JP7411124B2 - Method for producing hexafluoro-1,3-butadiene and its intermediates - Google Patents

Method for producing hexafluoro-1,3-butadiene and its intermediates Download PDF

Info

Publication number
JP7411124B2
JP7411124B2 JP2022577538A JP2022577538A JP7411124B2 JP 7411124 B2 JP7411124 B2 JP 7411124B2 JP 2022577538 A JP2022577538 A JP 2022577538A JP 2022577538 A JP2022577538 A JP 2022577538A JP 7411124 B2 JP7411124 B2 JP 7411124B2
Authority
JP
Japan
Prior art keywords
reaction
butadiene
dibromo
chloro
hexafluoro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022577538A
Other languages
Japanese (ja)
Other versions
JP2023538185A (en
Inventor
武燦 劉
海鋒 呉
浩傑 謝
▲チョォン▼ 趙
建君 張
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinochem Lantian Co Ltd
Original Assignee
Sinochem Lantian Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinochem Lantian Co Ltd filed Critical Sinochem Lantian Co Ltd
Publication of JP2023538185A publication Critical patent/JP2023538185A/en
Application granted granted Critical
Publication of JP7411124B2 publication Critical patent/JP7411124B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/25Preparation of halogenated hydrocarbons by splitting-off hydrogen halides from halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/26Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton
    • C07C17/272Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton by addition reactions
    • C07C17/278Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton by addition reactions of only halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C19/00Acyclic saturated compounds containing halogen atoms
    • C07C19/08Acyclic saturated compounds containing halogen atoms containing fluorine
    • C07C19/10Acyclic saturated compounds containing halogen atoms containing fluorine and chlorine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C19/00Acyclic saturated compounds containing halogen atoms
    • C07C19/08Acyclic saturated compounds containing halogen atoms containing fluorine
    • C07C19/14Acyclic saturated compounds containing halogen atoms containing fluorine and bromine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C21/00Acyclic unsaturated compounds containing halogen atoms
    • C07C21/02Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds
    • C07C21/19Halogenated dienes
    • C07C21/20Halogenated butadienes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明は、フッ素含有電子ガスに関し、特にテロメリゼーション法によるヘキサフルオロ-1,3-ブタジエン及びその中間体の合成方法に関する。 The present invention relates to a fluorine-containing electron gas, and particularly to a method for synthesizing hexafluoro-1,3-butadiene and its intermediates by a telomerization method.

ヘキサフルオロ-1,3-ブタジエンは、英語名称がHexafluoro-1,3-butadieneで、略称がHFBDで、沸点が5.5℃、凝固点が-130℃で、15℃における液体密度が1.44kg/Lである。ヘキサフルオロ-1,3-ブタジエンは、大気における存在時間(ALT)がわずか1.9日、GWP100値が290である優れた環境性能及び作業性能を有する次世代グリーンドライエッチングガスである。ヘキサフルオロ-1,3-ブタジエンは比較的低いフッ素炭素比を有するため、優れたエッチング性能を示し、Cu含有及び低K誘電率の整流回路基板生産用のエッチングに用いられ、主に素子寸法(critical Dimention)の精密エッチング(100nmまでの精度)に用いられ、他のエッチングガスよりも良い選択性及び深さ/幅比を有する。ヘキサフルオロ-1,3-ブタジエンは、ハイエンドチップを生産するための必須材料の1つとして、次世代ストレージ技術である3D NANDフラッシュメモリのキーエッチングガスである。ハイエンドチップへの需要の高まりに伴って、ヘキサフルオロ-1,3-ブタジエンの市場はますます拡大していく。 The English name of hexafluoro-1,3-butadiene is Hexafluoro-1,3-butadiene, the abbreviation is HFBD, the boiling point is 5.5°C, the freezing point is -130°C, and the liquid density at 15°C is 1.44 kg. /L. Hexafluoro-1,3-butadiene is a next-generation green dry etching gas with excellent environmental performance and work performance, with an ambient time (ALT) of only 1.9 days and a GWP 100 value of 290. Hexafluoro-1,3-butadiene has a relatively low fluorocarbon ratio, so it exhibits excellent etching performance and is used for etching for Cu-containing and low-K dielectric constant rectifier circuit board production, mainly for device dimensions ( It is used for precision etching (accuracy up to 100 nm) in critical dimensions and has better selectivity and depth/width ratio than other etching gases. Hexafluoro-1,3-butadiene is a key etching gas for 3D NAND flash memory, the next generation storage technology, as one of the essential materials for producing high-end chips. As demand for high-end chips increases, the market for hexafluoro-1,3-butadiene will continue to expand.

従来技術においてヘキサフルオロ-1,3-ブタジエンの合成について主に以下の報告がある。 In the prior art, there are mainly the following reports regarding the synthesis of hexafluoro-1,3-butadiene.

1)塩素ガスとヨウ素を原料として採用するプロセス
特許文献1は、塩素ガスとヨウ素を原料としてヘキサフルオロ-1,3-ブタジエンを合成する方法を開示しており、当該方法は、1.塩素ガスとヨウ素とを反応させて塩化ヨウ素を合成するステップと、2.トリクロロ塩化ビニルと塩化ヨウ素とを反応させて1,2-ジクロロ-1,1,2-トリフルオロ-2-ヨードエタン(CFCl-CFICl)を得るステップと、3.1,2-ジクロロ-1,1,2-トリフルオロ-2-ヨードエタンを触媒の存在下で分子間カップリング反応させ、1,2,3,4-テトラクロロ-ヘキサフルオロブタン(CFCl-CFCl-CFCl-CFCl)を得るステップと、4.1,2,3,4-テトラクロロ-ヘキサフルオロブタンを分子内脱ハロゲン化してヘキサフルオロ-1,3-ブタジエンを得るステップと、を含む。反応式は、以下の通りである。
しかし、当該方法はステップが比較的長く、かつ高価な塩化ヨウ素を用いるため、プロセスの原料コストが比較的高くなる。
1) Process using chlorine gas and iodine as raw materials Patent Document 1 discloses a method for synthesizing hexafluoro-1,3-butadiene using chlorine gas and iodine as raw materials. 2. reacting chlorine gas and iodine to synthesize iodine chloride; Reacting trichlorovinyl chloride and iodine chloride to obtain 1,2-dichloro-1,1,2-trifluoro-2-iodoethane (CF 2 Cl-CFICl); , 1,2-trifluoro-2-iodoethane are subjected to an intermolecular coupling reaction in the presence of a catalyst to form 1,2,3,4-tetrachloro-hexafluorobutane (CF 2 Cl-CFCl-CFCl-CF 2 Cl ) and 4. intramolecular dehalogenation of 1,2,3,4-tetrachloro-hexafluorobutane to obtain hexafluoro-1,3-butadiene. The reaction formula is as follows.
However, this method involves relatively long steps and uses expensive iodine chloride, resulting in relatively high raw material costs for the process.

2)二量化プロセス
特許文献2は、クロロトリフルオロエチレンを原料としてヘキサフルオロ-1,3-ブタジエンを合成する方法を開示しており、前記方法は、クロロトリフルオロエチレンを高温で二量化反応させて34%の1,2-ジクロロヘキサフルオロシクロブタン及び27%の3,4-ジクロロヘキサフルオロ-1-ブテンを獲得し、かつこれら二種類の生成物を高効率精留カラムで分離し、3,4-ジクロロヘキサフルオロ-1-ブテンを直接亜鉛粉末で脱塩素化して目的生成物のヘキサフルオロ-1,3-ブタジエンを得るステップを含む。反応式は、以下の通りである。
しかし、当該方法は重合反応に高温高圧条件が必要であり、反応選択性がわずか27%である。
2) Dimerization process Patent Document 2 discloses a method for synthesizing hexafluoro-1,3-butadiene using chlorotrifluoroethylene as a raw material, and the method involves subjecting chlorotrifluoroethylene to a dimerization reaction at a high temperature. 34% of 1,2-dichlorohexafluorocyclobutane and 27% of 3,4-dichlorohexafluoro-1-butene were obtained, and these two products were separated by a high efficiency rectification column. The method includes the step of directly dechlorinating 4-dichlorohexafluoro-1-butene with zinc powder to obtain the desired product hexafluoro-1,3-butadiene. The reaction formula is as follows.
However, this method requires high temperature and high pressure conditions for the polymerization reaction, and the reaction selectivity is only 27%.

3)亜鉛試薬のカップリングプロセス
特許文献3は、トリフルオロブロモエチレンを原料として、亜鉛粉末と反応させてトリフルオロビニル亜鉛試薬を合成し、そして三価鉄塩又は二価銅塩の作用下で、自己カップリング反応させてヘキサフルオロ-1,3-ブタジエンを得る方法を開示している。反応式は、以下の通りである。
しかし、当該方法は、出発原料であるトリフルオロブロモエチレンの由来に問題がある。
3) Coupling process of zinc reagent Patent Document 3 uses trifluorobromoethylene as a raw material, reacts it with zinc powder to synthesize trifluorovinylzinc reagent, and then synthesizes the trifluorovinyl zinc reagent under the action of trivalent iron salt or divalent copper salt. discloses a method for obtaining hexafluoro-1,3-butadiene through a self-coupling reaction. The reaction formula is as follows.
However, this method has a problem with the origin of the starting material, trifluorobromoethylene.

4)元素フッ素のフッ素化プロセス
特許文献4は、トリクロロエチレン(TCE)とフッ素ガスとを原料としてヘキサフルオロ-1,3-ブタジエンを合成する方法を開示しており、当該方法は、1.フッ素二量化反応:AISI 316L反応器において、TCEとヘリウムガスで希釈されたフッ素ガスとを反応させてCClを獲得し、TCEの転化率が22.9%であり、選択性が50%であるステップと、2.消去反応:ガラス反応器において、CClと20%NaOH溶液とを反応させてテトラクロロジフルオロブタジエン(CFCl=CCl-CCl=CFCl)を獲得し、反応収率が93%であるステップと、3.フッ素化反応:テトラクロロジフルオロブタジエンとヘリウムガスで希釈されたフッ素ガスとを反応させてテトラクロロヘキサフルオロブタン(CFCl-CFCl-CFCl-CFCl,CFC-316)を獲得し、反応転化率が97.8%であり、選択性が64%であるステップと、4.脱ハロゲン化反応:CFC-316をイソプロパノール溶媒中で亜鉛粉末と反応させてヘキサフルオロ-1,3-ブタジエンを獲得し、収率が96%であり、製品純度が99.5%であるステップと、を含む。しかし当該方法は、機器に対する要求が比較的高く、プロセスの安全リスクが大きい。
4) Fluorination process of elemental fluorine Patent Document 4 discloses a method for synthesizing hexafluoro-1,3-butadiene using trichlorethylene (TCE) and fluorine gas as raw materials, and the method includes 1. Fluorine dimerization reaction: In an AISI 316L reactor, TCE was reacted with fluorine gas diluted with helium gas to obtain C 4 H 2 F 2 Cl 6 , the conversion rate of TCE was 22.9%, 2. Selectivity is 50%; Elimination reaction: In a glass reactor, C 4 H 2 F 2 Cl 6 was reacted with 20% NaOH solution to obtain tetrachlorodifluorobutadiene (CFCl=CCl-CCl=CFCl), with a reaction yield of 93%. A certain step; 3. Fluorination reaction: Tetrachlorohexafluorobutane (CF 2 Cl-CFCl-CFCl-CF 2 Cl, CFC-316) is obtained by reacting tetrachlorodifluorobutadiene with fluorine gas diluted with helium gas, and reaction conversion is performed. 4. efficiency is 97.8% and selectivity is 64%; Dehalogenation reaction: reacting CFC-316 with zinc powder in isopropanol solvent to obtain hexafluoro-1,3-butadiene, the yield is 96% and the product purity is 99.5%; ,including. However, this method has relatively high demands on the equipment and has high process safety risks.

そのため、依然としてヘキサフルオロ-1,3-ブタジエンの新規合成プロセスを開発する必要がある。 Therefore, there is still a need to develop a new synthesis process for hexafluoro-1,3-butadiene.

中国特許出願公開第106336342号明細書China Patent Application Publication No. 106336342 ロシア国特許第0118462号公報Russian Patent No. 0118462 中国特許出願公開第105732301号明細書China Patent Application Publication No. 105732301 国際公開第2009/087067号International Publication No. 2009/087067

上記技術的問題を解決するために、本発明は、テロメリゼーション法によるヘキサフルオロ-1,3-ブタジエン及びその中間体の製造方法を提案し、当該方法は、プロセスが簡単であり、反応条件が温和であり、「三廃」(排ガス、廃水、固体廃棄物)の量が少なく、安全で環境に優しく、工業化生産に適する。 In order to solve the above technical problems, the present invention proposes a method for producing hexafluoro-1,3-butadiene and its intermediates by telomerization method, which has a simple process and It is mild, produces a small amount of the "three wastes" (exhaust gas, waste water, and solid waste), is safe and environmentally friendly, and is suitable for industrial production.

本発明の目的は、以下の技術案によって実現される。
ヘキサフルオロ-1,3-ブタジエンの製造方法であって、前記製造方法は、
A1.極性非プロトン性溶媒において、開始剤の作用下で、1,2-ジブロモ-1-クロロ-1,2,2-トリフルオロエタンとトリフルオロハロエチレンとを反応させ、反応液を精製して1,4-ジブロモ-2-クロロ-3-ハロ-1,1,2,3,4,4-ヘキサフルオロブタン(中間体A)を得るステップであって、前記トリフルオロハロエチレンの構造式は、CF=CFXであり、ここでXはCl、Br又はIであり、
前記開始剤は、アゾビスイソブチロニトリル(AIBN)、ジ-tert-ブチルペルオキシド(DTBP)、ジベンゾイルペルオキシド(BPO)、ジクミルペルオキシド(DCP)、tert-ブチルヒドロペルオキシド(TBHP)、過硫酸カリウム(KPS)、過硫酸アンモニウム(APS)から選ばれる少なくとも1種であるステップと、
A2.1,4-ジブロモ-2-クロロ-3-ハロ-1,1,2,3,4,4-ヘキサフルオロブタンと亜鉛粉末とを脱ハロゲン化反応させてヘキサフルオロ-1,3-ブタジエンを得るステップと、を含む。
The purpose of the present invention is achieved by the following technical solution.
A method for producing hexafluoro-1,3-butadiene, the method comprising:
A1. 1,2-dibromo-1-chloro-1,2,2-trifluoroethane and trifluorohaloethylene are reacted in a polar aprotic solvent under the action of an initiator, and the reaction solution is purified to obtain 1 ,4-dibromo-2-chloro-3-halo-1,1,2,3,4,4-hexafluorobutane (intermediate A), the structural formula of the trifluorohaloethylene is: CF 2 =CFX, where X is Cl, Br or I;
The initiators include azobisisobutyronitrile (AIBN), di-tert-butyl peroxide (DTBP), dibenzoyl peroxide (BPO), dicumyl peroxide (DCP), tert-butyl hydroperoxide (TBHP), and persulfuric acid. a step of at least one selected from potassium (KPS) and ammonium persulfate (APS);
A2. Dehalogenation reaction of 1,4-dibromo-2-chloro-3-halo-1,1,2,3,4,4-hexafluorobutane and zinc powder to produce hexafluoro-1,3-butadiene and obtaining.

本発明において、異なる開始方式(例えば光開始又は開始剤開始)は、中間体Aの合成に比較的大きな影響を有する。反応機構から言えば、ステップA1はラジカル反応と見なされることができるが、光開始および開始剤開始の両方はラジカル反応を開始することができる。しかし本出願人は、A1ステップの反応に対して、開始剤の開始効果が光開始よりも遥かに優れ、ひいては開始剤の種類によっても、開始効果が異なることを見出した。つまり、開始剤を用いることにより、中間体Aの選択性を向上させることができる。好ましくは、前記開始剤は、ジ-tert-ブチルペルオキシド、ジベンゾイルペルオキシド、tert-ブチルヒドロペルオキシドから選ばれる少なくとも1種である。より好ましくは、前記開始剤は、ジベンゾイルペルオキシド又はtert-ブチルヒドロペルオキシドである。 In the present invention, different initiation modes (eg photoinitiation or initiator initiation) have a relatively large influence on the synthesis of intermediate A. In terms of reaction mechanism, step A1 can be considered as a radical reaction, but both photoinitiation and initiator initiation can initiate radical reactions. However, the applicant has found that the initiation effect of the initiator is much better than photoinitiation for the reaction of the A1 step, and the initiation effect also differs depending on the type of initiator. That is, by using an initiator, the selectivity of intermediate A can be improved. Preferably, the initiator is at least one selected from di-tert-butyl peroxide, dibenzoyl peroxide, and tert-butyl hydroperoxide. More preferably, the initiator is dibenzoyl peroxide or tert-butyl hydroperoxide.

さらに、前記1,2-ジブロモ-1-クロロ-1,2,2-トリフルオロエタンと開始剤とのモル配合比は、1:0.01~1:0.1である。好ましくは、前記1,2-ジブロモ-1-クロロ-1,2,2-トリフルオロエタンと開始剤とのモル配合比は、1:0.03~1:0.06である。 Furthermore, the molar blending ratio of the 1,2-dibromo-1-chloro-1,2,2-trifluoroethane and the initiator is 1:0.01 to 1:0.1. Preferably, the molar mixing ratio of the 1,2-dibromo-1-chloro-1,2,2-trifluoroethane and the initiator is 1:0.03 to 1:0.06.

本発明のA1ステップの中間体製造過程において、非プロトン性極性溶媒は反応の進行により有利である。好ましくは、前記非プロトン性極性溶媒は、テトラヒドロフラン、1,4-ジオキサン、アセトニトリル、ジエチレングリコールジメチルエーテル、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドから選ばれる少なくとも1種である。より好ましくは、前記極性非プロトン性溶媒は、1,4-ジオキサン、アセトニトリル、ジエチレングリコールジメチルエーテルから選ばれる少なくとも1種である。
本発明のA1ステップの中間体製造過程において、不活性ガス雰囲気は反応の進行に、より有利である。好ましくは、前記不活性ガスは、窒素ガス、ヘリウムガス、アルゴンガスから選ばれる少なくとも1種である。
In the intermediate production process of Step A1 of the present invention, an aprotic polar solvent is more advantageous for the progress of the reaction. Preferably, the aprotic polar solvent is at least one selected from tetrahydrofuran, 1,4-dioxane, acetonitrile, diethylene glycol dimethyl ether, N,N-dimethylformamide, and N,N-dimethylacetamide. More preferably, the polar aprotic solvent is at least one selected from 1,4-dioxane, acetonitrile, and diethylene glycol dimethyl ether.
In the intermediate production process of Step A1 of the present invention, an inert gas atmosphere is more advantageous for the progress of the reaction. Preferably, the inert gas is at least one selected from nitrogen gas, helium gas, and argon gas.

本発明のA1ステップの中間体製造過程において、反応液の精製は、常圧精留又は減圧精留のような通常の精製方式を採用すればよい。 In the intermediate production process of Step A1 of the present invention, the reaction solution may be purified by a conventional purification method such as atmospheric rectification or vacuum rectification.

本発明のA2ステップのヘキサフルオロ-1,3-ブタジエン製造過程において、反応は無溶媒状態で行うことができる。もちろん、有機溶媒中で反応する方が効果はより高い。好ましくは、前記有機溶媒は、ギ酸、酢酸、トリフルオロ酢酸、プロピオン酸、ジクロロメタン、クロロホルム、四塩化炭素、ジクロロエタン、1,1,1-トリクロロエタン、イソプロパノール、tert-ブタノール、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、N-メチルピロリドン、ヘキサメチルホスファミドから選ばれる少なくとも1種である。より好ましくは、前記有機溶媒は、酢酸、N,N-ジメチルホルムアミド又はイソプロパノールから選ばれる少なくとも1種である。 In the hexafluoro-1,3-butadiene production process of step A2 of the present invention, the reaction can be carried out without a solvent. Of course, it is more effective to react in an organic solvent. Preferably, the organic solvent is formic acid, acetic acid, trifluoroacetic acid, propionic acid, dichloromethane, chloroform, carbon tetrachloride, dichloroethane, 1,1,1-trichloroethane, isopropanol, tert-butanol, N,N-dimethylformamide, At least one selected from N,N-dimethylacetamide, dimethylsulfoxide, N-methylpyrrolidone, and hexamethylphosphamide. More preferably, the organic solvent is at least one selected from acetic acid, N,N-dimethylformamide, and isopropanol.

本発明のA2ステップのヘキサフルオロ-1,3-ブタジエン製造過程において、触媒の存在下で反応の進行により有利である。好ましくは、前記触媒は、塩化亜鉛(ZnCl)、臭化亜鉛(ZnBr)又はヨウ化亜鉛(ZnI)、ヨウ素単体、1,2-ジブロモエタンから選ばれる少なくとも1種であり、中間体Aと触媒とのモル配合比は、1:0.01~1:0.1である。より好ましくは、中間体Aと触媒とのモル配合比は、1:0.03~1:0.06である。 In the hexafluoro-1,3-butadiene production process of step A2 of the present invention, the reaction progresses more favorably in the presence of a catalyst. Preferably, the catalyst is at least one selected from zinc chloride (ZnCl 2 ), zinc bromide (ZnBr 2 ), zinc iodide (ZnI 2 ), simple iodine, and 1,2-dibromoethane; The molar mixing ratio of A and the catalyst is 1:0.01 to 1:0.1. More preferably, the molar blending ratio of intermediate A and catalyst is 1:0.03 to 1:0.06.

本発明のヘキサフルオロ-1,3-ブタジエンの製造方法は、好ましい方式として、前記A1ステップの反応温度が60℃~200℃であり、1~12時間保温反応させ、前記A2ステップの反応温度が40℃~150℃であり、1~24時間保温反応させる。 In the method for producing hexafluoro-1,3-butadiene of the present invention, it is preferable that the reaction temperature of the A1 step is 60°C to 200°C, the reaction is carried out for 1 to 12 hours, and the reaction temperature of the A2 step is 60°C to 200°C. The temperature is 40°C to 150°C, and the reaction is kept at a temperature of 1 to 24 hours.

より好ましい方式として、前記A1ステップの反応温度は80℃~160℃であり、6~12時間保温反応させ、前記A2ステップの反応温度は60℃~90℃であり、3~6時間保温反応させる。 More preferably, the reaction temperature in the A1 step is 80° C. to 160° C., and the reaction is carried out for 6 to 12 hours, and the reaction temperature in the A2 step is 60° C. to 90° C., and the reaction is carried out for 3 to 6 hours. .

本発明は、1,4-ジブロモ-2-クロロ-3-ハロ-1,1,2,3,4,4-ヘキサフルオロブタンの製造方法をさらに提供し、前記製造方法は、
極性非プロトン性溶媒において、開始剤の作用下で、1,2-ジブロモ-1-クロロ-1,2,2-トリフルオロエタンとトリフルオロハロエチレンとを不活性ガス雰囲気中で反応させ、反応液を精留精製して1,4-ジブロモ-2-クロロ-3-ハロ-1,1,2,3,4,4-ヘキサフルオロブタンを得るステップであって、前記トリフルオロハロエチレンの構造式は、CF=CFXであり、ここでXはCl、Br又はIであり、
前記開始剤は、アゾビスイソブチロニトリル(AIBN)、ジ-tert-ブチルペルオキシド(DTBP)、ジベンゾイルペルオキシド(BPO)、ジクミルペルオキシド(DCP)、tert-ブチルヒドロペルオキシド(TBHP)、過硫酸カリウム(KPS)、過硫酸アンモニウム(APS)から選ばれる少なくとも1種であるステップを含む。
The present invention further provides a method for producing 1,4-dibromo-2-chloro-3-halo-1,1,2,3,4,4-hexafluorobutane, the method comprising:
In a polar aprotic solvent, 1,2-dibromo-1-chloro-1,2,2-trifluoroethane and trifluorohaloethylene are reacted in an inert gas atmosphere under the action of an initiator. a step of rectifying and purifying the liquid to obtain 1,4-dibromo-2-chloro-3-halo-1,1,2,3,4,4-hexafluorobutane, the step of obtaining 1,4-dibromo-2-chloro-3-halo-1,1,2,3,4,4-hexafluorobutane; The formula is CF 2 =CFX, where X is Cl, Br or I;
The initiators include azobisisobutyronitrile (AIBN), di-tert-butyl peroxide (DTBP), dibenzoyl peroxide (BPO), dicumyl peroxide (DCP), tert-butyl hydroperoxide (TBHP), and persulfuric acid. The step includes at least one selected from potassium (KPS) and ammonium persulfate (APS).

従来技術に比べると、本発明が有する有益な効果は、以下の通りであり、
1.本発明は1,2-ジブロモ-1-クロロ-1,2,2-トリフルオロエタンとトリフルオロハロエチレンとのテロメリゼーション反応を採用してヘキサフルオロ-1,3-ブタジエンの中間体を製造し、プロセスが簡単であり、反応条件が温和であり、工業化生産に適する。
2.本発明は、ラジカル開始剤を採用してテロメリゼーション反応を開始し、ラジカルの発生速度、テロメリゼーション反応の程度を制御できるだけでなく、光開始に比べて中間体の選択性を大きく向上させることができる。
Compared with the prior art, the beneficial effects of the present invention are as follows:
1. The present invention employs a telomerization reaction between 1,2-dibromo-1-chloro-1,2,2-trifluoroethane and trifluorohaloethylene to produce an intermediate of hexafluoro-1,3-butadiene. However, the process is simple and the reaction conditions are mild, making it suitable for industrial production.
2. The present invention adopts a radical initiator to initiate the telomerization reaction, which not only can control the generation rate of radicals and the extent of the telomerization reaction, but also greatly improves the selectivity of intermediates compared to photoinitiation. be able to.

以下、具体的な実施例と組み合わせて本発明をさらに説明するが、本発明はこれらの具体的な実施形態に限定されるものではない。当業者であれば、本発明は、特許請求の範囲に含まれる可能性がある全ての代替案、改良案及び同等案を網羅していることを認識するであろう。 The present invention will be further described below in combination with specific examples, but the present invention is not limited to these specific embodiments. Those skilled in the art will recognize that the invention covers all alternatives, modifications, and equivalents that may fall within the scope of the claims.

(実施例1)
本実施例は、ヘキサフルオロ-1,3-ブタジエンの製造方法を提供し、前記製造方法は、中間体製造ステップと、ヘキサフルオロ-1,3-ブタジエン製造ステップとを含み、具体的には以下の通りである。
A1.1,4-ジブロモ-2,3-ジクロロ-1,1,2,3,4,4-ヘキサフルオロブタンの製造
500mLのハステロイ材の耐圧反応釜にアセトニトリル150g、1,2-ジブロモ-1-クロロ-1,2,2-トリフルオロエタン69.1g(0.25mol)、ジベンゾイルペルオキシド1.8g(7.5mmol)を加え、高純度Nで10分間パージし、そして34.8g(0.30mol)のクロロトリフルオロエチレンをボンベから反応釜に流し込み、機械撹拌下(300~500r/min)で80℃まで昇温し、反応釜の圧力を0.5MPa程度まで上昇させ、12時間保温し、反応を終了した。
反応液をGC-MSで分析し、かつ計算したところ、原料の1,2-ジブロモ-1-クロロ-1,2,2-トリフルオロエタンの転化率は98.75%であり、中間体である1,4-ジブロモ-2,3-ジクロロ-1,1,2,3,4,4-ヘキサフルオロブタンの選択性は59.09%であることが分かった。結果を表1に示す。
反応液を減圧精留して高純度の中間体Aを得た。
A2.ヘキサフルオロ-1,3-ブタジエンの製造
マグネチックスターラー、温度計、凝縮器及び滴下ロートを備えた500mLの三口フラスコにイソプロパノール150g、単体ヨウ素2.0g、亜鉛粉末130g(2.0mol)を加えた。凝縮器の頂部は、ガス通路を介して製品収集ボトルに接続され、かつ製品収集タンクを低温コールドトラップに配置した(液体窒素冷却)。反応ボトルを70℃まで昇温し、磁気撹拌下で1,4-ジブロモ-2,3-ジクロロ-1,1,2,3,4,4-ヘキサフルオロブタン275g(純度96%、0.7mol)を滴下し、かつ製品を収集し、約1hで滴下を完了させた。滴下終了後に80℃まで昇温し、3h保温し、反応を完了した。当該コールドトラップで収集された生成物は、GC-MS及び核磁気特性により、ヘキサフルオロ-1,3-ブタジエンであり、製品97.0gを収集し獲得し、純度が96.6%で、収率が86.0%であった。結果を表3に示す。
(Example 1)
This example provides a method for producing hexafluoro-1,3-butadiene, and the production method includes an intermediate production step and a hexafluoro-1,3-butadiene production step, specifically as follows. It is as follows.
A1. Production of 1,4-dibromo-2,3-dichloro-1,1,2,3,4,4-hexafluorobutane In a 500 mL Hastelloy pressure-resistant reaction pot, add 150 g of acetonitrile and 1,2-dibromo-1 -Chloro-1,2,2-trifluoroethane 69.1 g (0.25 mol), dibenzoyl peroxide 1.8 g (7.5 mmol) were added, purged with high purity N2 for 10 minutes, and 34.8 g ( 0.30 mol) of chlorotrifluoroethylene was poured into the reaction vessel from the cylinder, and the temperature was raised to 80°C under mechanical stirring (300 to 500 r/min), and the pressure of the reaction vessel was increased to approximately 0.5 MPa for 12 hours. The reaction was completed by keeping warm.
When the reaction solution was analyzed by GC-MS and calculated, the conversion rate of the raw material 1,2-dibromo-1-chloro-1,2,2-trifluoroethane was 98.75%, and the conversion rate of the intermediate was 98.75%. The selectivity for one 1,4-dibromo-2,3-dichloro-1,1,2,3,4,4-hexafluorobutane was found to be 59.09%. The results are shown in Table 1.
The reaction solution was rectified under reduced pressure to obtain a highly pure intermediate A.
A2. Production of hexafluoro-1,3-butadiene 150 g of isopropanol, 2.0 g of elemental iodine, and 130 g (2.0 mol) of zinc powder were added to a 500 mL three-necked flask equipped with a magnetic stirrer, thermometer, condenser, and dropping funnel. . The top of the condenser was connected to the product collection bottle via a gas passage and the product collection tank was placed in a cryogenic cold trap (liquid nitrogen cooling). The temperature of the reaction bottle was raised to 70°C, and 275 g of 1,4-dibromo-2,3-dichloro-1,1,2,3,4,4-hexafluorobutane (purity 96%, 0.7 mol) was added under magnetic stirring. ) was added dropwise and the product was collected, and the addition was completed in about 1 h. After the dropwise addition was completed, the temperature was raised to 80°C and kept at this temperature for 3 hours to complete the reaction. The product collected in the cold trap was found to be hexafluoro-1,3-butadiene by GC-MS and nuclear magnetic properties, and 97.0 g of the product was collected and obtained, with a purity of 96.6%. The rate was 86.0%. The results are shown in Table 3.

(実施例2)
本実施例の操作は、実施例1と同じであり、以下の点のみで異なる。
中間体製造過程において、開始剤の種類を変更し、実施例1のジベンゾイルペルオキシドの代わりに1.1g(7.5mmol)のジ-tert-ブチルペルオキシドを用いた。反応結果を表1に示す。
ヘキサフルオロ-1,3-ブタジエン製造過程において、触媒の種類を変更し、実施例1の単体ヨウ素の代わりに2.5gのヨウ化亜鉛を用い、製品89.20gを得た。結果を表3に示す。
(Example 2)
The operation of this embodiment is the same as that of embodiment 1, and differs only in the following points.
In the intermediate production process, the type of initiator was changed, and 1.1 g (7.5 mmol) of di-tert-butyl peroxide was used instead of dibenzoyl peroxide in Example 1. The reaction results are shown in Table 1.
In the process of producing hexafluoro-1,3-butadiene, the type of catalyst was changed and 2.5 g of zinc iodide was used in place of the simple iodine of Example 1, yielding 89.20 g of a product. The results are shown in Table 3.

(実施例3)
本実施例の操作は、実施例1と同じであり、以下の点のみで異なる。
中間体製造過程において、開始剤の種類を変更し、実施例1のジベンゾイルペルオキシドの代わりに0.68g(7.5mmol)のtert-ブチルヒドロペルオキシドを用いた。反応結果を表1に示す。
ヘキサフルオロ-1,3-ブタジエン製造過程において、触媒の種類を変更し、実施例1の単体ヨウ素の代わりに1.5gの1,2-ジブロモエタンを用い、製品95.0gを得た。結果を表3に示す。
(Example 3)
The operation of this embodiment is the same as that of embodiment 1, and differs only in the following points.
In the intermediate production process, the type of initiator was changed, and 0.68 g (7.5 mmol) of tert-butyl hydroperoxide was used instead of dibenzoyl peroxide in Example 1. The reaction results are shown in Table 1.
In the process of producing hexafluoro-1,3-butadiene, the type of catalyst was changed, and 1.5 g of 1,2-dibromoethane was used in place of the simple iodine of Example 1, yielding 95.0 g of the product. The results are shown in Table 3.

(実施例4)
本実施例の操作は、実施例1と同じであり、以下の点のみで異なる。
中間体製造過程において、反応温度を80℃から60℃に下げ、反応結果を表1に示す。
ヘキサフルオロ-1,3-ブタジエン製造過程において、反応温度を70℃から60℃に下げ、製品76.20gを得た。結果を表3に示す。
(Example 4)
The operation of this embodiment is the same as that of embodiment 1, and differs only in the following points.
In the intermediate production process, the reaction temperature was lowered from 80°C to 60°C, and the reaction results are shown in Table 1.
In the process of producing hexafluoro-1,3-butadiene, the reaction temperature was lowered from 70°C to 60°C to obtain 76.20g of product. The results are shown in Table 3.

(実施例5)
本実施例の操作は、実施例1と同じであり、以下の点のみで異なる。
中間体製造過程において、反応温度を80℃から100℃に昇温した。反応結果を表1に示す。
ヘキサフルオロ-1,3-ブタジエン製造過程において、反応温度を70℃から90℃に昇温し、製品101.3gを得た。結果を表3に示す。
(Example 5)
The operation of this embodiment is the same as that of embodiment 1, and differs only in the following points.
In the intermediate production process, the reaction temperature was raised from 80°C to 100°C. The reaction results are shown in Table 1.
In the process of producing hexafluoro-1,3-butadiene, the reaction temperature was raised from 70°C to 90°C to obtain 101.3g of product. The results are shown in Table 3.

(実施例6)
本実施例の操作は、実施例1と同じであり、以下の点のみで異なる。
中間体製造過程において、溶媒の種類を変更し、実施例1のアセトニトリルの代わりに150gのジエチレングリコールジメチルエーテルを用いた。反応結果を表1に示す。
ヘキサフルオロ-1,3-ブタジエン製造過程において、溶媒の種類を変更し、実施例1のイソプロパノールの代わりに150gのN,N-ジメチルアセトアミドを用い、製品80.50gを得た。結果を表3に示す。
(Example 6)
The operation of this embodiment is the same as that of embodiment 1, and differs only in the following points.
In the intermediate production process, the type of solvent was changed, and 150 g of diethylene glycol dimethyl ether was used instead of acetonitrile in Example 1. The reaction results are shown in Table 1.
In the hexafluoro-1,3-butadiene manufacturing process, the type of solvent was changed and 150 g of N,N-dimethylacetamide was used in place of the isopropanol in Example 1, yielding 80.50 g of the product. The results are shown in Table 3.

(実施例7)
本実施例の操作は、実施例1と同じであり、以下の点のみで異なる。
中間体製造過程において、材料の配合比を変更し、クロロトリフルオロエチレンの使用量を元の34.8g(0.30mol)から58.0g(0.50mol)に変更した。反応結果を表1に示す。
ヘキサフルオロ-1,3-ブタジエン製造過程において、材料の配合比を変更し、亜鉛粉末の使用量を元の130g(2.0mol)から91.0g(1.4mol)に変更した。製品68.4gを得た。結果を表3に示す。
(Example 7)
The operation of this embodiment is the same as that of embodiment 1, and differs only in the following points.
In the intermediate manufacturing process, the blending ratio of the materials was changed, and the amount of chlorotrifluoroethylene used was changed from the original 34.8 g (0.30 mol) to 58.0 g (0.50 mol). The reaction results are shown in Table 1.
In the hexafluoro-1,3-butadiene manufacturing process, the blending ratio of materials was changed, and the amount of zinc powder used was changed from the original 130 g (2.0 mol) to 91.0 g (1.4 mol). 68.4 g of product was obtained. The results are shown in Table 3.

(実施例8)
本実施例は、ヘキサフルオロ-1,3-ブタジエンの製造方法を提供し、前記製造方法は、中間体製造ステップと、ヘキサフルオロ-1,3-ブタジエンの製造ステップとを含み、具体的には以下の通りである。
A1.1,2,4-トリブロモ-3-クロロ-1,1,2,3,4,4-ヘキサフルオロブタンの製造
500mLのハステロイ材の耐圧反応釜にアセトニトリル150g、1,2-ジブロモ-1-クロロ-1,2,2-トリフルオロエタン69.1g(0.25mol)、ジ-tert-ブチルペルオキシド1.1g(7.5mmol)を加え、高純度Nで10分間パージし、そして48.3g(0.30mol)のトリフルオロブロモエチレンをボンベから反応釜に流し込み、機械撹拌下(300~500r/min)で100℃まで昇温し、反応釜の圧力を0.6MPa程度まで上昇させ、12時間保温し、反応を終了した。
反応液をGC-MSで分析し、かつ計算したところ、原料の1,2-ジブロモ-1-クロロ-1,2,2-トリフルオロエタンの転化率は97.6%であり、中間体の1,2,4-トリブロモ-3-クロロ-1,1,2,3,4,4-ヘキサフルオロブタンの選択性は73.9%であることが分かった。結果を表2に示す。
反応液を減圧精留して高純度の中間体Aを得た。
A2.ヘキサフルオロ-1,3-ブタジエンの製造
マグネチックスターラー、温度計、凝縮器及び滴下ロートを備えた500mLの三口フラスコに酢酸150g、単体ヨウ素2.0g、亜鉛粉末130g(2.0mol)を加えた。凝縮器の頂部は、ガス通路を介して製品収集ボトルに接続され、かつ製品収集タンクを低温コールドトラップに配置した(液体窒素冷却)。反応ボトルを60℃まで昇温し、磁気撹拌下で1,2,4-トリブロモ-3-クロロ-1,1,2,3,4,4-ヘキサフルオロブタン312.3g(純度98%、0.7mol)を滴下し、かつ製品を収集し、約2hで滴下を完了させた。滴下終了後に80℃まで昇温し、3h保温し、反応を完了した。当該コールドトラップで収集された生成物は、GC-MS及び核磁気特性により、ヘキサフルオロ-1,3-ブタジエンであり、製品78.20gを収集し獲得し、純度が97.5%で、収率が69.9%であった。結果を表3に示す。
(Example 8)
This example provides a method for producing hexafluoro-1,3-butadiene, and the production method includes an intermediate production step and a hexafluoro-1,3-butadiene production step, specifically: It is as follows.
A1. Production of 1,2,4-tribromo-3-chloro-1,1,2,3,4,4-hexafluorobutane 150 g of acetonitrile, 1,2-dibromo-1 in a 500 mL pressure-resistant reaction pot made of Hastelloy material. -Chloro-1,2,2-trifluoroethane 69.1 g (0.25 mol), di-tert-butyl peroxide 1.1 g (7.5 mmol) were added, purged with high purity N2 for 10 minutes, and 48 .3 g (0.30 mol) of trifluorobromoethylene was poured into the reaction vessel from the cylinder, and the temperature was raised to 100 ° C. under mechanical stirring (300 to 500 r/min), and the pressure of the reaction vessel was increased to about 0.6 MPa. The mixture was kept warm for 12 hours to complete the reaction.
When the reaction solution was analyzed by GC-MS and calculated, the conversion rate of the raw material 1,2-dibromo-1-chloro-1,2,2-trifluoroethane was 97.6%, and the conversion rate of the intermediate 1,2-dibromo-1-chloro-1,2,2-trifluoroethane was 97.6%. The selectivity for 1,2,4-tribromo-3-chloro-1,1,2,3,4,4-hexafluorobutane was found to be 73.9%. The results are shown in Table 2.
The reaction solution was rectified under reduced pressure to obtain a highly pure intermediate A.
A2. Production of hexafluoro-1,3-butadiene 150 g of acetic acid, 2.0 g of elemental iodine, and 130 g (2.0 mol) of zinc powder were added to a 500 mL three-necked flask equipped with a magnetic stirrer, thermometer, condenser, and dropping funnel. . The top of the condenser was connected to the product collection bottle via a gas passage and the product collection tank was placed in a cryogenic cold trap (liquid nitrogen cooling). The temperature of the reaction bottle was raised to 60°C, and 312.3 g of 1,2,4-tribromo-3-chloro-1,1,2,3,4,4-hexafluorobutane (purity 98%, 0 .7 mol) was added dropwise and the product was collected, and the addition was completed in about 2 h. After the dropwise addition was completed, the temperature was raised to 80°C and kept at this temperature for 3 hours to complete the reaction. The product collected in the cold trap was found to be hexafluoro-1,3-butadiene by GC-MS and nuclear magnetic properties, and 78.20 g of the product was collected and obtained, with a purity of 97.5%. The rate was 69.9%. The results are shown in Table 3.

(実施例9)
本実施例の操作は、実施例8と同じであり、以下の点のみで異なる。
中間体製造過程において、溶媒の種類を変更し、実施例7のアセトニトリルの代わりに150gのジエチレングリコールジメチルエーテルを用いた。反応結果を表2に示す。
ヘキサフルオロ-1,3-ブタジエン製造過程において、溶媒の種類を変更し、実施例7の酢酸の代わりに150gのN,N-ジメチルアセトアミドを用い、製品82.50gを得た。結果を表3に示す。
(Example 9)
The operation of this embodiment is the same as that of embodiment 8, and differs only in the following points.
In the intermediate production process, the type of solvent was changed, and 150 g of diethylene glycol dimethyl ether was used instead of acetonitrile in Example 7. The reaction results are shown in Table 2.
In the hexafluoro-1,3-butadiene manufacturing process, the type of solvent was changed and 150 g of N,N-dimethylacetamide was used in place of acetic acid in Example 7, yielding 82.50 g of the product. The results are shown in Table 3.

(実施例10)
本実施例の操作は、実施例8と同じであり、以下の点のみで異なる。
中間体製造過程において、反応温度を100℃から160℃に昇温した。反応結果を表2に示す。
ヘキサフルオロ-1,3-ブタジエン製造過程において、触媒の種類を変更し、実施例7の単体ヨウ素の代わりに2.5gのヨウ化亜鉛を用い、製品72.2gを得た。結果を表3に示す。
(Example 10)
The operation of this embodiment is the same as that of embodiment 8, and differs only in the following points.
In the intermediate production process, the reaction temperature was raised from 100°C to 160°C. The reaction results are shown in Table 2.
In the process of producing hexafluoro-1,3-butadiene, the type of catalyst was changed and 2.5 g of zinc iodide was used instead of the simple iodine of Example 7, yielding 72.2 g of the product. The results are shown in Table 3.

(実施例11)
本実施例の操作は、実施例8と同じであり、以下の点のみで異なる。
中間体製造過程において、材料の配合比を変更し、トリフルオロブロモエチレンの使用量を元の48.3g(0.30mol)から40.3g(0.25mol)に変更した。反応結果を表2に示す。
ヘキサフルオロ-1,3-ブタジエン製造過程において、触媒ヨウ素単体の使用量を増加し、元の2.0gから4.0gに増加し、製品74.5gを得た。結果を表3に示す。
(Example 11)
The operation of this embodiment is the same as that of embodiment 8, and differs only in the following points.
In the intermediate manufacturing process, the blending ratio of the materials was changed, and the amount of trifluorobromoethylene used was changed from the original 48.3 g (0.30 mol) to 40.3 g (0.25 mol). The reaction results are shown in Table 2.
In the hexafluoro-1,3-butadiene production process, the amount of catalyst iodine used was increased from the original 2.0 g to 4.0 g, yielding 74.5 g of product. The results are shown in Table 3.

(比較例1)
本実施例の操作は、実施例1と同じであり、以下の点のみで異なる。
中間体製造過程において、開始剤のジベンゾイルペルオキシドを加えなかった。反応結果を表1に示す。
ヘキサフルオロ-1,3-ブタジエン製造過程において、触媒の単体ヨウ素を加えず、製品78.50gを得た。結果を表3に示す。
(Comparative example 1)
The operation of this embodiment is the same as that of embodiment 1, and differs only in the following points.
No initiator dibenzoyl peroxide was added during the intermediate production process. The reaction results are shown in Table 1.
In the process of producing hexafluoro-1,3-butadiene, 78.50 g of product was obtained without adding iodine as a catalyst. The results are shown in Table 3.

(比較例2)
ジャケットコールドトラップを備えたガラス光反応装置に、1,2-ジブロモ-1-クロロ-1,2,2-トリフルオロエタン276.3g(1.0mol)を加え、400Wの紫外高圧水銀ランプを挿入した。低温サイクル(0℃)をオンにし、高圧水銀ランプをオンにし、クロロトリフルオロエチレンをゆっくり流入し(50mL/min)、合計139.2g(1.2mol)を流入し、約10時間流入し終えた。流入し終えた後に高圧水銀ランプ及び低温サイクルをオフにし、反応液をGC-MSで分析し、かつ計算したところ、原料である1,2-ジブロモ-1-クロロ-1,2,2-トリフルオロエタンの転化率は54.5%であり、中間体である1,4-ジブロモ-2,3-ジクロロ-1,1,2,3,4,4-ヘキサフルオロブタンの選択性は38.2%であることが分かった。結果を表1に示す。
(Comparative example 2)
Add 276.3 g (1.0 mol) of 1,2-dibromo-1-chloro-1,2,2-trifluoroethane to a glass photoreactor equipped with a jacket cold trap, and insert a 400 W ultraviolet high-pressure mercury lamp. did. Turn on the low temperature cycle (0 °C), turn on the high pressure mercury lamp, and slowly flow in chlorotrifluoroethylene (50 mL/min), a total of 139.2 g (1.2 mol), and finish flowing for about 10 hours. Ta. After the inflow was completed, the high-pressure mercury lamp and low temperature cycle were turned off, and the reaction solution was analyzed by GC-MS and calculated. The conversion rate of fluoroethane was 54.5%, and the selectivity of the intermediate 1,4-dibromo-2,3-dichloro-1,1,2,3,4,4-hexafluorobutane was 38. It was found to be 2%. The results are shown in Table 1.

Claims (10)

ヘキサフルオロ-1,3-ブタジエンの製造方法であって、
A1.極性非プロトン性溶媒において、開始剤の作用下で、1,2-ジブロモ-1-クロロ-1,2,2-トリフルオロエタンとトリフルオロハロエチレンとを反応させ、反応液を精製して1,4-ジブロモ-2-クロロ-3-ハロ-1,1,2,3,4,4-ヘキサフルオロブタンを得るステップであって、前記トリフルオロハロエチレンの構造式は、CF=CFXであり、ここでXはCl、Br又はIであり、
前記開始剤は、アゾビスイソブチロニトリル、ジ-tert-ブチルペルオキシド、ジベンゾイルペルオキシド、ジクミルペルオキシド、tert-ブチルヒドロペルオキシド、過硫酸カリウム、過硫酸アンモニウムから選ばれる少なくとも1種であるステップと、
A2.1,4-ジブロモ-2-クロロ-3-ハロ-1,1,2,3,4,4-ヘキサフルオロブタンと亜鉛粉末とを脱ハロゲン化反応させてヘキサフルオロ-1,3-ブタジエンを得るステップと、を含む、
ことを特徴とするヘキサフルオロ-1,3-ブタジエンの製造方法。
A method for producing hexafluoro-1,3-butadiene, comprising:
A1. 1,2-dibromo-1-chloro-1,2,2-trifluoroethane and trifluorohaloethylene are reacted in a polar aprotic solvent under the action of an initiator, and the reaction solution is purified to obtain 1 ,4-dibromo-2-chloro-3-halo-1,1,2,3,4,4-hexafluorobutane, wherein the structural formula of the trifluorohaloethylene is CF 2 =CFX. , where X is Cl, Br or I,
The initiator is at least one selected from azobisisobutyronitrile, di-tert-butyl peroxide, dibenzoyl peroxide, dicumyl peroxide, tert-butyl hydroperoxide, potassium persulfate, and ammonium persulfate;
A2. Dehalogenation reaction of 1,4-dibromo-2-chloro-3-halo-1,1,2,3,4,4-hexafluorobutane and zinc powder to produce hexafluoro-1,3-butadiene and a step of obtaining the
A method for producing hexafluoro-1,3-butadiene, characterized by:
前記1,2-ジブロモ-1-クロロ-1,2,2-トリフルオロエタンと開始剤とのモル配合比は、1:0.01~1:0.1である、
ことを特徴とする請求項1に記載のヘキサフルオロ-1,3-ブタジエンの製造方法。
The molar blending ratio of the 1,2-dibromo-1-chloro-1,2,2-trifluoroethane and the initiator is 1:0.01 to 1:0.1.
The method for producing hexafluoro-1,3-butadiene according to claim 1, characterized in that:
前記A1ステップは不活性ガス雰囲気中で反応し、不活性ガスは、窒素、ヘリウム、アルゴンから選ばれる少なくとも1種である、
ことを特徴とする請求項1に記載のヘキサフルオロ-1,3-ブタジエンの製造方法。
The A1 step is performed in an inert gas atmosphere, and the inert gas is at least one selected from nitrogen, helium, and argon.
The method for producing hexafluoro-1,3-butadiene according to claim 1, characterized in that:
前記極性非プロトン性溶媒は、テトラヒドロフラン、1,4-ジオキサン、アセトニトリル、ジエチレングリコールジメチルエーテル、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドから選ばれる少なくとも1種である、
ことを特徴とする請求項3に記載のヘキサフルオロ-1,3-ブタジエンの製造方法。
The polar aprotic solvent is at least one selected from tetrahydrofuran, 1,4-dioxane, acetonitrile, diethylene glycol dimethyl ether, N,N-dimethylformamide, and N,N-dimethylacetamide.
4. The method for producing hexafluoro-1,3-butadiene according to claim 3.
前記A2ステップは触媒の存在下で反応し、前記触媒は、臭化亜鉛、ヨウ化亜鉛又はヨウ素単体から選ばれる少なくとも1種である、
ことを特徴とする請求項1に記載のヘキサフルオロ-1,3-ブタジエンの製造方法。
The A2 step is performed in the presence of a catalyst, and the catalyst is at least one selected from zinc bromide, zinc iodide, and simple iodine.
The method for producing hexafluoro-1,3-butadiene according to claim 1, characterized in that:
前記1,4-ジブロモ-2-クロロ-3-ハロ-1,1,2,3,4,4-ヘキサフルオロブタンと触媒とのモル配合比は、1:0.01~1:0.1である、
ことを特徴とする請求項5に記載のヘキサフルオロ-1,3-ブタジエンの製造方法。
The molar blending ratio of the 1,4-dibromo-2-chloro-3-halo-1,1,2,3,4,4-hexafluorobutane and the catalyst is 1:0.01 to 1:0.1. is,
6. The method for producing hexafluoro-1,3-butadiene according to claim 5.
前記A2ステップは有機溶媒中で反応し、前記有機溶媒は、ギ酸、酢酸、トリフルオロ酢酸、プロピオン酸、ジクロロメタン、クロロホルム、四塩化炭素、ジクロロエタン、1,1,1-トリクロロエタン、イソプロパノール、tert-ブタノール、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド、N-メチルピロリドン又はヘキサメチルホスファミドから選ばれる少なくとも1種である、
ことを特徴とする請求項1に記載のヘキサフルオロ-1,3-ブタジエンの製造方法。
The A2 step is a reaction in an organic solvent, and the organic solvent is formic acid, acetic acid, trifluoroacetic acid, propionic acid, dichloromethane, chloroform, carbon tetrachloride, dichloroethane, 1,1,1-trichloroethane, isopropanol, tert-butanol. , N,N-dimethylformamide, N,N-dimethylacetamide, dimethylsulfoxide, N-methylpyrrolidone or hexamethylphosphamide,
The method for producing hexafluoro-1,3-butadiene according to claim 1, characterized in that:
前記A1ステップの反応温度は60℃~200℃であり、1~12時間保温反応させ、前記A2ステップの反応温度は40℃~150℃であり、1~24時間保温反応させる、
ことを特徴とする請求項1に記載のヘキサフルオロ-1,3-ブタジエンの製造方法。
The reaction temperature of the A1 step is 60°C to 200°C, and the reaction is kept at a temperature of 1 to 12 hours, and the reaction temperature of the A2 step is 40°C to 150°C, and the reaction is kept at a temperature of 1 to 24 hours.
The method for producing hexafluoro-1,3-butadiene according to claim 1, characterized in that:
前記A1ステップの反応温度は80℃~160℃であり、6~12時間保温反応させ、前記A2ステップの反応温度は60℃~90℃であり、3~6時間保温反応させる、
ことを特徴とする請求項8に記載のヘキサフルオロ-1,3-ブタジエンの製造方法。
The reaction temperature of the A1 step is 80° C. to 160° C., and the reaction is kept at a temperature of 6 to 12 hours. The reaction temperature of the A2 step is 60° C. to 90° C., and the reaction is kept at a temperature of 3 to 6 hours.
9. The method for producing hexafluoro-1,3-butadiene according to claim 8.
1,4-ジブロモ-2-クロロ-3-ハロ-1,1,2,3,4,4-ヘキサフルオロブタンの製造方法であって、
極性非プロトン性溶媒において、開始剤の作用下で、1,2-ジブロモ-1-クロロ-1,2,2-トリフルオロエタンとトリフルオロハロエチレンとを不活性ガス雰囲気中で反応させ、反応液を精留精製して1,4-ジブロモ-2-クロロ-3-ハロ-1,1,2,3,4,4-ヘキサフルオロブタンを得るステップであって、前記トリフルオロハロエチレンの構造式は、CF=CFXであり、ここでXはCl、Br又はIであり、
前記開始剤は、アゾビスイソブチロニトリル、ジ-tert-ブチルペルオキシド、ジベンゾイルペルオキシド、ジクミルペルオキシド、tert-ブチルヒドロペルオキシド、過硫酸カリウム、過硫酸アンモニウムから選ばれる少なくとも1種であるステップを含む、
1,4-ジブロモ-2-クロロ-3-ハロ-1,1,2,3,4,4-ヘキサフルオロブタンの製造方法。
A method for producing 1,4-dibromo-2-chloro-3-halo-1,1,2,3,4,4-hexafluorobutane, comprising:
In a polar aprotic solvent, 1,2-dibromo-1-chloro-1,2,2-trifluoroethane and trifluorohaloethylene are reacted in an inert gas atmosphere under the action of an initiator. a step of rectifying and purifying the liquid to obtain 1,4-dibromo-2-chloro-3-halo-1,1,2,3,4,4-hexafluorobutane, the step of obtaining 1,4-dibromo-2-chloro-3-halo-1,1,2,3,4,4-hexafluorobutane; The formula is CF 2 =CFX, where X is Cl, Br or I;
The initiator is at least one selected from azobisisobutyronitrile, di-tert-butyl peroxide, dibenzoyl peroxide, dicumyl peroxide, tert-butyl hydroperoxide, potassium persulfate, and ammonium persulfate. ,
A method for producing 1,4-dibromo-2-chloro-3-halo-1,1,2,3,4,4-hexafluorobutane.
JP2022577538A 2020-06-17 2021-06-16 Method for producing hexafluoro-1,3-butadiene and its intermediates Active JP7411124B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN202010552671.4A CN111675597B (en) 2020-06-17 2020-06-17 Preparation method of hexafluoro-1,3-butadiene and intermediate thereof
CN202010552671.4 2020-06-17
PCT/CN2021/100290 WO2021254372A1 (en) 2020-06-17 2021-06-16 Method for preparing hexafluoro-1,3-butadiene and intermediate thereof

Publications (2)

Publication Number Publication Date
JP2023538185A JP2023538185A (en) 2023-09-07
JP7411124B2 true JP7411124B2 (en) 2024-01-10

Family

ID=72435935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022577538A Active JP7411124B2 (en) 2020-06-17 2021-06-16 Method for producing hexafluoro-1,3-butadiene and its intermediates

Country Status (4)

Country Link
JP (1) JP7411124B2 (en)
KR (1) KR20230029802A (en)
CN (1) CN111675597B (en)
WO (1) WO2021254372A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111675597B (en) * 2020-06-17 2022-03-29 浙江省化工研究院有限公司 Preparation method of hexafluoro-1,3-butadiene and intermediate thereof
CN113004118A (en) * 2021-02-07 2021-06-22 中船重工(邯郸)派瑞特种气体有限公司 Method for preparing hexafluorobutadiene by using high-boiling point strong-polarity solvent
KR20230043278A (en) * 2021-09-23 2023-03-31 주식회사 진성이엔지 METHOD FOR PREPARING 1,4-dibromo -2,3-dichlorohexafluorobutane and hexafluoro-1,3-butadiene
CN115572209A (en) * 2022-10-21 2023-01-06 广东电网有限责任公司 Preparation method of 2, 4-dichloro-1, 4-pentafluorobutane
CN116874344B (en) * 2023-09-06 2023-12-08 北京宇极科技发展有限公司 Process for the continuous preparation of E-1, 4, 5-heptafluoro-4- (trifluoromethyl) pent-2-ene

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB774103A (en) 1952-09-15 1957-05-08 Robert Neville Haszeldine Halogenated organic compounds
CN104844411A (en) 2015-04-03 2015-08-19 北京宇极科技发展有限公司 Method for synthesizing hexafluoro-1,3-butadiene
CN105399599A (en) 2015-12-28 2016-03-16 浙江工业大学 Method for preparing hexafluorobutadiene
CN106336342A (en) 2016-07-19 2017-01-18 浙江博瑞电子科技有限公司 Method for preparing hexafluorobutadiene from iodine and chlorine
WO2019240248A1 (en) 2018-06-15 2019-12-19 ダイキン工業株式会社 Method for manufacturing perfluoroalkadiene compound
CN111233619A (en) 2020-03-17 2020-06-05 河北师范大学 Method for synthesizing 4-halogenated-1, 1, 2-trifluoro-1-butene

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111675597B (en) * 2020-06-17 2022-03-29 浙江省化工研究院有限公司 Preparation method of hexafluoro-1,3-butadiene and intermediate thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB774103A (en) 1952-09-15 1957-05-08 Robert Neville Haszeldine Halogenated organic compounds
CN104844411A (en) 2015-04-03 2015-08-19 北京宇极科技发展有限公司 Method for synthesizing hexafluoro-1,3-butadiene
CN105399599A (en) 2015-12-28 2016-03-16 浙江工业大学 Method for preparing hexafluorobutadiene
CN106336342A (en) 2016-07-19 2017-01-18 浙江博瑞电子科技有限公司 Method for preparing hexafluorobutadiene from iodine and chlorine
WO2019240248A1 (en) 2018-06-15 2019-12-19 ダイキン工業株式会社 Method for manufacturing perfluoroalkadiene compound
CN111233619A (en) 2020-03-17 2020-06-05 河北师范大学 Method for synthesizing 4-halogenated-1, 1, 2-trifluoro-1-butene

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Tarrant, Paul et al.,Free radical additions involving fluorine compounds. V. Reactions of 1,2-dibromo-2-chloro- and 1,2-dichloro-2-iodo-1,1,2-trifluoroethane with Fluoroolefins,Journal of the American Chemical Society,1955年07月05日,Vol.77,No.13,3640-3642
V.Dedek et al.,Addition of 1,2-dibromo-1-chlorotrifluoroethane to chloro tri fluoroethylene induced by UV-radiation. Synthesis of perfluoro-1,3-butadiene and perfluoro-1,3,5-hexatriene,Journal of Fluorine Chemistry,1986年05月31日,Vol.31, No.4,363-379

Also Published As

Publication number Publication date
KR20230029802A (en) 2023-03-03
JP2023538185A (en) 2023-09-07
WO2021254372A1 (en) 2021-12-23
CN111675597A (en) 2020-09-18
CN111675597B (en) 2022-03-29

Similar Documents

Publication Publication Date Title
JP7411124B2 (en) Method for producing hexafluoro-1,3-butadiene and its intermediates
JP4854128B2 (en) Fluorovinyl ether and polymers obtainable therefrom
JP7166911B2 (en) Method for producing cyclobutene
JP2006342059A (en) Manufacturing method of chlorofluorobutane
KR20180068991A (en) The functionalized fluorinated copolymer
JP4207001B2 (en) Process for producing polyfluoroalkylethyl iodide
CN105732301A (en) Preparation method of perfluoro butadiene
CN111995502B (en) Method for synthesizing perfluorobutyl methyl ether
JP3882229B2 (en) Novel vinyl ether compounds, synthetic intermediates thereof, and processes for producing them
CN105272818B (en) Prepare the new method of perfluorobutadiene
CN103420783B (en) Preparation method of 1,1,1,4,4,4-hexafluoro-2-butyne
RU2815788C1 (en) Method of producing hexafluoro-1,3-butadiene and intermediate compound thereof
JP2008044863A (en) Perfluoro-organic peroxide, its manufacturing method and manufacturing method of polymer
CN101786977A (en) Preparation method of perfluoroalkyl acyl superoxide
CN112552148B (en) Resource utilization method of byproduct 2-chloro-1, 1,1,3,3, 3-hexafluoropropane in production process of perfluorohexanone
JP2009161530A (en) 1,4-bis(bromodifluoromethyl)tetrafluorobenzene and method for producing the same
CN117222613A (en) Process for producing fluoroalkyne compound
CN109956847B (en) Aqueous phase preparation method of fluorine-containing cyclobutene
KR20220020939A (en) Process for the preparation of alkanes
JP5359144B2 (en) Fluoroolefin iodide mixture and process for producing the same
JP4290058B2 (en) Method for producing fluorine-containing ether compound
JP2503552B2 (en) Novel fluorinated compound and method for producing the same
CN111655676A (en) Method for producing 1, 3-dioxolane compound and perfluoro (2, 2-dimethyl-1, 3-dioxole)
JP4290093B2 (en) Method for producing fluorine-containing ether compound
JP6610625B2 (en) Method for producing 1,2-dichloro-1,2-difluoroethane (HCFC-132), method for producing 1-chloro-1,2-difluoroethylene (HCFO-1122a), and method for separating HCFC-132

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231222

R150 Certificate of patent or registration of utility model

Ref document number: 7411124

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150