JP7413011B2 - 医用情報処理装置 - Google Patents

医用情報処理装置 Download PDF

Info

Publication number
JP7413011B2
JP7413011B2 JP2019238183A JP2019238183A JP7413011B2 JP 7413011 B2 JP7413011 B2 JP 7413011B2 JP 2019238183 A JP2019238183 A JP 2019238183A JP 2019238183 A JP2019238183 A JP 2019238183A JP 7413011 B2 JP7413011 B2 JP 7413011B2
Authority
JP
Japan
Prior art keywords
trained model
data
similarity
related information
information processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019238183A
Other languages
English (en)
Other versions
JP2021105960A (ja
Inventor
修平 伴苗
麻希 水口
寿美江 穐山
久晃 大迫
滉平 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Medical Systems Corp
Original Assignee
Canon Medical Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Medical Systems Corp filed Critical Canon Medical Systems Corp
Priority to JP2019238183A priority Critical patent/JP7413011B2/ja
Priority to US17/128,883 priority patent/US12073937B2/en
Priority to CN202011548617.9A priority patent/CN113052310B/zh
Publication of JP2021105960A publication Critical patent/JP2021105960A/ja
Application granted granted Critical
Publication of JP7413011B2 publication Critical patent/JP7413011B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/20ICT specially adapted for the handling or processing of medical images for handling medical images, e.g. DICOM, HL7 or PACS
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/40ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/096Transfer learning
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Theoretical Computer Science (AREA)
  • Primary Health Care (AREA)
  • Epidemiology (AREA)
  • Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Software Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Artificial Intelligence (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Evolutionary Computation (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Computational Linguistics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Business, Economics & Management (AREA)
  • General Business, Economics & Management (AREA)
  • Databases & Information Systems (AREA)
  • Pathology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Image Analysis (AREA)
  • Medical Treatment And Welfare Office Work (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Description

本発明の実施形態は、医用情報処理装置に関する。
従来、既存の学習済みモデルに対して再学習を行うことで、新たに学習済みモデルを生成する転移学習等の技術が開示されている。このような転移学習等を行うことで、少ないデータで精度の高い学習済みモデルを生成することができる。
しかしながら、既存の学習済みモデルのうち、どの学習済みモデルに対して再学習を行うのが効率的であるのかを判断することは困難である。そのため、既存の学習済みモデルそれぞれの再学習に必要なデータ数等のコストを提示可能な技術が求められている。
特開2016-143094号公報
本発明が解決しようとする課題は、再学習に必要なデータ数を出力することである。
実施形態の医用情報処理装置は、登録部と、第1算出部と、第2算出部と、出力部とを備える。前記登録部は、新たに生成する第1学習済みモデルに関連する第1関連情報を登録する。前記第1算出部は、既存の第2学習済みモデルに関連する第2関連情報と、前記第1関連情報との類似度を複数の前記第2学習済みモデル毎に算出する。前記第2算出部は、複数の前記第2学習済みモデルのそれぞれに対する再学習により、精度が目標値に達する前記第1学習済みモデルを生成する場合に、複数の前記第2学習済みモデル毎の前記類似度と、前記第1学習済みモデルが前記精度になるまでに必要な前記第1関連情報のデータ数との相関関係に基づいて、複数の前記第2学習済みモデル毎に前記データ数を算出する。前記出力部は、複数の前記第2学習済みモデル毎に前記データ数を出力する。
図1は、本実施形態に係る医用情報処理システムの構成の一例を示す図である。 図2は、本実施形態に係る医用情報処理装置の構成の一例を示すブロック図である。 図3は、学習済みモデルテーブルのデータ構成の一例を示す図である。 図4は、データ数の算出方法の一例を示す図である。 図5は、必要数の一覧の一例を示す図である。 図6は、相関関係を示すグラフの一例を示す図である。 図7は、本実施形態に係る医用情報処理装置が実行する出力処理の処理手順を示すフローチャートである。 図8は、第2の実施形態にかかる類似度の算出対象となるファントム画像データとの一例を示す図である。 図9は、第2の実施形態にかかる医用情報処理装置の構成の一例を示すブロック図である。 図10は、第3の実施形態にかかる医用情報処理装置の構成の一例を示すブロック図である。 図11は、スコアテーブルのデータ構成の一例を示す図である。 図12は、第4の実施形態にかかる医用情報処理装置の構成の一例を示すブロック図である。 図13は、データ数と、類似度との相関関係を精度毎に示したグラフの一例を示す図である。 図14は、第5の実施形態に係る医用情報処理装置の構成の一例を示すブロック図である。
以下、添付図面を参照して、医用情報処理装置の実施形態について詳細に説明する。なお、本願に係る医用情報処理装置は、以下に示す実施形態によって限定されるものではない。
図1は、本実施形態に係る医用情報処理システム1の構成の一例を示す図である。図1に示すように、医用情報処理システム1は、モダリティ10、PACS(Picture Archiving and Communication System)20、及び医用情報処理装置30を備えている。また、各システム及び各装置は、ネットワークを介して通信可能に接続されている。なお、図1に示す構成は、一例であり、各システム及び各装置の台数は任意に変更してもよい。また、図1に示されていない装置がネットワークに接続されていてもよい。
モダリティ10は、被検体の画像データを生成する。例えば、モダリティ10は、MRI(Magnetic Resonance Imaging)装置、X線CT(Computed Tomography)装置、X線診断装置、超音波診断装置、PET(Positron Emission Tomography)装置、SPECT(Single Photon Emission Computed Tomography)装置等である。そして、モダリティ10は、生成した画像データをPACS20に送信する。
PACS20は、モダリティ10が生成した3次元情報を保管するサーバ装置である。例えば、PACS20は、サーバやワークステーション等のコンピュータ機器によって実現される。更に詳しくは、PACS20は、モダリティ10から3次元情報を受信する。そして、PACS20は、3次元情報を自装置の記憶回路等に記憶する。
医用情報処理装置30は、既存の学習済みモデルに対して再学習を行う転移学習等において、必要になるデータ数を出力する。例えば、医用情報処理装置30は、サーバやワークステーション等のコンピュータ機器によって実現される。更に詳しくは、医用情報処理装置30は、既存の学習済みモデルに関連した第1関連情報と、新たに生成する学習済みモデルに関連した第2関連情報との類似度を算出する。医用情報処理装置30は、類似度に基づいて、新たな学習済みモデルの生成に必要なデータ数を算出する。そして、医用情報処理装置30は、既存の学習済みモデルのそれぞれについて、新たな学習済みモデルの生成に必要なデータ数を出力する。
次に、本実施形態に係る医用情報処理装置30の構成について説明する。
図2は、本実施形態に係る医用情報処理装置30の構成の一例を示すブロック図である。図2に示すように、本実施形態に係る医用情報処理装置30は、ネットワークインタフェース310と、記憶回路320と、入力インタフェース330と、ディスプレイ340と、処理回路350とを有する。
ネットワークインタフェース310は、処理回路350に接続されており、ネットワークを介して、モダリティ10、及びPACS20との間で行われる各種データの伝送及び通信を制御する。更に詳しくは、ネットワークインタフェース310は、各システムから各種の情報を受信し、受信した情報を処理回路350に出力する。例えば、ネットワークインタフェース310は、ネットワークカードやネットワークアダプタ、NIC(Network Interface Controller)等によって実現される。
記憶回路320は、処理回路350に接続されており、各種データを記憶する。例えば、記憶回路320は、RAM(Random Access Memory)、フラッシュメモリ等の半導体メモリ素子や、ハードディスク、光ディスク等によって実現される。
記憶回路320は、学習済みモデルテーブル321を記憶する。図3は、学習済みモデルテーブル321のデータ構成の一例を示す図である。学習済みモデルテーブル321は、学習済みモデルと、分類と、複数の学習データセットとが対応づけられた学習済みモデル情報である。学習済みモデルは、既存の学習済みモデルである。分類は、対応づけられた既存の学習済みモデルの深層学習における分類を示す情報である。分類には、例えば、画像分類(classification)、画像検出(detection)、及び画像セグメンテーション(segmentation)が含まれる。画像分類は、画像の含まれる物体を識別するものである。画像検出は、画像の含まれる物体の識別と、識別した物体が画像上の何処にあるのかを識別するものである。画像セグメンテーションは、ピクセル単位で画像に含まれる物体を識別するものである。
学習データセットは、対応付けられた既存の学習済みモデルにおいて、学習に使用されたデータである。学習データセットには、学習データと、ラベルデータとが含まれる。学習データは、既存の学習済みモデルにおいて、学習に使用されたデータである。例えば、学習データは、モダリティ10等が生成した画像データである。なお、学習データは、画像データに限らず、他の形式のデータであってもよい。ラベルデータは、学習データに含まれる物品を識別するための情報である。分類が画像分類の場合、ラベルデータは、画像の含まれる物体を示す情報である。分類が画像検出の場合、ラベルデータは、画像の含まれる物体を示す情報と、物体の位置を示す座標等の情報とを含んでいる。分類が画像セグメンテーションの場合、ラベルデータは、画像の含まれる物体をピクセル単位で示した情報である。なお、本実施形態では、学習データセットには、学習データと、ラベルデータとが含まれる場合を例に説明する。しかしながら、学習データセットには、ラベルデータは含まれていなくてもよい。
入力インタフェース330は、使用者から受け付けた入力操作を電気信号に変換して処理回路350に出力する。例えば、入力インタフェース330は、トラックボール、スイッチボタン、マウス、キーボード、操作面へ触れることで入力操作を行うタッチパッド、表示画面とタッチパッドとが一体化されたタッチスクリーン、光学センサを用いた非接触入力インタフェース、音声入力インタフェース等の入力装置によって実現される。なお、入力インタフェース330は、医用情報処理装置30とは別体に設けられた操作装置から操作に対応する電子信号を受け付ける接続インタフェース等の制御回路であってもよい。
ディスプレイ340は、処理回路350から出力される各種情報や各種画像を表示する。例えば、ディスプレイ340は、有機EL(Electro Luminescence)モニタや、液晶モニタや、CRT(Cathode Ray Tube)モニタや、タッチパネル等の表示装置によって実現される。例えば、ディスプレイ340は、使用者の指示を受け付けるためのGUI(Graphical User Interface)や、各種の表示用の画像データ、処理回路350による各種の処理結果を表示する。
処理回路350は、医用情報処理装置30が有する各構成要素を制御する。例えば、処理回路350は、プロセッサによって実現される。さらに詳しくは、本実施形態に係る処理回路350は、登録機能351、分類指定機能352、抽出機能353、類似度算出機能354、データ算出機能355、推定機能356、及び出力機能357を有する。
ここで、例えば、図2に示す処理回路350の構成要素である登録機能351、分類指定機能352、抽出機能353、類似度算出機能354、データ算出機能355、推定機能356、及び出力機能357が実行する各処理機能は、コンピュータによって実行可能なプログラムの形態で記憶回路320に記憶されている。処理回路350は、各プログラムを記憶回路320から読み出し、実行することで各プログラムに対応する機能を実現するプロセッサである。換言すると、各プログラムを読み出した状態の処理回路350は、図2の処理回路350内に示された各機能を有することとなる。
なお、登録機能351、分類指定機能352、抽出機能353、類似度算出機能354、データ算出機能355、推定機能356、及び出力機能357の全ての処理機能がコンピュータによって実行可能な1つのプログラムの形態で、記憶回路320に記録されていてもよい。例えば、このようなプログラムは、医用情報処理プログラムとも称される。この場合、処理回路350は、医用情報処理プログラムを記憶回路320から読み出し、読み出した医用情報処理プログラムを実行することで医用情報処理プログラムに対応する登録機能351、分類指定機能352、抽出機能353、類似度算出機能354、データ算出機能355、推定機能356、及び出力機能357を実現する。
登録機能351は、登録部の一例である。登録機能351は、新たに生成する学習済みモデルである第1学習済みモデルに関連する第1関連情報を登録する。第1関連情報は、新たに生成する学習済みモデルにおいて学習に使用する画像データである。または、登録機能351は、第1関連情報を識別するための情報である示すラベルデータである第1ラベルデータを含む第1関連情報を登録してもよい。更に詳しくは、第1ラベルデータは、第1関連情報が関連する第1学習済みモデルが、深層学習における何れの分類であるかの判定に使用される。すなわち、第1ラベルデータは、画像分類、画像検出、及び画像セグメンテーションの何れに該当するかの判定に使用される。また、第1関連情報が複数ある場合、登録機能351は、複数の第1関連情報から選択した代表的な第1関連情報を登録してもよいし、複数の第1関連情報を統合した一の第1関連情報を登録してもよいし、複数の第1関連情報のうち平均的な第1関連情報を登録してもよいし、複数の第1関連情報を登録してもよい。
分類指定機能352は、指定部の一例である。分類指定機能352は、新たに生成する学習済みモデルの深層学習における分類を指定する。例えば、分類指定機能352は、画像分類、画像検出、及び画像セグメンテーションの何れかを指定する。例えば、分類指定機能352は、操作により特定される分類を指定する。
または、分類指定機能352は、登録機能351が第1ラベルデータを含む第1関連情報を登録した場合に、第1ラベルデータに基づいて分類を指定する。すなわち、分類指定機能352は、第1ラベルデータが画像分類に対応している場合に画像分類を指定し、第1ラベルデータが画像検出に対応している場合に画像検出を指定し、第1ラベルデータが画像セグメンテーションに対応している場合に画像セグメンテーションを指定する。
抽出機能353は、第1抽出部の一例である。抽出機能353は、既存の学習済みモデルである第2学習済みモデルと、第2学習済みモデルの深層学習における分類と、第2学習済みモデルに関連する第2関連情報とが対応付けられた学習済みモデル情報から、分類指定機能352が指定した分類の第2学習済みモデルを少なくとも一つ抽出する。第2学習済みモデルは、学習済みモデルテーブル321に記憶された既存の学習済みモデルである。第2関連情報は、既存の学習済みモデルの学習に使用された画像データである。また、第2関連情報には、ラベルデータが含まれていてもよい。すなわち、抽出機能353は、学習済みモデルテーブル321から分類指定機能352が指定した分類の学習済みモデルを抽出する。
類似度算出機能354は、第1算出部の一例である。類似度算出機能354は、既存の学習済みモデルに関連する第2関連情報と、第1関連情報との類似度を複数の第2学習済みモデル毎に算出する。また、類似度算出機能354は、抽出機能353が抽出した少なくとも一つの既存の学習済みモデルについて類似度を算出する。更に詳しくは、類似度算出機能354は、学習済みモデルテーブル321に記憶された既存の学習済みモデルのうち、抽出機能353が抽出した既存の学習済みモデルの第2関連情報と、新たに生成する学習済みモデルの第1関連情報との類似度をする。
類似度算出機能354は、画素値の平均、ヒストグラム法、相関係数、又は周波数成分等について、MSE(Mean Square Error)やSSIM(Structural Similarity)等の手法により類似度を算出する。ここで、第2関連情報、又は第1関連情報が複数ある場合、類似度算出機能354は、一の既存の学習済みモデルに対して複数の類似度を算出する。そして、類似度算出機能354は、平均値や中央値等の統計的手法により得られた値を用いることで既存の学習済みモデル毎に類似度を算出する。
また、類似度算出機能354は、第1関連情報の第1ラベルデータと、第2関連情報を識別するための情報であるラベルデータである第2ラベルデータとに基づいて、類似度を算出してもよい。第2ラベルデータは、第2関連情報が関連する第2学習済みモデルが、深層学習における何れの分類であるかの判定に使用される。すなわち、第2ラベルデータは、画像分類、画像検出、及び画像セグメンテーションの何れに該当するかの判定に使用される。すなわち、類似度算出機能354は、第1関連情報の第1ラベルデータと、第2関連情報の第2ラベルデータとを加味して類似度を算出してもよい。分類が画像セグメンテーションの場合、ラベルデータに含まれる物体の位置、大きさ、形状、範囲等により学習内容が変化する。そこで、類似度算出機能354は、類似度のラベルデータを加えることで、類似度の精度を向上させることができる。
データ算出機能355は、第2算出部の一例である。データ算出機能355は、複数の既存の学習済みモデル毎の類似度に基づいて、複数の既存の学習済みモデル毎に新たな学習済みモデルの生成に必要なデータ数を算出する。ここで、図4は、データ数の算出方法の一例を示す図である。まず、既存の学習済みモデルの学習に使用した画像データについて、類似度が異なる画像データを複数用意する。データ算出機能355は、類似度から逆算することで、類似度が異なる画像データを生成する。例えば、データ算出機能355は、組織形状や物体のエッジを強調する画像処理を実行することで、類似度が異なる画像データ生成する。なお、エッジを強調する画像処理に限らず、他の画像処理により類似度が異なる画像データを生成してもよい。さらに、画像処理に限らず、他の方法により類似度が異なる画像データを用意してもよい。図4の場合には、類似度が1.0の画像データと、類似度が0.8の画像データと、類似度が0.5の画像データと、類似度が0.3の画像データとを用意している。
データ算出機能355は、新たな学習済みモデルの生成に必要なデータ数を類似度ごとに算出する。更に詳しくは、データ算出機能355は、類似度毎の画像データを用いて学習を行う。これにより、データ算出機能355は、ある類似度の画像データ用いて学習を行った場合に、各精度に達するまでに必要になるデータ数を導出する。また、データ算出機能355は、必要なデータ数と、類似度との関係を示したグラフを既存の学習済みモデル毎に生成する。
ここで、類似度算出機能354は、既存の学習済みモデル毎に類似度を算出している。よって、データ算出機能355は、類似度算出機能354が算出した類似度に応じた必要なデータ数をグラフから抽出することで、新たな学習済みモデルの生成に必要なデータ数を既存の学習済みモデル毎に算出することができる。
推定機能356は、推定部の一例である。推定機能356は、新たな学習済みモデルの生成に必要なデータ数と、新たに生成する学習済みモデルが出力する出力結果の精度との相関関係を推定する。ここで、精度とは、学習済みモデルの出力結果の正解率である。そして、推定機能356は、新たな学習済みモデルの生成に必要なデータ数と、精度との相関関係を、既存の学習済みモデル毎に示したグラフを生成する。
出力機能357は、出力部の一例である。出力機能357は、複数の既存の学習済みモデル毎に新たな学習済みモデルの生成に必要なデータ数を出力する。すなわち、出力機能357は、データ算出機能355が算出した新たな学習済みモデルの生成に必要なデータ数を出力する。出力機能357は、新たな学習済みモデルの生成に必要な必要数の一覧を出力する。ここで、図5は、必要数の一覧の一例を示す図である。図5に示すように、出力機能357は、既存の学習済みモデル毎に新たな学習済みモデルの生成に必要なデータ数と、費用と、時間とを示した一覧を表示させる。データ数は、データ算出機能355が算出したデータ数である。費用は、データ数のデータを取得するために必要な金額である。例えば、費用は、単位データの購入や、単位データの作成にかかる人件費等に基づいて算出される。時間は、データ数のデータを取得するために必要な時間である。例えば、費用は、単位データの作成にかかる時間等に基づいて算出される。
出力機能357は、推定機能356が推定した相関関係を示す情報をグラフ等により出力する。ここで、図6は、相関関係を示すグラフの一例を示す図である。図6に示すように、出力機能357は、既存の学習済みモデルA、既存の学習済みモデルB、及び既存の学習済みモデルCについてデータ数と、精度との相関関係を示したグラフを表示させる。このように、グラフを表示させることで、使用者は、自身の状況に応じた学習済みモデルを選択することができる。
例えば、図6に示すaの精度が必要なことが判明している場合、aにおいて最もデータ数の少ない学習済みモデルCを採用することができる。また、図6に示すbの精度が必要なことが判明している場合、bにおいて最もデータ数の少ない学習済みモデルBを採用することができる。また、図6に示すcのデータ数のデータを用意可能なことが判明している場合、cにおいて最も精度が高い学習済みモデルBを採用することができる。また、図6に示すdのデータ数のデータしか用意できないことが判明している場合、dにおいて最も精度が高い学習済みモデルCを採用することができる。
次に、本実施形態に係る医用情報処理装置30が実行する出力処理について説明する。出力処理は、新たな学習済みモデルの生成に必要なデータ数を出力する処理である。図7は、本実施形態に係る医用情報処理装置30が実行する出力処理の処理手順を示すフローチャートである。
登録機能351は、新たに生成する学習済みモデルの学習に使用する学習データセットを登録する(ステップS1)。
分類指定機能352は、新たに生成する学習済みモデルの分類を指定する(ステップS2)。
抽出機能353は、分類指定機能352が指定した分類と同一分類の学習済みモデルを学習済みモデルテーブル321から抽出する(ステップS3)。
類似度算出機能354は、抽出機能353が抽出した学習済みモデルの学習データセットと、新たに生成する学習済みモデルの学習データセットとの類似度を算出する(ステップS4)。
データ算出機能355は、類似度算出機能354が算出した類似度に基づいて、新たに生成する学習済みモデルの生成に必要なデータ数を算出する(ステップS5)。
類似度算出機能354は、抽出機能353が抽出した全ての学習済みモデルの学習データセットに対して類似度の算出を実行したか否かを判定する(ステップS6)。全ての学習済みモデルの学習データセットに対して類似度の算出を実行していない場合(ステップS6;No)、類似度算出機能354は、ステップS4に移行して、未だ類似度の算出を実行していない学習済みモデルの学習データセットに対して類似度の算出を実行する。
全ての学習済みモデルの学習データセットに対して類似度の算出を実行した場合(ステップS6;Yes)、出力機能357は、データ算出機能355が算出した新たな学習済みモデルの生成に必要なデータ数を既存の学習済みモデル毎に出力する(ステップS7)。
以上により、医用情報処理装置30は、出力処理を終了する。
以上のように、第1の実施形態に係る医用情報処理装置30は、新たに生成する学習済みモデルに使用する画像データと、既存の学習済みモデルの生成に使用した画像データとの類似度を算出する。そして、医用情報処理装置30は、算出した類似度に応じた、新たな学習済みモデルの生成に必要なデータ数を複数の既存の学習済みモデル毎に出力する。よって、医用情報処理装置30は、再学習に必要なデータ数を出力することができる。このように、医用情報処理装置30は、複数の既存の学習済みモデル毎に、新たな学習済みモデルの生成に必要なデータ数が出力する。そのため、使用者は、再学習に必要なデータ数等のコストを見積もることが可能になる。よって、使用者は、再学習により新たに生成する学習済みモデルの基になる既存の学習済みモデルには、どの学習済みモデルを用いるのが効率的であるか判断することができる。
(第2の実施形態)
次に、第2の実施形態に係る医用情報処理装置30a(図9参照)について説明する。なお、上述した第1の実施形態と同様の構成要素については、同一の符号を付与し説明を省略する。
第2の実施形態では、学習済みモデルをモダリティ10毎に生成している場合を想定している。新たにモダリティ10を導入した場合、新たに導入したモダリティ10に適応した学習済みモデルを生成する必要がある。そこで、既存のモダリティ10の学習済みモデルに対して、転移学習等の再学習を実行することにより、新たに導入したモダリティ10に適応した学習済みモデルを生成する。
ここで、第1の実施形態では、既存の学習済みモデルの学習に使用した画像データと、新たに生成する学習済みモデルの学習に使用する画像データとの類似度を算出した。しかし、第2の実施形態では、新たに導入したモダリティ10に適応した学習済みモデルを生成することを想定している。そのため、第1の実施形態のように、類似度の算出に使用する画像データを用意することができない場合がある。そこで、第2の実施形態では、既存のモダリティ10のファントム画像データと、新規のモダリティ10のファントム画像データとの類似度を算出する。また、第2の実施形態の第1関連情報は、新規のモダリティ10のファントム画像データとなる。また、第2関連情報は、既存のモダリティ10のファントム画像データとなる。
図8は、第2の実施形態にかかる類似度の算出対象となるファントム画像データとの一例を示す図である。ファントム画像データとは、ファントムと呼ばれる性能評価用のオブジェクトを撮像することで生成される装置の性能評価用の画像データである。また、既存のモダリティ10と、新規のモダリティ10とは、ファントムを同一の撮像条件で撮像することでファントム画像データを生成する。これにより、第2の実施形態では、モダリティ10の性能の類似度を識別する。そして、第2の実施形態では、モダリティ10の性能の類似度に基づいて、再学習に必要なデータル数を算出する。
ここで、図9は、第2の実施形態にかかる医用情報処理装置30aの構成の一例を示すブロック図である。
学習済みモデルテーブル321aは、学習済みモデルと、学習済みモデルの深層学習における分類と、複数の学習データセットと、学習データセットに含まれる画像データの撮像条件と同一の撮像条件で撮像されたファントム画像データとが対応付けられている。
登録機能351aは、新たに生成する学習済みモデルに関連する第1関連情報として、ファントム画像データを登録する。更に詳しくは、登録機能351aは、学習済みモデルテーブル321aに記憶されたファントム画像データの撮像条件と、同一の撮像条件で新たに導入したモダリティ10が撮像したファントム画像データを登録する。
類似度算出機能354aは、新たに生成する学習済みモデルの生成に使用する画像データを生成するモダリティ10のファントム画像データと、既存の学習済みモデルの生成に使用された画像データを生成したモダリティ10のファントム画像データとの類似度を算出する。具体的には、類似度算出機能354aは、学習済みモデルテーブル321aに記憶されたファントム画像データと、登録機能351aが登録したファントム画像データとの類似度を算出する。
データ算出機能355は、既存の学習済みモデル毎の類似度に基づいて、新たな学習済みモデルの生成に必要なデータ数を既存の学習済みモデル毎に算出する。
出力機能357は、第2学習済みモデル毎に生成に必要なデータ数を出力する。
以上のように、第2の実施形態に医用情報処理装置30aは、既存の学習済みモデルの生成に使用された画像データと同一の撮像条件で撮像されたファントム画像データと、新たに生成する学習済みモデルの生成に使用するファントム画像データとの類似度を算出する。そして、医用情報処理装置30aは、算出した類似度に応じた、新たな学習済みモデルの生成に必要なデータ数を既存の学習済みモデル毎に出力する。よって、第2の実施形態に医用情報処理装置30aは、患者等の被検体を撮像した画像データを用意することができない場合であっても、新たな学習済みモデルの生成に必要なデータ数を既存の学習済みモデル毎に出力することができる。
(第3の実施形態)
次に、第3の実施形態に係る医用情報処理装置30b(図10参照)について説明する。なお、上述した第1の実施形態と同様の構成要素については、同一の符号を付与し説明を省略する。
第2の実施形態では、新たに導入したモダリティ10に適応した学習済みモデルを生成するために、既存のモダリティ10のファントム画像データと、新規のモダリティ10のファントム画像データとの類似度を算出する。第3の実施形態では、画像データの取得条件の類似度を算出する。例えば、取得条件には、モダリティ10の種類、モダリティ10の製造メーカー、機種、バーション、撮像方法、再構成条件等の項目が含まれる。なお、取得条件には、これら以外の項目が含まれていてもよい。
ここで、図10は、第3の実施形態にかかる医用情報処理装置30bの構成の一例を示すブロック図である。
第3の実施形態に係る学習済みモデルテーブル321bは、学習済みモデルと、分類と、複数の学習データセットと、学習データセットに含まれる画像データの取得条件とが対応付けられている。
また、記憶回路320は、スコアテーブル322を記憶している。図11は、スコアテーブル322のデータ構成の一例を示す図である。スコアテーブル322は、取得条件の項目ごとのスコアを有している。図11に示すスコアテーブル322は、取得条件の項目であるモダリティ10の種別についてのスコアを示している。モダリティ10の種別がX線CT装置の場合、比較対象の取得条件におけるモダリティ10の種別が、X線CT装置の場合に1.0となり、MRI装置の場合に0.6となり、X線アンギオ装置の場合に0.4となり、超音波診断装置の場合に0.2となることを示しいている。また、図11に示すスコアテーブル322は、モダリティ10の種別についてのスコアを示しているが、スコアテーブル322は、取得条件の項目の他の項目についても同様にスコアを有している。また、第3の実施形態の第1関連情報は、新規に生成する学習済みモデルの学習に使用する画像データの取得条件となる。また、第2関連情報は、既存の学習済みモデルの学習に使用された画像データの取得条件となる。
登録機能351bは、新たに生成する第1学習済みモデルに関連する第1関連情報として、取得条件を登録する。すなわち、登録機能351bは、新たに生成する学習済みモデルの学習に使用する画像データの取得条件を登録する。
類似度算出機能354bは、新たに生成する学習済みモデルの生成に使用する画像データの取得条件を示す第1関連情報と、既存の学習済みモデルの生成に使用された画像データの取得条件を示す第2関連情報との類似度を算出する。更に詳しくは、類似度算出機能354bは、スコアテーブル322に基づいて、学習済みモデルテーブル321bに記憶された取得条件の各項目と、登録機能351bが登録した取得条件の各項目とのスコアを抽出する。そして、類似度算出機能354bは、各項目のスコアに基づいて類似度を算出する。このような類似度の算出を、類似度算出機能354bは、既存の学習済みモデル毎に実行する。
データ算出機能355は、既存の学習済みモデル毎の類似度に基づいて、新たな学習済みモデルの生成に必要なデータ数を既存の学習済みモデル毎に算出する。
出力機能357は、第2学習済みモデル毎に生成に必要なデータ数を出力する。
以上のように、第3の実施形態に医用情報処理装置30bは、既存の学習済みモデルの生成に使用された画像データの取得条件と、新たに生成する学習済みモデルの生成に使用する画像データの取得条件との類似度を算出する。そして、医用情報処理装置30bは、算出した類似度に応じた、新たな学習済みモデルの生成に必要なデータ数を既存の学習済みモデル毎に出力する。よって、第3の実施形態に医用情報処理装置30bは、患者等の被検体を撮像した画像データを用意することができない場合であっても、新たな学習済みモデルの生成に必要なデータ数を既存の学習済みモデル毎に出力することができる。
(第4の実施形態)
次に、第4の実施形態に係る医用情報処理装置30c(図12参照)について説明する。なお、上述した第1の実施形態と同様の構成要素については、同一の符号を付与し説明を省略する。
第4の実施形態に係る医用情報処理装置30dは、新たに生成する学習済みモデルの生成に必要なデータ数までの残量を算出する。
ここで、図12は、第4の実施形態にかかる医用情報処理装置30bの構成の一例を示すブロック図である。
第4の実施形態に係る医用情報処理装置30cは、新たに生成する学習済みモデルの生成に必要なデータ数までの残量を算出する残量算出機能358を備えている。残量算出機能358は、第3算出部の一例である。残量算出機能358は、推定機能356が推定した推定結果に基づいて、目標値となる精度に必要なデータ数を算出する。更に詳しくは、残量算出機能358は、学習済みモデルテーブル321から残量の算出対象となる既存の学習済みモデルの指定と、目標値との指定とを受け付ける。ここで、推定機能356は、データ数と、精度との相関関係を推定する。そこで、残量算出機能358は、推定機能356の推定結果に基づいて、指定された学習済みモデルから、目標値である精度の学習済みモデルを生成するまでに、再学習させる必要があるデータ数を算出する。
また、類似度に応じて必要となるデータ数は異なっている。そこで、残量算出機能358は、指定された学習済みモデルについて、現在の精度から目標値となる精度までに必要なデータ数を類似度毎に算出する。そして、残量算出機能358は、推定機能356の推定結果に基づいて、指定された学習済みモデルから、目標値である精度の学習済みモデルを生成するまでに、再学習させる必要があるデータ数を類似度毎に示したグラフを生成する。
出力機能357は、残量算出機能358が算出したデータ数を出力する。また、出力機能357は、残量算出機能358が生成したグラフを出力する。図13は、データ数と、類似度との相関関係を精度毎に示したグラフの一例を示す図である。図13に示すように、グラフは、指定された学習済みモデルについて精度ごとに、データ数と、類似度との相関関係を示している。また、グラフは、推定機能356で指定された精度まで、特定の類似度のデータ数があと何個必要であるかを示している。
以上のように、第4の実施形態に医用情報処理装置30cは、推定機能356が推定した推定結果に基づいて、目標値となる精度に必要なデータ数を出力する。よって、使用者は、残り幾つのデータを準備すればよいかを把握することができる。
(第5の実施形態)
次に、第5の実施形態に係る医用情報処理装置30d(図14参照)について説明する。なお、上述した第1の実施形態と同様の構成要素については、同一の符号を付与し説明を省略する。
第5の実施形態に係る医用情報処理装置30dは、精度を向上させる取得条件の項目を出力する。ここで、取得条件の類似度を向上させることで精度も向上を期待することができる。そこで、医用情報処理装置30dは、新たに生成する学習済みモデルの生成に使用する画像データの取得条件と、既存の学習済みモデルの生成に使用された画像データの取得条件とにおいて、類似度を低減させている項目を抽出する。これにより、医用情報処理装置30dは、度を向上させる取得条件の項目を出力する。
ここで、図14は、第5の実施形態に係る医用情報処理装置30dの構成の一例を示すブロック図である。
第3の実施形態と同様に、学習済みモデルテーブル321cは、学習済みモデルと、分類と、複数の学習データセットと、学習データセットに含まれる画像データの取得条件とが対応付けられている。また、第3の実施形態と同様に、記憶回路320は、スコアテーブル322を記憶している。
また、第3の実施形態と同様に、類似度算出機能354は、スコアテーブル322に基づいて、学習済みモデルテーブル321cに記憶された取得条件の各項目と、登録機能351が登録した取得条件の各項目とのスコアを抽出する。そして、類似度算出機能354は、各項目のスコアに基づいて類似度を算出する。
また、医用情報処理装置30dは、項目抽出機能359を備えている。項目抽出機能359は、第2抽出部の一例である。項目抽出機能359は、新たに生成する学習済みモデルの生成に使用する画像データの取得条件を示す第1関連情報と、既存の学習済みモデルの生成に使用された画像データの取得条件を示す第2関連情報との類似度を向上させる取得条件の項目を抽出する。更に詳しくは、項目抽出機能359は、類似度算出機能354が抽出した各項目のうち、スコアが低い項目を抽出する。ここで、スコアを上げられた場合に、類似度が向上するため、学習済みモデルは、精度が向上する。そこで、項目抽出機能359は、精度を向上させるために、スコアが低い項目を抽出する。
出力機能357は、項目抽出機能359が抽出した取得条件の項目を出力する。
以上のように、第5の実施形態に医用情報処理装置30dは、新たに生成する学習済みモデルの生成に使用する画像データの取得条件と、既存の学習済みモデルの生成に使用された画像データの取得条件とを比較して、スコアが低い取得条件の項目を抽出する。そして、医用情報処理装置30dは、スコアが低い項目を出力する。よって、使用者は、スコアが低い項目についてスコアを上げる処置を行うことができる。また、医用情報処理装置30dは、スコアが低い項目について、スコアを向上させる方法を出力してもよい。
また、上記した実施形態では、医用情報処理装置30が特徴的な機能を備えている場合を例に説明した。しかしながら、医用情報処理装置30が備えている登録機能351、351a、351b、分類指定機能352、抽出機能353、類似度算出機能354、354a、354b、データ算出機能355、推定機能356、出力機能357、残量算出機能358、及び項目抽出機能359等のこれらの機能の全部又は一部は、モダリティ10が備えていてもよいし、PACS20が備えていてもよいし、これら以外の装置又はシステムが備えていてもよい。
また、上述した実施形態では、単一の処理回路350によって各処理機能が実現される場合の例を説明したが、実施形態はこれに限られない。例えば、処理回路350は、複数の独立したプロセッサを組み合わせて構成され、各プロセッサが各プログラムを実行することにより各処理機能を実現するものとしても構わない。また、処理回路350が有する各処理機能は、単一又は複数の処理回路350に適宜に分散又は統合されて実現されてもよい。
上述した各実施形態の説明で用いた「プロセッサ」という文言は、例えば、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、或いは、特定用途向け集積回路(Application Specific Integrated Circuit:ASIC)、プログラマブル論理デバイス(例えば、単純プログラマブル論理デバイス(Simple Programmable Logic Device:SPLD)、複合プログラマブル論理デバイス(Complex Programmable Logic Device:CPLD)、及びフィールドプログラマブルゲートアレイ(Field Programmable Gate Array:FPGA))等の回路を意味する。ここで、メモリにプログラムを保存する代わりに、プロセッサの回路内にプログラムを直接組み込むように構成しても構わない。この場合には、プロセッサは回路内に組み込まれたプログラムを読み出し実行することで機能を実現する。また、本実施形態の各プロセッサは、プロセッサごとに単一の回路として構成される場合に限らず、複数の独立した回路を組み合わせて一つのプロセッサとして構成され、その機能を実現するようにしてもよい。
ここで、プロセッサによって実行されるプログラムは、ROM(Read Only Memory)や記憶部等に予め組み込まれて提供される。なお、このプログラムは、これらの装置にインストール可能な形式又は実行可能な形式のファイルでCD(Compact Disk)-ROM、FD(Flexible Disk)、CD-R(Recordable)、DVD(Digital Versatile Disk)等のコンピュータで読み取り可能な記憶媒体に記録されて提供されてもよい。また、このプログラムは、インターネット等のネットワークに接続されたコンピュータ上に格納され、ネットワーク経由でダウンロードされることにより提供又は配布されてもよい。例えば、このプログラムは、各機能部を含むモジュールで構成される。実際のハードウェアとしては、CPUが、ROM等の記憶媒体からプログラムを読み出して実行することにより、各モジュールが主記憶装置上にロードされて、主記憶装置上に生成される。
以上説明した少なくとも一つの実施形態によれば、再学習に必要なデータ数を出力することができる。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
1 医用情報処理システム
10 モダリティ
30 医用情報処理装置
20 PACS
321 学習済みモデルテーブル
322 スコアテーブル
351、351a、351b 登録機能
352 分類指定機能
353 抽出機能
354、354a、354b 類似度算出機能
355 データ算出機能
356 推定機能
357 出力機能
358 残量算出機能
359 項目抽出機能

Claims (9)

  1. 新たに生成する第1学習済みモデルに関連する第1関連情報を登録する登録部と、
    既存の第2学習済みモデルに関連する第2関連情報と、前記第1関連情報との類似度を複数の前記第2学習済みモデル毎に算出する第1算出部と、
    複数の前記第2学習済みモデルのそれぞれに対する再学習により、精度が目標値に達する前記第1学習済みモデルを生成する場合に、複数の前記第2学習済みモデル毎の前記類似度と、前記第1学習済みモデルが前記精度になるまでに必要な前記第1関連情報のデータ数との相関関係に基づいて、複数の前記第2学習済みモデル毎に前記データ数を算出する第2算出部と、
    複数の前記第2学習済みモデル毎に前記データ数を出力する出力部と、
    を備える医用情報処理装置。
  2. 前記相関関係を推定する推定部を更に備え、
    前記出力部は、前記相関関係を示す情報を出力する、
    請求項1に記載の医用情報処理装置。
  3. 前記第2算出部は、前記推定部が推定した推定結果に基づいて、前記データ数を算出し、
    前記出力部は、前記第算出部が算出した前記データ数を出力する、
    請求項2に記載の医用情報処理装置。
  4. 前記第1学習済みモデルの深層学習における分類を指定する指定部と、
    前記第2学習済みモデルと、前記分類と、前記第2関連情報とが対応付けられた学習済みモデル情報から、前記指定部が指定した前記分類の前記第2学習済みモデルを少なくとも一つ抽出する第1抽出部とを更に備え、
    前記第1算出部は、前記第1抽出部が抽出した少なくとも一つの前記第2学習済みモデルについての前記類似度を算出する、
    請求項1から請求項3の何れか一項に記載の医用情報処理装置。
  5. 前記登録部は、前記第1関連情報を識別するための情報である第1ラベルデータを含む前記第1関連情報を登録し、
    前記指定部は、前記第1ラベルデータに基づいて、前記分類を指定する、
    請求項4に記載の医用情報処理装置。
  6. 前記第1算出部は、前記第1関連情報の前記第1ラベルデータと、前記第2関連情報を識別するための情報である第2ラベルデータとに基づいて、前記類似度を算出する、
    請求項5に記載の医用情報処理装置。
  7. 前記第1算出部は、前記第1学習済みモデルの生成に使用する画像データを生成する第1装置の性能評価用の画像データである前記第1関連情報と、前記第2学習済みモデルの生成に使用された画像データを生成した第2装置の性能評価用の画像データである前記第2関連情報との前記類似度を算出する、
    請求項1から請求項6の何れか一項に記載の医用情報処理装置。
  8. 前記第1算出部は、前記第1学習済みモデルの生成に使用する画像データの取得条件を示す前記第1関連情報と、前記第2学習済みモデルの生成に使用された画像データの取得条件を示す前記第2関連情報との前記類似度を算出する、
    請求項1から請求項7の何れか一項に記載の医用情報処理装置。
  9. 前記第1学習済みモデルの生成に使用する画像データの取得条件を示す前記第1関連情報と、前記第2学習済みモデルの生成に使用された画像データの取得条件を示す前記第2関連情報との前記類似度を向上させる前記取得条件の項目を抽出する第2抽出部を更に備え、
    前記出力部は、前記第2抽出部が抽出した前記項目を出力する、
    請求項1から請求項8の何れか一項に記載の医用情報処理装置。
JP2019238183A 2019-12-27 2019-12-27 医用情報処理装置 Active JP7413011B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019238183A JP7413011B2 (ja) 2019-12-27 2019-12-27 医用情報処理装置
US17/128,883 US12073937B2 (en) 2019-12-27 2020-12-21 Medical information processing apparatus
CN202011548617.9A CN113052310B (zh) 2019-12-27 2020-12-24 医用信息处理装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019238183A JP7413011B2 (ja) 2019-12-27 2019-12-27 医用情報処理装置

Publications (2)

Publication Number Publication Date
JP2021105960A JP2021105960A (ja) 2021-07-26
JP7413011B2 true JP7413011B2 (ja) 2024-01-15

Family

ID=76508136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019238183A Active JP7413011B2 (ja) 2019-12-27 2019-12-27 医用情報処理装置

Country Status (3)

Country Link
US (1) US12073937B2 (ja)
JP (1) JP7413011B2 (ja)
CN (1) CN113052310B (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7413011B2 (ja) * 2019-12-27 2024-01-15 キヤノンメディカルシステムズ株式会社 医用情報処理装置
US20220405570A1 (en) * 2021-06-11 2022-12-22 International Business Machines Corporation Post-hoc loss-calibration for bayesian neural networks
KR20240019837A (ko) 2021-06-25 2024-02-14 캐논 파인테크 니스카 가부시키가이샤 튜브 프린터
WO2024181308A1 (ja) * 2023-02-28 2024-09-06 パナソニックIpマネジメント株式会社 情報処理システムおよびコンピュータプログラム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018173813A (ja) 2017-03-31 2018-11-08 富士通株式会社 比較プログラム、比較方法および比較装置
JP2018190129A (ja) 2017-05-01 2018-11-29 日本電信電話株式会社 判定装置、分析システム、判定方法および判定プログラム
JP2019185751A (ja) 2018-03-30 2019-10-24 株式会社日立製作所 特徴量準備の方法、システム及びプログラム

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011064876A1 (ja) * 2009-11-27 2011-06-03 株式会社東芝 予測モデル生成装置
US20130185314A1 (en) * 2012-01-16 2013-07-18 Microsoft Corporation Generating scoring functions using transfer learning
US9753767B2 (en) * 2014-03-11 2017-09-05 Sas Institute Inc. Distributed data set task selection
JP6435581B2 (ja) 2015-01-29 2018-12-12 パナソニックIpマネジメント株式会社 転移学習装置、転移学習システム、転移学習方法およびプログラム
JP2016197289A (ja) * 2015-04-02 2016-11-24 日本電信電話株式会社 パラメタ学習装置、類似度算出装置、方法、及びプログラム
JP2018041261A (ja) * 2016-09-07 2018-03-15 東芝テック株式会社 情報処理装置及びプログラム
US10922604B2 (en) * 2016-09-09 2021-02-16 Cylance Inc. Training a machine learning model for analysis of instruction sequences
JP6882772B2 (ja) * 2017-07-11 2021-06-02 株式会社Rist 検査装置、検査方法及び検査プログラム
US10878090B2 (en) * 2017-10-18 2020-12-29 AO Kaspersky Lab System and method of detecting malicious files using a trained machine learning model
US20190214138A1 (en) * 2018-01-10 2019-07-11 Canon Medical Systems Corporation Diagnosis support apparatus, diagnosis support system, and diagnosis support method
WO2019163141A1 (ja) * 2018-02-26 2019-08-29 株式会社日立情報通信エンジニアリング 状態予測装置および状態予測制御方法
US11610688B2 (en) * 2018-05-01 2023-03-21 Merative Us L.P. Generating personalized treatment options using precision cohorts and data driven models
US20190354850A1 (en) * 2018-05-17 2019-11-21 International Business Machines Corporation Identifying transfer models for machine learning tasks
US11189367B2 (en) * 2018-05-31 2021-11-30 Canon Medical Systems Corporation Similarity determining apparatus and method
US10824912B2 (en) * 2018-06-28 2020-11-03 General Electric Company Methods and apparatus to adapt medical image interfaces based on learning
US10832093B1 (en) * 2018-08-09 2020-11-10 Zoox, Inc. Tuning simulated data for optimized neural network activation
JP7246912B2 (ja) * 2018-12-18 2023-03-28 キヤノンメディカルシステムズ株式会社 医用情報処理装置及び医用情報処理システム
CA3076638A1 (en) * 2019-03-22 2020-09-22 Royal Bank Of Canada Systems and methods for learning user representations for open vocabulary data sets
US11295239B2 (en) * 2019-04-17 2022-04-05 International Business Machines Corporation Peer assisted distributed architecture for training machine learning models
US11322234B2 (en) * 2019-07-25 2022-05-03 International Business Machines Corporation Automated content avoidance based on medical conditions
US12052260B2 (en) * 2019-09-30 2024-07-30 International Business Machines Corporation Scalable and dynamic transfer learning mechanism
JP7413011B2 (ja) * 2019-12-27 2024-01-15 キヤノンメディカルシステムズ株式会社 医用情報処理装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018173813A (ja) 2017-03-31 2018-11-08 富士通株式会社 比較プログラム、比較方法および比較装置
JP2018190129A (ja) 2017-05-01 2018-11-29 日本電信電話株式会社 判定装置、分析システム、判定方法および判定プログラム
JP2019185751A (ja) 2018-03-30 2019-10-24 株式会社日立製作所 特徴量準備の方法、システム及びプログラム

Also Published As

Publication number Publication date
US20210202070A1 (en) 2021-07-01
CN113052310A (zh) 2021-06-29
JP2021105960A (ja) 2021-07-26
US12073937B2 (en) 2024-08-27
CN113052310B (zh) 2024-08-13

Similar Documents

Publication Publication Date Title
JP7413011B2 (ja) 医用情報処理装置
Wang et al. DeepIGeoS: a deep interactive geodesic framework for medical image segmentation
US11379985B2 (en) System and computer-implemented method for segmenting an image
Wolterink et al. Automatic segmentation and disease classification using cardiac cine MR images
JP5893623B2 (ja) データ・セットにおける異常検出方法およびシステム
Zhao et al. An overview of interactive medical image segmentation
Sander et al. Automatic segmentation with detection of local segmentation failures in cardiac MRI
WO2018070285A1 (ja) 画像処理装置、及び画像処理方法
US10896504B2 (en) Image processing apparatus, medical image diagnostic apparatus, and program
US10413236B2 (en) Medical-image processing apparatus
US20200126236A1 (en) Systems and Methods for Image Segmentation using IOU Loss Functions
JP2018505705A (ja) 機械学習を用いた医用イメージングの変換のためのシステムおよび方法
US11468567B2 (en) Display of medical image data
US20160125584A1 (en) Image processing apparatus, image processing method and storage medium
JP6747785B2 (ja) 医用画像処理装置及び医用画像処理方法
Gaweł et al. Automatic spine tissue segmentation from MRI data based on cascade of boosted classifiers and active appearance model
JP2019115515A (ja) 画像処理装置、画像処理方法、画像処理システムおよびプログラム
Mamalakis et al. MA-SOCRATIS: An automatic pipeline for robust segmentation of the left ventricle and scar
WO2023032436A1 (ja) 医用画像処理装置、医用画像処理方法及びプログラム
Ahmad et al. Fully automated cardiac MRI segmentation using dilated residual network
JP2023055652A (ja) 学習装置、学習方法、医用データ処理装置および医用データ処理方法
WO2023032437A1 (ja) 造影状態判別装置、造影状態判別方法、及びプログラム
US20240054643A1 (en) Image processing apparatus, image processing method, and recording medium
JP2023168719A (ja) 医用画像処理装置
JP2023080703A (ja) 医用画像処理装置、方法及びプログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220830

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230928

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231227

R150 Certificate of patent or registration of utility model

Ref document number: 7413011

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150