図1を参照すると、本明細書の技術に従うシステムの一実施形態が示される。システム100は、試料分析を行うための分析機器などの構成要素を含むことができる。1つの実施形態において、システム100は、液体クロマトグラフ(LC)104と、検出器112と、記憶装置114と、コンピュータ116とを含む、LC機器システムとすることができる。以下の段落において説明されるように、システム100は、試料102の分析を行って、対象の1つ又は2つ以上の化合物を検出するために使用することができる。LC104は、試料102を受容する注入器106と、ポンプ108と、カラム110とを含むことができる。液体試料102は、LC104への入力として導入することができる。図1には示されていないが、LC104はまた、任意選択的なカラム加熱器も含むことができる。下でより詳細に説明されるように、コンピュータ116は、構成要素の動作を制御するために使用すること、及び分析データを記憶装置114に記憶するためにデータ獲得に関連して使用することができる。また、下で更に詳細に説明されるように、試料及び移動相はシステムの流体経路を通って横断する。
動作中に、試料102は、注入器106を介してLC104に注入される。ポンプ108は、カラム110を通して試料を圧送して、カラム110を通る保持時間に従って試料を構成部分に分離させる。ポンプ108及び注入器106によって提供されるクロマトグラフィ溶媒の高圧ストリームは、試料102を、LC104内のクロマトグラフィカラム110を通して移動させる。カラム110は、典型的に、その表面を化学的に修飾することができるシリカ、ポリマー、又は有機ハイブリッドシリカで作製された、多孔性、非多孔性、又は表面多孔性粒子の充填カラムを備える。カラム110からの出力は、分析のために検出器に入力される。検出器112は、UV吸収検出器、蒸発光散乱検出器、質量分析器、及び同類のものなどの、任意の好適な検出器とすることができる。
1つの実施形態において、LCシステムは、例えば、高速液体クロマトグラフィ(HPLC:High Performance Liquid Chromatography)、又はマサチューセッツ州ミルフォードのWaters CorporationによるACQUITY UPLC(登録商標)及びnanoACQUITY UPLC(登録商標)システムなどの超高速液体クロマトグラフィ(UPLC:Ultra Performance Liquid Chromatography)システムとすることができる。Waters Corporationによる上記したようなLCシステムは、(例えば、一部のHPLCシステムについて例示的に)34.47MPa(5000psi)~(例えば、一部のUPLCシステムについて例示的に)103.42MPa(15000psi)の範囲などの、高圧の下で動作することができる。
制御手段(図示せず)は、104及び112などのシステム100の構成要素のための必要な動作電位をそれぞれ提供する、種々の電源(図示せず)のための制御信号を提供する。これらの制御信号は機器の動作パラメータを決定する。制御手段は、典型的に、コンピュータ116などのコンピュータ又はプロセッサからの信号によって制御される。
記憶装置114は、任意の1つ又は2つ以上の異なる種類のコンピュータ記憶媒体及び/又はデバイスとすることができる。当業者によって認識されるように、記憶装置114は、コンピュータ可読命令、データ構造、プログラムモジュール、又は他のデータなどの情報を記憶するための任意の方法又は技術で実装される、揮発性及び不揮発性媒体、取り外し可能及び取り外し不可能な媒体を含む、様々な異なる形態のうちの任意の1つを有する、任意の種類のコンピュータ可読媒体とすることができる。コンピュータ記憶媒体としては、RAM、ROM、EEPROM、フラッシュメモリ若しくは他のメモリ技術、CD-ROM、(DVD)若しくは他の光記憶装置、磁気カセット、磁気テープ、磁気ディスク記憶装置若しくは他の磁気記憶デバイス、又はコンピュータプロセッサによってアクセスすることができる、所望のコード、データ、及び同類のものを記憶するために使用することができる任意の他の媒体が挙げられるが、それらに限定されない。
コンピュータ116は、任意の市販の若しくは専用のコンピュータシステム、プロセッサボード、ASIC(特定用途向け集積回路)、又はコンピュータ可読媒体に記憶されたコードを実行するように構成されたプロセッサを含む他の構成要素とすることができる。プロセッサは、コードを実行するときに、コンピュータシステム116に、記憶装置114に記憶されたデータにアクセスし、それを分析するなどの処理ステップを行わせることができる。コンピュータシステム、プロセッサボードなどは、より一般的には、コンピューティングデバイスと呼ばれることがある。コンピューティングデバイスはまた、コンピュータプロセッサに処理ステップを行わせる実行可能コードが記憶された、114によって表されるようなコンピュータ可読媒体を含むこと、又は別様にはそれにアクセスするように構成することもできる。
1つ又は2つ以上の分子種は、カラム110通って移動し、それぞれカラム110から現れるか、又は溶出し、そして、検出器112によって検出される。分子がカラムを通って横断するのにかかる時間は、分子の保持時間と称される。すなわち、保持時間tにおいてカラムから溶出する分子は、実際には、時刻tに本質的に中心がある期間にわたって溶出する。この期間にわたる溶出プロファイルは、分子の保持時間がプロファイルの頂点に対応する、クロマトグラフィピークと称される。典型的で模範的なクロマトグラフィピークの溶出プロファイルは、正規(ガウス)分布によって説明することができる。ピークは、典型的に、半分の高さでのその全幅によって、又は半値全幅(FWHM)によって説明される幅を有する。
クロマトグラフィ支持マトリックス(カラム110の充填材料、又は試料溶液の化学化合物を分離するための他の分離媒体)から溶出する分子の保持時間及びクロマトグラフィピークのプロファイルは、支持マトリックスと移動相との間におけるその分子の物理的及び化学的相互作用の関数である。分子が支持マトリックスと移動相との間で有する相互作用の程度は、その分子のクロマトグラフィプロファイル及び保持時間を左右する。複雑な混合物では、各分子は化学的に異なる。その結果、各分子は、クロマトグラフィマトリックス及び移動相に対して異なる親和性を有することができる。結果的に、各分子は、一意的なクロマトグラフィプロファイルを呈することができる。
試料溶液が高圧で充填LCカラムを通って流れるときに、カラム内で摩擦熱が発生する。発生する摩擦熱の量は、例えば、移動相の流量、カラム充填材料の粒径、及びカラムの寸法(長さ及び内径)などの、複数の要因の関数である。そのような摩擦熱は、カラムの外側縁部又は壁に対するカラムの中心における温度の上昇若しくは温度差をもたらし、それによって、LCシステムの性能に悪影響を及ぼす半径方向熱勾配を生じさせる場合がある。当該技術分野で既知であるように、LCの性能は、例えば、プレートカウントによる効率、プレート高さの低減、及び/又はテーリング係数に関して測定することができる。LC性能への悪影響は、例えば、通常の/予期されるピーク幅よりも広い幅、非対称のピーク形状、低減させたプレートカウント、及び同類のものを有することによって観察することができる。例えば、半径方向熱勾配は、カラム中心の温度がカラム外側縁部よりも高い場合、中心を通過する液体移動相に、外側縁部よりも低い粘度を生じさせる。その結果、液体移動相は、外側縁部よりも速くカラム中心を通って流れる。また、クロマトグラフィの保持は、典型的に、温度が上昇するにつれて減少するので、分析物は、カラムの中心においてより速く移動する。更に例示するために、例えば、クロマトグラフィピークは、上で説明したようなカラムにおける半径方向熱勾配に起因する粘度(したがって、流量)のそのような変化のため、より広範囲に又はより幅が広くなる場合がある。そのようなピーク幅の増加は、ピークの重なりもたらし、それによって、LCデータから取得される情報の質に悪影響を及ぼす場合がある。したがって、そのような悪影響(上記したものが1つの例である)のため、半径方向熱勾配を最小にして、又は低減させて、LCの性能を改善することが望ましい。
加えて、そのような摩擦熱は、LCカラムを通って流れる方向(また、方向流の軸に関して軸方向とも称される)に関する温度差を生じさせる場合がある。そのような軸方向における温度差は、軸方向熱勾配と称することができ、また、LCカラムに進入する液体移動相の温度Tin、及びLCカラムを出るときの温度Toutを決定することによって測定することができる。LCカラムに充填する粒径が、例えば5ミクロンの粒子であるときには、軸方向においてTinとToutとの間にほとんど差が生じない場合がある(例えば、1℃又は2℃であり得る)。しかしながら、1.7ミクロンのサイズを有する粒子などの、より小さい粒径の粒子でLCカラムを充填することで、軸方向におけるTinとToutとの差が、5ミクロンのサイズの粒子の事例に関する軸方向熱勾配と比較して、はるかに大きくなる。軸方向熱勾配は、保持に影響を及ぼす場合があるが、LC性能に対する悪影響は、最小に又は極めて少なくなり得る。
一般に、LCカラムに関する任意の種類の温度勾配(例えば、半径方向熱勾配及び軸方向熱勾配のうちのいずれかを含む)は、移動相の粘度、移動相内の分析物が拡散する速度若しくは率に影響を及ぼす場合があり、また、保持性(例えば、分析物が、カラムに充填する際の粒子の表面とどのように相互作用するのか)にも影響を及ぼし、それによって、クロマトグラフィの保持時間に影響を及ぼす場合がある。上で述べたように、軸方向熱勾配は、一般に、クロマトグラフィの性能に相当な負の影響又は悪影響を及ぼさない。しかしながら、半径方向熱勾配の存在は、典型的に、カラム効率に関して測定され得るような、LCの性能に相当な悪影響を及ぼす。
断熱、等温、及び周囲を含むカラム環境のモデリング及び一般的な試験を通して、断熱の(又は、できる限り近い断熱条件に接近する)カラム環境を有することが、(USPプレートカウント及び/又はHETP(理論段相当長さ:Height Equivalent to the Theoretical Plate)に関して測定され得るような)最も少ない又は最小の半径方向熱勾配及び最高のカラム効率を有するために最善であると決定した。等温は、例えばカラムを水槽中に配置することなどによって、カラム外壁において一定のカラム温度を有するものとして定義することができる。断熱は、カラムに外部絶縁を提供することによって、カラムに対する熱のあらゆる追加又は除去を低減又は排除するものとして定義することができる。周囲は、静止空気中にカラムを有するものとして定義することができる。
この目的のために、本明細書では、そのような断熱条件を提供し、半径方向熱勾配を最小にして、カラムの効率及び性能を最大にする、LCカラムに関する実施形態が説明される。断熱条件を提供することを目的として本明細書で説明されるようなカラムを有するLCシステムの動作中に、カラムは、本明細書の他の場所で説明されるように、摩擦を介して自然に温度が上昇する。ある時点で、カラム及びLCシステムは、定常状態温度に到達する。カラム温度に関するそのような定常状態は、Tin、Tout、及びそれらの差(例えば、軸方向温度勾配)を比較的又は実質的に一定にすることによって決定することができる。カラム温度に関するこの定常状態において(Tin、Tout、及び軸方向熱勾配の実質的に一定の値を取得することによって、並びに本明細書で説明される絶縁カラムを使用した断熱条件で決定することができる)、カラム外壁及びカラム中心の温度は、実質的に同じになり、それによって、半径方向熱勾配を最小に、又は排除する。したがって、カラム絶縁を介して断熱条件を提供する、本明細書でより詳細に説明されるカラムの実施形態を使用するそのような定常状態温度においては、軸方向熱勾配及び最小の半径方向熱勾配が存在することになる。
LCシステムが、LC実験を行うことに関連して試料を注入する前に定常状態に到達し得ることが、当業者によって認識されるであろう。
図2を参照すると、本明細書の技術に従うクロマトグラフィカラムの一実施形態の一実施例が示される。図2の実施形態は、図1のシステムのカラム110として使用することができる。図2は、絶縁層内の高速液体クロマトグラフィ(HPLC)内のカラム128、又はカラム128と外側ジャケット120との間に形成された部材130の側破断図を例示する。入口管10は、HPLCカラム128の中へ試料溶液を搬送し、出口管20は、HPLCカラム128の外へ試料溶液を搬送する。要素30は、ビーズ又は他のカラム充填材料などのクロマトグラフィ分離媒体を表す。
絶縁層又は部材130は、34.47MPa(5,000psi)を超える圧力で動作することが可能なHPLCカラムのための熱的絶縁を提供することができる。125の実施形態において、絶縁層又は部材130は、熱的絶縁体として作用し、局所的大気圧未満である(例えば、領域120の外部、又はジャケット120を取り囲む大気圧未満である)圧力を有する、真空チャンバとすることができる。カラムを取り囲む領域130内の真空に関連して一実施形態において使用することができる、より具体的な圧力(複数可)の例は、本明細書で他の場所で提供される。例示されるように、カラム128は、好適な気密シーリングを有するジャケット120内に配置して、ジャケット120の外側の環境から、(そこに取り付けられた他の例示される構成要素に加えて)ジャケット120内に位置付けられたカラム128を隔離することができる。カラム128がジャケット120内に配置されると、ジャケット内でカラム128を取り囲むその中の空気を排出することによって、空間又はチャンバ130内に真空を作成することができる。空気は、真空ポンプ(図示せず)をジャケット120の貫通孔50に接続することによって排出することができる。空気が空間130から排出された時点で、貫通孔50を封止し、それによって、ジャケット120内のカラム128を取り囲む領域に、130によって表される真空チャンバ又は空間を作成することができる。
真空チャンバが空間130に作成される上記の第1の代替例として、空間130内の空気は、アルゴン、クリプトン、又はキセノンなどの重い不活性ガスと置換することができる。そのような実施形態において、不活性ガス(図示せず)の供給源は、貫通孔50に接続して、空間130の大気のガスを不活性ガスと置換することができる。次いで、貫通孔50を、上で説明したような任意の好適な手段を使用して閉鎖して、気密シールを形成することができる。この第1の代替例において、絶縁層130は、その中に位置付けられる不活性ガスによって形成することができる。上記の更なる変形例として、貫通孔50を閉鎖する前に、不活性ガスを空間130に提供すると、次いで、真空ポンプを貫通孔50に取り付けて、不活性ガスを排出することによって真空を作り出すことができる。十分な真空が作り出されると、次いで、上で説明したように貫通孔50を閉鎖して、好適な気密シールを形成することができる。
したがって、上記の例示的な代替例に基づいて、一実施形態は、カラムを取り囲む空間内の空気又は大気ガスを排出することによって、カラムを取り囲む絶縁層を形成し、それによって、絶縁層130として真空チャンバ(最小の大気のガスを有する)を作成することができる。一実施形態はまた、カラムを取り囲む空間内の空気又は大気ガスを不活性ガスと交換することによって、カラムを取り囲む絶縁層を形成し、それによって、大気圧である絶縁層130として、不活性ガスチャンバ又は層を作成することもできる。一実施形態はまた、カラムを取り囲む空間内の空気又は大気ガスを不活性ガスと交換し、次いで、カラムを取り囲む空間内の不活性ガスを排出することによって、カラムを取り囲む絶縁層を形成し、それによって、絶縁層130として、真空チャンバ(最小の不活性ガスを有する)を作成することもできる。
絶縁層130のチャンバ内に形成することができる真空に関連して、真の真空が、最も低い熱伝導率を有し、それによって、熱は、放射加熱によってだけ輸送され得ることに留意されたい。非常に低い圧力(例えば、チャンバの寸法に依存して、約10-3atm未満)において、熱伝導率は、圧力に正比例する。この領域はまた、クヌーセン領域として当該技術分野において既知であり、分子の平均自由行程は、チャンバの寸法と比較して大きい。低い圧力(例えば、10-3atm~約1×10-1atmの近似範囲、又は約10-3atm未満)において、熱伝導率は、非常に弱い圧力の関数であり、1barあたりの増加は約1%未満である。したがって、いくつかの実施形態は、約10-3atm以下の好ましい圧力を有する真空を利用することができる。本明細書の技術を使用する他の実施形態は、10-3atm~約1×10-1atmの近似範囲などの他の圧力を利用することができるが、約10-3atm以下の圧力が好ましい場合がある。
本明細書で説明される圧力のうちの1つにおいて、真空チャンバなどの本明細書で説明される実施形態において130に関連して使用することができるガスに関して、重いガスは、より低い熱伝導率を有するので、より軽いガスよりも良好な熱的絶縁を提供することに留意されたい。熱伝導率は、一般に、分子量が増加するにつれて減少する。一実施形態は、例えば、空気よりもはるかに重く、したがって、より低い熱伝導率を有する、アルゴン、キセノン、及び/又はクリプトンを使用することができる。別の例として、一実施形態は、六フッ化硫黄を含むガスを使用して、絶縁層130を形成することができる。
カラム内径は、1mm(ミリメートル)以上などの任意の好適な寸法とすることができるが、そのようなカラムを使用することによる利点の増加は、カラム内径が増加するにつれて(例えば、例えば2mm以上のカラム内径で)より明らかになり得ることに留意されたい。一実施形態はまた、充填材料又はより一般的には分離媒体に対して、任意の粒径を有するカラムを使用することができる。しかしながら、(例えば、2.5ミクロン以下サイズなどを有する粒子などの)より小さい粒径を使用するカラムは、典型的に、より多くの摩擦熱が発生し、それによって、より大きい熱勾配をもたらすので、より大きい利点を得ることができる。カラム128の外側カラム壁は、一般に34.47MPa以上(5,000psi)を超えるようなHPLCの動作圧力に耐えることが可能な鋼、チタニウム、又は他の好適な材料から作製することができる。周囲ジャケット120は、貫通孔50を機械加工又は別様には形成することができる鋼又は他の好適な材料から作製することができる。貫通孔50は、圧着、キャッピング(例えば、取り外し可能又は永久的なキャップを使用する)、及び同類のものなどによる、任意の好適な様式で封止することによって、130によって表される空間に真空を作り出す際に使用するための気密シールを提供することができる。例えば、貫通孔50は、(例えば、ねじを介して)取り外し可能なキャップを適用することによって封止することができる。
1つの実施形態において、領域130は、絶縁層又は絶縁部材を形成し、また、カラム128と、ジャケット120の外側又は周囲環境などの周囲温度との間の熱伝導率を妨げる十分な絶縁を提供することができる。絶縁層又は絶縁部材を形成する、130として表される領域は、例えば約0.02W/mk以下である熱伝導率を提供することができる。理想的には、130によって提供される熱伝導率が空気の熱伝導率よりも低いことが望ましく、よって、例えば、一実施形態は、空気の熱伝導率よりも低い熱伝導率を有する、以下に表されるそのようなガスを使用することができることに留意されたい。(例えば、二酸化炭素、アルゴン、クリプトン、キセノン、六フッ化硫黄)。下記は、1気圧、298度Kにおけるいくつかのガスの熱伝導率の表である。
ガスについて上で参照した情報に関連して、そのような情報は、一般に、当該技術分野において利用することができ、また、既知である。例えば、クリプトン、キセノン、及び六フッ化硫黄(SF6)、並びに空気以外のデータは、RC Reid,JM Prausnitz,BE Poling,The Properties of Gases&Liquids,4th Edition,McGraw Hill,1987から取得することができる。クリプトン、キセノン、及び六フッ化硫黄(SF6)、並びに空気以外のデータは、例えばwolframalpha.comにおいてオンラインで入手可能な、Wolfram Alpha LLCのWolfram Alpha(商標)計算知識エンジンを使用して、インターネットで公的に入手可能な情報を通して見出すことができる。
一実施形態において使用されるジャケット120は、一般に、真空に耐えることができ、かつガスが抜けない、任意の好適な材料とすることができる。例えば、ジャケット120は、鋼、銅、黄銅、アルミニウム、又は他の金属のうちの1つ又は2つ以上から作製することができる。カラムは、例えば鋼又はチタニウムからなる壁を有することができるが、より一般的には、高圧に耐えることができ、更に、一実施形態において利用される移動相及び試料に対して化学的に不活性である、任意の材料から作製することができる。代替として、一実施形態は、試料と化学的に相互作用する材料から構築された壁を有するようにカラムを選択することができ(例えば、セラミックは、しばしば特定の分析物と相互作用する)、また、(例えば、流体経路内で試料及び移動相と接触する)カラムの内壁を溶融シリカ又はPEEKなどの不活性材料でコーティング/クラッディングすることができる。使用することができる好ましい真空圧力は、10-3atm未満などの、上で説明したものである。カラム材料に使用される粒径は、1.5~2ミクロンの両端を含む近似範囲のサイズの粒子などの、2ミクロン未満のサイズを有することができる。本明細書の技術はまた、より大きいサイズの粒子と共に使用することができるが、熱的影響は、例えば5~10ミクロンの一般的なサイズ範囲を超える、又は5ミクロンを超える粒子などの、より大きいサイズの粒子についてはあまり重要でなくなることに留意されたい。したがって、熱的影響は、より小さいサイズの粒子に関してより重要になる。本明細書の技術に関連して、任意の好適な寸法のLCカラムを使用することができる。一実施形態において使用することができるLCカラムの例示的な寸法は、20mm~300mmの長さ、及び約100μm以上~約50mmである直径を有することができる。当業者によって認識されるように、熱的影響は、熱伝達が放射勾配及び軸勾配を最小にするので、例えば約100μm未満の小径カラムには重要でなくなり得る。より大きい直径において、約50mmのサイズは、ハードウェアの圧力定格などのため、実際的な限界に基づく場合がある。直径が増加すると、必要な高圧に耐えることができる管を作製することがかなり高価になる。
図3を参照すると、本明細書の技術に従うクロマトグラフィカラムの別の実施形態の一実施例が示される。図3の実施形態は、図1のシステムのカラム110として使用することができる。図3は、図2に類似する構成要素を含むが、絶縁部材又は層が(図2のように130ではなく)、160として表されること、また、カラムの一体化部分又は層として含まれることが異なる。例150において、カラムは、絶縁層160を形成する第2の外側部分によって取り囲まれた第1の内側部分128(図2に関連して上で説明したような非絶縁カラム128)を含むことを特徴とすることができる。図3の例150において、絶縁層160は、内側部分128の全長に延在し得ない。絶縁層160は、図2の要素130に関連して上で説明したように形成することができる。
図4を参照すると、本明細書の技術に従うクロマトグラフィカラムの別の実施形態の一実施例が示される。図4の実施形態は、図1のシステムのカラム110として使用することができる。図4は、図3の構成要素に類似する構成要素を含み、絶縁部材又は層160は、カラムの一体化部分又は層として含まれる。例180において(図3にもあるように)、絶縁層160を形成する第2の外側部分によって取り囲まれた(図2に関連して上で説明したような)第1の内側部分128を含むことを特徴とすることができる。図4の例180において、絶縁層160は、内側部分128の実質的に全長に延在することができる。絶縁層160は、図2の要素130に関連して上で説明したように形成することができる。
LCシステムを使用して実験を行うときに、あるときには、移動相の温度が周囲温度又は気温よりも高くなるように加熱又は上昇させることが望ましい場合がある。この目的のために、更なる例示的な実施形態が図5A及び5Bに関連して例示される。
図5A及び5Bを参照すると、本明細書の技術に従って、カラム入口の前に移動相を加熱するためにアクティブ加熱要素をカラムの前に位置付けることができる、更なる例示的な実施形態が示される。
図5Aは、LCシステムの構成要素の一実施例200を例示する。実施例200は、ポンプ202と、注入器204と、加熱器206と、図2に関連して上で説明したものに類似する様式でLCカラムを封入する容器又は筐体201とを含む。筐体201は、図2のジャケット120として機能する外壁220を有する貫通孔250を含むことができる。要素230は、図2の要素130に関連して上で説明したような絶縁層を形成するチャンバとすることができる。加熱器206は、例えば、Waters Corporationによって提供されるACQUITYアクティブ溶媒加熱器とすることができる。加熱器206は、例えば、種々の構成要素202、204、206、及び201の間で矢印によって表される流路を有する移動相を加熱するために、所望の設定点温度に設定することができる。
図5Bは、図5Aの変形例に対する更なる変形例である。図5Bの実施例280は、図5Aの実施例200に類似するが、図5Bにおいては、加熱器206が筐体201内に含まれることが異なる。
要素201は、例えば、カラムが配置されるカラム加熱器コンパートメント又はオーブンとすることができることに留意されたい。カラム加熱器は、図2の貫通孔50に関連して上で説明したように、貫通孔250を介して真空ポンプを接続することができる(図示せず)、本明細書で説明されるような適切な気密シールを含むことができる。そのような配設において、カラム加熱器は、必要に応じて、カラム128の中へ進入する前に移動相を加熱するための、206によって表されるアクティブ加熱要素に加えて、追加的な加熱を印加することができる。更に、一実施形態は、溶媒加熱器206の使用の有無にかかわらず、図5Aに関連して上で説明したようなカラム加熱器を使用することができる。カラム加熱器(図5A及び5Bにおいて201によって表されるものなど)は、例えば、WatersのAQUITY UPLC(登録商標)カラム加熱器とすることができる。
上記の加熱器部材206及び/又は要素201がカラム加熱器である実施形態に関連して、所望の設定点を取得することに関連した加熱は、フィードバック制御(図示せず)を使用して行うことができ、それによって、(例えば、熱電対によって測定された現在の温度が、所望の温度設定点であるかどうか、又はそのような設定点の許容可能な閾値内であるかどうかに基づいて、加熱器を制御することによって熱の量を増加/減少させるために)1つ又は2つ以上の熱電対を使用するなどによって、実際の、又は観察された温度を取得して、加熱構成要素の電子機器制御へのフィードバックを提供することができる。カラム加熱器を使用する一実施形態においては、カラム加熱器を使用して、気密様態で201内に封入されたカラムへの追加的な熱の供給源を印加することができる。周囲環境からの放射加熱を介してカラム128を加熱するために、追加的な熱の供給源を提供する。他の好適な技術を使用して、カラム128の外壁と筐体201の壁220との間に真空チャンバによって形成されるような、上で述べた絶縁部材又は層230と共に筐体201内に含まれるカラム128に追加的な熱を提供することもできることに留意されたい。例えば、任意選択的な加熱器又は加熱手段は、筐体201を封入又は取り囲むことができ、これは、真の断熱条件に到達する際の潜在的な非理想性を補償するために放射熱を加える能力を提供する。
以下で説明される技術は、測定された軸方向熱勾配に関して上で説明したように定常状態を達成するためにかかる時間量を低減させるために、LCシステムの動作中にLC実験を行うことに関連して使用することができ、それによって、カラム入口温度Tin、カラム出口温度Tout、及びTinとToutとの差(例えば、ある許容量の測定された閾値の差の範囲内)について実質的に一定の値が生じる。
以下の段落において説明される技術は、種々のカラム位置でカラムと熱的に接触している1つ又は2つ以上の独立して制御される加熱器を使用することができる。本明細書で説明されるようないくつかの実施形態においては、種々のカラム位置でカラムと熱的に接触している複数の独立して制御される加熱器を利用することができる。これらの独立して制御される加熱器は、単独で使用すること、又はカラム及びそこを通過する液体移動相の温度を制御することに関連して適用することができる他の熱の供給源と組み合わせて使用することができる。
温度は、分析物の保持に対する顕著な影響を有し得る1つのパラメータである。温度は、例えば、分析物と静止相又は分離媒体との間の吸着及び脱着の動力学を変化させ、それによって、分離の速度及び選択性に影響を及ぼし得る。LC実験を行う際には、再現可能な結果を取得するためにLCカラムが定常状態温度を達成することが重要である。以下の段落で説明される技術は、カラム温度に関してそのような定常状態を達成するために必要な時間の低減を提供する。本明細書の別の場所で説明されるように、定常状態のカラム温度は、Tin及びTout、並びにそれらの間の差(例えば、軸方向温度勾配)を比較的又は実質的に一定にさせることによって決定することができる。
図6を参照すると、Tin、Tout、並びにTin及びToutの温度差(例えば、実質的に一定である軸勾配)の実質的に一定の測定値に基づいて決定するときに、定常状態を達成するために必要とされる時間量を低減させるための、本明細書の技術に関連して使用することができる構成要素の一実施形態の一実施例が示される。実施例300は、ポンプ202と、注入器204と、加熱器206と、本明細書で他の場所で説明される入口10及び出口20を有する非絶縁カラム128とを含む。加えて、実施例300は、カラム出口20においてカラム128に結合され、かつそれと熱的に接触している、加熱器310を含む。カラム出口(exit又はoutlet)温度Toutは、例えば、カラム出口又はその近くに位置付けられた熱電対によって測定することができる。要素P1、P2、及びP3は、温度測定値を取得するために熱電対を位置付けることができる、例示的な位置を示す。加熱器310は、手動で、自動で、又は自動化された制御手段(図示せず)を通して、所望の設定点温度に設定することができる。観察される実際の温度は、熱電対を使用して測定することができ、加熱器310は、(例えば、P1、P2、又はP3のうちの1つからなどの)測定温度Toutが所望の設定点値であるかどうかに基づいて、スイッチをオン/オフにして、又は別様には調整して、加熱器310からの熱量を増加又は減少させることができる。当該技術分野で既知であるように、好適な電子配線、回路、及び同類のものを使用するなどのフィードバック技術を使用して、加熱器310の制御及び動作を自動化することができる。例えば、図1を再度参照すると、コンピュータ116上で実行するコードは、ユーザがToutの所望の設定点を選択し、設定することができる、ユーザインターフェースを提供することができる。測定温度Toutは、コンピュータシステムに提供することができ、それによって、コンピュータシステム上で実行するコードは、測定されたToutとToutの所望の設定点値とを比較し、測定されたToutがToutの所望の設定点値であるかどうかに応答して、加熱器310に制御信号を発行して、加熱器310の動作を適切に制御することができる。
上で説明したようなカラム入口温度Tinは、Toutに類似する様態で測定することができる。例えば、熱電対を使用して、P4、P5、及びP6によって表されるようなカラム入口の任意の好適な位置でTinを測定することができる。Tin及びToutの観察値又は測定値、並びにそれらの差を決定することに基づいて、一実施形態は、Tin及びToutの測定値、並びにTinとToutとの間の軸方向熱勾配又は差が実質的に一定の測定値によって示されるように、定常状態がいつ到達されたのかを決定することができる。
Tin及びToutの測定値、加熱器310の制御、及びToutの温度設定点の選択は、当業者には明らかなように、任意の好適な手動の及び/又は自動化された技術を使用して決定することができる。例えば、一実施形態は、加熱器310の動作を制御するために制御信号を使用して、上で説明したような自動化された技術を使用することができる。加えて、一実施形態はまた、所与のTin及び他のパラメータに基づいて定常状態のカラム出口温度を予測し、Toutの所望の設定点としてこのToutの計算値を使用する、プロセッサ上で実行するコードによって実施されるアルゴリズムを使用するなどして、自動化された様態でToutの所望の温度設定点を決定することができる。定常状態のカラム出口温度は、実現形態の詳細に基づいてアルゴリズム的に決定することができる。例えば、Toutの設定点としての予測された定常状態のカラム出口温度は、カラム寸法(例えば、長さ及び直径)、粒径、移動相の組成(例えば、溶媒)、流量、カラム入口温度Tin、及びカラムアセンブリの熱的特性に基づいて/これらを使用して決定することができる。例えば、以下の式を、自動化された技術に関連して使用して、所与のTinを含む種々のパラメータに応じて、定常状態の設定点として所望のTout(予測されたカラム出口温度)を自動的に予測することができる。例えば、一実施形態は、PID(比例積分微分)コントローラを使用して、既知又は所与のTin及び他のシステムパラメータに基づいて、Toutの設定温度を定常状態値に駆動することができる。この様態においては、そのような技術を使用して、定常状態を決定し、システムを定常状態に駆動することができる。当該技術分野で既知であるように、PIDコントローラは、種々の種類の制御システムにおいて広く使用されているような、一般的な制御ループフィードバック機構(コントローラ)を特徴とすることができる。摩擦熱を介して加熱される断熱カラムの温度上昇は、次式によって予測することができる。
式中、ΔT
Lは、カラムの入口と出口との長手方向温度差(例えば、T
in-T
out)であり、αは、移動相の熱膨張係数であり、
は、移動相の平均温度であり、ΔPは、カラム全体にわたる圧力降下であり、C
Pは、一定圧力における移動相の熱容量であり、
は、量αTの平均を表し、ρは、移動相の密度である。値(1-αT)は、2/3程度である(F Gritti and G Guiochon,Anal.Chem.80(2008)5009)。例えば、式Aを使用することで、一実施形態は、自動化された技術を使用して、所与の又は設定されたT
inの定常状態と関連付けられたT
outの予測値を決定することができる。適切な制御信号は、T
outがその予測された定常状態値に到達し、(いくつかの指定許容範囲内に)維持されるように、加熱器/冷却ユニット310に送信することができる。T
inの異なる所与の値に基づいて、T
outの異なる値が所望されたときに、そのような自動化された技術を使用して、(例えば、310を制御することによって)T
outを決定し、その調整を提供することができる。より一般的には、式Aを使用して、定常状態と関連付けられたT
in及びT
outの値の特定の対を決定することができる。本明細書の他の場所でより詳細に説明されるように、1つ又は2つ以上の加熱及び/又は冷却ユニットを使用して、T
in及び/又はT
outを、式Aを使用して決定される所望の温度に駆動することができる。
上記に基づいて、予測された定常状態のカラム出口温度を算出するための方法は、例えば図1のコンピュータ116などのプロセッサ上で実行するソフトウェアを使用して実施することができる。上で説明したように、加熱器310の温度制御は、フィードバックループを介して加熱器310を調整又は制御することによって得ることができ、このフィードバックループは、カラム出口温度を監視し、また、Toutの予測された所望の設定点に到達したとき(例えば、測定されたカラム出口温度Toutが、Toutの予測値である、又はその付近である(例えば、その閾値量の範囲内である)とき)に基づいて加熱器310に制御信号を送信する。
図6に関連して、本明細書の技術に従う一実施形態は、カラム128に進入する前の溶媒加熱器として、206を除いて加熱器310だけを含むことができるように、加熱器206を任意選択的に利用することができることに留意されたい。加えて、図6に関連して、要素310は、加熱器とするか、又はより一般的には加熱及び/若しくは冷却を提供する温度制御ユニットとすることができる。
図6の実施形態の変形例として、310によって表されるユニットは、移動可能又は携帯可能であるように構成し、また、例示されるようなカラム出口(exit又はoutlet)の他に、カラム128に沿った他の軸方向位置に容易に位置付けることができる。
図7を参照すると、Tin、Tout、並びにTin及びToutの温度差(例えば、実質的に一定である軸勾配)の実質的に一定の値に基づいて決定するときに、定常状態を達成するために必要とされる時間量を低減させるための、本明細書の技術に関連して使用することができる構成要素の別の実施形態の一実施例が示される。実施例400は、ポンプ202と、注入器204と、加熱器206と、加熱器310と、図6に関連して上で説明した入口10及び出口20を有する非絶縁カラム128とを含む。加えて、実施例400は、カラム入口10においてカラム128に結合され、かつそれと熱的に接触している、第2の加熱器410を含む。
要素410は、要素310によって表される加熱及び/又は冷却ユニットに類似し得るが、410が128の入口に位置付けられ、Tinを制御するように機能することが異なる。したがって、Toutに関して上で説明した様態に類似して、Tinは、所望の温度設定点に設定し、加熱器410を制御するための設定点として使用することができる。
加熱器410は、例えば、手動の及び/又は自動化された様態を介して設定することができ、加熱器410は、手動で(例えば、ユーザは、観察されたTinに基づいて、加熱器410のスイッチをオンに、オフに、又は別様にはその制御を調整することができる)、又は自動的に(例えば、観察又は測定されたカラム入口温度Tin及び所望の設定点Tinに基づいて、加熱器410を調整するために、電子温度監視及び制御手段を伴うフィードバック技術を使用して)制御することができる。そのような温度監視及び制御手段は、その上で実行するコードを有するコンピュータ又はプロセッサの使用を含むことができ、その使用は、温度センサ(例えば、図6のP1~P6のうちのいずれかに位置付けられるものなど)から観察された温度を取得し、加熱/冷却又は温度制御ユニットのうちの適切なものに接続された電子回路を通じて送信される適切な制御信号を決定して、所望の温度調整を遂行する。観察された温度(複数可)を使用して、該当する場合に、どのような制御信号を温度制御ユニット(複数可)のうちの1つ又は2つ以上に送信するのかを決定して、式Aに従って決定することができるような所望の設定点温度(複数可)を達成することができる。
要素410は、加熱及び/又は冷却を提供する、独立して制御される温度制御ユニットとすることができる。例えば、Tinは、所望の設定点として選択することができ、ユニット410は、適切な加熱及び/又は冷却を提供して、Tinの所望の設定点を達成し、維持することができる。Tin及び上記の式Aを使用して、Toutの予測された所望の設定点を算出し、ユニット310の所望の設定点として使用することができる。ユニット310及び410は、独立して制御されて、一実施形態において使用することができるような各々の異なる所望の設定点を達成し、維持することができる。
LC実験を行うときに図7の実施形態400に関連して使用する別の例として、加熱器206を利用しない場合がある。加えて、ユニット410は、ユニット310の所望の温度設定Tout未満である、所望の温度設定Tinを有することができる。ユニット410は、冷却ユニットとして機能して、移動相の温度を周囲温度未満になるように低減させることができ、ユニット310は、加熱ユニットとして機能して、移動相の温度を周囲温度よりも高く、更にTinよりも高くなるように上昇させることができる(例えば、Tin<周囲温度、Tout>周囲温度、及びTin<Tout)。更なる一例として、要素410及び310は、所望の設定点を有する冷却ユニットとすることができ、この所望の設定点は、どちらも周囲温度未満であり、更に、410の設定点Tinは、310の設定点Tout未満である(例えば、Tin<周囲温度、Tout<周囲温度、及びTin<Tout)。なお更なる一例として、要素410及び310は、所望の設定点を有する加熱ユニットとすることができ、この所望の設定点は、どちらも周囲温度を超え、更に、410の設定点Tinは、310の設定点Tout未満である(例えば、Tin>周囲温度、Tout>周囲温度、及びTin<Tout)。
より一般的には、本明細書の技術に従う一実施形態は、カラム128と熱的に接触しているカラム軸に沿った任意の場所において、上記の310、410によって示されるような複数の加熱及び/又は冷却ユニットを含むことができる。
当業者によって認識されるように、本明細書で説明される種々の実施例に関連して、式Aを使用して、Tinを含む特定の一組のパラメータの場合のToutの所望の定常状態値を決定し、予測することができる。次いで、加熱/冷却ユニット310を、式Aに基づいて、所望の定常状態の予測された設定点温度になるように、Toutの適切な調整を提供するように制御することができる。図7に関連して説明されるような類似の様態において、そのような技術は、410の動作を制御するために使用することができ、それによって、特定の所与のTout値に基づくなどして、Tinを所望の予測値に駆動又は調整することができる。より一般的には、式AのΔTLは、定常状態に関連する2つの温度の間の温度差を表す。このように、ΔTLを計算するために使用される式A及び2つの温度のうちの1つが与えられれば、2つの温度のうちの第2の温度を予測することができる。上で説明したように、温度差ΔTLは、TinとToutとの間の温度差とすることができ、どちらか1つが既知であり得、次いで、それを式Aで使用して、算出を介して第2の温度を決定する(例えば、Tinが固定又は既知であり、式Aを使用してToutを駆動又は決定する。代替的に、Toutが固定又は既知であり得、それを式Aで使用して、予測されたTinを決定することができる)。より一般的には、自動化された技術及び式Aを、2つの温度のうちの1つと共に使用してΔTLを決定することができ、2つの温度のうちの1つを与えて、それを使用して、所望の定常状態を達成することに関連して、もう1つの第2の温度を予測することができる。一実施形態は、実験のための所望の温度に基づいて、310及び/又は410の動作を制御することができる。
図8は、そのような一実施形態の別の実施例である。実施例500において、同様に付番された構成要素は、図7に関連して上で説明したとおりであり得る。加えて、加熱及び/又は冷却を提供する第3のユニット510は、カラム128と熱的に接触しているカラム128の軸に沿って位置付けることができる。ユニット310、410、及び/又は510は、カラム128に固定すること、結合すること、又はより一般的にはそれと熱的に接触することができる。1つの実施形態において、ユニット310、410、及び/又は510は、クランプ又は他の好適な手段を使用してカラム128に取り付けること、又は固定することができる。例えば、1つの実施形態において、カラム128の端部は、要素310及び410によって表されるユニット内に位置付けることができる。
カラム入口からのカラム128上の軸方向位置又は場所に基づいて、要素510は、310及び/又は410に類似する様態で加熱及び/又は冷却するためのユニットとみなすことができる。より一般的には、カラムに沿った510の軸方向の場所又は位置に応じて、510の所望の設定点を、式Aに従って決定することができる。場所510の、又はその近くの温度T中間は、Tin及び/又はToutの観察値を測定することに関連して本明細書で説明されるように、温度感知デバイス使用して測定することができる。また、類似する手段を使用して、310及び/又は410について説明されるように加熱/冷却ユニット510を制御し、調整することもできる。T中間の設定点は、例えば、TinとToutとの間の比例温度差に基づいて決定することができ、そのような比例は、Tin及びToutの128に沿った軸方向の場所に対する、T中間の距離又は場所に基づく。例えば、T中間510が128に沿ったTinとToutとの間の中間又は中間点に位置付けられた場合、T中間は、およそTin+(1/2ΔTL)として決定することができる(例えば、Tin+Tout/2として表すこともできる)。したがって、T中間の所望の設定点温度は、Tin及びToutが測定されるカラム128に沿った軸方向の場所(例えば、カラム入口及び出口)の間のT中間の場所又は距離に比例する、TinとToutとの間の値として推定することができる。
510の所望の目標又は設定点温度は、カラム128上の510の軸方向の場所に比例して変動し得る。要素510は、中間温度T中間と関連付けることができ、また、Tin及び/又はToutに関して本明細書で説明される様態に類似する様態で使用することができる。例えば、310、410、及び/又は510のうちの任意の1つ又は2つ以上は、式Aに従って調整して、定常状態を達成することができる。例えば、Tinは、既知又は所与であり得(それによって、410が使用されない、又は動作しない場合がある)、ユニット510及び/又は310は、式Aに基づいて所望の設定点温度を達成するように制御することができる。Toutは、既知又は所与であり得(310が使用されない、又は動作しない場合がある)、ユニット510及び/又は410は、式Aに基づいて所望の設定点温度を達成するように制御することができる。別の例として、特定の実験の条件に関連して、Tin、Tout、及びT中間設定点値は、式Aに基づいて決定することができ、それに応じてユニット410、510、及び/又は310を動作させて、所望の設定点値を達成することができる。上記に基づいて、中間点T中間は、入口と出口との間でクロマトグラフィカラムに位置付けることができる。クロマトグラフィカラムの中間点は、(例えば、定常状態を取得することに関連して試料を注入する前に)ユニット510を使用して中間温度に設定することができる。中間点での中間温度は、(式Aを使用して決定されるような)Tin及びToutの所望の設定点値の間であり得る。1つの態様において、所望の中間温度設定点は、Tin及び近似値の合計として決定することができ、近似値は、カラム入口から中間点までの距離に比例する温度オフセットである。類似する様態において、所望の中間温度設定点は、Toutに関する温度オフセットとして決定することができる。この温度オフセットは、出口から中間点までの距離に比例する近似値であり得る。
したがって、図8の例500は、加熱及び/又は冷却を提供する複数のユニットを使用する、本明細書の技術のうちの1つの可能な実現形態を例示する。クロマトグラフィカラムに沿った種々の軸方向の場所点に熱エネルギーを加えることによって(又は別様には、より一般的に、本明細書で説明されるように1つ又は2つ以上の補助加熱及び/又は冷却ユニットを使用することによって)、210、310、410、及び/又は510などの追加的なユニットを使用することなく、熱を提供する実験の摩擦及び他のアーチファクトを介してカラムを自然に加熱することが可能であれば、より少ない時間で熱平衡を取得することができる。
図6、図7、及び図8の例示的な実施形態の各々、並びに上で説明したような他の実施形態(例えば、カラムと熱的に接触する追加的な加熱器、及び/又はカラムに沿った異なる軸方向位置における加熱器の配置を伴う)は、カラム及び加熱器を取り囲む絶縁ジャケットを含むことができることに留意されたい。
上で説明したように、再度図8を参照すると、一実施形態は、Tin、T中間、及びToutに関連して、それぞれ、要素410、510、及び310を使用することができる。その一変形例として、一実施形態は、例えば、Tout及び310の使用を省き、むしろ本明細書の技術に関連して、それぞれTin及びT中間を有する410及び510だけを含み、使用することができる。更に別の変形例として、一実施形態は、例えば、Tin及び410の使用を省き、むしろ本明細書の技術に関連して、それぞれT中間及びToutを有する510及び310だけを含み、使用することができる。
更に別の変形例として、一実施形態は、制御又は調整することができる加熱/冷却ユニットを510に代理させるのではなく、代替的に、フィードバック制御処理の一部として、カラム128に沿ったTinとToutとの間の1つ又は2つ以上の点において、1つ又は2つ以上の中間温度を測定又は監視することができる。しかしながら、この事例において、測定される1つ又は2つ以上の中間温度を使用して、測定された中間温度に基づいて、ユニット410及び/又は310を調整又は制御することができる。それぞれのカラム終点におけるTin及び/又はToutの測定又は観察された値を使用するのではなく、中間温度(複数可)を、フィードバック技術に関連して、監視又は観察された温度として使用することができる。この様態で、観察される中間温度が(ユニット410及び/又は310を使用して行われた調整を通して取得した)その所望の設定点値中間温度にほぼ近づくまで、中間温度を監視又は観察された温度として使用して、410及び/又は310の動作を制御することによって、Tin及び/又はToutを調整することができる。更に例示するために、一実施形態は、T中間を測定して、測定されたT中間が所望の値又は設定点であるかどうかを判定することができる。故に、測定されたT中間がその所望の設定点になるまで、ユニット410に対して調整を行うことができる。したがって、Tin(図6に例示されるような410の場所の、又はその近くの128の終点)において測定された温度に基づいて410に対してそのような調整を行うのではなく、T中間を使用して、410を制御又は調整することができる。
図9を参照すると、熱的絶縁層を追加した、図6、図7、図8からの実施形態の実施例が示される。要素902は、900、910、及び920の各々の熱的絶縁ジャケットを表すことができる。実施例900は、周囲のジャケット902内の図6のカラムの実施形態を例示する。実施例910は、周囲のジャケット902内の図7のカラムの実施形態を例示する。実施例920は、周囲のジャケット902内の図6のカラムの実施形態を例示する。ジャケット902は、対流空気流による熱損失を低減させることによって、熱的絶縁を提供することができる。1つの実施形態において、ジャケット902は、カラム(及びその内容物)と、ジャケット902の外側又はそれを取り囲む環境などの周囲温度との間の熱伝導率を妨げる、十分な絶縁を提供することができる。
ジャケット902は、発泡スチロール(Styrofoam(登録商標))から、又はより一般的には、絶縁部材として作用する低い熱伝導率を呈する任意の材料から作製することができる。また、ジャケット902を形成するために、ポリメタクリレート、シリコーン、ウレタン、ポリオレフィン、ポリアミド、ポリスルホン、ポリエチルアミド、ポリカーボネート、ゴム、ポリエステル、ポリフルオロエラストマー、及びポリエチレンテレフタレート、並びに同類のものなどのポリマーも使用することができる。加えて、ジャケット902を形成するために、セラミック(例えば、エアロゲルなど)繊維材料(例えば、メチルセルロース及びガラス繊維など)及び同類のものも使用することができる。ジャケット902を形成するために使用することができる材料に関して、種々の熱的絶縁材料が上記の例示的な実施形態に記載されているが、当該技術分野において既知の任意の種々の好適な熱的侮辱材料を利用することができる。そのような材料は、カラム内の半径方向熱勾配を阻止又は最小にするために、クロマトグラフィカラムの周囲の領域を絶縁するように成形して、制御された空隙又はチャンバを作成することができることが認識されるであろう。更に、そのような材料は、カラムを直接取り囲むように例示される場合があるが、そのような材料はまた、例えばカラム外壁を形成するために使用するように、カラム自体に一体化することもできる。
別の変形例として、ジャケット902は、図2に関連して上で説明したように、鋼又は金属で作製することができ、よって、絶縁層又は部材は、ジャケット902自体ではなく、むしろ非絶縁カラム128を取り囲む空隙903(例えば、カラム128と周囲ジャケット902との間)である。この事例において、要素903は、絶縁層を形成する真空チャンバなどのチャンバ又は空間とすることができ、また、図2などに関連する本明細書の他の場所で説明されるような、技術、ガス(例えば、挿入ガス、大気ガス)、及び同類のもののいずれかを使用して形成することができる。1つの実施形態において、カラム128とジャケット902との間の(例えば、カラム128を取り囲む)チャンバ又は空隙903は、周囲圧力とすることができ、また、絶縁を提供するために、エアロゲル粒子を領域903に含むことができる。代替的に、特定のエアロゲルを含む空間903は、周囲圧力よりも低い圧力を有する真空チャンバを形成することができる。そのような圧力の例は、本明細書の他の場所で説明される。エアロゲル粒子を含む領域903の変形例として、カラム128は、成型エアロゲル構成要素内に配置することができる。成型エアロゲルは、カラムを取り囲むことができ、また、例えば、2つの別々に成型された半部又は部分から形成されることができ、これらは、共に配置したときに、カラムの形状に近似する所望の空洞を形成する。上記の2つの成型エアロゲル部分は、形成された空洞の中へ挿入されるカラムを有するアセンブリの一部として、共に嵌合することができる。チャンバに成型エアロゲル又はエアロゲル粒子を使用する上記の実施形態は、例えば1つ又は2つ以上の追加的な加熱/冷却ユニットなどを使用して、本明細書で説明されるカラムの実施形態のいずれかに関連した絶縁手段として使用することができる。
図10を参照すると、熱的絶縁層1002を追加した、図6、図7、及び図8からの実施形態の実施例が示される。図10の実施例1000、1010、及び1020において、絶縁層1002は、図3及び図4に関連して本明細書の他の場所で説明したようなカラム128の一体的な構成要素とすることができる。実施例1000、1010、及び1020において、絶縁層1002は、上で説明したようなジャケット902の材料のいずれかから形成することができる。更なる変形例として、絶縁層1002は、カラム128の組み合わせの外壁を形成する周囲外側ジャケット902と絶縁層1002との間の層として形成されることができる。ジャケット902は、この事例において、鋼、チタニウム、又は図2に関連して本明細書の他の場所で説明されるような他の好適な材料で作製することができ、絶縁層1002は、真空チャンバなどのチャンバ又は空間とすることができ、図2などに関連して本明細書の他の場所で(及び図9において上で)説明されるような、技術、ガス(例えば、挿入ガス、大気ガス)、及び同類のもののいずれかを使用して絶縁層を形成することができる。
実施例1020に関連して、加熱及び/又は冷却を行うユニット510は、非絶縁カラム128との十分な熱的接触を有するべきであることに留意されたい。例えば、絶縁層1002は、例えばユニット410及び510によって境界される、又はそれらの間の領域、及びユニット510及び310によって形成される、又はそれらの間の領域において、ユニット510の周囲に形成されるものとして例示される。
絶縁層及び/又はジャケットを利用する、図9及び図10などと共に本明細書で説明される実施形態に関連して、カラム入口温度Tin及びカラム出口温度Toutは、任意の絶縁層とカラム128との間などで非絶縁カラム128と熱的に接触している種々の熱電対を配置することによって測定することができることが当業者によって認識されるであろう。
図6~図10などに関連して本明細書で説明される実施形態を使用して達成することができるカラム温度の軸方向制御は、追加的な利点を提供することができる。例えば、Tin及びToutの制御及び選択などによる温度の軸方向制御は、実験条件及びクロマトグラフィ方法の再現性を容易にすることができる。そのような技術は、類似する特性並びに異なる特性を有するカラムを使用する実験条件の再現性を提供することができる。例えば、5ミクロンの平均粒径を有する典型的なHPLCカラムは、1.7ミクロンサイズの粒子を使用する同等の寸法のカラムよりも少ない熱を発生する。本明細書の技術を使用しなければ、実験中に結果として生じる熱勾配が2つのカラムに関して異なり、2つのカラムを使用して取得された実験データに違いをもたらす場合がある。
本明細書の技術は、2つのカラム(それぞれ異なるサイズの粒子を使用する)と共に使用して、2つのカラムについて同一の熱勾配を作成することができる。
別の例として、クロマトグラフィにおけるスループットを増加させる1つの方式は、より速い流量で動作させることである。増加した流量を有することがクロマトグラフィの選択性に影響を及ぼすことを望まない、又は予期しない場合がある。しかしながら、2つのカラムが同じ特性(例えば、実験に影響を及ぼす、寸法、粒径、その他)を有する場合、及び(例えば、発生する摩擦熱が、移動相の流量と共に変動し、かつ移動相の流量と正比例するので)2つのカラムの各々が異なる流量を有する場合、2つのカラム全体にわたる熱勾配は、同一にならない。クロマトグラフィの選択性(例えば、溶出分析物のピーク間の距離)が流量と共に変化する場合の実験において、軸方向熱勾配は、異なる流量を使用する2つの実験が、類似する選択性を提供するように変化させることができる。当該技術分野で既知であるように、クロマトグラフィの選択性(また、分離要因又は相対保持比とも称される)は、時間の測定又は2つのピークの極大値間の距離である。
クロマトグラフィの選択性は、K2/K1として表すことができ、ここで、K1は、第1のピークの保持係数であり、K2は、第2のピークの保持係数である。K2/K1=1である場合、ピークは、同じ保持を有し、共溶出する。
別の利点として、上で説明したようにカラム本体に沿って1つ又は2つ以上の独立に制御される加熱器を加えることで、カラム加熱器を使用するなどの他の代替例と比較したときに、全体的なコストを低減させることができる。
LCカラムを取り囲む真空絶縁層又はチャンバを使用するなどの本明細書で説明されるような実施形態に関連して、半径方向熱勾配を最小にし、かつ対流熱損失を排除又は最小にするように、真の断熱条件に近づけることができる。
本明細書の技術に関連して、発明者は、以下に説明される実験を行った。2.1×100mmのWaters ACQUITY BEH C18 1.7μmのカラムを、Waters ACQUITY(商標)UPLC機器に接続した。0.5マイクロリットルの試料は、以下の5つの成分を含有する。(1)0.046mg/mlのチオカルバミド、(2)0.080mg/mlのドデカノフェノン、(3)0.1mg/mlのテトラデカノフェノン、(4)0.10mg/mlのヘキサデカノフェノン、及び(5)0.483mg/mlのジ-n-デシルフタレートを、アセトニトリルの移動相を使用するカラムの上へ注入した。分析は、以下の流量を使用して行った。0.45、0.50、0.55、0.65、0.75、0.85、0.95、1.05、1.10、1.15、及び1.20mL/分。カラムは、保持時間の再現性が達成されるまで、試験プローブの繰り返し注入を監視することによって、流量の変化の間で熱平衡化した。検出は、240nmにおけるUVによるものであった。
実験において使用した真空システムは、Pfeiffer Vacuum TSH 07IEターボ分子ドラッグポンピングステーションとしたが、これは、以下の標準構成要素を含む。Pfeiffer-Balzers TMH-07IPターボ分子ドラッグポンプ、DN-63-ISO入口フランジ付き、及び固体周波数変換器を標準装備、及び電子制御式。Pfeiffer(Duo2.5モデルPKD41707)から2.5m3/hのポンピング速度を有する、2段高性能ロータリーベーンポンプを使用して、ターボポンプを始動する前に、迅速に約10-2トル以下にした。カラムの真空チャンバ、及び真空システムへの接続は、MDC Vacuum Products(Hayward、CA)の304ステンレス鋼配管、及び定格10-8トルのシール(Viton(登録商標)又はBuna-N(登録商標)Oリング)から構築した。大気~10-2mbar/トルの間の真空示度に関しては、Edwardsアクティブピラニゲージ、部品番号D02177000 APG-1-NW16 ST/STを使用した。10-3~10-8mbar/トルの間の真空示度に関しては、Edwardsアクティブインバーテッドマグネトロンゲージ、部品番号D14641000 AIM-S-NW25を使用した。真空示度は、カラム真空チャンバの近く(4インチ以下離れる)で取った。
クロマトグラフィ性能は、4つの異なる環境下でのカラムについて評価した。(A)等温:カラムは、25℃に維持した再循環水槽(RTE-111、Thermo NESLAB)内に配置した。(B)静止空気:カラムは、周囲空気の対流を最小にするために、約20インチ×33インチ×34インチの箱の内部に配置した。(C)エアロゲルによる絶縁:カラムは、United Nuclear Scientific(Laingsburg、MI)からの粒状エアロゲルを充填したチャンバの内部に配置した。(D)カラムは、粗引きポンプ及び拡散ポンプを使用して、3×10-5トルの真空において、ジャケットを付けた。
図11を参照すると、上で述べた4つの試験環境(A)~(D)に関する、結果として生じる分離のクロマトグラムが示される。実施例1100は、1.2mL/分の流量について取得した4組のクロマトグラフィデータを含む。要素1120は、等温条件に関して、試験環境条件(A)について取得したクロマトグラムを表し、カラムは、25℃に維持した再循環水槽(RTE-111、Thermo NESLAB)内に配置した。要素1140は、静止空気を使用して、試験環境条件(B)について取得したクロマトグラムを表し、カラムは、周囲空気の対流を最小にするために、約20インチ×33インチ×34インチの箱の内部に配置した。要素1160は、試験環境条件(C)について取得したクロマトグラムを表し、エアロゲルを使用して絶縁を提供し、上で述べたように、カラムは、United Nuclear Scientific(Laingsburg、MI)からの粒状エアロゲルを充填したチャンバの内部に配置した。要素1180は、試験環境条件(D)について取得したクロマトグラムを表し、カラムは、粗引きポンプ及び拡散ポンプを使用して、3×10-5トルの真空ジャケット付きとした。1100のクロマトグラムに関連して、それぞれのX軸は、時間を示す。この実施例において、検出器は、Y軸上の検出単位が240nmにおける吸収度(AU)を表すように、UV吸収検出器とした。クロマトグラム1120、1140、1160、及び1180の各々は、1~5で表される5つのピークを含み、それぞれが、上で説明したように、試料の5つの成分のピークに対応する。
以下には、異なる流量での、ヘキサノフェノンに対応するピーク(4)のプレートカウントを例示する表が示される。結果は、流量を増加させると、カラムが断熱条件に近い場合にプレートカウントが最も高くなることを示す。
以下の段落では、本明細書の技術に従う、真空絶縁ジャケット、並びに真空環境又はチャンバの追加的な実施形態が説明される。後続の図で例示され、以下の段落で説明されるような真空絶縁ジャケットを使用した少なくともいくつかの実施形態においては、クロマトグラフィカラムからの最小の熱損失によって達成される高レベルの断熱条件のため、クロマトグラフィカラムの加熱器又はオーブン(例えば、図5Bに例示されるものなど)を省くことができる。しかしながら、そのような一実施形態は、下でより詳細に説明されるように、アクティブ加熱要素などの予熱器を任意選択的に含むことができる。そのような予熱器は、図12に関連して下で説明され、また、カラム及びその制御された熱環境の上流に位置付けられた、インラインの溶媒予熱器としても一般的に既知であり得る。同じく下で説明されるように、そのような予熱器は、(例えば、図13、図14、図15、図16、図17、及び図18にあるような)真空絶縁ジャケット、真空環境チャンバ、又は環境の後続の実施形態に関連して任意選択的に使用することができる。
図12を参照すると、本明細書の技術に従う、本明細書で予熱器とも称される加熱要素をクロマトグラフィカラムの前に位置付けて、カラム入口の前で移動相を加熱することができる、更なる一実施例の実施形態2000が示される。そのような予熱器は、カラムを含めて、クロマトグラフィカラム又はクロマトグラフィモジュール、チャンバ、筐体、及び同類のものに対して外部とすることができる。実施例2000においては、予熱器2006を使用して、移動相がカラムに進入する前に加熱することができるが、実施例2000は、真空絶縁ジャケットを取り囲む周囲空気を加熱するために加熱器を使用しない(例えば、下で更に詳細に説明される、カラムオーブン又はコンパートメントなどの閉環境内などで行うことができる)。
実施例2000は、ポンプ202と、注入器204と、予熱器2006と、真空ジャケット付きクロマトグラフィカラム2002と、1つ又は2つ以上の検出器2004とを含む。一般に、図12の要素202、204、及び2006は、それぞれ、例えば、図5Aに関連して、及び本明細書の他の場所で説明されるような要素202、204、及び206に類似し得る。予熱器2006は、溶出液又は移動相が真空ジャケット付きクロマトグラフィカラム2002の中へ進入する前に予熱する、(上で述べたような)予熱器又はインライン溶媒予熱器として特徴付けることができる。
予熱器2006は、例えば、Waters Corporationによって提供されるACQUITYアクティブ溶媒加熱器とすることができる。加熱器2006は、例えば、種々の構成要素202、204、2006、2002、及び2004の間で矢印によって表される流路を有する移動相を加熱するために、所望の設定点温度に設定することができる。予熱器2006は、手動で、自動で、又は自動化された制御手段(図示せず)を通して、所望の設定点温度に設定することができる。例えば、少なくとも1つの実施形態において、予熱器2006は、目標設定点温度を有することができ、温度センサは、2006内で観察された温度(例えば、2006内の周囲温度又は空気温度など)を取得するように2006内に配置することができる。2006内で観察された実際の温度は、熱電対又は当該技術分野において既知の他の好適なデバイスを使用して測定することができ、予熱器2006は、2006内の測定温度が目標設定点値であるかどうかに基づいて、スイッチをオン/オフにして、又は別様には調整して、予熱器2006からの熱量を増加又は減少させることができる。予熱器2006の温度監視及び制御は、本明細書の別の場所で説明され、当該技術分野において既知であるような、コンピュータによるフィードバック及び制御信号を使用する自動化された様態で行うことができる。そのような実施形態において、(観察温度又は測定温度を取得して、2006をその現在の目標設定点温度に駆動するために使用される)温度センサは、一般に、2006内の任意の好適な場所に配置することができ、又は、例えば、2002への入口の前に、予熱器2006の出口における移動相の温度を測定することができる。
要素2002は、以降の段落及び図において説明される数多くの異なる実施形態のうちの1つのように、真空ジャケット付きクロマトグラフィカラムとすることができる。要素2004は、2002のクロマトグラフィカラム出口に結合することができる、又はそれとインターフェースすることができる、1つ又は2つ以上の好適な検出器を表すことができる。好適な検出器の非限定的な例は、例えば、図1の要素112に関連して説明される。好適な検出器2004の例としては、例えば、紫外線吸収検出器、蒸発光散乱検出器、質量分析器、イオン移動度分光計、及び同類のものを挙げることができる。
加えて、実施例2000は、2002及び第2の加熱器の両方が配置される、クロマトグラフィカラムオーブン又はコンパートメントなどの、閉環境に含まれるカラム加熱器又は第2の加熱器の使用を省いている。そのような閉環境は、絶縁チャンバ、コンパートメント、筐体、オーブン、及び同類のものとすることができ(例えば、図5Bの要素201を参照されたい)、また、カラム加熱器として使用される2002及び第2の別個の加熱器の両方を含む。当該技術分野で既知であるように、カラムオーブンなどのそのような閉じた絶縁環境の目的は、典型的に実験中に生じるクロマトグラフィカラムからの熱損失又は熱伝達を補償するために、クロマトグラフィカラムの加熱及び定常状態の加熱条件の維持を提供することである。しかしながら、実施例2000に例示されるように、カラム加熱器を伴ういかなるそのような閉環境も使用されない。真空ジャケットを付けることで熱損失の十分な低減及び排除を提供するので、第2のカラム加熱器及びクロマトグラフィカラムを含むそのような閉環境の使用は、以下の段落及び図で説明される真空ジャケット付きカラム2002の実施形態には必要でない場合がある。この様態で、以下の段落において説明される真空ジャケット付きカラムの実施形態は、熱損失を回避又は最小にし、それによって、カラムを取り囲む閉環境における第2のカラム加熱器に対する必要性を除去する。そのような実施形態において、別々のカラムモジュール(カラム及びカラム加熱器を別個の閉システム、コンパートメント、又はモジュールに含む)を省くことができる。換言すれば、図5Bの201などの別個のモジュール又は閉環境は、もはや必要でない。更に、図12の2006などの予熱器の使用もまた、その特定のシステム要件及び用途に応じて、任意選択である。
上で説明したようにカラム加熱器及び閉環境(例えば、カラムオーブン)を除去することは、他の構成要素を有する真空ジャケット付きカラム2002の配置及び可能な一体化に関連して、追加的な柔軟性を提供する。例えば、少なくとも1つの実施形態において、真空ジャケット付きクロマトグラフィカラム2002は、検出器を有する一体化された構成要素として含むことができる。そのような実施形態においては、単一の構成要素が、真空ジャケット付きカラム及び検出器の両方を含むことができる。別の例として、少なくとも1つの実施形態で、真空ジャケット付きクロマトグラフィカラム2002は、(例えば、予熱器2006が必要でない場合の実施形態などにおいて)注入器を伴う一体化された構成要素として含むことができる。そのような実施形態においては、単一の構成要素が、真空ジャケット付きカラムと、注入器とを含むことができる。真空ジャケット付きカラム及び注入器を含むそのような単一の構成要素は、例えば、実験に関連してシーケンスで使用される多数の検出器(例えば、イオン移動度分光器及び質量分析器)も含むシステムにおいて使用することができる。
別の例として、少なくとも1つの実施形態において、真空ジャケット付きクロマトグラフィカラム2002は、予熱器2006を有する一体化された構成要素として含むことができる。そのような実施形態においては、単一の構成要素が、真空ジャケット付きカラムと、予熱器2006とを含むことができる。そのような単一の構成要素は、単一の構成要素がいかなる追加的な絶縁も含まず、また、カラムを取り囲む閉環境を加熱するために閉環境が封止され、絶縁される、カラムを取り囲む閉環境ではないので、カラムオーブンと対照的であり得ることに留意されたい。
少なくとも1つの実施形態において、温度制御及び感知は、2002の定常状態条件を制御するなどのために行うことができる。一般に、少なくとも第1の実施形態において、予熱器2006は、(Z1によって表されるような)カラム出口での観察された温度Toutが所望の設定点であるかどうかによって制御又は駆動することができる。代替的に、少なくとも第2の実施形態において、予熱器2006は、予熱器2006内の観察された周囲温度又は空気温度が所望の設定点であるかどうかによって制御又は駆動することができる。更に別の代替例として、少なくとも第3の実施形態において、予熱器2006は、(Y1によって表されるような)カラム入口での移動相の観察された温度Tinが所望の設定点であるかどうかによって制御又は駆動することができる。
カラム出口での観察された温度Toutによって予熱器2006が駆動される上記のような一実施形態において、温度センサは、Z1によって表されるようなカラム出口での観察された温度Toutを取得することができる。Toutの所望の設定点に到達したかどうかに基づいて(例えば、測定されたカラム出口温度Toutが、所望の設定点又は目標温度である、又はその近く(閾値の量の範囲内など)であるときに)、カラム出口温度を監視し、制御信号を予熱器2006に送信するフィードバックループを介して予熱器2006を調整又は制御することによって、Toutを所望の設定点に駆動することが望ましい場合がある。観察された実際の温度Toutは、熱電対又は当該技術分野において既知の他の好適なデバイスを使用して測定することができ、予熱器2006は、測定温度Toutが所望の設定点であるかどうかに基づいて、スイッチをオン/オフにして、又は別様には調整して、予熱器2006からの熱量を増加又は減少させることができる。予熱器2006に提供されるそのような制御信号は、例えば、Toutが、所望の設定点又は目標温度になる、又はその近く(閾値の量の範囲内など)になるまで、2006によって提供される現在の加熱レベルを維持すること、又は増加させることができる。Toutが所望の設定点に到達すると、(例えば、真空ジャケット付きカラムが、熱損失を大幅に低減させる、又は最小にする、以下の段落で説明されるような一実施形態であるという仮定の下で)制御信号を予熱器2006に送信して、スイッチをオフにすること、又は現在の加熱レベルを下げることができる。
一般に、予熱器2006に提供されるそのような制御信号は、例えば、Toutをその所望の設定点に到達させるために、現在の加熱レベル又は温度を最適に調整する(増加又は減少させる)ことができる。例えば、Toutが所望の設定点未満(例えば、指定された許容範囲による設定点未満)であった場合、制御信号を予熱器2006に送信して、温度/現在の加熱レベルを維持し、又は相対的に上昇させ、それによって、現在のレベルに対する熱量を増加させることができる。Toutが所望の設定点を超えた(例えば、指定された許容範囲による設定点を超えた)場合、制御信号を予熱器2006に送信して、スイッチをオフにするか、又はその温度を相対的に低下させ、それによって、現在のレベルに対する熱量を減少させることができる。そのような制御信号及びフィードバックは、例えば、図1のコンピュータ116などのプロセッサ上で実行するソフトウェアを使用して実施することができる。例えば、図1を再度参照すると、コンピュータ116上で実行するコードは、ユーザがToutの所望の設定点を選択し、設定することができる、ユーザインターフェースを提供することができる。測定温度Toutは、コンピュータシステムに提供することができ、それによって、コンピュータシステム上で実行するコードは、測定されたToutとToutの所望の設定点値と比較し、測定されたToutがToutの所望の設定点値であるかどうかに応答して、予熱器2006に制御信号を発行して、予熱器2006の動作を適切に制御することができる。Toutを測定し、予熱器2006を駆動する一実施形態について上で説明した様態に類似する様態において、代替的に、予熱器2006は、予熱器2006内で観察された周囲温度又は空気温度が所望の設定点であるかどうかによって駆動することができ、又はカラム入口での移動相の観察された温度Tinが所望の設定点であるかどうかによって駆動することができる。
本明細書の技術に従う少なくとも1つの実施形態においては、上で述べたようにToutを所望の設定点(例えば、90℃)にすることが望ましい場合があり、それによって、Toutは、観察温度又は測定温度が取得される点であり、また、予熱器2006を所望の設定点に駆動するために使用される。条件を達成し、それによって、Toutが所望の設定点の観察温度(例えば、90℃)を有することに関連して、予熱器2006は、最初に、Toutで測定することができるように移動相の加熱を加速する(それによって、Toutが予熱器2006をその所望の設定点に駆動する)ために、所望の設定点よりも高く(例えば、100℃などの、90℃よりも高い設定点に)設定することができる。Toutが所望の設定点に到達すると(例えば、90℃に到達すると)、制御信号を送信して、スイッチをオフにするか、又は予熱器2006によって提供される現在の温度/加熱レベルを低減させることができる。例えば、Toutが所望の設定点に到達すると、制御信号を送信して、予熱器2006の現在の設定点を所望の設定点まで低減させることができる。この様態で、一実施形態は、加速した様態で所望の設定点(例えば、90℃)を達成することができる。類似する様態で、加速された、又は最初により高い予熱器2006の所望の設定点を使用して所望の条件を達成することは、予熱器2006内で観察された周囲温度若しくは空気温度及び関連付けられた設定点を使用して、又はTinでの移動相の観察された温度及び関連付けられた設定点を使用して行うことができる。
以下、実施例2000において要素2002として使用することができる真空ジャケット付きクロマトグラフィカラム(例えば、図13、図14、図15、図16、及び図18)の種々の実施形態が説明される。加えて、また、実施例2000において要素2002として使用することができる一実施形態の真空チャンバ(クロマトグラフィカラムを含む)もまた、図17に関連して下で説明される。
図13を参照すると、本明細書の技術に従って一実施形態において使用することができるような、クロマトグラフィカラムの断面図を例示する一実施例2200が示される。実施例2200は、使用することができ、また、後続の図に関連して参照の目的で2200内に例示される、カラムの単なる1つの実施例に過ぎない。2200のカラムは、移動相又は流路がカラムに進入する入口2203と、移動相又は流路がカラムを出る出口2204とを有する。また、端部取付金具2202a及び2202b、並びにカラム本体2210が例示される。要素2206は、流体経路がカラムを通って流れる、内部の配管を表す。2200の少なくとも1つの実施形態において、端部取付金具2202a~bは、ねじ付き表面2206a~dによって本体2210に取り付けることができ、それによって、端部取付金具2202a~bを本体2210にねじ止めする。特に、要素2206a~dは、そのような接点表面(2202a~b及び2210)が螺入される端部取付金具2202a~bの表面と接触する本体2210の表面を表す。要素2208は、カラムの外壁を示すことができる。要素2209は、カラムの内壁を示すことができる。
図13、並びに以下の段落及び図において説明される実施形態において、例示されるカラムは、(例示を簡潔にするため)カラム充填材料を含まないことに留意されたい。
図14を参照すると、本明細書の技術に従う1つの実施形態における真空ジャケット付きカラムの一実施例が示される。実施例2300は、追加的な周囲真空スリーブ又はジャケットを伴う、2200にあるようなカラムの断面図を例示する。真空スリーブ又はジャケットは、要素2302、2304、及び2306によって表される構成要素を含む。要素2302は、カラムを取り囲む真空空間又は空洞である。
ジャケットは、カラムの外壁を取り囲む、又は封入することができる。少なくとも1つの実施形態において、ジャケットは、外側シリンダ又は管とすることができる(外側シリンダ又は管の内側ジャケット壁2304と外側ジャケット壁2306との間に形成された真空空間2302を有する)。真空ジャケットを形成する外側シリンダ又は管は、そこを通る開口部を有してよく、それによって、カラムが開口部の中へ挿入される。本明細書で他の場所で説明されるように、真空空間2302は、真空圧力である任意の好適なガスを含むことができる。2302の好適なガス並びに圧力の例は、本明細書で他の場所で説明される。真空ジャケット又はスリーブは、2200に例示されるように、カラム及び端部取付金具の上を滑動することができる。カラム端部取付金具は、カラム本体よりも直径が大きくなり得るので、真空スリーブの内壁2304とカラムの外壁2208との間には、間隙2308が存在する。理想的には、真空ジャケットの内壁2304は、カラムの外壁2208と密に接触しており、好ましくは2208と2304との間に最小サイズの間隙2308を有する。しかしながら、間隙2308は、例示の目的で、2300において拡大されて例示される。間隙2308は、絶縁性を有するエアロゲル又は他の発泡プラスチックなどの材料を充填することができ、よって、そのような材料を充填したときに、熱障壁又は絶縁層が間隙2308内に形成される。2500内の間隙2308は、放射伝達による熱損失を阻止するために、熱ラップ又は放射シールド(例えば、アルミめっきマイラーなどの「スペースブランケット材料」)を含むことができる。少なくとも1つの実施形態において、間隙2308は、熱ラップ又は放射シールド層、並びに絶縁発泡体又はエアロゲル層の両方を含むことができる。
少なくとも1つの実施形態において、真空スリーブ又はジャケット(2300では、要素2302、2304、及び2306を含むように例示される)は、端部取付金具を有する充填カラムを挿入することができる、予め製造されたスリーブ又はジャケットとすることができる。
一般に、図15、図16、及び図18において以下の段落で説明される真空ジャケットの実施形態は、図14の実施例2300に関連して上で述べたように予め製造しておくことができることに留意されたい。加えて、図15、図16、及び図18において以下の段落で説明される真空ジャケットの実施形態はまた、上で説明したような外側シリンダ又は管とすることができ、そこを通る開口部を有し、それによって、カラムが開口部の中へ挿入される。
図15を参照すると、本明細書の技術に従う1つの実施形態における真空ジャケット付きカラムの別の実施例が示される。例2400は、その中の構成要素の断面図を例示し、また、実施例2300に関連して説明されるように、(2302、2304、及び2306を含む)真空ジャケットを含む。加えて、間隙2308は、実施例2200でも説明されるように、エアロゲル又は他の好適な材料を充填して、熱障壁又は絶縁障壁を形成することができる。間隙2308が十分に小さい、又は最小である(又は別様には、完全に取り除かれた)場合、そのような材料によって間隙2308を充填することを省くことができる。実施例2400におけるカラムは、2300にも関連して説明されるように、カラム入口端部2203において端部取付金具2202aを含むことができる。
2300の実施形態と比較して、実施例2400における1つの違いは、2400における真空スリーブ又はジャケットが、カラムの出口フリット2404を越えて延在していることである。2400とは対照的に、2300のスリーブは、出口フリット2320を越えて延在しない。2400において、L1は、出口フリット2404の水平な場所、又は出口端部のカラムの端部を表すことができ、L2は、ジャケット又はスリーブの端部の水平な場所を表すことができる。したがって、L1とL2との間の水平距離は、実施例2400において真空スリーブが出口フリット2404を越えて(例えば、出口端部におけるカラムの端部を越えて)延在する量を表す。2400においては、修正された端部取付金具2430がカラム出口又は出口2204に存在する。修正された端部取付金具2430は、下で更に詳細に説明される。
当該技術分野で一般に既知であるように、出口フリット2404及び入口フリット2420などのフリットは、カラム充填粒子をカラム内部に保持するために、及び不必要な粒子がクロマトグラフィシステムに進入すること、又はそこを出ることを阻止するためなどの、不必要な特定の物体を濾過するために使用される、多孔性金属製品などのフィルタを特徴とすることができる。そのような粒子は、例えば、試料、溶媒、又はポンプ若しくは注入器などの他の構成要素によって発生した破片に由来し得る。2400及び本明細書の他の図に例示されるように、フリットは、カラムの端部に配置することができる。例えば、出口フリット2404は、出口におけるクロマトグラフィカラムの端部を表すことができ、入口フリット2420は、入口におけるクロマトグラフィカラムの端部を表すことができる。
要素2408及び2410は、カラム本体2210から対流熱損失が生じる開口領域を表すことができる。少なくとも1つの実施形態において、領域2408及び2410は、例えば、絶縁プラスチック又は発泡材料などの形成可能な絶縁材料で作製されたOリング又はプラグを挿入することなどによって閉鎖又は封止することができる。
実施形態2400は、スリーブがカラム出口又は出口端部2204においてだけ、真空ジャケット又はスリーブが延在することに留意されたい。2400には示されていないが、真空ジャケット又はスリーブはまた、カラム入口においてカラム入口フリット2420を越えて追加的に延在する(例えば、入口端部においてカラムの端部を越えて延在する)こともできる。そのような実施形態において、真空ジャケットは、入口フリット2420及び出口フリット2404を越えて延在することができる(例えば、ジャケットがカラムの両端部を越えて延在する)。真空ジャケットが入口端部2203においてカラム端部を越えて(例えば、2420を越えて)延在するときに、2408及び2410に類似する追加的な開口領域を作成することができる。そのような一事例において、入口端部2203の追加的な開口領域はまた、2408及び2410について述べたものに類似して施栓又は封止することもできる。
真空ジャケット又はスリーブは、出口端部2204及び/又は入口端部2203において、実施例2400に例示されるよりも更に延在することができる留意されたい。例えば、真空ジャケット又はスリーブは、出口端部2204において、点L2を越えて更に延在して、修正された端部取付金具2430の上を延在することができる。例えば、真空ジャケット又はスリーブは、カラムに沿って少なくともL3の点まで、又はL3を越えて延在することができ、ここで、L3は、修正された端部取付金具2430の端部を表す。少なくとも1つの実施形態において、真空ジャケット又はスリーブは、ジャケットがカラム本体に沿ってL3を越えて延在するように、修正された端部取付金具2430の端部を越えて延在することができる。
出口端部2204は、入口端部2203よりも熱損失が大きいので、一実施形態2400は、入口端部2203においてではなく、出口2204においてだけ真空ジャケットが延在するように好都合に選択することができる。そのような熱損失の差は、そこで粘性熱を発生させるカラム内の流体の流れの方向(入口2203から出口2204まで)起因し、それによって、流体の温度は、出口又は出口端部2204に向かってより高くなる傾向がある。このように、入口端部2203での熱損失を低減させるための更なる手段を講じることは、一般に、出口又は出口端部2204での熱損失を低減させるために更なる手段を講じるほど重大ではない。したがって、カラムの全長に沿って放射熱損失を阻止することが重要であるが、カラム出口(exit又はoutlet)2204において最も重要である。
2400と2300との差の別の点は、2400の実施形態が、出口端部2204において、修正されたカラム端部取付金具2430を含むことである。一般に、修正された端部取付金具2430は、端部取付金具2202a~bなどの、他の標準端部取付金具に対して異なり得るか、又は修正され得る。修正された端部取付金具2430は、一般に端部取付金具2202a~bのうちの1つの質量未満である、低減された質量を有する。例えば、少なくとも1つの実施形態において、修正された端部取付金具2430の質量は、2202a~bによって表されるようなねじ付き端部取付金具などの標準端部取付金具の質量の約15%未満であり得る。例えば、少なくとも1つの実施形態で、カラム入口2203の端部取付金具2202aなどの標準端部取付金具の重量は、約0.282オンスであり得、修正された端部取付金具2430の低減された重量は、約0.24オンスであり得る。一般に、少なくとも1つの実施形態において、修正された端部取付金具2430の質量は、カラム入口端部2203において使用される端部取付金具などの標準端部取付金具の質量の約50%以下であり得る。少なくとも1つの実施形態において、修正された端部取付金具2430の質量は、カラム入口端部2203において使用される端部取付金具などの標準端部取付金具の質量の約15%未満であり得る。一般に、出口端部2204の修正された端部取付金具2430の質量が小さいほど良好である。出口カラム端部2204の修正された端部取付金具2430の質量を低減させるそのような取り組みは、カラム出口端部2204を通した熱損失の低減に寄与する。
少なくとも1つの実施形態において、修正された端部取付金具2430は、カラム本体2210の他のねじ付き接触表面と噛み合うようにねじ切りすることができる。例えば、2401a~bは、カラム本体2210の噛合ねじ付き表面と接触する端部取付金具2430の表面を表すことができる。
少なくとも1つの実施形態において、端部取付金具2430は、代替的に、ねじなし端部取付金具とすることができる。例えば、端部取付金具2430は、コネクタと噛み合うように嵌合するプラグ型端部取付金具とすることができる(例えば、端部取付金具2430を嵌合コネクタに挿入する若しくは差し込むことができ、又は別様には、嵌合コネクタを端部取付金具2430に挿入する若しくは差し込むことができる)。そのようなプラグ型端部取付金具によって、第1の構成要素を第2の構成要素に挿入して、接触表面において封止を形成することができる。接触表面のうちの1つ又は2つ以上は、PEEK(ポリエーテルエーテルケトン)又は他のポリマーなどの形成可能な、又は可撓性の材料で作製されるような、任意の好適な材料から形成することができる。当該技術分野で既知であるように、PEEKは、無色の有機熱可塑性ポリマーである。ねじなし端部取付金具はまた、より一般的には本明細書の任意の実施形態の端部取付金具に関連して使用することができるものとして、本明細書の他の場所でも論じられる。
実施形態2400において、端部取付金具を有するカラムは、2300に関連して上で述べたような様態に類似する様態で、要素2302、2304、及び2306を備える、予め製造した真空ジャケット又はスリーブの中へ挿入することができる。2300及び2400において表されるような予め製造した真空スリーブは、ステンレス鋼の真空フラスコを製造するために今日使用されている、公知の技術によって製作することができる。具体的には、これは、典型的に真空環境において350℃~1000℃の高温でステンレス鋼を焼成することによって、ステンレス鋼中に溶解したガスの量を低減させることを含む。加えて、経時的に現れ得る残留ガスと反応させ、補足するために、製造中に、ゲッター材料をスリーブの真空領域の中へ導入することができる。この技術もまた、公知である。製造中に真空フラスコを封止するための種々の技術が存在し、予め製造した真空スリーブの製造に適用することができる。低放射率フォイルを真空領域内部に使用することもまた、真空フラスコの放射伝達を低減させるための既知の技術である。
図16を参照すると、本明細書の技術に従う真空ジャケット付きカラムの別の実施形態の一実施例2100が示される。下でより詳細に説明するように、2100は、真空ジャケット付きカラムの一実施例であり、ジャケットは、カラムの出口2204及び入口2203の端部においてフリット2104、2102を越えて延在する。
実施例2100は、その中の構成要素の断面図を例示する。実施例2100は、他の実施形態に関連して本明細書の他の場所で説明されるような対応する要素と同様に付番された要素を含む。例えば、真空ジャケット付きカラム2100は、ジャケット外壁2306、ジャケット内壁2304、及び真空空間2302を備える、真空ジャケット又はスリーブを含むことができる。真空ジャケット又はスリーブは、予め製造したスリーブとすることができる。実施例2100は、端部取付金具2202a及び修正された端部取付金具2430を伴うカラム本体2210を有するカラムを含む。実施例2100はまた、カラム外径又は壁2208とジャケット内壁2304との間に間隙2308も含む。他の実施形態に関連して説明されるように、間隙2308は、任意選択的に、1つ又は2つ以上の材料を充填して、絶縁又は熱障壁を形成することができる。
実施例24の線L1及びL2に関連して本明細書の他の場所で説明される様態に類似する様態において、L4は、出口フリット2104(例えば、出口又は出口端部のカラムの端部)の水平な場所を表すことができ、L5は、真空ジャケット又はスリーブの端部の水平な場所を表すことができる。したがって、L4とL5との間の水平距離は、真空スリーブが実施例2100の出口フリット2104を越えて延在する量を表す。2100で分かるように、真空ジャケット又はスリーブはまた、カラム入口2203において、入口フリット2102(例えば、カラムの端部)を越えて延在する。
実施例2100はまた、端部ナット/端部取付金具とジャケット外壁との間の伝導を阻止し、更には内部対流も阻止する、絶縁体2108a~dも含む。絶縁体2108a~dは、一般に、絶縁発泡体、又はプラスチック、又はゴムなどの任意の好適な絶縁材料で作製することができる。絶縁体2108a~dは、例えば、可撓性の、又は形成可能な絶縁材料で作製された挿入可能なプラグ、Oリング、及び同類のものとすることができる。したがって、絶縁体2108a~dを使用して、カラム入口2203及び出口(outlet又はexit)2204における端部取付金具表面を通した伝導熱損失を最小にすることができる。真空空間がシリンダ又は管形状である、図16(及び本明細書の他の図)に関連して説明した一実施形態において、絶縁体2108a~dは、2つのOリングから形成することができる(例えば、絶縁体2108a~bが1つのOリングに対応し、絶縁体2108c~dが第2のOリングに対応する)。
実施例2100において、構成要素内の矢印A1は、流体流路に沿った熱の流路を示し、また、カラム本体からカラム入口2203及びカラム出口(outlet又はexit)2204に向かう熱の流れを例示する。実施例2100において、並びに本明細書の他の実施形態(例えば、2300、2400、2500)において使用される、予め製造した真空ジャケット又はスリーブは、例えば、Jupiter FloridaのConcept Group,Inc.からのInsulon(登録商標)熱障壁又はジャケットとすることができる。
本発明者らは、定常状態における、本明細書で説明される真空ジャケット付きカラムの実施形態のIR(赤外線)カメラ画像を取得したが、そのような画像は、最小の熱損失が、主にカラム端部に存在することを示している。例えば、そのようなIRカメラ画像は、真空ジャケット付きカラム2100の実施形態を使用して本発明者らによって取得した。比較及び対比するために、真空ジャケット付きカラムは、穴をあけることによって、ジャケット付きカラムの全体を通した熱損失を可能にし、そのような熱損失は、定常状態において、穴をあけた真空ジャケット付きカラムについて取得した追加的なIRカメラ画像によって明らかに示された。
いかなる流れもない冷却段階中の本明細書で説明される真空ジャケット付きカラム実施形態2100に関するIRカメラ画像もまた、本発明者らによって取得した。そのようなIR画像は、一般に、熱損失が、主にジャケット付きカラムの開口端部からであり、他の場所では熱損失がほとんど又は全くないことを示した。
図17を参照すると、本明細書の技術に従う一実施形態において使用することができる真空チャンバの一実施例が示される。実施例2600は、一般に、充填カラムアセンブリ及びカラム端部取付金具を挿入することができる真空チャンバ、モジュール、又は筐体の断面図を例示する。例えば、チャンバ2600は、カラムアセンブリ(カラム及び端部取付金具)の配置に適応するのに十分なサイズ及び寸法を有する、任意の好適な形状とすることができる。例えば、チャンバ2600は、長方形状、管、又はシリンダ、及び同類の形状を有することができ、2600は、その断面図を示す。チャンバは、例えば、カラムの配置を可能にするために、その側部又は壁のうちの1つ又は2つ以上から開くことができる。例えば、チャンバの端部壁2620a~bのうちの一方又は両方は、カラムの配置を可能にするために取り外し可能とすることができる。
動作中に、チャンバは、最初に真空排気されない。真空排気されていない(例えば、領域2602内が真空でない)ときに、端部取付金具を有する充填カラムをチャンバの中へ挿入することができ、次いで、チャンバを閉鎖又は封止することができる。その後に、(領域2602内の)チャンバ内の空気又は他のガスを、ポート2612を通して真空排気して、カラム2210を取り囲む真空空間2602を作成することができる。真空空間2602は、チャンバの内壁とカラム本体2210の外壁2208との間にある。この様態で、真空空間2602は、カラムを取り囲み、カラムにおける熱損失を最小にするために、本明細書の他の場所で説明される様態で絶縁層を提供することができる。
チャンバの端部壁又は端部キャップ2620a及び2620bは、PEEK又は他のポリマーなどの任意の好適な材料で作製することができる。端部壁2620a~bは、例えば、カラム端部取付金具2202a~bを通した熱損失を最小にするために、絶縁材料から作製することができる。要素2606a~hは、接触表面を通した伝導熱損失を低減させるために、絶縁材料で作製することができるシール又は絶縁体を表す。特に、2606aは、チャンバの内壁2604aの接触表面と端部キャップ2620aの表面との間に配置される絶縁体とすることができる。絶縁体2606b及び2606cは、端部取付金具2202aの接触表面と端部キャップ2620aとの間に配置することができる。絶縁体2606dは、端部キャップ2620aの接触表面とチャンバの内壁面2621aとの間に配置することができる。絶縁体2606hは、チャンバの内壁2604aの接触表面と端部キャップ2620bの表面との間に配置することができる。絶縁体2606g及び2606eは、端部取付金具2202bの接触表面と端部キャップ2620bとの間に配置することができる。絶縁体2606fは、端部キャップ2620bの接触表面とチャンバの内壁面2621aとの間に配置することができる。チャンバが管形状である一実施形態においては、(例えば、実施例2100の2108a~dに関連して説明されるような)好適な材料のOリングの形態などの絶縁体を使用することができる。チャンバがシリンダ又は管形状のそのような一実施形態において、絶縁体2602a~hは、4つのOリングから形成することができる(例えば、絶縁体2606a及び2606dが、1つのOリングに対応し、絶縁体2606b及び2606cが、第2のOリングに対応し、絶縁体2606e及び2606gが、第3のOリングに対応し、絶縁体2606f及び2606hが、第4のOリングに対応する)。
実施例2600においては、(カラムの外部にある接続配管の一部分が真空領域又はチャンバ内にもある図2とは対照的に)カラムへの流体接続が、真空チャンバ端部壁2620a~bの外側で行われることに留意されたい。例えば、図2を再度参照すると、要素11a~bは、カラムの外部にある接続配管及びその端部取付金具の部分を表し、部分11a~bもまた、真空チャンバ又はジャケット120内にある。対照的に、2600を参照すると、カラム端部取付金具の端面2621a~bは、チャンバ2620a~bの端部壁にある。したがって、2600において、真空チャンバは、カラムを越えて延在する液体流路のいかなる接続配管も含まない場合がある。この様態で、実施形態2600におけるカラムへの外部流体接続は、(カラムの外部にある接続配管の一部分が真空領域又はチャンバ内にもある図2とは対照的に)真空チャンバの外側で行われる。換言すれば、接続配管は、チャンバ内のカラムを、接続配管のいかなる部分もチャンバ又は真空空間2602内に位置付けられていない別の構成要素に接続することができる。そのような接続配管は、チャンバの端部壁2620a~bに位置付けられたカラム端部取付金具の端面2621a~bを通してカラムに接続する。
2600の配設の1つの利点は、例えば、(カラムの外部の)外部配管又はコネクタを交換する必要があるときに得られる。実施形態2600において、そのような配管は、内部にアクセスして、チャンバ内の構成要素を修正することなく交換することができる。そのような利点は、例えば、図2の配設を使用することでは得られない場合がある。
少なくとも1つの実施形態において、例示されるようにカラムアセンブリを含むチャンバ2600は、溶接したアセンブリのような完全なユニットとして予め製造しておくことができる。そのような一事例において、予め製造したチャンバは、2612を通してポンプに接続して、2602の真空を現場で作成することができる。一変形例として、完成した予め製造したチャンバを真空排気し、封止することができ、それによって、ポート2612を省くことができる。この様態で、例示されるカラムアセンブリを含むチャンバ2600は、真空排気された真空空間2602を含むように予め製造しておくことができる。
図18を参照すると、本明細書の技術に従う真空ジャケット付きカラムの一実施形態の別の実施例が示される。実施例2500は、本明細書で説明される他の真空ジャケット付きカラムの実施形態の構成要素に類似する構成要素を含む。実施例2500は、本明細書の技術に従う真空ジャケット付きカラムの別の実施形態の断面図を例示する。例えば、2500は、真空ジャケット(真空空間2302、外壁2306、及び内壁2304を備える)と、端部取付金具2502a~bを有するカラム本体2210と、カラム外壁2208とジャケット内壁2304との間の間隙2308とを含む。2500内のジャケットは、2100における説明に類似して、カラムの両端部において端部フリットを越えて延在する。本明細書の他の実施形態に関連して説明されるように、2500内の間隙2308は、追加的な熱障壁又は絶縁障壁を形成する材料の1つ又は2つ以上の追加的な層を含む空間又は領域とすることができる。例えば、2500内の間隙2308は、絶縁材料(例えば絶縁発泡体、エアロゲル及び同類)を充填することができる。2500内の間隙2308は、放射伝達による熱損失を阻止するために、熱ラップ又は放射シールド(例えば、アルミめっきマイラーなどの「スペースブランケット材料」)を含むことができる。少なくとも1つの実施形態において、2500内の間隙2308は、熱ラップ又は放射シールド層、並びに絶縁発泡体又はエアロゲル層の両方を含むことができる。加えて、ジャケット、カラム、及び端部取付金具の表面の間の伝導熱伝達を低減させるために、絶縁体2510a~dを含むことができる。絶縁体2510a~dは、(例えば、実施例2100の2108a~dに関連して)本明細書の他の場所で説明されるように、好適な材料から作製し、形成することができる。
本明細書で説明される端部取付金具(例えば、2502a~b)又はキャップは、端部カラム本体の対応する嵌合したねじ付き表面に取り付ける、ねじ付き端部取付金具とすることができる。より一般的には、本明細書で説明される任意の実施形態で使用される任意の端部取付金具は、代替的に、ねじなし端部取付金具とすることができる。例えば、一実施形態は、代替的に、カラムの端部において、面シール(例えば、Oリング)などのねじなし端部取付金具を使用することができる。面シールは、シール面が封止の軸に対して垂直であるシールである。面シールは、例えば、封止の軸に対して半径方向の漏出を阻止するために使用することができる。この様態で、封止面は、Oリングを含むことができ(例えば、実質的に環形状又は円板形状とすることができる)、また、カラムの1つ又は2つ以上の端部(例えば、流路を形成するカラム配管の内部に)配置することができる。別のコネクタは、面シールを含むカラムの端部において配管の中へきっちりと挿入することができ、それによって、挿入された他のコネクタの外面は、Oリングなどの面シールの接触表面との半径方向シールを形成する。
面シール(例えば、Oリング)などのそのようなねじなし端部取付金具は、任意の好適な材料(例えば金属、Vespel、PEEK、又は任意の他のポリマー若しくはエラストマー材料で作製することができる。一般に、面シールは、クロマトグラフィカラムの端部と他の配管との容易な接続、他の構成要素への接続、及び同類のものを促進するために使用することができる。例えば、面シールに関して、別の接続又は管は、真空ジャケット付きクロマトグラフィカラムの出口端部及び/又は入口端部の中へ挿入(施栓)し、それによって、別の構成要素(例えば、注入器、検出器、予熱器)へのジャケット付きカラムの接続を提供することができる。
本明細書の他の場所の考察と一致して、いくつかの実施形態において、2100、2300、2400、及び2500において説明されるような真空スリーブ又はジャケットは、予め製造しておくことができ、それによって、端部取付金具を有するカラムアセンブリを、顧客の現場においてジャケット又はスリーブの中へ挿入することができる。少なくともいくつかの実施形態において、2100、2300、2400、及び2500において説明されるような真空スリーブ又はジャケットは、管であり得るか、又は管様形状に近似し得、その中へカラムが配置される。真空スリーブ又はジャケットは、一般に、クロマトグラフィカラム及び端部取付金具などの構成要素のその中への挿入に適応するのに十分な寸法を有する、ステンレス鋼又はより一般的には鋼などの任意の好適な材料で作製されたその壁を有することができる。例えば、少なくとも1つの実施形態において、真空ジャケット又はスリーブは、そこを通る開口部を有する管又はシリンダとすることができ、カラムアセンブリは、管を通って延在する開口部の中へ挿入される。真空ジャケットを形成する管又はシリンダは、本明細書の他の場所で説明されるような好適な真空圧力で予め製造され、封止され、加圧された真空チャンバとすることができる。
代替的に、真空ジャケットカラムアセンブリ(真空ジャケット又はスリーブの両方をカラムアセンブリの組み合わせに含む)は、接着剤などの任意の好適な手段を使用してジャケットの内部に固定されたカラムアセンブリと共に販売される場合がある。そのようなカラムアセンブリにおいて、端部取付金具は、カラム端部において面シールを使用するなどにより、ねじなしとすることができる。なお更なる変形例として、真空ジャケットは、カラムを伴わずに、検出器又は注入器などの別の構成要素と一体化又は結合することができる。その後に、顧客の現場などにおいて、カラムを真空ジャケットに挿入又は配置することができる。この後者の事例において、ジャケットは、真空ジャケットからカラムを取り外すことができるように構成することができる。
真空ジャケット、真空チャンバ、又は筐体、及び同類のものを使用する、本明細書で説明される実施形態に関連して、好適な真空圧力の例が本明細書で説明される。例えば、少なくとも1つの実施形態で、真空圧力は、約10-3atm未満とすることができる。一般に、本明細書で説明される真空ジャケット付きカラムの種々の実施形態などにおいて使用される真空圧力が低くなるほど、より良好な断熱条件によるより良好なクロマトグラフィ性能が達成される。
本明細書の他の場所では、本明細書で説明される種々の実施形態のうちのいずれかに関連して使用することができる圧力及び圧力範囲の更なる例が説明される。
図12を再度参照すると、2300、2400、2100、2500に関連して説明されるような真空ジャケット付きクロマトグラフィカラムの任意の実施形態、並びに2600の真空チャンバの配設(及び本明細書で説明される変形例)は、本明細書の技術に従うシステムの要素2002として使用することができることに留意されたい。
本明細書の他の場所の考察と一致して、粘性熱は、溶出液又は移動相のカラム粒子に対する摩擦により生成される。この熱は、カラム及び軸に沿って、及びそれらの全体にわたって放散し、半径方向温度勾配が生じる。半径方向温度勾配は、クロマトグラフィ実験の性能に悪影響を及ぼす。本発明者らは、クロマトグラフィカラムがクロマトグラフィカラムを取り囲む真空筐体の内部に配置された場合の条件に従って、実験及びモデリングを行った。本発明者らが行ったモデリング及び実験に関連して使用されるそのような条件には、約6mmの外径を有するクロマトグラフィカラムを含む。使用される真空筐体は、クロマトグラフィカラム(例えば、ステンレス鋼製カラム)を取り囲むシリンダ状のステンレス鋼製筐体管(内径6.0cm)であり、空気は、外側クロマトグラフィカラム壁と円筒筐体管の内壁との間の空間に閉じ込められ、空気圧力は、約1.4×10-5トル~約750トルの真空圧力の範囲にわたって段階的に低減される。室温及び最初の筐体内の空気の温度は、約297.0ケルビンである。そのような実験及びモデルにおいて、クロマトグラフィカラム壁における熱伝達は、(例えば、1)外側クロマトグラフィカラム壁と周囲真空筐体管の内壁表面との間の、及び2)真空筐体管の外部表面領域と研究室との間の空気を通した)自然空気対流、空気伝導、及び熱放射によって生じ得る。
以下の段落は、そのようなモデリング及び実験に基づいて本発明者らによって得られた結果の一部を要約する。下で更に詳述されるように、そのような結果は、本明細書の技術の実施形態に関連して使用することができる真空の圧力及び圧力範囲を決定する際に使用することができる。特に、下でより詳細に説明されるように、図19、図20、図21、及び図22に関連した結果の考察は、圧力及び図12、図13、図14、図15、図16、図17、及び図18に関連して説明される実施形態に関連して使用することができるような真空空気圧力の圧力範囲を決定する際に使用することができる。本明細書で説明される他の好適な圧力はまた、図12、図13、図14、図15、図16、図17、及び図18に関連して説明される実施形態に関連して使用することもできることに留意されたい。
4つの異なる圧力ドメインは、約1.4×10-5トル~約750トルの上記の真空圧力の範囲に関連して識別することができる。一般に、4つのドメインは、真空空気圧力が上記の範囲を通して変動するようなモデリング及び実験中に、種々の生理化学的な特性に関連して生じた変化に従って決定される、識別された圧力境界に基づく。
例えば、図19の実施例1200を参照する。実施例1200は、真空筐体の空気圧力(例えば、X軸上)の関数として、算出された粘性熱分率f(例えば、Y軸上)のプロットを含む。粘性熱分率fは、定常状態レジーム(例えば、静止半径方向温度プロファイルは、充填ベッド(Tベッド)のクロマトグラフィカラム軸/中心から、ステンレス鋼製クロマトグラフィカラム管(Tssカラム)まで、クロマトグラフィカラム外壁とシリンダ筐体タブの内壁との間の空間内に閉じ込められた空気(T空気)まで、真空管又は筐体の壁を形成するステンレス鋼製筐体管(Tss管)まで、及び研究室の周囲空気(T∞約297.0ケルビン)まで確立される)の下でのクロマトグラフィカラム軸に対して垂直方向において放散される粘性熱の分率を表す。1200のプロットは、本発明者らが使用した熱伝達及び質量移動モデルに基づいて算出した粘性熱分率fを表す。プロット1200は、垂直線B1、B2、及びB3によって表される3つの圧力境界を例示し、ここで、B1は、約10-4トルであり、B2は、約10-1トルであり、B3は、約200トルである。下でより詳細に論じられるように、B3は、自然対流による熱伝達がB3未満の圧力で排除される境界を表すことができ、B1は、空気伝導による熱伝達がB1未満の圧力で排除される境界を表すことができる。
上記の圧力境界に基づいて、X軸の真空筐体圧力範囲は、下でも更に説明するように、D1、D2、D3、及びD4によって表される4つの圧力ドメインに分割することができる。
ドメインD1は、約10-4トル未満の真空筐体圧力を表すことができる。D1における圧力において、クロマトグラフィカラム壁を通した熱損失は、主に、又は実質的に、クロマトグラフィカラムと真空筐体(どちらも、発明者が使用したモデリング及び実験的な試験条件において、ステンレス鋼で作製した)との間の放射に基づくことができる。ドメインD1においては、自然対流によって熱を伝達するには空気密度が小さ過ぎることを特徴とし得るので、空気の熱伝導率は、無視できるものとみなすことができる(例えば、大気圧における空気の熱伝導率よりも2桁以上小さい)。したがって、真空筐体圧力が10-4トル未満であるD1は、単にステンレス鋼製カラム管の外面での放射にだけ基づく粘性熱伝達を有することを特徴とすることができる(例えば、対流又は伝導によるいかなる熱伝達もない)。
ドメインD2は、約10-4トル~約10-1トルの真空筐体圧力を表すことができる。ドメインD2は、約10-4トル以上の下限、かつ約10-1トル未満の上限(例えば、10-4トル≦P<10-1トル、ここで、Pは、D2における真空筐体の空気圧力である)の圧力範囲として更に定義することができる。D2における圧力において、クロマトグラフィカラム壁を通した熱伝達は、クロマトグラフィカラムと真空筐体との間の放射、及び真空筐体を通した空気伝導に基づくことができる。しかしながら、D2における熱伝達は、対流に起因しない。加えて、D2において、伝導は、筐体の空気圧力が増加するにつれて、より熱伝達に寄与する。1つの態様において、ドメインD2は、真空圧力が減少するにつれて、伝導を介した熱伝達が段階的に低減される、遷移ゾーンとして特徴付けることができる。
ドメインD3は、約10-1トル~約200トルの真空筐体圧力を表すことができる。ドメインD3は、約10-1トル以上の下限、かつ約200トル未満の上限(例えば、10-1トル≦P<200トル、ここで、Pは、D3における真空筐体の空気圧力である)の圧力範囲として更に定義することができる。D3における圧力において、fは、一般に、真空筐体の空気圧力とは関係なく一定である。D3において、対流による熱伝達は、依然として無視できるので、それによって、クロマトグラフィカラム壁を通した熱伝達は、一般に、クロマトグラフィカラムと真空筐体との間の放射、及び真空筐体を通した空気伝導に起因するとみなすことができる。
ドメインD4は、約200トル~約750トルの真空筐体圧力を表すことができる。ドメインD4は、約200以上の下限、かつ約750未満の上限(例えば、200トル≦P<750トル、ここで、Pは、D4における真空筐体の空気圧力である)の圧力範囲として更に定義することができる。D4における圧力において、カラム壁を通した熱伝達は、クロマトグラフィカラムと真空筐体との間の放射、真空筐体を通した空気伝導に基づき、更に、対流(例えば、加熱されたカラム壁から筐体真空管への対流を介した熱伝達)に起因する。したがって、B3は、約B3を超える圧力(例えば、D4における圧力)では、対流により追加的に熱伝達を経験し、また、約B3未満の圧力(例えば、D3、D2、及びD1における圧力)では、対流による熱伝達を無視できる、又は存在しない可能性がある、境界を表すことができる。1つの態様において、ドメインD4は、真空圧力が約750トルから約100トルに減少するにつれて、自然対流を介した熱伝達が段階的に低減される、遷移ゾーンとして特徴付けることができる。D4における圧力は、伝導、対流、及び放射を介した熱損失をもたらす。
本発明者らが行った追加的なモデリング及び実験は、1200におけるような境界B1、B2、B3、及びB4、並びにドメインD1、D2、D3、及びD4に関して上記したことをほぼ立証する結果をもたらした。
例えば、以下、図20を参照すると、本発明者らは、モデルを使用して、筐体空気圧力の関数として、軸方向温度の上昇、変化、又は勾配の振幅ΔLTの算出値を決定し、ここで、入口カラム温度(T入口)は、約297.0Kである。したがって、ΔLTは、カラム長に沿った温度差(例えば、クロマトグラフィカラム出口とクロマトグラフィカラム入口との温度差)を表す。例1300で表されるように、ΔLT(Y軸)の変化は、1200に関連した説明とほぼ同じ境界圧力B1~B3(X軸)において生じた。生じた曲線1300の変動は、真空筐体の空気圧力の増加と共に、(例えば、1200に例示されるように)fの変動に直接関連している。一般に、カラム壁を通した粘性熱損失の量が少ないほど、軸方向温度勾配の振幅ΔLTが大きくなる(例えば、1300におけるΔLTの値は、約10-4トルのB1未満の圧力の場合には、約16.2Kであり(D1にあるような放射制御された熱伝達が存在する)、B2(約10-1トル)とB3(約100トル)との間の圧力の場合には、13.9Kであり(放射、更には伝導を介した熱伝達が存在する)、B3を上回る場合には、12.7Kであり、放射、伝導、及び対流を通して熱伝達が生じる)。
加えて、以下、図21を参照すると、本発明者らは、モデルを使用して、筐体空気圧力の関数として、半径方向の温度変化又は勾配の振幅ΔRTの算出値を決定し、ここで、入口カラム温度(T入口)は、約297.0Kである。したがって、ΔRTは、クロマトグラフィカラム中心からクロマトグラフィカラム壁までの温度差を表す。例1400で表されるように、ΔRT(Y軸)の変化は、1200及び1300に関連した説明とほぼ同じ境界圧力B1~B3(X軸)において生じた。生じた曲線1400の変動は、真空筐体空気圧力の増加と共に、(例えば、1200に例示されるように)fの変動に直接関連している。一般に、カラム壁を通した粘性熱損失の量が多いほど、半径方向の温度変化又は勾配ΔRTの振幅が大きくなる。
更に、以下、図22を参照すると、本発明者らが行った実験に基づいて、真空筐体空気圧力(X軸)の関数として、6つの注入された化合物1520の各々に関する修正された実験的なカラム効率(Y軸上のN)のプロット1500が示される。1500に例示されるように、各化合物についてのNの値は、凡例1520で識別されるように、特定の形状を有する(例えば、白抜きの三角1502は、ヘキサノフェノンのN値を表し、白抜きの丸1504は、バレロフェノンを表し、塗り潰しの円1506は、ブチロフェノンを表し、塗り潰しの三角1508は、プロピオフェノンを表し、塗り潰しの四角1510は、アセトフェノンを表し、塗り潰しの菱形1512は、ウラシルを表す)。1500に例示されるように、2つの圧力遷移を観察することができ、第1の圧力遷移(約750トル~約100トル)は、自然対流による熱伝達の漸進的排除に対応し、第2の圧力遷移(約1トル~約10-3トル)は、空気伝導(1~10-3トル)による熱伝達の漸進的排除に対応する。一般に、上記の第1の圧力遷移は、ほぼ圧力ドメインD4に対応し、上記の第2の圧力遷移は、ほぼ圧力ドメインD2に対応する。
上記の第1の圧力遷移は、1200、1300、及び1400に関連して本明細書の別の場所で説明され、例示されるように、モデル化された結果、遷移、及び挙動と概して一致して(例えば、本発明者らが決定した許容可能な許容範囲及び量、並びに予期される変動の範囲内で)、T1によって表されるように、約100トル、又はそれ未満で完了した。
上記の第2の圧力遷移は、1200、1300、及び1400に関連して本明細書の別の場所で説明され、例示されるように、モデル化された結果、遷移、及び挙動と概して一致して(例えば、本発明者らが決定した許容可能な許容範囲及び量、並びに予期される変動の範囲内で)、T2によって表されるように、約10-3トルで完了した。上記の第2の圧力遷移は、約1トル~約10-3トルであるにもかかわらず、本発明者らは、実際の遷移は、約10-1トル~約10-4トルの圧力範囲に対応する可能性がある(それによって、1200、1300、及び1400のようなモデル化された熱伝達の結果との更に大きい相関及び一致を有する)と判断したことに留意されたい。
加えて、1500に基づいて、ヘキサノフェノンの場合に、約750トルにおけるN=15876から約100トルにおけるN=18478によって示されるように、自然空気対流による熱損失の排除後のクロマトグラフィカラム効率の相対的増加は、約15%であること、及びヘキサノフェノンの場合に、約750トルにおけるN=15876から約10-3トルにおけるN=20751によって示されるように、自然空気対流及び伝導の両方による熱損失の排除後のクロマトグラフィカラム効率の増加は、約30%であることを観察することができる。
したがって、本明細書の技術に従う一実施形態は、上記の結果に基づいて特定の圧力範囲を特定することができ、それによって、真空筐体について選択された圧力は、任意のそのような指定された圧力範囲の境界又は限度に従い得る。一般に、クロマトグラフィカラム効率を最大にするためには、より低い圧力(例えば、より深い/より強い真空)が望ましい。真空筐体圧力は、約760トル又は1atm未満とすることができる。真空筐体圧力は、約750トル未満とすることができる。より好ましくは、真空筐体圧力は、(例えば、クロマトグラフィカラムの対流を通した粘性熱損失が排除される場合)約200トル未満、又は約100トル未満とすることができる。更に好ましくは、真空筐体圧力は、約10-1トル未満とすることができる。更に好ましくは、カラム効率を最大にするために、真空筐体圧力は、約10-4トル未満とすることができる(例えば、一般に、D1にあってB1未満であり、それによって、対流を通した粘性熱損失及びクロマトグラフィカラムを通した伝導を排除又は無視することができる)。したがって、約10-4トル未満の圧力において、熱損失は、ほぼ放射に起因し得る。
また、少なくとも1つの実施形態において、10-4トル未満の圧力の場合、空気伝導が放射に関して無視できるようになると、クロマトグラフィカラム効率には本質的にいかなる更なる向上も起こり得ないので、真空筐体圧力は、一般に、約10-4トル(B1)とすることができる。少なくとも1つの実施形態において、真空筐体圧力は、自然空気対流の排除によって得られる効率レベルに対応するように、一般に、約100トル若しくは約200トル(B3)とすることができ、又は、一般に、ドメインD3内の任意の圧力とすることができる。少なくとも1つの実施形態において、真空筐体圧力は、約10-1トル以下、更には約200トル未満(例えば、10-1トル≦P<200トル)とすることができる。少なくとも1つの実施形態において、真空筐体圧力は、約10-1トル以下、更には約100トル未満(例えば、10-1トル≦P<100トル)とすることができる。少なくとも1つの実施形態において、真空筐体圧力は、自然空気対流による熱損失の排除及び伝導を通した熱損失を少なくともいくらか低減することによって得られる効率レベルに対応するように、一般に、ドメインD2内とすることができる。
本明細書の技術の上の実施例及び説明は、液体クロマトグラフィと共に説明及び使用することができるが、本明細書の技術は、より一般的に、当該技術分野において既知の他の形態のクロマトグラフィに関連して使用することができることに留意されたい。例えば、本明細書で説明される技術は、超臨界流体クロマトグラフィに関連して使用することができ、二酸化炭素に基づくクロマトグラフィ及び高度に圧縮可能な流体クロマトグラフィとしても既知である。
本明細書に記載されるものの変形、修正、及び他の実現は、請求される本発明の趣旨及び範囲から逸脱することなく、当業者には想到されるであろう。したがって、本発明は、前述の例証的説明によってではなく、その代わりに以下の特許請求の範囲の趣旨及び範囲によって定義されるものとする。