JP7413665B2 - 電磁波発生装置、インク乾燥装置及びインクジェットプリンター - Google Patents

電磁波発生装置、インク乾燥装置及びインクジェットプリンター Download PDF

Info

Publication number
JP7413665B2
JP7413665B2 JP2019121931A JP2019121931A JP7413665B2 JP 7413665 B2 JP7413665 B2 JP 7413665B2 JP 2019121931 A JP2019121931 A JP 2019121931A JP 2019121931 A JP2019121931 A JP 2019121931A JP 7413665 B2 JP7413665 B2 JP 7413665B2
Authority
JP
Japan
Prior art keywords
electrode
electromagnetic wave
ink
conductor
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019121931A
Other languages
English (en)
Other versions
JP2021008969A (ja
Inventor
直 相澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2019121931A priority Critical patent/JP7413665B2/ja
Priority to US16/913,542 priority patent/US11351806B2/en
Publication of JP2021008969A publication Critical patent/JP2021008969A/ja
Priority to US17/661,639 priority patent/US11660900B2/en
Application granted granted Critical
Publication of JP7413665B2 publication Critical patent/JP7413665B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M7/00After-treatment of prints, e.g. heating, irradiating, setting of the ink, protection of the printed stock
    • B41M7/0072After-treatment of prints, e.g. heating, irradiating, setting of the ink, protection of the printed stock using mechanical wave energy, e.g. ultrasonics; using magnetic or electric fields, e.g. electric discharge, plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41FPRINTING MACHINES OR PRESSES
    • B41F31/00Inking arrangements or devices
    • B41F31/02Ducts, containers, supply or metering devices
    • B41F31/022Ink level control devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J11/00Devices or arrangements  of selective printing mechanisms, e.g. ink-jet printers or thermal printers, for supporting or handling copy material in sheet or web form
    • B41J11/0015Devices or arrangements  of selective printing mechanisms, e.g. ink-jet printers or thermal printers, for supporting or handling copy material in sheet or web form for treating before, during or after printing or for uniform coating or laminating the copy material before or after printing
    • B41J11/002Curing or drying the ink on the copy materials, e.g. by heating or irradiating
    • B41J11/0021Curing or drying the ink on the copy materials, e.g. by heating or irradiating using irradiation
    • B41J11/00216Curing or drying the ink on the copy materials, e.g. by heating or irradiating using irradiation using infrared [IR] radiation or microwaves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M7/00After-treatment of prints, e.g. heating, irradiating, setting of the ink, protection of the printed stock
    • B41M7/0081After-treatment of prints, e.g. heating, irradiating, setting of the ink, protection of the printed stock using electromagnetic radiation or waves, e.g. ultraviolet radiation, electron beams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/32Drying solid materials or objects by processes involving the application of heat by development of heat within the materials or objects to be dried, e.g. by fermentation or other microbiological action
    • F26B3/34Drying solid materials or objects by processes involving the application of heat by development of heat within the materials or objects to be dried, e.g. by fermentation or other microbiological action by using electrical effects
    • F26B3/347Electromagnetic heating, e.g. induction heating or heating using microwave energy

Description

本発明は、電磁波発生装置、インク乾燥装置及びインクジェットプリンターに関する。
様々な種類のインクジェット記録装置が開発されてきている。例えば、フィルムや金属シートのようにインクが染み込み難いメディアに印刷する技術も開発が進んでいる。このようなインクを吸収しにくいメディアにインクを付着させる場合には、付着後しばらくはインクの液滴がメディア上で流動できる状態となり、ドット間の混色や画像の滲みが生じやすい。このような現象を抑える対策の一つとして、インク滴の付着後にできるだけ短時間でインクを乾燥させることが考えられる。
インクを乾燥させる方法としては、例えば、熱した個体をメディアの裏面に当て、熱伝導で表面に付着させたインク滴の膜を乾燥させることが考えられるが、これに要するエネルギーは非常に大きく、また熱が伝導するのに時間を要し必ずしも最適な方法とは言えない。また、その他の方法として、特許文献1に記載の乾燥装置では、媒体に交流電界を印加して付着したインクを誘電加熱することで乾燥することが試みられている。
特開2017-165000号公報
しかしながら、特許文献1に記載の装置は、接地した導体棒、及び、両端に高周波電圧を印加する導体棒が平行離間して配置され、これらによってループアンテナのような高周波放射装置を用いている。このような放射装置からは、アンテナの特性上、比較的広範囲に電磁波が放射される。そのため加熱すべきインク膜に与えられる電力以外にも大きな電力が放射され、エネルギー効率が悪い上、発散する電磁波をシールドする必要もあると考えられる。また、印刷パターンによっては、インクの存在しない領域があり、これがインクの存在する領域と入り組んで存在するにも関わらず、このような領域にも電磁波は注入され、エネルギー効率が悪くなる。
本発明に係る電磁波発生装置の一態様は、
電磁波を発生させる電磁波発生部と、
前記電磁波発生部に印加される電圧を発生させる高周波電圧発生部と、
前記電磁波発生部と、前記高周波電圧発生部とを電気的に接続する伝送線路と、
を備え、
前記電磁波発生部は、第1電極と、第2電極と、前記第1電極と前記伝送線路とを電気的に接続する第1導体と、前記第2電極と前記伝送線路とを電気的に接続する第2導体と、を備え、
前記第1電極又は前記第2電極の、一方が基準電位が印加される基準電位電極であり、他方が高周波電圧が印加される高周波電極であり、
前記第1電極と前記第2電極との間の最小離間距離は、出力される電磁波の波長の1/10以下であり、
前記第1導体と前記第2導体との間の最小離間距離は、出力される電磁波の波長の1/10以下であり、
前記第1導体はさらにコイルを備え、前記コイルは前記伝送線路に比べて前記第1電極に近いことを特徴とする。
上記電磁波発生装置の態様において、
前記第1電極及び前記第2電極の一方を他方が、平面視において取り囲むように配置された構造を有してもよい。
上記電磁波発生装置の態様において、
前記基準電位電極は、前記高周波電極の周囲を連続して取り囲み、
前記高周波電極が同軸ケーブルの内部導体と接続し、
前記基準電位電極と、前記同軸ケーブルの外部導体とが、連続する面状の導体を介して接続された構造を有してもよい。
本発明に係るインク乾燥装置の一態様は、
上記のいずれかの態様の電磁波発生装置が、インク薄膜を加熱するインク乾燥装置であって、
前記第1電極及び前記第2電極は、平板状であって、前記インク薄膜に対して平行に配置される。
本発明に係るインク乾燥装置の一態様は、
上記のいずれかの態様の電磁波発生装置が、インク薄膜を加熱するインク乾燥装置であって、
前記第1電極及び前記第2電極は、延在方向を有し、インク薄膜に対して前記延在方向が垂直に配置される。
上記インク乾燥装置のいずれかの態様において、
導体板を備え、
前記導体板は、前記インク薄膜に対して前記第1電極及び前記第2電極の反対側に平行に配置されてもよい。
本発明に係るインクジェットプリンターの一態様は、
上記インク乾燥装置のいずれかの態様と、
記録媒体の幅方向に往復移動するキャリッジと、
インクを吐出するインクジェットヘッドと、
を備え、
前記キャリッジは、前記インク乾燥装置及び前記インクジェットヘッドを搭載する。
実施形態に係る電磁波発生装置の電極付近の模式図。 実施形態に係る電磁波発生装置の等価回路図。 実施形態に係わる、コイルを電極の近傍に配置した時の電界密度分布。 実施形態に係わる、コイルを電極の遠方に配置した時の電界密度分布。 実施形態に係る電磁波発生装置の電極付近の模式図。 実施形態に係る電磁波発生装置の電極付近の模式図。 実施形態に係るインク乾燥装置の第1電極及び第2電極のインク薄膜に対する配置を側面からみた模式図。 平行平板電極の間にインク薄膜が配置される態様を示す模式図。 平行平板電極の間にインク薄膜が配置される態様を示す模式図。 平行平板電極の間にインク薄膜が配置された場合の等価回路の一例。 実施形態に係るインク乾燥装置の電極付近及び導体板の配置を側面からみた模式図。 実施形態に係るインクジェットプリンターの要部の模式図。 インク薄膜の加熱のシミュレーション結果。
以下に本発明の実施形態について説明する。以下に説明する実施形態は、本発明の例を説明するものである。本発明は以下の実施形態になんら限定されるものではなく、本発明の要旨を変更しない範囲において実施される各種の変形形態も含む。なお以下で説明される構成の全てが本発明の必須の構成であるとは限らない。
1.電磁波発生装置
本実施形態の電磁波発生装置は、電磁波を発生させる電磁波発生部と、電磁波発生部に印加される電圧を発生させる高周波電圧発生部と、電磁波発生部及び高周波電圧発生部を電気的に接続する伝送線路と、を備える。そして、電磁波発生部は、第1電極と、第2電極と、第1電極と伝送線路とを電気的に接続する第1導体と、第2電極と伝送線路とを電気的に接続する第2導体と、を備える。さらに、第1導体はコイルを備え、コイルは伝送線路に比べて第1電極に近い位置に設けられる。
したがって本実施形態の電磁波発生装置は、少なくとも第1電極と、第2電極と、コイルと、を備える。図1は、本実施形態の電磁波発生装置10の電極付近の模式図である。図2は、電磁波発生装置10の等価回路図である。電磁波発生装置10は、第1電極1、第2電極2及びコイル3を含む電磁波発生部、伝送線路としての同軸ケーブル4、高周波電圧発生部としての高周波源を備える。
ここでいうコイルは、同じインダクタンスでもその直列挿入位置によりインク膜の加熱エネルギー効率が大きく異なり、できるだけ電極に近い箇所に設置するのが望ましい。コイル3は第1電極、もしくは第2電極をメアンダ形状にするなどの方法で電極自体にインダクタンスを持たせることでコイル3を省略することもできる。
1.1.電極
電磁波発生装置10は、第1電極1及び第2電極2を備える。第1電極1及び第2電極2は、導電性を有する。第1電極1又は第2電極2の一方には、基準電位が印加される。第1電極1又は第2電極2の他方には高周波電圧が印加される。第1電極1及び第2電極2の選び方は任意であり、2つの電極の一方に対して基準電位が、他方に対して高周波電圧が印加される。本明細書では、基準電位が印加される電極を「基準電位電極」ということがあり、高周波電圧が印加される電極を「高周波電極」ということがある。
基準電位とは、高周波電圧の基準となる定電位であり、例えば接地電位であってもよい。特殊な例としては、電磁波発生装置10に入力する高周波電圧を発生する高周波電圧発生回路の出力が差動回路であれば第1電極1と第2電極2の区別は無くなる。高周波の周波数としては、周波数が1MHz以上であれば加熱効果はあるが20GHz付近で誘電正接が最大になるため加熱効率も最大になる。特に、水分を加熱する観点からは2.0GHz以上3.0GHz以下が好ましく、法規的な観点を含めると、ISMバンドの1つである2.4GHz帯が好ましく、例えば2.44GHz以上2.45GHz以下が好ましい。また、高周波電圧は高い程インクに供給される熱量は大きくなるが、通常50Ωの伝送線路で電磁波発生装置10へ伝送されるため、電磁波発生装置10の高周波電圧入力にては「高周波電力=V^2/R=V^2/50」で表される電圧となる。さらに、電磁波発生装置10の寄生抵抗で発生する熱量を抑えるため、1つの電磁波発生装置10あたりの電力は10W程度とし、電磁波発生装置10を複数個使用してインク乾燥に必要な電力を確保することが好ましい。またインクは第1電極1と第2電極2との間に生じる電界によ
る誘電加熱によって加熱される。このときの電界は1×10^6V/m程度の値になる。またインクは第1電極1と第2電極2との間に生じる電界によって誘電加熱によって加熱される。このときの第1電極と第2電極の間の電界はコイル3や電極間距離の効果により1×10^6V/m程度の値になる。
高周波電圧を印加するとは、第1電極1又は第2電極2におけるインクに対抗する面と反対側の面の中心部を給電点とし、この給電点に対して上記の高周波電圧の電力を供給することをいう。尚、後述する図6のように電極に対して金属の面で同軸ケーブルの被覆部を接続する場合もある。
図示の例では第1電極1及び第2電極2は、平板状の形状を有する。第1電極1及び第2電極2の平面的な形状は任意であり、例えば、正方形、長方形、円形、それらの形状を組み合わせた形状とすることができる。図示の例では、第1電極1及び第2電極2は、平面視で略正方形の形状となっている。また、第1電極1及び第2電極2の平面的な大きさは、一方の電極で、平面視における面積として、0.01cm以上100.0cm以下、好ましくは0.1cm以上10.0cm以下、より好ましくは0.5cm以上2.0cm以下、さらに好ましくは0.5cm以上1.0cm以下である。また第1電極1及び第2電極2の平面視における面積は、同じでも異なってもよい。ここで言う平面視とは、図1のz方向からみた状態を指す。
第1電極1及び第2電極2は、平面視において重複しないように配置されることが好ましい。また図示の例では、第1電極1及び第2電極は、同一平面に並列して配置されている。このような配置とすることで、効率よく所定の電磁波を発生させることができる。第1電極1及び第2電極2の形状、配置については、さらに後述する。また発生する電磁波についても詳細は後述する。
第1電極1及び第2電極2は、導電体で形成される。導電体としては、金属、合金、導電性酸化物等を例示できる。第1電極1及び第2電極2は、互いに同じ材質であっても異なる材質であってもよい。第1電極1及び第2電極2は、自立できるように厚さや強度を選択して適宜構成されてもよいし、その強度保持が困難な場合はやむなく電磁波を透過する図示せぬ誘電正接の低い材料で構成された基板等の表面に形成することもできる。
第1電極1及び第2電極2は、図1に模式的に示すように、それぞれ内部導体4a及び外部導体4bを介して高周波源に接続された同軸ケーブル4に電気的に接続される。内部導体4a及び外部導体4bは、第1電極1及び第2電極2インク薄膜に対抗する面と反対側の面に配置される。換言すると、第1電極1及び第2電極2は、内部導体4a及び外部導体4bに比べてインク薄膜の近く配置される。
1.2.電極の間隔
第1電極1と第2電極2との間の最小離間距離dは、電磁波発生装置10から出力される電磁波の波長の1/10以下である。例えば、電磁波発生装置10から出力される電磁波の周波数が2.45GHzである場合には、高周波の波長は約12.2cmであるので、この場合には、第1電極1と第2電極2との間の最小離間距離は、約1.22cm以下である。なお、図1の例では内部導体4aにはコイル3が設けられている。内部導体4aの電送経路におけるコイル3と第1電極1との距離は、コイル3と同軸ケーブル4との距離に比べて近いことが好ましい。通常コイル3は第1電極のみに接続されるが、第2電極のみ、もしくは第1電極と第2電極の両方に接続することでできる。
第1電極1と第2電極2との間の最小離間距離dを、出力される電磁波の波長の1/10以下とすることにより、高周波電圧が印加された際に発生する電磁波のほとんどを第1
電極1及び第2電極2の近傍で減衰させることができる。これにより、第1電極1及び第2電極2から遠方に到達する電磁波の強度を小さくできる。
すなわち、電磁波発生装置10から放射される電磁波は、第1電極1及び第2電極2の近傍で非常に強く、遠方では非常に弱くなる。本明細書では、電磁波発生装置10によって第1電極1及び第2電極2の近傍に発生する電磁界を「近傍電磁界」ということがある。また、本明細書では、電磁波を遠方まで伝達させることを目的とするような一般的なアンテナ(空中線)によって発生する電磁界を「遠方電磁界」ということがある。なお、近傍と遠方の境界は、電磁波発生装置10から、発生する電磁波の波長の1/6程度離れた位置である。
電磁波発生装置10は、テレビや携帯電話などの用途で用いられ、m単位の間隔で電磁波を伝達させる電磁波発生装置ではなく、発生する電磁波の電界密度が、その波長の1/6の距離を伝達する間に第1電極1と第2電極2との間の電界密度の30%以下まで減衰する電磁波発生装置である。すなわち電磁波発生装置10は、通信用としては不向きである。さらに、電磁波発生装置10によって発生する電磁波は、減衰率が高いことから電界の範囲が抑制される。そのため、発生する電磁波の波長程度の距離よりも装置から離れた領域に、不要な輻射が生じにくい。そのため、電波法等による規制への対応が不要又は容易であり、対応すべき場合でも簡易な電磁波シールド等により電磁波が電磁波発生装置の周囲へ飛散することを低減できる。電磁波発生装置10のこのような性質は、電極のサイズが小さいこと、電極間の距離が近いこと、又は、共振が生じにくいこと等に起因している。
さらに換言すると、本実施形態の電磁波発生装置10は、ダイポールアンテナのような遠方電磁界を発生させるための装置ではなく、ダイポールアンテナに対してネガポジが反転するスロットアンテナにてスロット幅を波長に対して十分小さくして遠方電磁界を発生し難くしたものに相当するといえる。本構造は、コンデンサーのように電界を発生するのみで、この電界は副次的に磁界を発生することがない。このため電界と磁界が連鎖的に発生して電磁波が遠方に伝わるいわゆる遠方電磁界は発生しない。
1.3.コイル
電磁波発生装置10は、コイル3を備え、第1電極1又は第2電極2に直列にかつ極力第1電極1又は第2電極2に近い位置にコイル3が接続される。第1電極1又は第2電極2は、高周波電圧の印加される経路にコイル3を介して接続される。
コイル3はマッチング、電極間発生電界の増大、電極間発生電界にコイルで発生する電界を追加して強化するという3つの目的を兼ねて設置される。
コイルの役割(1):マッチング
一般にアンテナへ印加される電圧は、同軸ケーブル(例えば、特性インピーダンス50Ω)でアンテナまで伝送される。アンテナのインピーダンスは、高周波電圧の発生回路や当該回路からアンテナまで伝送する同軸ケーブルのインピーダンスに一致させることが好ましい。アンテナのインピーダンスをケーブル等のインピーダンスに、一致させるか近づけることにより、エネルギーの伝送効率が向上する。逆に、アンテナに正弦波の高周波電圧を入力して、アンテナと高周波電圧発生回路とのインピーダンスがマッチしない場合、インピーダンスの不連続箇所で信号の反射が生じアンテナに信号が入力されにくい。そのため、インピーダンスの不連続が生じ易い同軸ケーブルとアンテナの接続箇所にて、同軸ケーブルの内部導体とアンテナの電極間、若しくは外部導体とアンテナの電極間に、コイルとコンデンサーから成るマッチング回路を挿入してアンテナのインピーダンスを調節して、エネルギーの伝送効率を向上させることが行われる。同軸ケーブルは通常50Ωであ
り、アンテナも50Ωになるようマッチング回路を調整する。仮に同軸ケーブルが虚数のインピーダンスの場合、アンテナはこれと共役な虚数のインピーダンスになるよう調整する。かかるコイルは、いわゆるマッチングコイルと呼ばれる。
コイルの役割(2):電極間電界密度の増大
図2はインク乾燥装置の等価回路である。電磁波発生回路Aは、電磁波発生装置10に相当する。電磁波発生回路AのコンデンサーCは、第1電極1及び第2電極2に相当し、電磁波発生回路Aの抵抗Rは、放射される電磁波の放射抵抗に相当する。高周波源が、高周波電圧発生回路Bに相当し高周波電圧発生回路Bの抵抗Rは高周波電圧源の内部抵抗である。高周波電圧発生回路Bと電磁波発生回路Aとの間に挿入されたコイルLが、第1電極1又は第2電極2に直列に接続されたコイル3に相当する。
このように、電磁波発生回路AにコンデンサーCが含まれることから、かかるコンデンサーCに直列となるようにコイルLを接続することで、特定の共振周波数を得ることができる。また、コイルLのインダクタンスを大きくし、コンデンサーCのキャパシタンスをできるだけ小さくすれば、伝送効率が向上する。コイルLのインダクタンスやコンデンサーCの容量は、適宜に設計される。
放射抵抗は、同軸ケーブル4のインピーダンス(例えば50Ω)に比較して小さく(例えば、7Ω程度)、第1電極1及び第2電極2により見かけ上形成されるコンデンサーCの容量は、例えば0.5pF程度である。
電磁波発生装置10において、第1電極1及び第2電極2の平面形状を5mm×5mmの正方形とし、最小離間距離を5mmとし、10nHのコイルLを第2電極2に直列に接続した場合であって、図2に示すような高周波電圧発生回路Bから1Vの電圧を発生させた場合、アンテナ端子にかかる電圧(CのL側の点とGNDとの間にかかる電圧)は、約2Vとなることがシミュレーションから分かっている。ここで抵抗Rはアンテナの放射抵抗を示す。また、コイルのインダクタンスが高くなるにつれ、アンテナに、より高い電圧がかかることが分かっている。このように第1電極1及び第2電極2から構成されるアンテナと同軸ケーブルの間にコイルを直列に挿入することにより、アンテナ電極間の電圧を高めることができる。これにより第1電極1と第2電極2との間の電界が強くなる。インクにかかる電界が強いほどインクは効率良く加熱されることになる。
コイルの役割(3):電極間発生電界にコイルで発生する電界を追加して強化
コイル3は銅等の金属の長さのある電線の巻線として通常構成され、これはインダクタンス成分と共に寄生抵抗を持つ。例えばインダクタンス成分が30nH程度の時、寄生抵抗は通常概略3Ω程度となる。インダクタンスと内部抵抗により、コイルの両端に電位差が発生し、電位差のある箇所には電界が発生する。図3に第1電極に接してコイル3を配置した場合の電界密度分布を、図4にはコイル3を第1電極から4mm程遠ざけた場合の電界密度分布についてそれぞれシミュレーションの結果を示す。なお、図3及び4における電界密度は色が黒から白に近づくほど高い値を表す。図3のように第1電極1の直近にコイルを設置した場合、前記「コイルの役割(2)」で示した高められた電圧がすべて第1電極に印加され、第1電極1付近に強い電界が発生する。さらに、コイル3の電界と第1電極1と第2電極2との間に発生する電界の向きが一致している場合、コイル3に発生する電界が第1電極と第2電極の間に発生する電界と重なり、第1電極1付近の電界をより強くしている。これに対して図4のコイル3を第1電極から離した場合は、前記「コイルの役割(2)」で示した高められた電圧が導体32と第1電極1とに印加され、強い電界が必要な第1電極1付近に電界を集中することができない。同時に強い電界が必要ない第1電極1から離れたコイル3の周辺に強い不要な電界が発生する。図3の構造と図4の構造ではインク薄膜Tの加熱効率に前者はこの例だと70%に対して後者は8%程と大きな
差が発生し、コイル3を第1電極1のできるだけ近くに配置することがより有効である。この目的のため、第1電極の形状を例えばメアンダ状にしてインダクタンスを持たせ、第1電極自体をコイルにしてコイル3を削除することも可能である。
1.4.電極の配置及び構造のバリエーション
電磁波発生装置は、図5に示す電磁波発生装置12のように、第1電極1及び第2電極2の一方を他方が取り囲むように配置された構造を有してもよい。図5は、電磁波発生装置12の電極付近の模式図である。電磁波発生装置12では、第2電極2が第1電極1を取り囲むように配置された構造を有する。
電磁波発生装置12の第1電極1は、平面視において正方形形状を有している。電磁波発生装置12では、第2電極2は、第1電極1を第2電極2が平面視において取り囲むように、中抜きの正方形形状で配置されている。図示はしないが、第1電極1を平面視において円形形状とし、第2電極2を平面視において円環形状としてもよいし、外周が六角形の形状としてもよい。第1電極1及び第2電極2の平面的又は空間的な配置、コイル3については、上述の電磁波発生装置10と同様であるので説明を簡略する。
電磁波発生装置12では、平面視において中心部に配置された矩形の第1電極1と、第1電極1を包囲する中抜きの矩形形状(額縁状)の第2電極2に、それぞれ高周波電位と基準電位が給電される。コイル3は第1電極1と同軸ケーブル4の内部導体4aとの間に挿入され、第1電極1に極力近くに位置させることが重要である。
電磁波発生装置12において、第2電極2を平面視で中抜きの矩形形状とする場合には、外周の一辺の長さは、例えば、0.1cm以上10.0cm以下、好ましくは0.3cm以上5.0cm以下、より好ましくは0.4cm以上1.0cm以下である。また、この場合、第2電極2の平面視における幅は、1.0mm以上2.0mm以下、好ましくは1.4mm以上1.6mm以下、より好ましくは1.5mm程度である。
電磁波発生装置12においても、第1電極1及び第2電極2の最小離間距離dは、電磁波発生装置12から出力される電磁波の波長の1/10以下である。
電磁波発生装置は、図6に示す電磁波発生装置14のように、一方の電極が、他方の電極の周囲を連続して取り囲み、他方の電極が同軸ケーブルの内部導体と接続し、一方の電極と、同軸ケーブルの外部導体とが、連続する導体を介して接続された構造を有してもよい。図6は、電磁波発生装置14の電極付近の模式図である。電磁波発生装置14では、同軸ケーブル4の内部導体4aが第1電極1に柱状の導体32を介して接続され、同軸ケーブル4の外部導体4bが第2電極2に、導体32を取り囲む連続する導体30を介して接続された構造を有している。
電磁波発生装置14の第1電極1及び第2電極2の平面的な形状、配置については、電磁波発生装置12と同様である。
電磁波発生装置14においても、第1電極1及び第2電極2の最小離間距離dは、電磁波発生装置12から出力される電磁波の波長の1/10以下である。
図示しないが、電磁波発生装置14において、導体30は、第2電極2と一体であってもよい。この場合、導体30が、第2電極2となる。同様に、電磁波発生装置14の第1電極1は、柱状の導体32と一体であってもよい。この場合、導体32が第1電極1となる。また、同軸ケーブル4の内部導体4aと導体32を介さずに接続してもよい。この場合、内部導体4aが第1電極1となる。
電磁波発生装置14において、第2電極2を基準電位電極とし、第1電極1を高周波電極とし、高周波電極が同軸ケーブル4の内部導体4aと接続し、基準電位電極と、同軸ケーブル4の外部導体4bとが、連続する導体を介して接続された構造とすれば、電磁波発生装置14が同軸ケーブルに類似した構造となる。そのため、例えば製造がより容易となる。また、電磁波発生装置14のような構造とした場合に、後述するインク薄膜の加熱効率が向上することが分かっている。
さらに、電磁波発生装置14において、第2電極2を基準電位電極とし、第1電極1を高周波電極とし、高周波電極が同軸ケーブル4の内部導体4aと接続し、基準電位電極と、同軸ケーブル4の外部導体4bとが、連続する導体を介して接続された構造とすれば、基準電位電極によるシールド効果が得られ、電磁波が基準電位電極の外側に漏れにくくなる。また、かかる構造とすれば、電極の近傍に伝送モードが形成され、電磁波を照射する対象(例えば、後述するインク薄膜)からの間隔が離れても十分に電磁波を照射することができる。すなわち、かかる構造とすれば、装置から発生する電磁波に指向性を持たせ、近傍電磁界の到達距離を延長することができる。
電磁波発生装置14において、第2電極2の平面視における幅wは、後述するインク薄膜の加熱効率に影響を及ぼすことが分かっている。第2電極2の平面視における幅wは、1.0mm以上2.0mm以下、好ましくは1.4mm以上1.6mm以下、より好ましくは1.5mm程度とすることが加熱効率を高める点でより好ましい。さらに、第1電極1の平面的な形状も加熱効率に影響することが分かっている。図示のような正方形の形状に比べて、図示せぬ長方形の形状とした方が加熱効率は増加し、例えば、0.5mm×5.0mmの長方形形状とすれば、加熱効率はさらに向上することがわかっている。
上述の電磁波発生装置12及び電磁波発生装置14のいずれにおいても、第1電極1及び第2電極2の最小離間距離dは、出力される電磁波の波長の1/10以下であり、第2電極2には直列にコイル3が接続されるので、装置の近傍に効率よく電磁界を発生させることができる。
1.5.高周波源
本実施形態の電磁波発生装置は、高周波源を備える。高周波源は、上述の高周波電圧発生回路Bを含む。高周波源は、第1電極1及び第2電極2に印加される高周波電圧を発生する。高周波源は、例えば、水晶発振器、PLL(Phase Locked Loop)回路、パワーアンプにより構成される。高周波源により発生された高周波電力は、例えば同軸ケーブルを介して第1電極1及び第2電極2に対して給電される。
本実施形態の電磁波発生装置の基本的な周辺回路構成は、PLLで発生した高周波信号をパワーアンプで増幅して第1電極1及び第2電極2に対して給電する構成である。第1電極1及び第2電極2の組を多数使用する場合には、例えば、1組の第1電極1及び第2電極2に対してパワーアンプを1つ用い、PLLの出力を分割してパワーアンプに送ることで、個別に電磁波を発生させてもよい。また、パワーアンプを複数用いてもよく、その場合には、より容易に各パワーアンプの増幅率を個別にコントロールすることができる。
2.インク乾燥装置
上記実施形態の電磁波発生装置は、インク乾燥装置として用いることができる。インク乾燥装置は、上述した電磁波発生装置であって、第1電極及び第2電極2が、インク薄膜に対して平行に配置され、高周波電圧が印加されることによりインク薄膜を非常に効率よく加熱することができる。
図7は、本実施形態のインク乾燥装置10の第1電極1及び第2電極2のインク薄膜Tに対する配置を側面からみた模式図である。インク乾燥装置10は上述した電磁波発生装置10と同一であるので、上記説明と同様の符号を付して重複する説明を省略する。
2.1.インク薄膜
インク乾燥装置10が乾燥させるインク薄膜としては、紙、フィルム等のシートにインクを付着させて得られる薄膜、立体形状を有する成形体等の表面にインクを付着させて得られる薄膜等とすることができる。インクの付着方法は特に限定されないが、インクジェット法、スプレー法、刷毛等による塗布法等とすることができる。図示の例では、記録媒体Mの片面にインクをインクジェット法により付着させて形成したインク薄膜Tを例示している。
インク薄膜Tの厚さは、例えば、0.01μm以上100.0μm以下であり、好ましくは1.0μm以上10.0μm以下である。インクには各種の成分が含まれてもよく、インク乾燥装置10によって乾燥される成分として、例えば、水、有機溶剤等が挙げられる。インク乾燥装置10が放射する電磁波の周波数が1MHzから30GHz付近である場合には、水を効率よく加熱して乾燥させることができるため、インクには水が含まれることが好ましい。また実際に使用する周波数としては電子レンジで用いられる2.45GHzが法基準が明確であり使用し易い。
なおインク薄膜Tに電磁波が照射される場合、インク中の水分が加熱されるが、加熱の主な原理としては、誘電加熱による水分子の振動による摩擦熱、及び/又は、水中に発生する渦電流によるジュール熱である。インクが染料インク等のイオン濃度の高いインクであれば、導電性が生じるのでジュール熱による加熱の効果が大きくなる。本実施形態のインク乾燥装置10は、インク薄膜Tに対して平行に振動電場が印加されやすいので、インクが水系である場合に、両方の加熱原理を利用することができる。
2.2.加熱のメカニズム
水の表面に対して電磁波(3GHz)を入射したときに、電磁波が到達する深さは、温度によって異なるが20℃において1.2cm程度であることが知られている。この深さは表皮深さと呼ばれる。インク薄膜の厚さは、上述したように、電磁波の侵入深さに比較して非常に薄い。したがって、インク薄膜に対して垂直に電磁波が照射された場合、ほぼすべての電磁波が貫通してインク薄膜中の水をほとんど加熱できないか、加熱できたとしても非常に効率が悪くなると予想できる。
また、発明者の予備的な実験によれば、電子レンジ(マイクロ波オーブン)にインクを付着させたシートを入れて加熱操作を行ってもインクをほとんど加熱できないことが分かっている。これは電磁波が薄いインク膜を貫通してしまうことにより、照射した電磁波の電力のうちインク内部で熱に変わる電力が、非常に低いことが原因であると考えられる。
既に述べたように、本実施形態の電磁波発生装置は、近傍電磁界を発生させる。すなわち、インク乾燥装置に対してインク薄膜を適切な距離をおいて配置することにより、インク薄膜の周辺の狭い範囲に集中して電磁波を照射することができる。本実施形態のインク乾燥装置から発生する電磁波は、近傍の狭い空間にしか存在せず、遠方電磁界が非常に弱いので、エネルギーの散逸が少なく、電磁波存在領域に適切にインク薄膜を配置することにより、非常に効率良くインク薄膜を加熱することができる。
以下、インク乾燥装置10によるインク薄膜Tの加熱のメカニズムを説明する。図8及び図9は、平行平板電極Eの間にインク薄膜Tが配置される態様を示す模式図である。図10は、平行平板電極Eの間にインク薄膜Tが配置された場合の等価回路の一例である。
図8に示すように、平行平板電極Eの間に、該電極と平行にインク薄膜Tが設置された場合、高周波電圧を平行平板電極Eに印加しても、インク薄膜Tに吸収されるエネルギーは非常に小さい。しかし、図9に示すように、平行平板電極Eの間に、電極と垂直にインク薄膜Tが設置された場合には、インク薄膜Tは非常に効率よく加熱される。同じ体積かつ同じ厚さのインク薄膜でも電極に対して水平から垂直にインク薄膜面の向きを変えることで加熱効率は100倍にもなる。
図10は、図9に示した配置における等価回路を示している。図10に示すように、平行平板電極Eの間に、電極と垂直にインク薄膜Tが設置されると、極板間が水で満たされたコンデンサーCWと、極板間に空気が満たされたコンデンサーCAとが並列に接続された回路と等価と考えられる。この回路において高周波電圧が印加されると、極板間に水が満たされたコンデンサーCWのほうが容量が大きいので、コンデンサーCWに電流及び電界が集中する。インク薄膜Tを電界の方向に対して平行にすれば、平行平板電極Eによる電界の方向における長さが長くなることによる効率の向上効果と、電界が集中する効果とが得られ、非常に効率よくインク薄膜を加熱することができる。
このようにインク薄膜Tに平行に電界が当たれば、インク薄膜Tの加熱効率は向上する。このためできるだけ電界の向きがインク薄膜Tに平行になるようにすることが好ましく、本実施形態のインク乾燥装置10では、このような電界を印加できる構造の第1電極1及び第2電極2を採用している。また、インク薄膜Tは、照射される電磁波の電界が強いほど発熱量が増大する。電界は電極間電位差が大きいほど強くなるので、上述したようにコイル3により電位差を大きくして発熱量を増加させることができる。尚、コイル3はこの電位差を大きくする効果以外にインピーダンスマッチングの効果も兼ねて得ている。更にコイル3はこれ自身が電界を発生するため、第1電極1又は第2電極2の近傍に配置し、電極間に発生する電界にコイル3の発生する電界を加えて電界を強化し、加熱効率を向上する。
2.3.電極の配置
第1電極1及び第2電極2は、インク薄膜Tに対して垂直に配置されてもよい。例えば、上述した電磁波発生装置14において、導体32及び第1電極1が一体で形成され、導体30及び第2電極2が一体で形成された場合には、第1電極1は、柱状の電極となり、第2電極2は筒状の電極となり、延在方向がインク薄膜Tの法線の方向となる。この場合、電磁波発生装置14をインク薄膜Tに対向して設置すると、インク薄膜Tに対して第1電極1及び第2電極2は、延在方向がインク薄膜Tの拡がる面に対して垂直な方向に延びる姿勢で配置される。このような配置にしても効率よくインク薄膜Tを加熱することができる。
2.4.導体板
本実施形態のインク乾燥装置は、導体板を備えてもよい。図11は、導体板5を備えたインク乾燥装置16の電極付近及び導体板の配置を側面からみた模式図である。導体板5は、インク薄膜Tに対して第1電極1及び第2電極2の反対側に平行に配置される。導体板5は、平面視において第1電極1及び第2電極2と重なる位置に配置される。導体板5の厚さ及び平面的な大きさは特に限定されない。
導体板5は、導電性を有する。導体板5が第1電極1及び第2電極2に対して、インク薄膜Tを介して向かい合って配置されることにより、インク薄膜Tによるインク乾燥装置16のインピーダンスの変化を抑制することができる。導体板5を有しない上述のインク乾燥装置10は、インク薄膜Tに対して非常に効率よくエネルギーを伝搬するが、これによりインク薄膜Tがインク乾燥装置10の一部と見なせる程度に電気的に結合することが
ある。このような場合には、インク薄膜Tの厚さ、体積、導電性等に依存して、インク乾燥装置10のインピーダンスの変化が生じる。
インク乾燥装置16は、導体板5を配置することにより、このようなインピーダンスの変化を抑制することができる。また、導体板5を配置することにより、インク薄膜Tに対してさらに効率よくエネルギーを伝搬できる場合がある。
導体板5は、例えば、インクジェットプリンターにインク乾燥装置16が備えられる場合には、プラテンを導電性の物質で形成して、導体板5とすることができる。
2.5.作用効果
本実施形態のインク乾燥装置によれば、加熱効率、すなわちアンテナに入力した高周波電力のうちインクの温度上昇に用いられる電力の割合を80%以上に高めることができる。本実施形態のインク乾燥装置によれば、発生する電磁波が、インク薄膜の周辺のごく限られた領域だけに存在させることができる。これによりインク薄膜の加熱効率が非常に良好である。
本実施形態のインク乾燥装置は、電磁波の波長の1/10以下間最小離間距離を有する小型の電磁波発生装置を用いているので、省電力で使用できるとともに電磁波の散乱を抑制する必要が生じたとしても簡易なシールドを用いることができる。また、省電力であるので高周波電圧の発生回路も小型化することができる。
本実施形態のインク乾燥装置は、近傍電磁界を利用するので、インク薄膜が付着されたシート等の物体へのエネルギーの伝搬を抑制することができる。そのため、例えば、シートが温度の影響を受ける材質であってもシートが加熱されにくいので、シートの変質等を抑制することができる。
3.インクジェットプリンター
本実施形態のインクジェットプリンターは、上述したインク乾燥装置と、記録媒体幅方向に往復移動するキャリッジと、インクを吐出するインクジェットヘッドと、を備え、キャリッジが、インク乾燥装置及びインクジェットヘッドを搭載する。図12は、本実施形態のインクジェットプリンター200の要部の模式図である。図12は、キャリッジ50及び記録媒体Mを示している。インクジェットプリンター200は、インク乾燥装置10と、キャリッジ50と、を備える。
インクジェットプリンター200は、キャリッジ50にインクジェットヘッド60と、複数のインク乾燥装置10とを備えている。キャリッジ50にはインク乾燥装置10の第1電極1、第2電極2及び同軸ケーブル4が搭載される。図示しないが、インクジェットプリンター200は、各インク乾燥装置10を駆動する高周波源を備えている。また、図示しないが、複数のインク乾燥装置10は、記録媒体Mの移動方向SSにおいて、インクジェットヘッド60のノズル列の長さ以上の領域をカバーするように配置されている。インクジェットプリンター200は、シリアル型のプリンターであり、記録媒体Mを移動させる機構と、キャリッジ50を往復動作させる機構とを有している。
インクジェットプリンター200は、記録媒体Mを移動させて所定位置に配置すること、及び、キャリッジ50を記録媒体Mの移動方向SSと交差する方向に走査しながらインクジェットヘッド60からインクを吐出して記録媒体Mの所定位置に所定量で付着させること、を複数回繰り返して、記録媒体M上に所定の画像を形成する。
インク乾燥装置10は、キャリッジ50内で、キャリッジ50の走査方向MSにおいて
、インクジェットヘッド60の片側又は両側に配置される。図示の例ではインクジェットヘッド60の走査方向MSの両側にそれぞれ複数の電磁波発生装置10が配置されている。このように配置することにより、インクジェットヘッド60から吐出され、記録媒体Mに付着してインク薄膜となったインクを、キャリッジ50の移動速度及びインクジェットヘッド60のノズルから電磁波発生装置10までの走査方向MSにおける距離等に応じた時間経過後、早期に短時間で乾燥させることができる。
図12にては電磁波発生装置10は、キャリッジ50の走査方向MSにおいて、インクジェットヘッド60の両側にそれぞれ4列配置されている。これはインク薄膜乾燥に電磁波発生装置10に9Wの高周波電力を入力するという条件にて、1/20秒必要なのに対して5mmの電磁波発生装置10が1m/sで特定の座標を通過する時間は1/200秒であり、1/20秒に対して不足するためである。5mmの電磁波発生装置10のインク加熱範囲をここでは12.5mm×12.5mmとし、これを4個並べることで同時に50mm×50mmの範囲を加熱できるようにしている。50mmの電磁波発生装置10が特定の座標を通過するのに1/20秒かかることで乾燥に必要な時間を確保できる。
図12にては電磁波発生装置10は、キャリッジ50の走査方向MSと垂直な方向に5列並べられている。これはインクジェットヘッド60のノズル列には長さがあり5mm×5mmの電磁波発生装置10が1つではその長さをカバーできないためである。ここではノズル列の長さを70mmとし、5個の電磁波発生装置を並べることでその長さをカバーしている。
本実施形態のインクジェットプリンター200は、記録媒体Mが、フィルム等、インクがしみ込まない又はほとんどしみ込まない材質である場合に特に有効である。しかし、紙等のインクを吸収する記録媒体Mであっても、乾燥効果は十分に得られる。
なお、シリアル型のインクジェットプリンター200を例示したが、インク乾燥装置は、ライン型のインクジェットプリンターにも適用することができる。ライン型のインクジェットプリンターの場合には、記録媒体の流れる方向において、ライン型インクジェットヘッドの下流側にインク乾燥装置が配置される。
3.実験例
以下、実験例を示して本発明を更に説明するが、以下の例によって本発明は何ら限定されるものではない。
上述した電磁波発生装置14の構造のインク乾燥装置によるインク薄膜の加熱状態のシミュレーションを行った。電磁界シミュレーション結果を図13に示す。電磁界シミュレーションは、HFSSソフトウェアを用いて行った。
電磁界シミュレーションでは、1辺5mmの立方体の外形形状を有する中空で下面が開口した第2電極を用い、第2電極の側面の厚さを0.1mmとした。第1電極は、第2電極の中央部に配置され、平面視において矩形(1mm×1mm)となる板状形状とした。インク薄膜は十分に面積が大きく、厚さは5μmとした。インク薄膜の上面と電極の下面との間の距離は、2mmとした。さらに、インク薄膜の下面側に十分に面積の大きい導体板を配置した。
インク乾燥装置には、高周波電極(第1電極1)と直列にインダクタンスが25nHのコイルを直列に接続した。高周波電圧の周波数は、2.45GHzとした。給電電力は1Wとした。
図13は、インク薄膜における温度上昇の分布を示している。図13には、第1電極及び第2電極の輪郭を破線で描いた。温度の上昇が大きい部分が白色で示されている。なお、図の外周部分は白色で示されているが、温度上昇は無い。図13に示すように、インク乾燥装置によれば、電極近傍を十分に加熱できることが分かった。
本発明は、上述した実施形態に限定されるものではなく、種々の変形が可能である。例えば、本発明は、実施形態で説明した構成と実質的に同一の構成、例えば、機能、方法及び結果が同一の構成、あるいは目的及び効果が同一の構成、を含む。また、本発明は、実施形態で説明した構成の本質的でない部分を置き換えた構成を含む。また、本発明は、実施形態で説明した構成と同一の作用効果を奏する構成又は同一の目的を達成することができる構成を含む。また、本発明は、実施形態で説明した構成に公知技術を付加した構成を含む。
1…第1電極、2…第2電極、3…コイル、4…同軸ケーブル、4a…内部導体、4b…外部導体、5…導体板、10,12,14…電磁波発生装置、10,16…インク乾燥装置、30,32…導体、50…キャリッジ、60…インクジェットヘッド、200…インクジェットプリンター、A…電磁波発生回路、B…高周波電圧発生回路、M…記録媒体、L…コイル、C,CA,CW…コンデンサー、E…平行平板電極、d…最小離間距離、w…幅、MS…走査方向、SS…移動方向、R…抵抗、T…インク薄膜

Claims (4)

  1. 電磁波を発生させる電磁波発生部と、
    前記電磁波発生部に印加される電圧を発生させる高周波電圧発生部と、
    前記電磁波発生部と、前記高周波電圧発生部とを電気的に接続する伝送線路と、
    を備え、
    前記電磁波発生部は、第1電極と、第2電極と、前記第1電極と前記伝送線路とを電気的に接続する第1導体と、前記第2電極と前記伝送線路とを電気的に接続する第2導体と、を備え、
    前記第1電極又は前記第2電極の、一方が基準電位が印加される基準電位電極であり、他方が高周波電圧が印加される高周波電極であり、
    前記伝送線路は、内部導体及び外部導体を有する同軸ケーブルであり、
    前記基準電位電極は、前記高周波電極の周囲を連続して取り囲み、
    前記高周波電極が前記内部導体と接続し、
    前記基準電位電極と、前記外部導体とが、連続する導体を介して接続され、
    前記基準電位電極が、前記高周波電極を、平面視において連続的に中抜きの正方形形状で取り囲むように配置された構造を有し、
    前記第1電極と前記第2電極との間の最小離間距離は、出力される電磁波の波長の1/10以下であり、
    前記第1導体と前記第2導体との間の最小離間距離は、出力される電磁波の波長の1/10以下であり、
    前記第1導体はさらにコイルを備え、前記コイルは前記伝送線路に比べて前記第1電極に近いことを特徴とする電磁波発生装置。
  2. 請求項1に記載の電磁波発生装置が、インク薄膜を加熱するインク乾燥装置であり、
    前記第1電極及び前記第2電極は、平板状であって、前記インク薄膜に対して平行に配置された、インク乾燥装置。
  3. 請求項1又は請求項に記載の電磁波発生装置が、インク薄膜を加熱するインク乾燥装置であり、
    前記第1電極及び前記第2電極は、延在方向を有し、インク薄膜に対して前記延在方向が垂直に配置された、インク乾燥装置。
  4. 請求項又は請求項において、
    導体板を備え、
    前記導体板は、前記インク薄膜に対して前記第1電極及び前記第2電極の反対側に平行に配置された、インク乾燥装置。
JP2019121931A 2019-06-28 2019-06-28 電磁波発生装置、インク乾燥装置及びインクジェットプリンター Active JP7413665B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019121931A JP7413665B2 (ja) 2019-06-28 2019-06-28 電磁波発生装置、インク乾燥装置及びインクジェットプリンター
US16/913,542 US11351806B2 (en) 2019-06-28 2020-06-26 Electromagnetic wave generator, ink dryer, and ink jet printer
US17/661,639 US11660900B2 (en) 2019-06-28 2022-05-02 Electromagnetic wave generator, ink dryer, and ink jet printer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019121931A JP7413665B2 (ja) 2019-06-28 2019-06-28 電磁波発生装置、インク乾燥装置及びインクジェットプリンター

Publications (2)

Publication Number Publication Date
JP2021008969A JP2021008969A (ja) 2021-01-28
JP7413665B2 true JP7413665B2 (ja) 2024-01-16

Family

ID=74044401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019121931A Active JP7413665B2 (ja) 2019-06-28 2019-06-28 電磁波発生装置、インク乾燥装置及びインクジェットプリンター

Country Status (2)

Country Link
US (2) US11351806B2 (ja)
JP (1) JP7413665B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7413665B2 (ja) * 2019-06-28 2024-01-16 セイコーエプソン株式会社 電磁波発生装置、インク乾燥装置及びインクジェットプリンター
JP2022036588A (ja) * 2020-08-24 2022-03-08 セイコーエプソン株式会社 液体吐出装置
US20220063274A1 (en) * 2020-08-28 2022-03-03 Seiko Epson Corporation Liquid ejecting device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009133515A (ja) 2007-11-29 2009-06-18 Seiko Epson Corp 乾燥装置、プリンタ
JP2019053959A (ja) 2017-09-19 2019-04-04 イマジニアリング株式会社 プラズマ噴射装置及び印刷装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8299879B2 (en) * 2011-02-10 2012-10-30 Leco Corporation Transformer assembly using an internal load and method for forming same
US9293544B2 (en) * 2013-02-26 2016-03-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having buried channel structure
JP6720605B2 (ja) 2016-03-16 2020-07-08 株式会社リコー 乾燥装置および液体を吐出する装置
JP6572994B2 (ja) * 2018-06-12 2019-09-11 株式会社リコー 画像記録装置
JP7314657B2 (ja) * 2019-06-28 2023-07-26 セイコーエプソン株式会社 インクジェットプリンター
JP7413665B2 (ja) * 2019-06-28 2024-01-16 セイコーエプソン株式会社 電磁波発生装置、インク乾燥装置及びインクジェットプリンター

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009133515A (ja) 2007-11-29 2009-06-18 Seiko Epson Corp 乾燥装置、プリンタ
JP2019053959A (ja) 2017-09-19 2019-04-04 イマジニアリング株式会社 プラズマ噴射装置及び印刷装置

Also Published As

Publication number Publication date
US11351806B2 (en) 2022-06-07
US20220258516A1 (en) 2022-08-18
US20200406659A1 (en) 2020-12-31
US11660900B2 (en) 2023-05-30
JP2021008969A (ja) 2021-01-28

Similar Documents

Publication Publication Date Title
US11660900B2 (en) Electromagnetic wave generator, ink dryer, and ink jet printer
US11189924B2 (en) Antenna structure
JP5969816B2 (ja) 構造部材及び通信装置
JP2007097167A (ja) アイソレーション素子を含む平板型mimoアレーアンテナ
KR101306547B1 (ko) 평면형 역 에프 안테나용 방사체 및 이를 이용한 안테나
US11878511B2 (en) Ink jet printing system
US2612606A (en) Antenna excitation system
CN113809532B (zh) 一种用于辐射超宽谱电磁脉冲的电阻加载对跖Vivaldi天线
JP7354616B2 (ja) インクジェットプリンター
JP2009133515A (ja) 乾燥装置、プリンタ
KR20210030665A (ko) 원통형 안테나를 구비한 마이크로웨이브 가열 장치
JP7230802B2 (ja) マイクロ波処理装置
WO2019183798A1 (zh) 一种天线
JP2006345038A (ja) プリントアンテナ
JP7415741B2 (ja) 高周波誘電加熱装置及び記録装置
EP4061102A1 (en) Mounting wiring board, electronic component mounted board, method of mounting electronic component, microwave heating method, and microwave heating device
JP2023034639A (ja) 乾燥装置及び記録装置
US20180236786A1 (en) Serpentine microwave dryers for printing systems
JP2018099871A (ja) 印刷装置
JP2018130944A (ja) 印刷装置
TW201705609A (zh) 多頻天線
TW202416578A (zh) 用以饋入微波至處理腔室內的裝置
FI116249B (fi) Menetelmä ja laite radiotaajuisen säteilykentän suuntaamiseksi ja vahvistamiseksi antennista yhdellä tai kahdella eri taajuusalueella
JP2018126990A (ja) 印刷装置
CN115566406A (zh) 一种适用于反无人机信号干扰装置的微带准八木天线

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231211

R150 Certificate of patent or registration of utility model

Ref document number: 7413665

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150