152は、階床位置iは最上階であると判定した場合(S510でYES)、かご情報計測処理を終了する。制御部152は、階床位置iは最上階であると判定しなかった場合(S510でNO)、処理をS505に戻す。
これにより、最下階(i=1)から最上階(i=5)について、DZ信号がOFF状態からON状態に変化するたびに、階床位置が更新されて、その都度、走行時間および走行状態が設定される。
たとえば、階床位置として2階が設定されていた場合、図15における時刻t3~時刻t5の状況がこれに相当する。DZ信号がOFF状態からON状態に変化したタイミング(図15のt3)から、次にDZ信号がOFF状態からON状態に変化したタイミング(図15のt5)で、階床位置2階~3階の走行時間TU23およびこれに対応する走行状態が設定される。同様にして、DZ信号がOFF状態からON状態に変化するたびに、階床位置が更新されて、階床位置3階~4階の走行時間TU34、階床位置4階~5階の走行時間TU45およびこれに対応する走行状態が設定される。
たとえば、走行状態は、階床間において定速走行状態のみで走行している場合に、走行状態=定速走行状態を設定してもよい。走行状態は、階床間において加速走行状態での走行を含む場合に、走行状態=加速走行状態を設定してもよい。走行状態は、階床間において減速走行状態での走行を含む場合に、走行状態=減速走行状態を設定してもよい。図15の例において、1階から2階までの走行区間において、走行状態=加速走行状態が設定される。2階から3階までの走行区間および3階から4階までの走行区間において、走行状態=定速走行状態が設定される。4階から5階までの走行区間において、走行状態=減速走行状態が設定される。
S511~S520の処理は、最上階(5階)から最下階(1階)までかご10が走行する場合の処理である(図16の例)。制御部152は、S511において、SUL信号がON状態であるか否かを判定する。
制御部152は、SUL信号がON状態であると判定した場合(S511でYES)、処理をS512に進める。SUL信号がON状態である場合、かご位置が最下階(1階)であると判定できる。なお、上述のように、SUL信号を用いなくても、かご位置が最下階であるか否かの判定をすることは可能である。制御部152は、SUL信号がON状態であると判定しなかった場合(S511でNO)、かご情報計測処理を終了する。
制御部152は、S512において、かご10の階床位置iを最上階(5階)に設定する。制御部152は、S513において、DZ信号がON状態からOFF状態に変化したか否かを判定する。制御部152は、DZ信号がON状態からOFF状態に変化したと判定した場合(S513でYES)、処理をS514に進める。制御部152は、DZ信号がON状態からOFF状態に変化したと判定しなかった場合(S513でNO)、処理をS513に戻す。これにより、DZ信号がON状態からOFF状態に変化するまで待機する。
制御部152は、S514において、タイマーを開始する。これにより、DZ信号がON状態からOFF状態に変化したタイミングで、5階からの走行時間の計測を開始する。なお、LB信号も使用する場合は、LB信号がOFF状態からON状態に変化した(ブレーキを開放した)タイミングで、5階からの走行時間の計測を開始してもよい。
制御部152は、S515において、走行方向はDN方向であるか否かを判定する。DN方向であるか否かは、DN信号に基づき判定してもよいし、DN信号を用いず、上述した別の方法により判定してもよい。制御部152は、走行方向はDN方向であると判定した場合(S515でYES)、処理をS516に進める。
制御部152は、走行方向はDN方向であると判定しなかった場合(S515でNO)、かご情報計測処理を終了する。走行方向がDN方向でない場合、別の乗場呼びに応答している可能性がある。この場合、診断用のデータが正常に取得できないため、処理を終了する。
制御部152は、S516において、DZ信号が所定時間以上ON状態を継続した場合、階床位置iでの停止フラグを設定する。これにより、5階と1階との間(途中階)で停止があったか否かを判断することができる。
制御部152は、S517において、DZ信号がOFF状態からON状態に変化したか否かを判定する。制御部152は、DZ信号がOFF状態からON状態に変化したと判定した場合(S517でYES)、処理をS518に進める。制御部152は、DZ信号がOFF状態からON状態に変化したと判定しなかった場合(S517でNO)、処理をS515に戻す。これにより、DZ信号がON状態に変化するまで待機する。
制御部152は、S518において、階床位置i~i-1の走行時間、走行状態を設定する。制御部152は、S519において、階床位置iを1つ減らす。制御部152は、S520において、階床位置iは最下階であるか否かを判定する。制御部152は、階床位置iは最下階であると判定した場合(S520でYES)、かご情報計測処理を終了する。制御部152は、階床位置iは最下階であると判定しなかった場合(S520でNO)、処理をS515に戻す。
本実施の形態においては、かご位置は、上記のように階床位置によって特定される。かご位置(階床位置)は、DZ信号がOFF状態からON状態に変化するたびに更新される。このため、UP方向とDN方向とでは階床位置が更新されるタイミングが異なることになる。たとえば、UP方向においては、2階のドアゾーンに入ってから3階のドアゾーンに入る直前までが、かご位置=2階と規定される。その一方、DN方向においては、2階のドアゾーンに入ってから1階のドアゾーンに入る直前までが、かご位置=2階と規定される。なお、これに限らず、階床と階床の区切りは任意に設定してもよい。たとえば、1階のドアゾーンと2階のドアゾーンとの中間位置から、2階のドアゾーンと3階のドアゾーンとの中間位置までを、かご位置=2階と規定してもよい。この中間位置は、走行時間に基づき算出してもよい。
また、かご位置は、階床位置ではなく、最下階の着床位置からの距離により設定してもよい。たとえば、各階床間の距離が3mである場合、1階で停止している場合のかご位置は0m、2階で停止している場合のかご位置は3m、5階で停止している場合のかご位置は12m(3m×4)となる。
以上説明したように、制御部152は、DZ信号を含む情報を用いて、かご10の位置と、かご10の複数の走行状態(加速走行状態、定速走行状態、減速走行状態)の各々で走行する走行区間におけるかご10の走行時間とを算出している。「DZ信号を含む情報」とは、DZ以外には、乗場呼び信号等が含まれる。あるいは、他にも、SUL信号、SDL信号、UP信号、DN信号も含み得るが、上述のようにこれらの信号を使用しなくても走行状態を判断することができる。なお、本実施の形態においては、S506,S516において、DZ信号を用いて階床位置iでの停止フラグを設定するようにしたが、これに限らず、最上階および最下階以外の階床位置iにおいて、LB信号がOFF状態(ブレーキの制動状態)である場合に、階床位置iでの停止フラグを設定するようにしてもよい。
図23は、判定処理のフローチャートである。ここでは、乗場呼び釦の状態の判定が行われる。判定処理が開始すると、制御部152は、S601において、最下階(1階)と最上階(5階)との間におけるかご10の位置と時刻との対応関係に基づき、最下階と最上階との間の階床でかご10が停止することなく最下階と最上階との間をかご10が往復したか否かを判定する。
制御部152は、本条件が成立すると判定した場合(S601でYES)、S602において、乗場呼び釦の状態が正常状態であると判定し、判定処理を終了する。制御部152は、本条件が成立すると判定しなかった場合(S601でNO)、そのまま、判定処理を終了する。
次に、変形例として、制御盤210により制御されるかご10が複数台ある場合(マルチカー)の走行状態の判定について説明する。図24は、マルチカー処理のフローチャートである。マルチカー処理は、図11の遠隔点検処理において、S101~S106の処理に代えて実行するようにしてもよい。
制御盤210により制御されるかご10が複数台ある場合、生成された乗場呼び信号を送信する指示部155の送信処理および送信処理に基づく制御部152の判定処理を行わない。つまり、マルチカーである場合は、運転診断を実施しない。指示部155が乗場呼び信号を送信したとしても、乗場呼びに対してどのかご10が割当てられるかが分からない。たとえば、乗場呼びに対して常に1号機が割当てられるような状況も想定されるため、送信処理によって全てのかご10を自由に動作させることができない。
このため、本変形例においては、利用者が発生させた乗場呼びおよびかご呼びによって、たまたま、最下階(1階)から最上階(5階)まで走行した場合に、このときの判定用信号を取得して走行状態の判定を行うことにしている。
本変形例においては、複数台のエレベータ(かご10)の各々に遠隔点検装置100を設置するように構成する(エレベータの号機ごとに遠隔点検装置100が設置される)。マルチカー処理は、各エレベータに対応した遠隔点検装置100ごとに実施される。マルチカー処理が開始すると、制御部152は、S701において、前回の運転診断設定時刻から所定期間(たとえば、1ヶ月)が経過したか否かを判定する。制御部152は、所定期間が経過したと判定した場合(S701でYES)、処理をS705に進める。制御部152は、所定期間が経過したと判定しなかった場合(S701でNO)、処理をS702に進める。
取得部151は、S702において、制御部152が判定対象とする対象かごの判定用信号を取得する。対象かごは、遠隔点検装置100に接続されたエレベータのかご10である。制御部152は、S703において、対象かごの、最下階(1階)から最上階(5階)までのUP走行および最上階から最下階までのDN走行(これを、「往復走行」と称する)が発生したか否かを判定する。制御部152は、対象かごの往復走行が発生したと判定した場合(S703でYES)、処理をS704に進める。
制御部152は、対象かごの往復走行が発生したと判定しなかった場合(S703でNO)、処理をS701に戻す。これにより、所定期間内において、対象かごの往復走行が発生するまで、判定用信号が取得され続ける。
制御部152は、S704において、対象かごに対する判定処理を実行し、マルチカー処理を終了する。なお、判定処理において、所定期間内に往復走行時のデータが複数セット取得された場合、最新の往復走行時のデータを用いて判定処理を行うようにしてもよい。一方、制御部152は、S705において、対象かごに対応する乗場呼び釦の状態が変調状態であると判定し、マルチカー処理を終了する。「対象かごに対応する乗場呼び釦」は、呼びを登録した場合に、対象かごが割当て対象に含まれる乗場呼び釦を意味する。
このように、本実施の形態では、制御盤210により制御されるかご10が複数台ある場合、制御部152が判定対象とする対象かごにおいて、最下階から最上階まで走行、および、最上階から最下階まで走行する往復走行が行われた場合に、取得部151から取得された往復走行時の判定用信号に基づき判定処理を実行している。そして、制御部152は、対象かごにおいて所定期間内に往復走行が行われなかったときは、対象かごに対応する乗場呼び釦の状態が変調状態であると判定する。管理サーバ300は、エレベータに対応した遠隔点検装置100から各かご10の判定結果を取得する。
なお、複数台のエレベータ(かご10)に対して1つの遠隔点検装置100を設置する場合は、複数のかご10の各々に対してマルチカー処理を実行すればよい。たとえば、第1かごのマルチ-カー処理を行う場合、S702において、第1かごの判定用信号を取得し、S703において、第1かごの往復走行が発生したか否かを判定するようにすればよい。
乗場呼び釦の状態の判定に関し、本実施の形態における構成および効果を以下にまとめる。
(1) 制御部152は、送信処理によって送信される乗場呼び信号を生成するとともに、送信処理の結果として取得部151によって取得された判定用信号に基づき遠隔点検の点検項目を判定する判定処理を行う。送信処理は、1階においてUP方向の1階乗場呼びを発生させる1階UP乗場呼び信号と、1階よりも上の5階においてDN方向の5階乗場呼びを発生させる5階DN乗場呼び信号とを送信する処理である。点検項目は、乗場呼びを発生させる乗場呼び釦の状態を含む。制御部152は、DZ信号を含む情報を用いて、1階と5階との間におけるかご10の位置と時刻との対応関係を特定する。制御部152は、対応関係に基づき、1階と5階との間の階床でかご10が停止することなく1階と5階との間をかご10が往復したと判断した場合に、乗場呼び釦の状態が正常状態であると判定する。
本実施の形態においては、エレベータの安全回路を作動させるための条件判定に使用される信号(DZ信号、LB信号、DS信号、GS信号)を遠隔点検の判定用信号として使用している。また、据付容易性(施工性)の観点から、かご呼びではなく乗場呼びを遠隔点検の運転診断(診断用運転)用の出力信号として使用している。遠隔点検の利用に適したDZ信号、乗場呼び信号に基づき乗場呼び釦の状態の判定を行うことで、通信仕様および信号仕様の異なる様々なエレベータに対応して極力簡易に遠隔点検を行うことができる。すなわち、遠隔点検において保守のマルチブランド化を実現することができる。これにより、保守会社は、保守現場での保守点検頻度を減らすことができるとともに、保守対応可能なエレベータの台数を増やすことができる。ビルのオーナーは、自由に保守会社を選択して遠隔点検可能な保守契約を締結することができる。
(2) 制御部152は、対応関係に基づき、1階と5階との間の階床でかご10が停止したと判断した場合、送信処理に基づく判定処理の判定をキャンセルするキャンセル処理を行い、指示部155は、キャンセル処理が行われた場合、送信処理を再度行う。制御部152は、再度行われた送信処理に基づき判定処理を再度行う。制御部152は、判定処理の判定がキャンセル処理によって所定回数(10回)連続でキャンセルされた場合、乗場呼び釦の状態が変調状態であると判定する。このようにすることで、たまたま利用客によって押されたかご呼び釦あるいは乗場呼び釦によってかご10が停止したような状況を除外し、呼び釦の不具合等によってかご10が停止したような状況を検出することができる。
(3) 制御盤210は、強制停止階が設定されている場合、かご10が強制停止階を通りかかったときに必ず強制停止階でかご10が停止するように制御する。制御部152は、1階と5階との間の階床が強制停止階に設定されている場合、強制停止階にかご10が停止してもキャンセル処理を行わない。このようにすることで、強制停止階への停止による不具合の誤検出を防止し、不具合により発生した呼び等を検出することができる。
(4) 所定回数は、10回である。このようにすることで、たまたま利用客によって押されたかご呼び釦あるいは乗場呼び釦によってかご10が停止したような状況を除外し、呼び釦の不具合等によってかご10が停止したような状況を検出することができる。
(5) 制御部152は、制御盤210により制御されるかご10が複数台ある場合、送信処理に基づく判定処理を行うことなく、判定対象とする対象かごにおいて、1階から5階まで走行、および、5階から1階まで走行する往復走行が行われた場合に、取得部151から取得された往復走行時の判定用信号に基づき判定処理を実行する。マルチカーの場合、乗場呼び信号の送信により自由に複数台のかご10を走行させることができないが、上記方法で往復走行をさせることで、乗場呼び釦の状態の判定を行うことができる。
(6) 制御部152は、制御盤210により制御されるかご10が複数台ある場合、判定対象とする対象かごにおいて所定期間内に往復走行が行われなかったときは、対象かごに対応する乗場呼び釦の状態が変調状態であると判定する。このようにすることで、マルチカーの場合に走行状態が判定できない状況を検出することができる。
(7) 第1階床(1階)は、かご10が停止可能な最下階であり、
第2階床(5階)は、かご10が停止可能な最上階である。
(8) 管理サーバ300は、遠隔点検装置100に対して遠隔点検の実行指令を送信可能であるとともに、遠隔点検装置100から判定結果を受信可能である。エレベータシステム200(エレベータ機器群220と制御盤210)と遠隔点検装置100とが第1国(たとえば、アメリカ)に設置され、管理サーバ300が第1国とは異なる第2国(たとえば、日本)に設置される。このようにすることで、第1国で稼働するエレベータシステム200の遠隔点検を行う遠隔点検装置100の管理を第2国の管理サーバ300にて行うことができる。これにより、いずれの国にエレベータシステム200および遠隔点検装置100が設置されているかを問わず、国を跨いで管理サーバ300により遠隔点検装置100の管理を行うことができる。
[付記]
上述した実施形態は、以下の付記の具体例である。
(付記1)
エレベータの遠隔点検を行うエレベータ遠隔点検システムであって、
前記エレベータの機器群に対して、前記エレベータの乗場呼びを発生させる乗場呼び信号を送信する送信処理を行う指示部と、
前記エレベータの機器群と前記エレベータの機器群を制御する制御盤との間でパラレル伝送により入出力される信号を判定用信号として取得する取得部と、
前記送信処理によって送信される前記乗場呼び信号を生成するとともに、前記送信処理の結果として前記取得部によって取得された前記判定用信号に基づき前記遠隔点検の点検項目を判定する判定処理を行う制御部と、
前記点検項目の判定結果を出力する出力部とを備え、
前記送信処理は、第1階床において上方向の第1乗場呼びを発生させる第1乗場呼び信号と、前記第1階床よりも上の第2階床において下方向の第2乗場呼びを発生させる第2乗場呼び信号とを送信する処理であり、
前記判定用信号は、前記エレベータのかごの扉を開閉可能な前記かごの位置範囲を示すドアゾーン内に前記かごが位置する第1状態と、前記第1状態ではない非第1状態とのいずれかであることを示す第1信号を含み、
前記点検項目は、前記乗場呼びを発生させる乗場呼び釦の状態を含み、
前記制御部は、
前記第1信号を含む情報を用いて、前記第1階床と前記第2階床との間における前記かごの位置と時刻との対応関係を特定し、
前記対応関係に基づき、前記第1階床と前記第2階床との間の階床で前記かごが停止することなく前記第1階床と前記第2階床との間を前記かごが往復したと判断した場合に、前記乗場呼び釦の状態が正常状態であると判定する、エレベータ遠隔点検システム。
(付記2)
前記制御部は、前記対応関係に基づき、前記第1階床と前記第2階床との間の階床で前記かごが停止したと判断した場合、前記送信処理に基づく前記判定処理の判定をキャンセルするキャンセル処理を行い、
前記指示部は、前記キャンセル処理が行われた場合、前記送信処理を再度行い、
前記制御部は、
再度行われた前記送信処理に基づき前記判定処理を再度行い、
前記判定処理の判定が前記キャンセル処理によって所定回数連続でキャンセルされた場合、前記乗場呼び釦の状態が変調状態であると判定する、付記1に記載のエレベータ遠隔点検システム。
(付記3)
前記制御盤は、強制停止階が設定されている場合、前記かごが前記強制停止階を通りかかったときに必ず前記強制停止階で前記かごが停止するように制御し、
前記制御部は、前記第1階床と前記第2階床との間の階床が前記強制停止階に設定されている場合、前記強制停止階に前記かごが停止しても前記キャンセル処理を行わない、付記2に記載のエレベータ遠隔点検システム。
(付記4)
前記所定回数は、10回である、付記2または付記3に記載のエレベータ遠隔点検システム。
(付記5)
前記制御部は、前記制御盤により制御される前記かごが複数台ある場合、前記送信処理に基づく前記判定処理を行うことなく、判定対象とする対象かごにおいて、前記第1階床から前記第2階床まで走行、および、前記第2階床から前記第1階床まで走行する往復走行が行われた場合に、前記取得部から取得された前記往復走行時の前記判定用信号に基づき前記判定処理を実行する、付記2~付記4のいずれかに記載のエレベータ遠隔点検システム。
(付記6)
前記制御部は、前記制御盤により制御される前記かごが複数台ある場合、前記対象かごにおいて所定期間内に前記往復走行が行われなかったときは、前記対象かごに対応する前記乗場呼び釦の状態が前記変調状態であると判定する、付記5に記載のエレベータ遠隔点検システム。
(付記7)
前記第1階床は、前記かごが停止可能な最下階であり、
前記第2階床は、前記かごが停止可能な最上階である、付記1~付記6のいずれかに記載のエレベータ遠隔点検システム。
(付記8)
前記指示部と前記取得部と前記制御部と前記出力部とを含む遠隔点検装置と、
前記遠隔点検装置とネットワークを介して接続可能であって前記遠隔点検装置を管理する管理サーバとをさらに備え、
前記管理サーバは、前記遠隔点検装置に対して前記遠隔点検の実行指令を送信可能であるとともに、前記遠隔点検装置から前記判定結果を受信可能であり、
前記エレベータの機器群と前記制御盤と前記遠隔点検装置とが第1国に設置されており、
前記管理サーバが前記第1国とは異なる第2国に設置されている、付記1~付記7のいずれかに記載のエレベータ遠隔点検システム。
(付記9)
エレベータの遠隔点検を行うエレベータ遠隔点検方法であって、
前記エレベータの機器群に対して、前記エレベータの乗場呼びを発生させる乗場呼び信号を送信する送信処理を行うステップと、
前記エレベータの機器群と前記エレベータの機器群を制御する制御盤との間でパラレル伝送により入出力される信号を判定用信号として取得するステップと、
前記送信処理によって送信される前記乗場呼び信号を生成するとともに、前記送信処理の結果として前記取得するステップによって取得された前記判定用信号に基づき前記遠隔点検の点検項目を判定する判定処理を行うステップと、
前記点検項目の判定結果を出力するステップとを備え、
前記送信処理は、第1階床において上方向の第1乗場呼びを発生させる第1乗場呼び信号と、前記第1階床よりも上の第2階床において下方向の第2乗場呼びを発生させる第2乗場呼び信号とを送信する処理であり、
前記判定用信号は、前記エレベータのかごの扉を開閉可能な前記かごの位置範囲を示すドアゾーン内に前記かごが位置する第1状態と、前記第1状態ではない非第1状態とのいずれかであることを示す第1信号を含み、
前記点検項目は、前記乗場呼びを発生させる乗場呼び釦の状態を含み、
前記判定処理を行うステップは、
前記第1信号を含む情報を用いて、前記第1階床と前記第2階床との間における前記かごの位置と時刻との対応関係を特定するステップと、
前記対応関係に基づき、前記第1階床と前記第2階床との間の階床で前記かごが停止することなく前記第1階床と前記第2階床との間を前記かごが往復したと判断した場合に、前記乗場呼び釦の状態が正常状態であると判定するステップとを含む、エレベータ遠隔点検方法。
今回開示された実施の形態は例示であって、上記内容のみに制限されるものではない。本発明の範囲は特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
1 遠隔点検システム、2 ビル、5 機械室、6 ピット、8 昇降路、10 かご、11 ロープ、12 カウンターウェイト、13 そらせ車、14 緩衝器、15 温度センサ、16 インターホン、21~23 制御ケーブル、31 1階かご呼び釦、32 2階かご呼び釦、33 3階かご呼び釦、34 4階かご呼び釦、35 5階かご呼び釦、50 かご操作盤、51 インジケータ、52 戸開釦、53 戸閉釦、60,61 扉、70 乗場操作盤、71 インジケータ、81 UP乗場呼び釦、82 DN乗場呼び釦、91 UP乗場呼び、92 DN乗場呼び、95,96 UP乗場呼び、100 遠隔点検装置、110 制御装置、111 プロセッサ、112 メモリ、120 通信IF、130 入力IF、140 出力IF、151 取得部、152 制御部、153 出力部、154 受付部、155 指示部、156 データ群、200,200a,200b エレベータシステム、210,210a,210b 制御盤、211 群管理制御部、212 各台制御部、220,220a,210b エレベータ機器群、230 乗場装置、240 かご装置、250 巻上機、261,262 コネクタ、300 管理サーバ、400 端末、410 表示部、420 入力部、421 表示画面、422 設定データ、423 基準時間DB、424 運行履歴、425 判定結果、500 X社製遠隔点検装置、500a Y社製遠隔点検装置。

Claims (9)

  1. エレベータの遠隔点検を行うエレベータ遠隔点検システムであって、
    前記エレベータの機器群に対して、前記エレベータの乗場呼びを発生させる乗場呼び信号を送信する送信処理を行う指示部と、
    前記エレベータの機器群と前記エレベータの機器群を制御する制御盤との間でパラレル伝送により入出力される信号を判定用信号として取得する取得部と、
    前記送信処理によって送信される前記乗場呼び信号を生成するとともに、前記送信処理の結果として前記取得部によって取得された前記判定用信号に基づき前記遠隔点検の点検項目を判定する判定処理を行う制御部と、
    前記点検項目の判定結果を出力する出力部とを備え、
    前記送信処理は、第1階床において上方向の第1乗場呼びを発生させる第1乗場呼び信号と、前記第1階床よりも上の第2階床において下方向の第2乗場呼びを発生させる第2乗場呼び信号とを送信する処理であり、
    前記判定用信号は、前記エレベータのかごの扉を開閉可能な前記かごの位置範囲を示すドアゾーン内に前記かごが位置する第1状態と、前記第1状態ではない非第1状態とのいずれかであることを示す第1信号を含み、
    前記点検項目は、前記乗場呼びを発生させる乗場呼び釦の状態を含み、
    前記制御部は、
    前記第1信号を含む情報を用いて、前記第1階床と前記第2階床との間における前記かごの位置と時刻との対応関係を特定し、
    前記対応関係に基づき、前記第1階床と前記第2階床との間の階床で前記かごが停止することなく前記第1階床と前記第2階床との間を前記かごが往復したと判断した場合に、前記乗場呼び釦の状態が正常状態であると判定する、エレベータ遠隔点検システム。
  2. 前記制御部は、前記対応関係に基づき、前記第1階床と前記第2階床との間の階床で前記かごが停止したと判断した場合、前記送信処理に基づく前記判定処理の判定をキャンセルするキャンセル処理を行い、
    前記指示部は、前記キャンセル処理が行われた場合、前記送信処理を再度行い、
    前記制御部は、
    再度行われた前記送信処理に基づき前記判定処理を再度行い、
    前記判定処理の判定が前記キャンセル処理によって所定回数連続でキャンセルされた場合、前記乗場呼び釦の状態が変調状態であると判定する、請求項1に記載のエレベータ遠隔点検システム。
  3. 前記制御盤は、強制停止階が設定されている場合、前記かごが前記強制停止階を通りかかったときに必ず前記強制停止階で前記かごが停止するように制御し、
    前記制御部は、前記第1階床と前記第2階床との間の階床が前記強制停止階に設定されている場合、前記強制停止階に前記かごが停止しても前記キャンセル処理を行わない、請求項2に記載のエレベータ遠隔点検システム。
  4. 前記所定回数は、10回である、請求項2に記載のエレベータ遠隔点検システム。
  5. 前記制御部は、前記制御盤により制御される前記かごが複数台ある場合、前記送信処理に基づく前記判定処理を行うことなく、判定対象とする対象かごにおいて、前記第1階床から前記第2階床まで走行、および、前記第2階床から前記第1階床まで走行する往復走行が行われた場合に、前記取得部から取得された前記往復走行時の前記判定用信号に基づき前記判定処理を実行する、請求項2~請求項4のいずれか1項に記載のエレベータ遠隔点検システム。
  6. 前記制御部は、前記制御盤により制御される前記かごが複数台ある場合、前記対象かごにおいて所定期間内に前記往復走行が行われなかったときは、前記対象かごに対応する前記乗場呼び釦の状態が前記変調状態であると判定する、請求項5に記載のエレベータ遠隔点検システム。
  7. 前記第1階床は、前記かごが停止可能な最下階であり、
    前記第2階床は、前記かごが停止可能な最上階である、請求項1に記載のエレベータ遠隔点検システム。
  8. 前記指示部と前記取得部と前記制御部と前記出力部とを含む遠隔点検装置と、
    前記遠隔点検装置とネットワークを介して接続可能であって前記遠隔点検装置を管理する管理サーバとをさらに備え、
    前記管理サーバは、前記遠隔点検装置に対して前記遠隔点検の実行指令を送信可能であるとともに、前記遠隔点検装置から前記判定結果を受信可能であり、
    前記エレベータの機器群と前記制御盤と前記遠隔点検装置とが第1国に設置されており、
    前記管理サーバが前記第1国とは異なる第2国に設置されている、請求項1に記載のエレベータ遠隔点検システム。
  9. エレベータの遠隔点検を行うエレベータ遠隔点検方法であって、
    前記エレベータの機器群に対して、前記エレベータの乗場呼びを発生させる乗場呼び信号を送信する送信処理を行うステップと、
    前記エレベータの機器群と前記エレベータの機器群を制御する制御盤との間でパラレル伝送により入出力される信号を判定用信号として取得するステップと、
    前記送信処理によって送信される前記乗場呼び信号を生成するとともに、前記送信処理の結果として前記取得するステップによって取得された前記判定用信号に基づき前記遠隔点検の点検項目を判定する判定処理を行うステップと、
    前記点検項目の判定結果を出力するステップとを備え、
    前記送信処理は、第1階床において上方向の第1乗場呼びを発生させる第1乗場呼び信号と、前記第1階床よりも上の第2階床において下方向の第2乗場呼びを発生させる第2乗場呼び信号とを送信する処理であり、
    前記判定用信号は、前記エレベータのかごの扉を開閉可能な前記かごの位置範囲を示すドアゾーン内に前記かごが位置する第1状態と、前記第1状態ではない非第1状態とのいずれかであることを示す第1信号を含み、
    前記点検項目は、前記乗場呼びを発生させる乗場呼び釦の状態を含み、
    前記判定処理を行うステップは、
    前記第1信号を含む情報を用いて、前記第1階床と前記第2階床との間における前記かごの位置と時刻との対応関係を特定するステップと、
    前記対応関係に基づき、前記第1階床と前記第2階床との間の階床で前記かごが停止することなく前記第1階床と前記第2階床との間を前記かごが往復したと判断した場合に、前記乗場呼び釦の状態が正常状態であると判定するステップとを含む、エレベータ遠隔点検方法。
JP2022184154A 2022-11-17 2022-11-17 エレベータ遠隔点検システムおよびエレベータ遠隔点検方法 Active JP7414938B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022184154A JP7414938B1 (ja) 2022-11-17 2022-11-17 エレベータ遠隔点検システムおよびエレベータ遠隔点検方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022184154A JP7414938B1 (ja) 2022-11-17 2022-11-17 エレベータ遠隔点検システムおよびエレベータ遠隔点検方法

Publications (1)

Publication Number Publication Date
JP7414938B1 true JP7414938B1 (ja) 2024-01-16

Family

ID=89534373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022184154A Active JP7414938B1 (ja) 2022-11-17 2022-11-17 エレベータ遠隔点検システムおよびエレベータ遠隔点検方法

Country Status (1)

Country Link
JP (1) JP7414938B1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001335244A (ja) 2000-05-29 2001-12-04 Mitsubishi Electric Corp エレベータシステム及びその制御方法
JP2022118796A (ja) 2021-02-03 2022-08-16 日本昇降機株式会社 エレベータの監視装置、監視システム、及び監視方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001335244A (ja) 2000-05-29 2001-12-04 Mitsubishi Electric Corp エレベータシステム及びその制御方法
JP2022118796A (ja) 2021-02-03 2022-08-16 日本昇降機株式会社 エレベータの監視装置、監視システム、及び監視方法

Similar Documents

Publication Publication Date Title
CN110606417B (zh) 电梯传感器系统楼层映射
CN102092607B (zh) 电梯的运行控制装置
US3973648A (en) Monitoring system for elevator installation
JP5599529B1 (ja) 遠隔監視支援装置
CN111377325B (zh) 用于增强电梯传感器操作的系统和方法
AU2018202263B2 (en) Passenger-initiated dynamic elevator service request
CN110775734B (zh) 用于理解和规划电梯使用的方法
EP3628624B1 (en) Sensor-based shutdown detection of elevator system
CN111483898B (zh) 电梯轿厢和门运动监测
CN110606418B (zh) 电梯系统
CN111434600B (zh) 用于电梯系统的远程监控系统及远程监控电梯系统的方法
CN110271926A (zh) 电梯系统中的自动救援操作
JP5599530B1 (ja) 遠隔監視支援装置
JP2014172714A (ja) エレベータシステム
JPH0648665A (ja) エレベータ点検装置
JP7414938B1 (ja) エレベータ遠隔点検システムおよびエレベータ遠隔点検方法
JP7361873B1 (ja) エレベータ遠隔点検システムおよびエレベータ遠隔点検方法
JP7361871B1 (ja) エレベータ遠隔点検システムおよびエレベータ遠隔点検方法
JP7361870B1 (ja) エレベータ遠隔点検システムおよびエレベータ遠隔点検方法
JP7361872B1 (ja) エレベータ遠隔点検システムおよびエレベータ遠隔点検方法
JP7361869B1 (ja) エレベータ遠隔点検システムおよびエレベータ遠隔点検方法
JP7475418B1 (ja) エレベータ遠隔点検システムおよびエレベータ遠隔点検方法
JP7475417B1 (ja) エレベータ遠隔点検システムおよびエレベータ遠隔点検方法
JPS62111881A (ja) エレベ−タの操作装置
JP5611491B1 (ja) 遠隔監視支援装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231228

R150 Certificate of patent or registration of utility model

Ref document number: 7414938

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150