WO2019240248A1 - Method for manufacturing perfluoroalkadiene compound - Google Patents

Method for manufacturing perfluoroalkadiene compound Download PDF

Info

Publication number
WO2019240248A1
WO2019240248A1 PCT/JP2019/023600 JP2019023600W WO2019240248A1 WO 2019240248 A1 WO2019240248 A1 WO 2019240248A1 JP 2019023600 W JP2019023600 W JP 2019023600W WO 2019240248 A1 WO2019240248 A1 WO 2019240248A1
Authority
WO
WIPO (PCT)
Prior art keywords
mol
zinc
general formula
compound represented
compound
Prior art date
Application number
PCT/JP2019/023600
Other languages
French (fr)
Japanese (ja)
Inventor
友亮 江藤
勝也 中井
敦 丸尾
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to KR1020217001248A priority Critical patent/KR102556278B1/en
Priority to CN201980040023.6A priority patent/CN112313198A/en
Publication of WO2019240248A1 publication Critical patent/WO2019240248A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/23Preparation of halogenated hydrocarbons by dehalogenation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/25Preparation of halogenated hydrocarbons by splitting-off hydrogen halides from halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C19/00Acyclic saturated compounds containing halogen atoms
    • C07C19/08Acyclic saturated compounds containing halogen atoms containing fluorine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C19/00Acyclic saturated compounds containing halogen atoms
    • C07C19/08Acyclic saturated compounds containing halogen atoms containing fluorine
    • C07C19/10Acyclic saturated compounds containing halogen atoms containing fluorine and chlorine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C19/00Acyclic saturated compounds containing halogen atoms
    • C07C19/08Acyclic saturated compounds containing halogen atoms containing fluorine
    • C07C19/14Acyclic saturated compounds containing halogen atoms containing fluorine and bromine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C19/00Acyclic saturated compounds containing halogen atoms
    • C07C19/08Acyclic saturated compounds containing halogen atoms containing fluorine
    • C07C19/16Acyclic saturated compounds containing halogen atoms containing fluorine and iodine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C21/00Acyclic unsaturated compounds containing halogen atoms
    • C07C21/02Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds
    • C07C21/18Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds containing fluorine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C21/00Acyclic unsaturated compounds containing halogen atoms
    • C07C21/02Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds
    • C07C21/19Halogenated dienes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C21/00Acyclic unsaturated compounds containing halogen atoms
    • C07C21/02Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds
    • C07C21/19Halogenated dienes
    • C07C21/20Halogenated butadienes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa

Definitions

  • the present disclosure relates to a method for producing a perfluoroalkadiene compound.
  • Perfluoroalkadiene compounds are compounds useful as various refrigerants, foaming agents, heat transfer media, etc. in addition to dry etching gases for semiconductors, and have two double bonds between carbon and carbon.
  • hexafluorobutadiene having 4 carbon atoms and having double bonds at both ends is used in various applications.
  • an organic metal compound such as Mg, Zn, Cd, Li or the like is used as a reactant at a desired temperature in the presence of an organic solvent, and ICF 2 CF 2 CF 2 CF 2 I A method by de-IFging such a compound is known (see, for example, Patent Document 1).
  • a method for producing a perfluoroalkadiene compound it is also known that de-IF of a compound such as ICF 2 CF 2 CF 2 CF 2 I is performed in the presence of metallic zinc and a nitrogen-containing compound (for example, patents) Reference 2).
  • the present disclosure aims to provide a method capable of obtaining a perfluoroalkadiene compound in a high yield while reducing the amount of impurities that are difficult to separate.
  • X 1 , X 2 , X 3 and X 4 are the same or different and each represents a halogen atom.
  • both X 1 and X 2 are not fluorine atoms, and both X 3 and X 4 are not fluorine atoms.
  • Item 2. Item 2. The production method according to Item 1, wherein the amount of the iodine-containing inorganic material used is 0.0005 mol or more with respect to 1 mol of the zinc or zinc alloy and less than or equal to the solubility of the organic solvent.
  • Item 3. Item 3.
  • the production method according to Item 1 or 2 wherein the iodine-containing inorganic material is iodine and / or metal iodide.
  • Item 4. Item 4.
  • the reaction step includes a first mixing step of mixing the nitrogen-containing compound with a solution containing the iodine-containing inorganic material, the zinc or zinc alloy, and the organic solvent.
  • the nitrogen-containing compound is added to the solution containing zinc or zinc alloy at an addition rate of 0.1 to 600 mol / hour with respect to 1 mol of zinc or zinc alloy.
  • Item 6. Item 6.
  • the second mixing step 0.05 to 30 mol / hour of the compound represented by the general formula (2) with respect to 1 mol of the zinc or the zinc alloy with respect to the mixed solution obtained in the first mixing step.
  • Item 7. The method according to Item 6, which is added at an addition rate of Item 8.
  • the first mixing step is a temperature of 50 to 200 ° C. when the nitrogen-containing compound and the solution containing the iodine-containing inorganic material, zinc or zinc alloy, and the organic solvent are mixed.
  • the production method according to any one of the above.
  • Item 9. Item 9.
  • Item 10. Item 10.
  • a compound represented by General formula (4A): CF 2 X 1 -CFX 2- (CF 2 ) n-4 -CF CF 2 (4A) [Wherein n is the same as defined above. X 1 and X 2 are the same or different and each represents a halogen atom. However, both X 1 and X 2 are not fluorine atoms. ] And / or general formula (4B): CF 2 H-CFX 2- (CF 2 ) n-4 -CFX 3 -CF 2 H (4B) [Wherein n is the same as defined above. X 2 and X 3 are the same or different and each represents a halogen atom.
  • n is the same as defined above.
  • X 1 , X 2 and X 3 are the same or different and represent a halogen atom. However, both X 1 and X 2 are not fluorine atoms.
  • Item 13 Item 13.
  • Item 14. Item 14. An etching gas, a refrigerant, a heat transfer medium, a foaming agent, or a resin monomer comprising the perfluoroalkadiene composition according to any one of Items 11 to 13.
  • X 1 , X 2 , X 3 and X 4 are the same or different and each represents a halogen atom. However, both X 1 and X 2 are not fluorine atoms, and both X 3 and X 4 are not fluorine atoms. ] The reaction process is made to react.
  • the yield is higher than the methods of Patent Documents 1 and 2, and 1,1,1,2,4,4,4-heptafluoro-2-butene and the like are separated from those of Patent Document 2. Impurities that are difficult to suppress can be suppressed, and the target product can be obtained.
  • n is an integer of 4 to 20, more preferably an integer of 4 to 10.
  • X 1 , X 2 , X 3 and X 4 are halogen atoms, and examples thereof include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • X 1 , X 2 , X 3 and X 4 may be the same or different. However, if both of X 1 and X 2 is fluorine atom, since no perfluoroalkadienes compound obtained without reaction proceeds when both X 3 and X 4 is fluorine atom, X 1 And X 2 is not a fluorine atom, and both X 3 and X 4 are not a fluorine atom.
  • X 1 may be a chlorine atom, a bromine atom, an iodine atom, etc. (especially a chlorine atom)
  • X 2 is preferably a fluorine atom, a chlorine atom, a bromine atom, etc. (especially a fluorine atom, a chlorine atom, etc.)
  • X 3 is preferably a fluorine atom, a chlorine atom, etc. (especially a fluorine atom).
  • X 4 is preferably a chlorine atom, a bromine atom, an iodine atom or the like (particularly a bromine atom or an iodine atom).
  • Examples of the compound represented by the general formula (2) satisfying such conditions include ClCF 2 -CFCl-CF 2 -CF 2 I, ClCF 2 -CFCl-CF 2 -CF 2 -CF 2 I, ClCF 2 -CFCl-CF 2 -CF 2 -CF 2 I, ICF 2 -CF 2 -CF 2 I, ICF 2 -CF 2 -CF 2 -CF 2 -CF 2 I, ICF 2 -CF 2 -CF 2 -CF 2 -CF 2 I, BrCF 2 -CF 2 -CF 2 -CF 2 Br, BrCF 2 -CF 2 -CF 2 -CF 2 -CF 2 Br, BrCF 2 -CF 2 -CF 2 -CF 2 -CF 2 Br, BrCF 2 -CF 2 -CF 2 -CF 2 -CF 2 Br, BrCF 2 -CF 2 -CF 2 -CF 2 -CF 2 -CF 2 Br and the like.
  • ClCF 2 -CFCl -CF 2 -CF 2 I ClCF 2 -CFCl-CF 2 -CF 2 -CF 2 I, ClCF 2 -CFCl-CF 2 -CF 2 -CF 2 I, BrCF 2 -CF 2 -CF 2- CF 2 Br, BrCF 2 -CF 2 -CF 2 -CF 2 -CF 2 Br, BrCF 2 -CF 2 -CF 2 -CF 2 -CF 2 -CF 2 Br, etc.
  • BrCF 2 -CF 2 -CF 2 -CF 2 Br BrCF 2 -CF 2 -CF 2 -CF 2 -CF 2 Br, BrCF 2 -CF 2 -CF 2 -CF 2 Br, BrCF 2 -CF 2 -CF 2 -CF 2 -CF 2 Br and the like are more preferable.
  • the amount of the compound represented by the general formula (2) is used from the viewpoint of obtaining a perfluoroalkadiene compound in a higher yield while reducing the amount of impurities that are difficult to separate, and zinc or a zinc alloy described later.
  • 0.05 to 30 mol is preferable with respect to 1 mol, more preferably 0.1 to 10 mol, and still more preferably 0.2 to 5 mol.
  • the nitrogen-containing compound is not particularly limited as long as it is a compound containing a nitrogen atom.
  • amide compounds N, N-dimethylformamide, N, N-diisopropylformamide, etc.
  • amine compounds triethylamine, etc.
  • pyridine compounds Pyridine, methylpyridine, N-methyl-2-pyrrolidone, etc.
  • quinoline compounds quinoline, methylquinoline, etc.
  • These nitrogen-containing compounds can be used alone or in combination of two or more.
  • amide compounds are preferred, and N, N-dimethylformamide is more preferred from the viewpoint of obtaining a perfluoroalkadiene compound in a higher yield while reducing the amount of impurities that are difficult to separate.
  • This nitrogen-containing compound includes compounds that are liquid at room temperature, but from the viewpoint of obtaining a perfluoroalkadiene compound in a higher yield while reducing the amount of impurities that are difficult to separate, an additive rather than a solvent. It is preferable to use (use a small amount).
  • the amount of the nitrogen-containing compound used is preferably 0.25 to 4 mol, more preferably 0.5 to 2 mol, per 1 mol of zinc or zinc alloy described later.
  • the inorganic material containing iodine is not particularly limited as long as it is an inorganic material containing an iodine atom.
  • iodine typical metal iodide (sodium iodide, potassium iodide, magnesium iodide, calcium iodide, etc.), transition Examples thereof include metal iodides such as metal iodide (such as zinc iodide).
  • zinc halide a mixture of zinc fluoride, zinc chloride, and zinc iodide
  • zinc halide a mixture of zinc fluoride, zinc chloride, and zinc iodide
  • Zinc halide as an impurity contained in the product can be used as an iodine-containing inorganic material and reused in the production method of the present disclosure.
  • These iodine-containing inorganic materials can be used alone or in combination of two or more.
  • Zinc halide, etc. are preferable, and iodine is more preferable.
  • the amount of the iodine-containing inorganic compound used is 0.0005 mol or more with respect to 1 mol of zinc or zinc alloy from the viewpoint of obtaining a higher yield of perfluoroalkadiene compound while reducing the amount of impurities that are difficult to separate.
  • the solubility is preferably not more than the solubility of the organic solvent, and more preferably 0.001 to 0.1 mol with respect to 1 mol of zinc or zinc alloy.
  • Examples of elements that can be contained in zinc or a zinc alloy when using a zinc alloy include lead, cadmium, and iron.
  • Commercially available zinc may contain impurities such as lead, cadmium, and iron. The present disclosure includes those containing these impurities.
  • organic solvent a nonpolar organic solvent is particularly preferable from the viewpoint of dissolving the compound represented by the general formula (1), the iodine-containing inorganic material, and the like.
  • This organic solvent preferably has a boiling point equal to or lower than that of the nitrogen-containing compound.
  • organic solvent include aromatic hydrocarbon compounds such as heptane, hexane, benzene, toluene, and xylene; ether compounds such as tetrahydrofuran and diethyl ether.
  • the amount of the organic solvent used is not particularly limited as long as it is a solvent amount, and is preferably 0.01 to 10 mol, more preferably 0.1 to 5 mol, per 1 mol of zinc or zinc alloy.
  • the compound represented by the general formula (2) is reacted in an organic solvent in the presence of a nitrogen-containing compound, an iodine-containing inorganic material, and zinc or a zinc alloy.
  • the order of addition is not particularly limited, and can be added simultaneously or sequentially.
  • a solution containing an iodine-containing inorganic material, the zinc or zinc alloy, and an organic solvent it is preferable to mix a nitrogen-containing compound (in particular, a nitrogen-containing compound is added to a solution containing an iodine-containing inorganic material, the zinc or zinc alloy, and an organic solvent).
  • the content of each component is preferably adjusted so as to satisfy the content ratio of each component described above.
  • the amount of the compound represented by the general formula (2) to be mixed (especially added) is taken into consideration. It is preferable to adjust the content of each component.
  • a solution containing an iodine-containing inorganic material, the zinc or zinc alloy, and an organic solvent is mixed with a nitrogen-containing compound (the nitrogen-containing compound is added to the solution containing the iodine-containing inorganic material, the zinc or zinc alloy, and the organic solvent).
  • a solution containing the iodine-containing inorganic material, the zinc or zinc alloy, and the organic solvent is preferably mixed with the nitrogen-containing compound at a temperature of 50 to 200 ° C., more preferably 100 to 150 ° C.
  • a nitrogen-containing compound is preferably added to a solution containing an iodine-containing inorganic material, the zinc or zinc alloy, and an organic solvent, preferably at a temperature of 50 to 200 ° C, more preferably 100 to 150 ° C.
  • the solvent is lower than the reaction temperature, so that it volatilizes when the reaction temperature is reached. It can also be returned to the reactor.
  • the nitrogen-containing compound is added while refluxing a solution containing an iodine-containing inorganic material, zinc or a zinc alloy, and an organic solvent, it is most preferable to heat the solution at the reflux temperature.
  • a solution containing the iodine-containing inorganic material, the zinc or zinc alloy and the organic solvent, and the nitrogen-containing compound are mixed.
  • the addition rate reduces the amount of impurities that are difficult to separate.
  • it is preferably 0.1 to 600 mol / hour, more preferably 0.33 to 60 mol / hour, with respect to 1 mole of the zinc or zinc alloy. .
  • the addition time is preferably set to such an extent that the reaction proceeds sufficiently, and particularly preferably adjusted so that the total amount of the nitrogen-containing compound added is in the above-described range. Specifically, the addition time is preferably 0.002 to 10 hours, more preferably 0.02 to 3 hours.
  • a solution containing an iodine-containing inorganic material, the zinc or zinc alloy, and an organic solvent and a nitrogen-containing compound are mixed (particularly, the iodine-containing inorganic material, the zinc or zinc alloy, and an organic solvent).
  • the compound represented by the general formula (2) as a substrate is contained in a solution containing an iodine-containing inorganic material and the zinc or zinc alloy and an organic solvent.
  • pre-substrate addition a solution containing the iodine-containing inorganic material, the zinc or zinc alloy, and the organic solvent, and the nitrogen-containing compound are mixed (in particular, After adding a nitrogen-containing compound to a solution containing the iodine-containing inorganic material, the zinc or zinc alloy, and the organic solvent), the solution and the substrate thus obtained are represented by the general formula (2) Mixed (in particular, thus adding a compound represented by the general formula (2) is a substrate to the resulting solution) may be (hereinafter also referred to as "additive after substrate”).
  • the compound represented by the general formula (2) reacts with the nitrogen-containing compound to generate an impurity that is difficult to separate.
  • post-substrate addition is particularly preferred.
  • the content of the compound represented by the general formula (2) contained in the solution containing the iodine-containing inorganic material, the zinc or zinc alloy, and the organic solvent is the content of each component described above. It is preferable to adjust so that a ratio may be satisfy
  • a nitrogen-containing compound is added to a solution containing an iodine-containing inorganic material and the zinc or zinc alloy and an organic solvent, and then the general formula (2
  • the addition rate (dropping rate) of the compound represented by the general formula (2) when the compound represented by (1) is added is represented by the general formula (1) while reducing the amount of impurities that are difficult to separate.
  • 0.05 to 30 mol / hour is preferable and 0.17 to 6 mol / hour is more preferable with respect to 1 mol of zinc or zinc alloy.
  • the addition time is preferably adjusted so that the reaction proceeds sufficiently, and in particular, it is preferably adjusted so that the total amount of the compound represented by the general formula (2) is within the above-mentioned range. Specifically, the addition time is preferably 0.02 to 10 hours, and more preferably 0.08 to 3 hours.
  • reaction atmosphere is preferably an inert gas atmosphere (nitrogen gas atmosphere, argon gas atmosphere, etc.), and the reaction time (maintenance time at the highest temperature reached) is sufficient for the reaction. It can be a degree of progress.
  • purification can be performed according to a conventional method to obtain a perfluoroalkadiene compound represented by the general formula (1).
  • the yield of the perfluoroalkadiene compound represented by the general formula (1) is increased while reducing the amount of impurities that are difficult to separate.
  • the perfluoroalkadiene compound represented by the general formula (1) can be efficiently obtained while reducing the effort for isolating difficult impurities.
  • the impurities that are difficult to separate are, for example, 1,1,1,2,4,4,4-hepta when trying to obtain hexafluorobutadiene as a perfluoroalkadiene compound represented by the general formula (1).
  • fluoro-2-butene CF 3 CF ⁇ CHCF 3 ).
  • the perfluoroalkadiene compound represented by the general formula (1) thus obtained includes an etching gas for forming a state-of-the-art microstructure such as a semiconductor and a liquid crystal, a refrigerant, a heat transfer medium, a foam It can be effectively used for various uses such as an agent and a resin monomer.
  • a perfluoroalkadiene compound represented by the general formula (1) can be obtained.
  • the perfluoroalkadiene compound represented by the general formula (1) and the general formula (3): CF 2 CF- (CF 2 ) n-4 -CFX 3 -CF 2 H (3) [Wherein n is the same as defined above. X 3 represents a halogen atom. ]
  • a compound represented by the general formula (4A): CF 2 X 1 -CFX 2- (CF 2 ) n-4 -CF CF 2 (4A) [Wherein n is the same as defined above. X 1 and X 2 are the same or different and each represents a halogen atom.
  • X 3 is a halogen atom, and examples thereof include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • X 3 is preferably a fluorine atom, a chlorine atom or the like (particularly a fluorine atom).
  • X 1 and X 2 are halogen atoms, and examples thereof include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • X 1 and X 2 may be the same or different. However, as in the general formula (2), neither X 1 nor X 2 is a fluorine atom.
  • X 1 is preferably a chlorine atom, bromine atom, iodine atom or the like (particularly chlorine atom, bromine atom, etc.), and X 2 is a fluorine atom, chlorine atom, bromine atom or the like (particularly fluorine). Atoms, chlorine atoms, etc.) are preferred.
  • X 2 and X 3 are halogen atoms, and examples thereof include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • X 2 and X 3 may be the same or different.
  • X 2 is preferably a fluorine atom, chlorine atom, bromine atom or the like (especially fluorine atom or chlorine atom)
  • X 3 is fluorine atom, chlorine atom or the like (especially fluorine atom). preferable.
  • Examples of the compound represented by the general formula (4B) satisfying such conditions include HCF 2 -CFCl-CF 2 -CF 2 H, HCF 2 -CFCl-CF 2 -CF 2 -CF 2 H, and HCF 2 -CFCl-CF 2 -CF 2 -CF 2 H, HCF 2 -CF 2 -CF 2 H, HCF 2 -CF 2 -CF 2 -CF 2 H, HCF 2 -CF 2 -CF 2 -CF 2 -CF 2 H and the like, and for the same reason as in general formula (2), HCF 2 -CF 2 -CF 2 -CF 2 H, HCF 2 -CF 2 -CF 2 -CF 2 -CF 2 H, HCF 2 -CF 2 -CF 2 -CF 2 -CF 2 -CF 2 H and the like are preferable.
  • X 1 , X 2 and X 3 are halogen atoms, and examples thereof include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • X 1 , X 2 and X 3 may be the same or different.
  • neither X 1 nor X 2 is a fluorine atom.
  • X 1 is preferably a chlorine atom, bromine atom, iodine atom or the like (particularly chlorine atom, bromine atom, etc.)
  • X 2 is a fluorine atom, chlorine atom, bromine atom or the like (particularly fluorine).
  • X 3 is preferably a fluorine atom, chlorine atom, etc. (particularly a fluorine atom).
  • X 3 is a fluorine atom
  • the compound represented by the general formula (5) is generated in the liquid phase and hardly exists in the gas phase, so only the gas phase of the collection cylinder is analyzed. If it does, it will not be detected. That is, the perfluoroalkadiene composition of the present disclosure is composed of impurities present in both the gas phase and the liquid phase of the collection cylinder.
  • Examples of the compound represented by the general formula (5) satisfying such conditions include ClCF 2 -CFCl-CF 2 -CF 2 H, ClCF 2 -CFCl-CF 2 -CF 2 -CF 2 H, ClCF 2 -CFCl-CF 2 -CF 2 -CF 2 H, ICF 2 -CF 2 -CF 2 H, ICF 2 -CF 2 -CF 2 -CF 2 -CF 2 H, ICF 2 -CF 2 -CF 2 -CF 2 -CF 2 H, BrCF 2 -CF 2 -CF 2 -CF 2 H, BrCF 2 -CF 2 -CF 2 -CF 2 -CF 2 H, BrCF 2 -CF 2 -CF 2 -CF 2 -CF 2 H, BrCF 2 -CF 2 -CF 2 -CF 2 -CF 2 -CF 2 H and the like, and for the same reason as in general formula (2), ClCF 2 -CFCl-CF 2 -CF 2 H, ClCF 2 -CFCl-CF
  • the total amount of the perfluoroalkadiene composition of the present disclosure is 100 mol%, and the content of the perfluoroalkadiene compound represented by the general formula (1) is 80 to 99.8.
  • the content of the compound represented by the general formula (3) is preferably 0.1 to 12 mol% (particularly 0.5 to 10 mol%), and the general formula (4A) and / or Alternatively, the total content of the compound represented by (4B) is preferably 0.01 to 0.6 mol% (particularly 0.02 to 0.5 mol%), and the content of the compound represented by the general formula (5) is 0.05 to 1 mol% ( Particularly preferred is 0.1 to 0.5 mol%).
  • the content of components other than the above (other components) is preferably 0 to 5 mol% (particularly 0.01 to 4 mol%).
  • Such a perfluoroalkadiene composition of the present disclosure includes, as in the case of the above-mentioned perfluoroalkadiene compound alone, a coolant including an etching gas for forming a state-of-the-art microstructure such as a semiconductor and a liquid crystal. It can be effectively used for various applications such as heat transfer media, foaming agents and resin monomers.
  • Example 1 ClCF 2 -CFCl-CF 2 -CF 2 I; ZnI 2 0.18 mol% 200g (0.53mol) xylene, 34.93g (0.53mol) zinc, 0.30g (0.001mol; 0.18mol% with respect to zinc) ZnI 2 in a condenser eggplant flask connected to a trap cooled to -78 ° C The mixture was heated with stirring until the internal temperature reached 140 ° C. After the internal temperature became constant, N, N-dimethylformamide (DMF) was added dropwise at a dropping rate of 0.52 mol / hour (1.04 mol / hour with respect to 1 mol of zinc) while refluxing, and the mixture was stirred for 0.5 hour. Heating at reflux was continued for an hour.
  • DMF N-dimethylformamide
  • Example 2 ClCF 2 —CFCl —CF 2 —CF 2 I; ZnI 2 0.6 mol% The treatment was performed in the same manner as in Example 1 except that the amount of ZnI 2 used was 0.95 g (0.003 mol; 0.56 mol% based on zinc).
  • Example 3 ClCF 2 —CFCl —CF 2 —CF 2 I; ZnI 2 1.6 mol% The treatment was performed in the same manner as in Example 1 except that the amount of ZnI 2 used was 2.70 g (0.53 mol; 1.6 mol% based on zinc).
  • Example 4 ClCF 2 -CFCl-CF 2 -CF 2 I; I 2 1.6 mol% Treatment as in Example 1 except that 2.20 g (0.009 mol; 1.6 mol% with respect to zinc) I 2 was used instead of 0.30 g (0.001 mol; 0.18 mol% with respect to zinc) ZnI 2 Went.
  • Example 5 ClCF 2 —CFCl —CF 2 —CF 2 I; NaI 1.6 mol% Treatment as in Example 1 except that 1.27 g (0.0085 mol; 1.6 mol% relative to zinc) NaI was used instead of 0.30 g (0.001 mol; 0.18 mol% relative to zinc) ZnI 2 went.
  • Example 6 ClCF 2 -CFCl-CF 2 -CF 2 I; NaI 3.2 mol% The same treatment as in Example 1, except that 0.34 g (0.001 mol; 0.18 mol% relative to zinc) ZnI 2 was used instead of 2.54 g (0.017 mol; 3.2 mol% relative to zinc) NaI. went.
  • Example 7 ICF 2 -CF2-CF 2 -CF 2 I; ZnI 2 1.6 mol% Using the ClCF 2 -CFCl-CF 2 In -CF 2 I without ICF 2 -CF2-CF 2 -CF 2 I as substrate, 2.70 g usage ZnI 2 (0.53mol; 1.6mol% relative to the zinc) The treatment was performed in the same manner as in Example 1 except that.
  • Example 8 BrCF 2 -CF2-CF 2 -CF 2 Br; ZnI 2 1.6 mol% But using ClCF 2 -CFCl-CF 2 In -CF 2 I without BrCF 2 -CF2-CF 2 -CF 2 Br as a substrate was treated in the same manner as in Example 1.
  • Reference Example 3 BrCF 2 -CF2-CF 2 -CF 2 Br; BrCF 2 -CF2-CF 2 -CF 2 Br was used instead of ClCF 2 -CFCl-CF 2 -CF 2 I as the substrate without iodine-containing inorganic material.
  • the treatment was performed in the same manner as in Example 1 except that ZnI 2 was not used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

In the present invention, by reacting a compound represented by general formula (2) ((2): CF2X1-CFX2-(CF2)n-4-CFX3-CF2X4) [In the formula: n is as previously described; and X1, X2, X3, and X4 are the same or different, and represent a halogen atom, where X1 and X2 are not both fluorine atoms, and X3 and X4 are not both fluorine atoms.] in the presence of a nitrogen-containing compound, an iodine-containing inorganic material, and zinc or a zinc alloy in an organic solvent, a perfluoroalkadiene compound can be obtained with high yield while the generated amount of an impurity difficult to separate is minimized.

Description

パーフルオロアルカジエン化合物の製造方法Method for producing perfluoroalkadiene compound
 本開示は、パーフルオロアルカジエン化合物の製造方法に関する。 The present disclosure relates to a method for producing a perfluoroalkadiene compound.
 パーフルオロアルカジエン化合物は、半導体用ドライエッチングガスの他、各種冷媒、発泡剤、熱移動媒体等として有用な化合物であり、炭素-炭素間に2つの二重結合を有している。特に、炭素数が4個であり両末端に二重結合を有するヘキサフルオロブタジエンは、様々な用途に活用されている。 Perfluoroalkadiene compounds are compounds useful as various refrigerants, foaming agents, heat transfer media, etc. in addition to dry etching gases for semiconductors, and have two double bonds between carbon and carbon. In particular, hexafluorobutadiene having 4 carbon atoms and having double bonds at both ends is used in various applications.
 このパーフルオロアルカジエン化合物の製造方法としては、有機溶媒の存在下、所望の温度でMg、Zn、Cd、Li等の有機金属化合物を反応剤として用いて、ICF2CF2CF2CF2I等の化合物を脱IFさせることによる方法が知られている(例えば、特許文献1参照)。一方、パーフルオロアルカジエン化合物の製造方法としては、ICF2CF2CF2CF2I等の化合物の脱IFを金属亜鉛及び含窒素化合物の存在下で行うことも知られている(例えば、特許文献2参照)。 As a method for producing this perfluoroalkadiene compound, an organic metal compound such as Mg, Zn, Cd, Li or the like is used as a reactant at a desired temperature in the presence of an organic solvent, and ICF 2 CF 2 CF 2 CF 2 I A method by de-IFging such a compound is known (see, for example, Patent Document 1). On the other hand, as a method for producing a perfluoroalkadiene compound, it is also known that de-IF of a compound such as ICF 2 CF 2 CF 2 CF 2 I is performed in the presence of metallic zinc and a nitrogen-containing compound (for example, patents) Reference 2).
特開昭62-26240号公報JP-A-62-26240 特開2001-192345号公報JP 2001-192345 A
 本開示は、分離しにくい不純物の生成量を少なくしつつパーフルオロアルカジエン化合物を高収率に得ることができる方法を提供することを目的とする。 The present disclosure aims to provide a method capable of obtaining a perfluoroalkadiene compound in a high yield while reducing the amount of impurities that are difficult to separate.
 本開示は、以下の構成を包含する。
項1.一般式(1):
CF2=CF-(CF2)n-4-CF=CF2   (1)
[式中、nは4~20の整数を示す。]
で表されるパーフルオロアルカジエン化合物の製造方法であって、
有機溶媒中で、含窒素化合物、含ヨウ素無機材料、並びに亜鉛若しくは亜鉛合金の存在下に、
一般式(2):
CF2X1-CFX2-(CF2)n-4-CFX3-CF2X4   (2)
[式中、nは前記に同じである。X1、X2、X3及びX4は同一又は異なって、ハロゲン原子を示す。ただし、X1及びX2の双方がフッ素原子となることはなく、且つ、X3及びX4の双方がフッ素原子となることはない。]
で表される化合物を反応させる反応工程
を備える、製造方法。
項2.前記含ヨウ素無機材料の使用量が、前記亜鉛若しくは亜鉛合金1モルに対して0.0005モル以上であり、且つ、前記有機溶媒の溶解度以下である、項1に記載の製造方法。
項3.前記含ヨウ素無機材料がヨウ素及び/又は金属ヨウ化物である、項1又は2に記載の製造方法。
項4.前記反応工程が、前記含ヨウ素無機材料と前記亜鉛若しくは亜鉛合金と前記有機溶媒とを含む溶液と、前記含窒素化合物とを混合する第1混合工程を含む、項1~3のいずれか1項に記載の製造方法。
項5.前記第1混合工程においては、前記亜鉛若しくは亜鉛合金を含む溶液に対して、前記含窒素化合物を前記亜鉛若しくは亜鉛合金1モルに対して0.1~600mol/時間の添加速度で添加する、項4に記載の製造方法。
項6.前記反応工程が、前記第1混合工程の後に、得られた混合液を前記一般式(2)で表される化合物と混合する第2混合工程を含む、項4又は5に記載の製造方法。
項7.前記第2混合工程においては、前記第1混合工程で得られた混合液に対して、前記一般式(2)で表される化合物を前記亜鉛若しくは亜鉛合金1モルに対して0.05~30mol/時間の添加速度で添加する、項6に記載の製造方法。
項8.前記第1混合工程は、前記含ヨウ素無機材料と亜鉛若しくは亜鉛合金と前記有機溶媒とを含む溶液と前記含窒素化合物とを混合する際に50~200℃の温度である、項4~7のいずれか1項に記載の製造方法。
項9.前記含窒素化合物がN,N-ジメチルホルムアミドである、項1~8のいずれか1項に記載の製造方法。
項10.前記有機溶媒の沸点が、前記含窒素化合物の沸点以下である、項1~9のいずれか1項に記載の製造方法。
項11.一般式(1):
CF2=CF-(CF2)n-4-CF=CF2   (1)
[式中、nは4~20の整数を示す。]
で表されるパーフルオロアルカジエン化合物と、
一般式(3):
CF2=CF-(CF2)n-4-CFX3-CF2H   (3)
[式中、nは前記に同じである。X3はハロゲン原子を示す。]
で表される化合物と、
一般式(4A):
CF2X1-CFX2-(CF2)n-4-CF=CF2   (4A)
[式中、nは前記に同じである。X1及びX2は同一又は異なって、ハロゲン原子を示す。ただし、X1及びX2の双方がフッ素原子となることはない。]
で表される化合物、及び/又は一般式(4B):
CF2H-CFX2-(CF2)n-4-CFX3-CF2H   (4B)
[式中、nは前記に同じである。X2及びX3は同一又は異なって、ハロゲン原子を示す。]
で表される化合物と、
一般式(5):
CF2X1-CFX2-(CF2)n-4-CFX3-CF2H   (5)
[式中、nは前記に同じである。X1、X2及びX3は同一又は異なって、ハロゲン原子を示す。ただし、X1及びX2の双方がフッ素原子となることはない。]
で表される化合物と
を含有する、パーフルオロアルカジエン組成物。
項12.前記パーフルオロアルカジエン組成物の総量を100モル%として、前記一般式(1)で表される化合物の含有量が80~99.8モル%である、項11に記載のパーフルオロアルカジエン組成物。
項13.前記パーフルオロアルカジエン化合物が、ヘキサフルオロブタジエンである、項11又は12に記載のパーフルオロアルカジエン組成物。
項14.項11~13のいずれか1項に記載のパーフルオロアルカジエン組成物からなる、エッチングガス、冷媒、熱移動媒体、発泡剤又は樹脂モノマー。
The present disclosure includes the following configurations.
Item 1. General formula (1):
CF 2 = CF- (CF 2 ) n-4 -CF = CF 2 (1)
[Wherein n represents an integer of 4 to 20. ]
A process for producing a perfluoroalkadiene compound represented by:
In an organic solvent, in the presence of a nitrogen-containing compound, an iodine-containing inorganic material, and zinc or a zinc alloy,
General formula (2):
CF 2 X 1 -CFX 2- (CF 2 ) n-4 -CFX 3 -CF 2 X 4 (2)
[Wherein n is the same as defined above. X 1 , X 2 , X 3 and X 4 are the same or different and each represents a halogen atom. However, both X 1 and X 2 are not fluorine atoms, and both X 3 and X 4 are not fluorine atoms. ]
A manufacturing method provided with the reaction process which makes the compound represented by these react.
Item 2. Item 2. The production method according to Item 1, wherein the amount of the iodine-containing inorganic material used is 0.0005 mol or more with respect to 1 mol of the zinc or zinc alloy and less than or equal to the solubility of the organic solvent.
Item 3. Item 3. The production method according to Item 1 or 2, wherein the iodine-containing inorganic material is iodine and / or metal iodide.
Item 4. Item 4. The method according to any one of Items 1 to 3, wherein the reaction step includes a first mixing step of mixing the nitrogen-containing compound with a solution containing the iodine-containing inorganic material, the zinc or zinc alloy, and the organic solvent. The manufacturing method as described in.
Item 5. Item 4. In the first mixing step, the nitrogen-containing compound is added to the solution containing zinc or zinc alloy at an addition rate of 0.1 to 600 mol / hour with respect to 1 mol of zinc or zinc alloy. The manufacturing method as described.
Item 6. Item 6. The production method according to Item 4 or 5, wherein the reaction step includes a second mixing step of mixing the obtained mixed solution with the compound represented by the general formula (2) after the first mixing step.
Item 7. In the second mixing step, 0.05 to 30 mol / hour of the compound represented by the general formula (2) with respect to 1 mol of the zinc or the zinc alloy with respect to the mixed solution obtained in the first mixing step. Item 7. The method according to Item 6, which is added at an addition rate of
Item 8. The first mixing step is a temperature of 50 to 200 ° C. when the nitrogen-containing compound and the solution containing the iodine-containing inorganic material, zinc or zinc alloy, and the organic solvent are mixed. The production method according to any one of the above.
Item 9. Item 9. The production method according to any one of Items 1 to 8, wherein the nitrogen-containing compound is N, N-dimethylformamide.
Item 10. Item 10. The production method according to any one of Items 1 to 9, wherein the boiling point of the organic solvent is not more than the boiling point of the nitrogen-containing compound.
Item 11. General formula (1):
CF 2 = CF- (CF 2 ) n-4 -CF = CF 2 (1)
[Wherein n represents an integer of 4 to 20. ]
A perfluoroalkadiene compound represented by:
General formula (3):
CF 2 = CF- (CF 2 ) n-4 -CFX 3 -CF 2 H (3)
[Wherein n is the same as defined above. X 3 represents a halogen atom. ]
A compound represented by
General formula (4A):
CF 2 X 1 -CFX 2- (CF 2 ) n-4 -CF = CF 2 (4A)
[Wherein n is the same as defined above. X 1 and X 2 are the same or different and each represents a halogen atom. However, both X 1 and X 2 are not fluorine atoms. ]
And / or general formula (4B):
CF 2 H-CFX 2- (CF 2 ) n-4 -CFX 3 -CF 2 H (4B)
[Wherein n is the same as defined above. X 2 and X 3 are the same or different and each represents a halogen atom. ]
A compound represented by
General formula (5):
CF 2 X 1 -CFX 2- (CF 2 ) n-4 -CFX 3 -CF 2 H (5)
[Wherein n is the same as defined above. X 1 , X 2 and X 3 are the same or different and represent a halogen atom. However, both X 1 and X 2 are not fluorine atoms. ]
The perfluoroalkadiene composition containing the compound represented by these.
Item 12. Item 12. The perfluoroalkadiene composition according to Item 11, wherein the total amount of the perfluoroalkadiene composition is 100 mol%, and the content of the compound represented by the general formula (1) is 80 to 99.8 mol%.
Item 13. Item 13. The perfluoroalkadiene composition according to Item 11 or 12, wherein the perfluoroalkadiene compound is hexafluorobutadiene.
Item 14. Item 14. An etching gas, a refrigerant, a heat transfer medium, a foaming agent, or a resin monomer comprising the perfluoroalkadiene composition according to any one of Items 11 to 13.
 本開示によれば、分離しにくい不純物の生成量を少なくしつつパーフルオロアルカジエン化合物を高収率に得ることができる。 According to the present disclosure, it is possible to obtain a perfluoroalkadiene compound in a high yield while reducing the amount of impurities that are difficult to separate.
 本明細書において、「含有」は、「含む(comprise)」、「実質的にのみからなる(consist essentially of)」、及び「のみからなる(consist of)」のいずれも包含する概念である。また、本明細書において、数値範囲を「A~B」で示す場合、A以上B以下を意味する。 In the present specification, “containing” is a concept including any of “comprise”, “consistently of”, and “consist of”. In this specification, when the numerical range is indicated by “A to B”, it means A or more and B or less.
 本開示のパーフルオロアルカジエン化合物の製造方法は、一般式(1):
CF2=CF-(CF2)n-4-CF=CF2   (1)
[式中、nは4~20の整数を示す。]
で表されるパーフルオロアルカジエン化合物の製造方法であって、
有機溶媒中で、含窒素化合物、含ヨウ素無機材料、並びに亜鉛若しくは亜鉛合金の存在下に、
一般式(2):
CF2X1-CFX2-(CF2)n-4-CFX3-CF2X4   (2)
[式中、nは前記に同じである。X1、X2、X3及びX4は同一又は異なって、ハロゲン原子を示す。ただし、X1及びX2の双方がフッ素原子となることはなく、且つ、X3及びX4の双方がフッ素原子となることはない。]
を反応させる反応工程
を備える。
The method for producing the perfluoroalkadiene compound of the present disclosure includes a general formula (1):
CF 2 = CF- (CF 2 ) n-4 -CF = CF 2 (1)
[Wherein n represents an integer of 4 to 20. ]
A process for producing a perfluoroalkadiene compound represented by:
In an organic solvent, in the presence of a nitrogen-containing compound, an iodine-containing inorganic material, and zinc or a zinc alloy,
General formula (2):
CF 2 X 1 -CFX 2- (CF 2 ) n-4 -CFX 3 -CF 2 X 4 (2)
[Wherein n is the same as defined above. X 1 , X 2 , X 3 and X 4 are the same or different and each represents a halogen atom. However, both X 1 and X 2 are not fluorine atoms, and both X 3 and X 4 are not fluorine atoms. ]
The reaction process is made to react.
 本開示においては、特許文献1及び2の方法と比べて収率よく、しかも、特許文献2と比べて1,1,1,2,4,4,4-ヘプタフルオロ-2-ブテン等の分離しにくい不純物を抑制して、目的物を得ることができる。 In the present disclosure, the yield is higher than the methods of Patent Documents 1 and 2, and 1,1,1,2,4,4,4-heptafluoro-2-butene and the like are separated from those of Patent Document 2. Impurities that are difficult to suppress can be suppressed, and the target product can be obtained.
 一般式(1)及び(2)において、nは4~20の整数、より好ましくは4~10の整数である。この範囲とすることにより、分離しにくい不純物の生成量をより少なくしつつパーフルオロアルカジエン化合物をより高収率に得ることができる。 In the general formulas (1) and (2), n is an integer of 4 to 20, more preferably an integer of 4 to 10. By setting it within this range, it is possible to obtain a perfluoroalkadiene compound in a higher yield while reducing the amount of impurities that are difficult to separate.
 つまり、製造しようとする一般式(1)で表されるパーフルオロアルカジエン化合物は、ヘキサフルオロブタジエン(CF2=CF-CF=CF2)、オクタフルオロペンタジエン(CF2=CF-CF2-CF=CF2)、デカフルオロヘキサジエン(CF2=CF-CF2-CF2-CF=CF2)等が挙げられる。 In other words, the perfluoroalkadiene compound represented by the general formula (1) to be produced is hexafluorobutadiene (CF 2 = CF-CF = CF 2 ), octafluoropentadiene (CF 2 = CF-CF 2 -CF = CF 2 ), decafluorohexadiene (CF 2 = CF-CF 2 -CF 2 -CF = CF 2 ) and the like.
 一般式(2)において、X1、X2、X3及びX4はハロゲン原子であり、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。X1、X2、X3及びX4は同一でも異なっていてもよい。ただし、X1及びX2の双方がフッ素原子となる場合や、X3及びX4の双方がフッ素原子となる場合は反応が進行せずパーフルオロアルカジエン化合物が得られないことから、X1及びX2の双方がフッ素原子となることはなく、且つ、X3及びX4の双方がフッ素原子となることはない。なかでも、分離しにくい不純物の生成量をより少なくしつつパーフルオロアルカジエン化合物をより高収率に得ることができる観点から、X1としては塩素原子、臭素原子、ヨウ素原子等(特に塩素原子、臭素原子等)が好ましく、X2としてはフッ素原子、塩素原子、臭素原子等(特にフッ素原子、塩素原子等)が好ましく、X3としてはフッ素原子、塩素原子等(特にフッ素原子)が好ましく、X4としては塩素原子、臭素原子、ヨウ素原子等(特に臭素原子、ヨウ素原子等)が好ましい。 In the general formula (2), X 1 , X 2 , X 3 and X 4 are halogen atoms, and examples thereof include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom. X 1 , X 2 , X 3 and X 4 may be the same or different. However, if both of X 1 and X 2 is fluorine atom, since no perfluoroalkadienes compound obtained without reaction proceeds when both X 3 and X 4 is fluorine atom, X 1 And X 2 is not a fluorine atom, and both X 3 and X 4 are not a fluorine atom. Among them, from the viewpoint of obtaining a perfluoroalkadiene compound in a higher yield while reducing the amount of impurities that are difficult to separate, X 1 may be a chlorine atom, a bromine atom, an iodine atom, etc. (especially a chlorine atom) X 2 is preferably a fluorine atom, a chlorine atom, a bromine atom, etc. (especially a fluorine atom, a chlorine atom, etc.), and X 3 is preferably a fluorine atom, a chlorine atom, etc. (especially a fluorine atom). X 4 is preferably a chlorine atom, a bromine atom, an iodine atom or the like (particularly a bromine atom or an iodine atom).
 このような条件を満たす一般式(2)で表される化合物としては、例えば、ClCF2-CFCl-CF2-CF2I、ClCF2-CFCl-CF2-CF2-CF2I、ClCF2-CFCl-CF2-CF2-CF2-CF2I、ICF2-CF2-CF2-CF2I、ICF2-CF2-CF2-CF2-CF2I、ICF2-CF2-CF2-CF2-CF2-CF2I、BrCF2-CF2-CF2-CF2Br、BrCF2-CF2-CF2-CF2-CF2Br、BrCF2-CF2-CF2-CF2-CF2-CF2Br等が挙げられ、分離しにくい不純物の生成量をより少なくしつつパーフルオロアルカジエン化合物をより高収率に得ることができる観点から、ClCF2-CFCl-CF2-CF2I、ClCF2-CFCl-CF2-CF2-CF2I、ClCF2-CFCl-CF2-CF2-CF2-CF2I、BrCF2-CF2-CF2-CF2Br、BrCF2-CF2-CF2-CF2-CF2Br、BrCF2-CF2-CF2-CF2-CF2-CF2Br等が好ましく、BrCF2-CF2-CF2-CF2Br、BrCF2-CF2-CF2-CF2-CF2Br、BrCF2-CF2-CF2-CF2-CF2-CF2Br等がより好ましい。 Examples of the compound represented by the general formula (2) satisfying such conditions include ClCF 2 -CFCl-CF 2 -CF 2 I, ClCF 2 -CFCl-CF 2 -CF 2 -CF 2 I, ClCF 2 -CFCl-CF 2 -CF 2 -CF 2 -CF 2 I, ICF 2 -CF 2 -CF 2 -CF 2 I, ICF 2 -CF 2 -CF 2 -CF 2 -CF 2 I, ICF 2 -CF 2 -CF 2 -CF 2 -CF 2 -CF 2 I, BrCF 2 -CF 2 -CF 2 -CF 2 Br, BrCF 2 -CF 2 -CF 2 -CF 2 -CF 2 Br, BrCF 2 -CF 2 -CF 2 -CF 2 -CF 2 -CF 2 Br and the like. From the viewpoint of obtaining a perfluoroalkadiene compound in a higher yield while reducing the amount of impurities that are difficult to separate, ClCF 2 -CFCl -CF 2 -CF 2 I, ClCF 2 -CFCl-CF 2 -CF 2 -CF 2 I, ClCF 2 -CFCl-CF 2 -CF 2 -CF 2 -CF 2 I, BrCF 2 -CF 2 -CF 2- CF 2 Br, BrCF 2 -CF 2 -CF 2 -CF 2 -CF 2 Br, BrCF 2 -CF 2 -CF 2 -CF 2 -CF 2 -CF 2 Br, etc. are preferred, BrCF 2 -CF 2 -CF 2 -CF 2 Br, BrCF 2 -CF 2 -CF 2 -CF 2 -CF 2 Br, BrCF 2 -CF 2 -CF 2 -CF 2 -CF 2 -CF 2 Br and the like are more preferable.
 この一般式(2)で表される化合物の使用量は、分離しにくい不純物の生成量をより少なくしつつパーフルオロアルカジエン化合物をより高収率に得られる観点から、後述の亜鉛若しくは亜鉛合金1モルに対して、0.05~30モルが好ましく、0.1~10モルがより好ましく、0.2~5モルがさらに好ましい。 The amount of the compound represented by the general formula (2) is used from the viewpoint of obtaining a perfluoroalkadiene compound in a higher yield while reducing the amount of impurities that are difficult to separate, and zinc or a zinc alloy described later. 0.05 to 30 mol is preferable with respect to 1 mol, more preferably 0.1 to 10 mol, and still more preferably 0.2 to 5 mol.
 含窒素化合物としては、窒素原子を含有する化合物であれば特に制限はなく、例えば、アミド化合物(N,N-ジメチルホルムアミド、N,N-ジイソプロピルホルムアミド等)、アミン化合物(トリエチルアミン等)、ピリジン化合物(ピリジン、メチルピリジン、N-メチル-2-ピロリドン等)、キノリン化合物(キノリン、メチルキノリン等)等が挙げられる。これら含窒素化合物は、単独で用いることもでき、2種以上を組合せて用いることもできる。なかでも、分離しにくい不純物の生成量をより少なくしつつパーフルオロアルカジエン化合物をより高収率に得られる観点から、アミド化合物が好ましく、N,N-ジメチルホルムアミドがより好ましい。 The nitrogen-containing compound is not particularly limited as long as it is a compound containing a nitrogen atom. For example, amide compounds (N, N-dimethylformamide, N, N-diisopropylformamide, etc.), amine compounds (triethylamine, etc.), pyridine compounds (Pyridine, methylpyridine, N-methyl-2-pyrrolidone, etc.), quinoline compounds (quinoline, methylquinoline, etc.) and the like. These nitrogen-containing compounds can be used alone or in combination of two or more. Of these, amide compounds are preferred, and N, N-dimethylformamide is more preferred from the viewpoint of obtaining a perfluoroalkadiene compound in a higher yield while reducing the amount of impurities that are difficult to separate.
 この含窒素化合物は、常温で液体である化合物も含まれるが、分離しにくい不純物の生成量をより少なくしつつパーフルオロアルカジエン化合物をより高収率に得られる観点から、溶媒ではなく添加剤として使用する(少量使用する)ことが好ましい。含窒素化合物の使用量は、後述の亜鉛若しくは亜鉛合金1モルに対して、0.25~4モルが好ましく、0.5~2モルがより好ましい。 This nitrogen-containing compound includes compounds that are liquid at room temperature, but from the viewpoint of obtaining a perfluoroalkadiene compound in a higher yield while reducing the amount of impurities that are difficult to separate, an additive rather than a solvent. It is preferable to use (use a small amount). The amount of the nitrogen-containing compound used is preferably 0.25 to 4 mol, more preferably 0.5 to 2 mol, per 1 mol of zinc or zinc alloy described later.
 含ヨウ素無機材料としては、ヨウ素原子を含有する無機材料であれば特に制限はなく、例えば、ヨウ素;典型金属ヨウ化物(ヨウ化ナトリウム、ヨウ化カリウム、ヨウ化マグネシウム、ヨウ化カルシウム等)、遷移金属ヨウ化物(ヨウ化亜鉛等)等の金属ヨウ化物等が挙げられる。なお、本開示の製造方法によれば、生成物中に不純物としてハロゲン化亜鉛(フッ化亜鉛、塩化亜鉛及びヨウ化亜鉛の混合物)が生成され得る。この生成物中に含まれる不純物としてのハロゲン化亜鉛を、含ヨウ素無機材料として使用し、本開示の製造方法に再利用することも可能である。これら含ヨウ素無機材料は、単独で用いることもでき、2種以上を組合せて用いることもできる。なかでも、分離しにくい不純物の生成量をより少なくしつつパーフルオロアルカジエン化合物をより高収率に得られる観点から、ヨウ素、遷移金属ヨウ化物、本開示の製造方法による生成物中の不純物としてのハロゲン化亜鉛等が好ましく、ヨウ素がより好ましい。なお、含ヨウ素無機化合物の代わりに、含ハロゲン材料として、フッ化亜鉛や塩化亜鉛等のように、ヨウ素を含まない材料を使用した場合にはパーフルオロアルカジエン化合物の収率を向上させる効果は得られない。 The inorganic material containing iodine is not particularly limited as long as it is an inorganic material containing an iodine atom. For example, iodine; typical metal iodide (sodium iodide, potassium iodide, magnesium iodide, calcium iodide, etc.), transition Examples thereof include metal iodides such as metal iodide (such as zinc iodide). According to the manufacturing method of the present disclosure, zinc halide (a mixture of zinc fluoride, zinc chloride, and zinc iodide) can be generated as an impurity in the product. Zinc halide as an impurity contained in the product can be used as an iodine-containing inorganic material and reused in the production method of the present disclosure. These iodine-containing inorganic materials can be used alone or in combination of two or more. Among them, from the viewpoint of obtaining a perfluoroalkadiene compound in a higher yield while reducing the amount of impurities that are difficult to separate, iodine, transition metal iodide, and impurities in the product produced by the production method of the present disclosure Zinc halide, etc. are preferable, and iodine is more preferable. In addition, when using a material that does not contain iodine, such as zinc fluoride or zinc chloride, as the halogen-containing material instead of the iodine-containing inorganic compound, the effect of improving the yield of the perfluoroalkadiene compound is I can't get it.
 この含ヨウ素無機化合物の使用量は、分離しにくい不純物の生成量をより少なくしつつパーフルオロアルカジエン化合物をより高収率に得られる観点から、亜鉛若しくは亜鉛合金1モルに対して0.0005モル以上であり、且つ、有機溶媒の溶解度以下であることが好ましく、亜鉛若しくは亜鉛合金1モルに対して0.001~0.1モルがより好ましい。 The amount of the iodine-containing inorganic compound used is 0.0005 mol or more with respect to 1 mol of zinc or zinc alloy from the viewpoint of obtaining a higher yield of perfluoroalkadiene compound while reducing the amount of impurities that are difficult to separate. In addition, the solubility is preferably not more than the solubility of the organic solvent, and more preferably 0.001 to 0.1 mol with respect to 1 mol of zinc or zinc alloy.
 亜鉛若しくは亜鉛合金において、亜鉛合金を使用する場合に含まれ得る元素としては、例えば、鉛、カドミウム、鉄等が挙げられる。なお、市販の亜鉛には、鉛、カドミウム、鉄等の不純物が含まれていることもある。本開示ではこれらの不純物を含むものも包含される。 Examples of elements that can be contained in zinc or a zinc alloy when using a zinc alloy include lead, cadmium, and iron. Commercially available zinc may contain impurities such as lead, cadmium, and iron. The present disclosure includes those containing these impurities.
 有機溶媒としては、特に一般式(1)で表される化合物、含ヨウ素無機材料等を溶解させる観点から非極性有機溶媒が好ましい。この有機溶媒は、沸点が含窒素化合物の沸点以下であることが好ましい。このような有機溶媒としては、例えば、ヘプタン、ヘキサン、ベンゼン、トルエン、キシレン等の芳香族炭化水素化合物;テトラヒドロフラン、ジエチルエーテル等のエーテル化合物等が挙げられる。 As the organic solvent, a nonpolar organic solvent is particularly preferable from the viewpoint of dissolving the compound represented by the general formula (1), the iodine-containing inorganic material, and the like. This organic solvent preferably has a boiling point equal to or lower than that of the nitrogen-containing compound. Examples of such an organic solvent include aromatic hydrocarbon compounds such as heptane, hexane, benzene, toluene, and xylene; ether compounds such as tetrahydrofuran and diethyl ether.
 有機溶媒の使用量は、溶媒量であれば特に制限はなく、亜鉛若しくは亜鉛合金1モルに対して、0.01~10モルが好ましく、0.1~5モルがより好ましい。 The amount of the organic solvent used is not particularly limited as long as it is a solvent amount, and is preferably 0.01 to 10 mol, more preferably 0.1 to 5 mol, per 1 mol of zinc or zinc alloy.
 本開示の製造方法では、有機溶媒中で、含窒素化合物、含ヨウ素無機材料、並びに亜鉛若しくは亜鉛合金の存在下に、一般式(2)で表される化合物を反応させる。この添加順序は特に制限はなく、同時に投入することもできるし、逐次的に投入することもできる。なかでも、分離しにくい不純物の生成量をより少なくしつつパーフルオロアルカジエン化合物をより高収率に得られる観点から、含ヨウ素無機材料と前記亜鉛若しくは亜鉛合金と有機溶媒とを含む溶液と、含窒素化合物とを混合する(特に、含ヨウ素無機材料と前記亜鉛若しくは亜鉛合金と有機溶媒とを含む溶液に対して、含窒素化合物を添加する)ことが好ましい。 In the production method of the present disclosure, the compound represented by the general formula (2) is reacted in an organic solvent in the presence of a nitrogen-containing compound, an iodine-containing inorganic material, and zinc or a zinc alloy. The order of addition is not particularly limited, and can be added simultaneously or sequentially. Among them, from the viewpoint of obtaining a perfluoroalkadiene compound in a higher yield while reducing the amount of impurities that are difficult to separate, a solution containing an iodine-containing inorganic material, the zinc or zinc alloy, and an organic solvent, It is preferable to mix a nitrogen-containing compound (in particular, a nitrogen-containing compound is added to a solution containing an iodine-containing inorganic material, the zinc or zinc alloy, and an organic solvent).
 含ヨウ素無機材料と前記亜鉛若しくは亜鉛合金と有機溶媒とを含む溶液において、各成分の含有量は上記した各成分の含有割合を満たすように調整することが好ましい。なお、一般式(2)で表される化合物を後の工程で混合(特に添加)する場合は、混合(特に添加)する予定の一般式(2)で表される化合物の量を考慮のうえで各成分の含有量を調整することが好ましい。 In the solution containing the iodine-containing inorganic material, the zinc or zinc alloy, and the organic solvent, the content of each component is preferably adjusted so as to satisfy the content ratio of each component described above. In addition, when mixing (especially adding) the compound represented by the general formula (2) in a later step, the amount of the compound represented by the general formula (2) to be mixed (especially added) is taken into consideration. It is preferable to adjust the content of each component.
 含ヨウ素無機材料と前記亜鉛若しくは亜鉛合金と有機溶媒とを含む溶液と含窒素化合物とを混合する(含ヨウ素無機材料と前記亜鉛若しくは亜鉛合金と有機溶媒とを含む溶液に対して含窒素化合物を添加する)場合、含ヨウ素無機材料と前記亜鉛若しくは亜鉛合金と有機溶媒とを含む溶液を好ましくは50~200℃、より好ましくは100~150℃の温度で含窒素化合物と混合することが好ましい。特に、含ヨウ素無機材料と前記亜鉛若しくは亜鉛合金と有機溶媒とを含む溶液を好ましくは50~200℃、より好ましくは100~150℃の温度で含窒素化合物を添加することが好ましい。また、含ヨウ素無機材料と亜鉛若しくは亜鉛合金並びに有機溶媒を含む溶液を還流しながら含窒素化合物を添加することで、溶媒が反応温度より低いために反応温度となると揮発し、それを冷却してまた反応器へ戻すことができる。含ヨウ素無機材料と亜鉛若しくは亜鉛合金並びに有機溶媒を含む溶液を還流しながら含窒素化合物を添加する場合は、溶液を還流温度下に加熱することが最も好ましい。 A solution containing an iodine-containing inorganic material, the zinc or zinc alloy, and an organic solvent is mixed with a nitrogen-containing compound (the nitrogen-containing compound is added to the solution containing the iodine-containing inorganic material, the zinc or zinc alloy, and the organic solvent). In the case of addition), a solution containing the iodine-containing inorganic material, the zinc or zinc alloy, and the organic solvent is preferably mixed with the nitrogen-containing compound at a temperature of 50 to 200 ° C., more preferably 100 to 150 ° C. In particular, a nitrogen-containing compound is preferably added to a solution containing an iodine-containing inorganic material, the zinc or zinc alloy, and an organic solvent, preferably at a temperature of 50 to 200 ° C, more preferably 100 to 150 ° C. Further, by adding a nitrogen-containing compound while refluxing a solution containing an iodine-containing inorganic material, zinc or a zinc alloy, and an organic solvent, the solvent is lower than the reaction temperature, so that it volatilizes when the reaction temperature is reached. It can also be returned to the reactor. When the nitrogen-containing compound is added while refluxing a solution containing an iodine-containing inorganic material, zinc or a zinc alloy, and an organic solvent, it is most preferable to heat the solution at the reflux temperature.
 加熱(特に還流温度下に加熱)後、含ヨウ素無機材料と前記亜鉛若しくは亜鉛合金と有機溶媒とを含む溶液と含窒素化合物とを混合する。例えば、含ヨウ素無機材料と前記亜鉛若しくは亜鉛合金と有機溶媒とを含む溶液に含窒素化合物を添加する場合は、その添加速度(滴下速度)は、分離しにくい不純物の生成量をより少なくしつつ一般式(1)で表されるパーフルオロアルカジエン化合物をより高収率に得られる観点から、前記亜鉛若しくは亜鉛合金1モルに対して0.1~600mol/時間が好ましく0.33~60mol/時間がより好ましい。添加時間は反応が十分に進行する程度とすることが好ましく、特に、含窒素化合物を添加した総量が上記した範囲になるように調整することが好ましい。具体的には、添加時間は0.002~10時間が好ましく、0.02~3時間がより好ましい。 After heating (especially heating under reflux temperature), a solution containing the iodine-containing inorganic material, the zinc or zinc alloy and the organic solvent, and the nitrogen-containing compound are mixed. For example, when a nitrogen-containing compound is added to a solution containing an iodine-containing inorganic material, the zinc or zinc alloy, and an organic solvent, the addition rate (dropping rate) reduces the amount of impurities that are difficult to separate. From the viewpoint of obtaining a perfluoroalkadiene compound represented by the general formula (1) in a higher yield, it is preferably 0.1 to 600 mol / hour, more preferably 0.33 to 60 mol / hour, with respect to 1 mole of the zinc or zinc alloy. . The addition time is preferably set to such an extent that the reaction proceeds sufficiently, and particularly preferably adjusted so that the total amount of the nitrogen-containing compound added is in the above-described range. Specifically, the addition time is preferably 0.002 to 10 hours, more preferably 0.02 to 3 hours.
 上記した本開示の製造方法において、含ヨウ素無機材料と前記亜鉛若しくは亜鉛合金と有機溶媒とを含む溶液と含窒素化合物とを混合する(特に、含ヨウ素無機材料と前記亜鉛若しくは亜鉛合金と有機溶媒とを含む溶液に対して含窒素化合物を添加する)場合、基質である一般式(2)で表される化合物は、含ヨウ素無機材料と前記亜鉛若しくは亜鉛合金と有機溶媒とを含む溶液中に含まれていてもよい(以下、「基質前添加」と言うこともある)し、含ヨウ素無機材料と前記亜鉛若しくは亜鉛合金と有機溶媒とを含む溶液と含窒素化合物とを混合した(特に、含ヨウ素無機材料と前記亜鉛若しくは亜鉛合金と有機溶媒とを含む溶液に含窒素化合物を添加した)後に、このようにして得られた溶液と基質である一般式(2)で表される化合物と混合(特に、このようにして得られた溶液に基質である一般式(2)で表される化合物を添加)してもよい(以下、「基質後添加」と言うこともある)。これらのなかでも、亜鉛若しくは亜鉛合金と含窒素化合物とをあらかじめ反応させておくことで、一般式(2)で表される化合物と含窒素化合物とが反応して分離しにくい不純物が生成することをより抑制し、結果的にパーフルオロアルカジエン化合物の収率もより向上させる観点から、基質後添加が特に好ましい。 In the production method of the present disclosure described above, a solution containing an iodine-containing inorganic material, the zinc or zinc alloy, and an organic solvent and a nitrogen-containing compound are mixed (particularly, the iodine-containing inorganic material, the zinc or zinc alloy, and an organic solvent). In the case of adding a nitrogen-containing compound to a solution containing, the compound represented by the general formula (2) as a substrate is contained in a solution containing an iodine-containing inorganic material and the zinc or zinc alloy and an organic solvent. It may be contained (hereinafter sometimes referred to as “pre-substrate addition”), and a solution containing the iodine-containing inorganic material, the zinc or zinc alloy, and the organic solvent, and the nitrogen-containing compound are mixed (in particular, After adding a nitrogen-containing compound to a solution containing the iodine-containing inorganic material, the zinc or zinc alloy, and the organic solvent), the solution and the substrate thus obtained are represented by the general formula (2) Mixed (in particular, thus adding a compound represented by the general formula (2) is a substrate to the resulting solution) may be (hereinafter also referred to as "additive after substrate"). Among these, by reacting zinc or a zinc alloy with a nitrogen-containing compound in advance, the compound represented by the general formula (2) reacts with the nitrogen-containing compound to generate an impurity that is difficult to separate. From the viewpoint of further suppressing the above and consequently improving the yield of the perfluoroalkadiene compound, post-substrate addition is particularly preferred.
 基質前添加を採用する場合、含ヨウ素無機材料と前記亜鉛若しくは亜鉛合金と有機溶媒とを含む溶液中に含まれる一般式(2)で表される化合物の含有量が、上記した各成分の含有割合を満たすように調整することが好ましい。 When the pre-substrate addition is employed, the content of the compound represented by the general formula (2) contained in the solution containing the iodine-containing inorganic material, the zinc or zinc alloy, and the organic solvent is the content of each component described above. It is preferable to adjust so that a ratio may be satisfy | filled.
 基質後添加を採用する場合、含ヨウ素無機材料と前記亜鉛若しくは亜鉛合金と有機溶媒とを含む溶液に含窒素化合物を添加した後に、このようにして得られた溶液に基質である一般式(2)で表される化合物を添加する場合における一般式(2)で表される化合物の添加速度(滴下速度)は、分離しにくい不純物の生成量をより少なくしつつ一般式(1)で表されるパーフルオロアルカジエン化合物をより高収率に得られる観点から、前記亜鉛若しくは亜鉛合金1モルに対して0.05~30mol/時間が好ましく、0.17~6mol/時間がより好ましい。添加時間は反応が十分に進行する程度とすることが好ましく、特に、一般式(2)で表される化合物を添加した総量が上記した範囲になるように調整することが好ましい。具体的には、添加時間は0.02~10時間が好ましく、0.08~3時間がより好ましい。 When employing post-substrate addition, a nitrogen-containing compound is added to a solution containing an iodine-containing inorganic material and the zinc or zinc alloy and an organic solvent, and then the general formula (2 The addition rate (dropping rate) of the compound represented by the general formula (2) when the compound represented by (1) is added is represented by the general formula (1) while reducing the amount of impurities that are difficult to separate. From the viewpoint of obtaining a higher yield of perfluoroalkadiene compound, 0.05 to 30 mol / hour is preferable and 0.17 to 6 mol / hour is more preferable with respect to 1 mol of zinc or zinc alloy. The addition time is preferably adjusted so that the reaction proceeds sufficiently, and in particular, it is preferably adjusted so that the total amount of the compound represented by the general formula (2) is within the above-mentioned range. Specifically, the addition time is preferably 0.02 to 10 hours, and more preferably 0.08 to 3 hours.
 なお、上記以外の反応条件は特に制限はなく、例えば、反応雰囲気は不活性ガス雰囲気(窒素ガス雰囲気、アルゴンガス雰囲気等)が好ましく、反応時間(最高到達温度における維持時間)は反応が十分に進行する程度とすることができる。反応終了後は、常法にしたがって精製処理を行い、一般式(1)で表されるパーフルオロアルカジエン化合物を得ることができる。 The reaction conditions other than the above are not particularly limited. For example, the reaction atmosphere is preferably an inert gas atmosphere (nitrogen gas atmosphere, argon gas atmosphere, etc.), and the reaction time (maintenance time at the highest temperature reached) is sufficient for the reaction. It can be a degree of progress. After completion of the reaction, purification can be performed according to a conventional method to obtain a perfluoroalkadiene compound represented by the general formula (1).
 このような本開示の製造方法によれば、分離しにくい不純物の生成量をより少なくしつつ一般式(1)で表されるパーフルオロアルカジエン化合物の収率を高くしたものであり、分離しにくい不純物の単離の労力を低減するとともに効率的に一般式(1)で表されるパーフルオロアルカジエン化合物を得ることができる。なお、分離しにくい不純物は、例えば一般式(1)で表されるパーフルオロアルカジエン化合物としてヘキサフルオロブタジエンを得ようとする場合は、1,1,1,2,4,4,4-ヘプタフルオロ-2-ブテン(CF3CF=CHCF3)等が挙げられる。 According to such a production method of the present disclosure, the yield of the perfluoroalkadiene compound represented by the general formula (1) is increased while reducing the amount of impurities that are difficult to separate. The perfluoroalkadiene compound represented by the general formula (1) can be efficiently obtained while reducing the effort for isolating difficult impurities. The impurities that are difficult to separate are, for example, 1,1,1,2,4,4,4-hepta when trying to obtain hexafluorobutadiene as a perfluoroalkadiene compound represented by the general formula (1). And fluoro-2-butene (CF 3 CF═CHCF 3 ).
 このようにして得られる一般式(1)で表されるパーフルオロアルカジエン化合物は、半導体、液晶等の最先端の微細構造を形成するためのエッチングガスをはじめとして、冷媒、熱移動媒体、発泡剤、樹脂モノマー等の各種用途に有効利用できる。 The perfluoroalkadiene compound represented by the general formula (1) thus obtained includes an etching gas for forming a state-of-the-art microstructure such as a semiconductor and a liquid crystal, a refrigerant, a heat transfer medium, a foam It can be effectively used for various uses such as an agent and a resin monomer.
 このようにして、一般式(1)で表されるパーフルオロアルカジエン化合物を得ることができるが、一般式(1)で表されるパーフルオロアルカジエン化合物と、一般式(3):
CF2=CF-(CF2)n-4-CFX3-CF2H   (3)
[式中、nは前記に同じである。X3はハロゲン原子を示す。]
で表される化合物と、一般式(4A):
CF2X1-CFX2-(CF2)n-4-CF=CF2   (4A)
[式中、nは前記に同じである。X1及びX2は同一又は異なって、ハロゲン原子を示す。ただし、X1及びX2の双方がフッ素原子となることはない。]
で表される化合物、及び/又は一般式(4B):
CF2H-CFX2-(CF2)n-4-CFX3-CF2H   (4B)
[式中、nは前記に同じである。X2及びX3は同一又は異なって、ハロゲン原子を示す。]
で表される化合物と、一般式(5):
CF2X1-CFX2-(CF2)n-4-CFX3-CF2H   (5)
[式中、nは前記に同じである。X1、X2及びX3は同一又は異なって、ハロゲン原子を示す。ただし、X1及びX2の双方がフッ素原子となることはない。]
で表される化合物とを含有する、パーフルオロアルカジエン組成物の形で得られることもある。
In this way, a perfluoroalkadiene compound represented by the general formula (1) can be obtained. The perfluoroalkadiene compound represented by the general formula (1) and the general formula (3):
CF 2 = CF- (CF 2 ) n-4 -CFX 3 -CF 2 H (3)
[Wherein n is the same as defined above. X 3 represents a halogen atom. ]
And a compound represented by the general formula (4A):
CF 2 X 1 -CFX 2- (CF 2 ) n-4 -CF = CF 2 (4A)
[Wherein n is the same as defined above. X 1 and X 2 are the same or different and each represents a halogen atom. However, both X 1 and X 2 are not fluorine atoms. ]
And / or general formula (4B):
CF 2 H-CFX 2- (CF 2 ) n-4 -CFX 3 -CF 2 H (4B)
[Wherein n is the same as defined above. X 2 and X 3 are the same or different and each represents a halogen atom. ]
And a compound represented by the general formula (5):
CF 2 X 1 -CFX 2- (CF 2 ) n-4 -CFX 3 -CF 2 H (5)
[Wherein n is the same as defined above. X 1 , X 2 and X 3 are the same or different and represent a halogen atom. However, both X 1 and X 2 are not fluorine atoms. ]
It may be obtained in the form of a perfluoroalkadiene composition containing a compound represented by:
 一般式(3)において、X3はハロゲン原子であり、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。一般式(2)と同様に、X3としてはフッ素原子、塩素原子等(特にフッ素原子)が好ましい。このような条件を満たす一般式(3)で表される化合物としては、例えば、CF2=CF-CF2-CF2H、CF2=CF-CF2-CF2-CF2H、CF2=CF-CF2-CF2-CF2-CF2H等が挙げられる。 In the general formula (3), X 3 is a halogen atom, and examples thereof include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. As in the general formula (2), X 3 is preferably a fluorine atom, a chlorine atom or the like (particularly a fluorine atom). Examples of the compound represented by the general formula (3) that satisfies such conditions include CF 2 = CF-CF 2 -CF 2 H, CF 2 = CF-CF 2 -CF 2 -CF 2 H, CF 2 = CF-CF 2 -CF 2 -CF 2 -CF 2 H and the like.
 一般式(4A)において、X1及びX2はハロゲン原子であり、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。X1及びX2は同一でも異なっていてもよい。ただし、一般式(2)と同様に、X1及びX2の双方がフッ素原子となることはない。一般式(2)と同様に、X1としては塩素原子、臭素原子、ヨウ素原子等(特に塩素原子、臭素原子等)が好ましく、X2としてはフッ素原子、塩素原子、臭素原子等(特にフッ素原子、塩素原子等)が好ましい。このような一般式(4A)で表される化合物としては、例えば、ClCF2-CFCl-CF=CF2、ClCF2-CFCl-CF2-CF=CF2、ClCF2-CFCl-CF2-CF2-CF=CF2、ICF2-CF2-CF=CF2、ICF2-CF2-CF2-CF=CF2、ICF2-CF2-CF2-CF2-CF=CF2、BrCF2-CF2-CF=CF2、BrCF2-CF2-CF2-CF=CF2、BrCF2-CF2-CF2-CF2-CF=CF2等が挙げられ、一般式(2)と同様の理由で、ClCF2-CFCl-CF=CF2、ClCF2-CFCl-CF2-CF=CF2、ClCF2-CFCl-CF2-CF2-CF=CF2、BrCF2-CF2-CF=CF2、BrCF2-CF2-CF2-CF=CF2、BrCF2-CF2-CF2-CF2-CF=CF2等が好ましく、BrCF2-CF2-CF=CF2、BrCF2-CF2-CF2-CF=CF2、BrCF2-CF2-CF2-CF2-CF=CF2等がより好ましい。 In the general formula (4A), X 1 and X 2 are halogen atoms, and examples thereof include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. X 1 and X 2 may be the same or different. However, as in the general formula (2), neither X 1 nor X 2 is a fluorine atom. As in the general formula (2), X 1 is preferably a chlorine atom, bromine atom, iodine atom or the like (particularly chlorine atom, bromine atom, etc.), and X 2 is a fluorine atom, chlorine atom, bromine atom or the like (particularly fluorine). Atoms, chlorine atoms, etc.) are preferred. Examples of the compound represented by the general formula (4A) include ClCF 2 -CFCl-CF = CF 2 , ClCF 2 -CFCl-CF 2 -CF = CF 2 , ClCF 2 -CFCl-CF 2 -CF 2 -CF = CF 2 , ICF 2 -CF 2 -CF = CF 2 , ICF 2 -CF 2 -CF 2 -CF = CF 2 , ICF 2 -CF 2 -CF 2 -CF 2 -CF = CF 2 , BrCF 2 -CF 2 -CF = CF 2 , BrCF 2 -CF 2 -CF 2 -CF = CF 2 , BrCF 2 -CF 2 -CF 2 -CF 2 -CF = CF 2 and the like, general formula (2) For the same reason, ClCF 2 -CFCl-CF = CF 2 , ClCF 2 -CFCl-CF 2 -CF = CF 2 , ClCF 2 -CFCl-CF 2 -CF 2 -CF = CF 2 , BrCF 2 -CF 2 -CF = CF 2 , BrCF 2 -CF 2 -CF 2 -CF = CF 2 , BrCF 2 -CF 2 -CF 2 -CF 2 -CF = CF 2 etc. are preferred, BrCF 2 -CF 2 -CF = CF 2 More preferred are BrCF 2 -CF 2 -CF 2 -CF = CF 2 , BrCF 2 -CF 2 -CF 2 -CF 2 -CF = CF 2, and the like.
 一般式(4B)において、X2及びX3はハロゲン原子であり、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。X2及びX3は同一でも異なっていてもよい。一般式(2)と同様に、X2としてはフッ素原子、塩素原子、臭素原子等(特にフッ素原子、塩素原子等)が好ましく、X3としてはフッ素原子、塩素原子等(特にフッ素原子)が好ましい。このような条件を満たす一般式(4B)で表される化合物としては、例えば、HCF2-CFCl-CF2-CF2H、HCF2-CFCl-CF2-CF2-CF2H、HCF2-CFCl-CF2-CF2-CF2-CF2H、HCF2-CF2-CF2-CF2H、HCF2-CF2-CF2-CF2-CF2H、HCF2-CF2-CF2-CF2-CF2-CF2H等が挙げられ、一般式(2)と同様の理由で、HCF2-CF2-CF2-CF2H、HCF2-CF2-CF2-CF2-CF2H、HCF2-CF2-CF2-CF2-CF2-CF2H等が好ましい。 In the general formula (4B), X 2 and X 3 are halogen atoms, and examples thereof include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. X 2 and X 3 may be the same or different. As in general formula (2), X 2 is preferably a fluorine atom, chlorine atom, bromine atom or the like (especially fluorine atom or chlorine atom), and X 3 is fluorine atom, chlorine atom or the like (especially fluorine atom). preferable. Examples of the compound represented by the general formula (4B) satisfying such conditions include HCF 2 -CFCl-CF 2 -CF 2 H, HCF 2 -CFCl-CF 2 -CF 2 -CF 2 H, and HCF 2 -CFCl-CF 2 -CF 2 -CF 2 -CF 2 H, HCF 2 -CF 2 -CF 2 -CF 2 H, HCF 2 -CF 2 -CF 2 -CF 2 -CF 2 H, HCF 2 -CF 2 -CF 2 -CF 2 -CF 2 -CF 2 H and the like, and for the same reason as in general formula (2), HCF 2 -CF 2 -CF 2 -CF 2 H, HCF 2 -CF 2 -CF 2 -CF 2 -CF 2 H, HCF 2 -CF 2 -CF 2 -CF 2 -CF 2 -CF 2 H and the like are preferable.
 一般式(5)において、X1、X2及びX3はハロゲン原子であり、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。X1、X2及びX3は同一でも異なっていてもよい。ただし、一般式(2)と同様に、X1及びX2の双方がフッ素原子となることはない。一般式(2)と同様に、X1としては塩素原子、臭素原子、ヨウ素原子等(特に塩素原子、臭素原子等)が好ましく、X2としてはフッ素原子、塩素原子、臭素原子等(特にフッ素原子、塩素原子等)が好ましく、X3としてはフッ素原子、塩素原子等(特にフッ素原子)が好ましい。特にX3がフッ素原子である場合には、この一般式(5)で表される化合物は液相中に多く発生し気相中にはほとんど存在しないため、捕集ボンベの気相のみを分析した場合は検出されない。つまり、本開示のパーフルオロアルカジエン組成物は、捕集ボンベの気相及び液相の双方に存在する不純物から構成されるものである。このような条件を満たす一般式(5)で表される化合物としては、例えば、ClCF2-CFCl-CF2-CF2H、ClCF2-CFCl-CF2-CF2-CF2H、ClCF2-CFCl-CF2-CF2-CF2-CF2H、ICF2-CF2-CF2-CF2H、ICF2-CF2-CF2-CF2-CF2H、ICF2-CF2-CF2-CF2-CF2-CF2H、BrCF2-CF2-CF2-CF2H、BrCF2-CF2-CF2-CF2-CF2H、BrCF2-CF2-CF2-CF2-CF2-CF2H等が挙げられ、一般式(2)と同様の理由で、ClCF2-CFCl-CF2-CF2H、ClCF2-CFCl-CF2-CF2-CF2H、ClCF2-CFCl-CF2-CF2-CF2-CF2H、BrCF2-CF2-CF2-CF2H、BrCF2-CF2-CF2-CF2-CF2H、BrCF2-CF2-CF2-CF2-CF2-CF2H等が好ましく、BrCF2-CF2-CF2-CF2H、BrCF2-CF2-CF2-CF2-CF2H、BrCF2-CF2-CF2-CF2-CF2-CF2H等がより好ましい。 In the general formula (5), X 1 , X 2 and X 3 are halogen atoms, and examples thereof include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom. X 1 , X 2 and X 3 may be the same or different. However, as in the general formula (2), neither X 1 nor X 2 is a fluorine atom. As in the general formula (2), X 1 is preferably a chlorine atom, bromine atom, iodine atom or the like (particularly chlorine atom, bromine atom, etc.), and X 2 is a fluorine atom, chlorine atom, bromine atom or the like (particularly fluorine). Atoms, chlorine atoms, etc.) are preferred, and X 3 is preferably a fluorine atom, chlorine atom, etc. (particularly a fluorine atom). In particular, when X 3 is a fluorine atom, the compound represented by the general formula (5) is generated in the liquid phase and hardly exists in the gas phase, so only the gas phase of the collection cylinder is analyzed. If it does, it will not be detected. That is, the perfluoroalkadiene composition of the present disclosure is composed of impurities present in both the gas phase and the liquid phase of the collection cylinder. Examples of the compound represented by the general formula (5) satisfying such conditions include ClCF 2 -CFCl-CF 2 -CF 2 H, ClCF 2 -CFCl-CF 2 -CF 2 -CF 2 H, ClCF 2 -CFCl-CF 2 -CF 2 -CF 2 -CF 2 H, ICF 2 -CF 2 -CF 2 -CF 2 H, ICF 2 -CF 2 -CF 2 -CF 2 -CF 2 H, ICF 2 -CF 2 -CF 2 -CF 2 -CF 2 -CF 2 H, BrCF 2 -CF 2 -CF 2 -CF 2 H, BrCF 2 -CF 2 -CF 2 -CF 2 -CF 2 H, BrCF 2 -CF 2 -CF 2 -CF 2 -CF 2 -CF 2 H and the like, and for the same reason as in general formula (2), ClCF 2 -CFCl-CF 2 -CF 2 H, ClCF 2 -CFCl-CF 2 -CF 2- CF 2 H, ClCF 2 -CFCl-CF 2 -CF 2 -CF 2 -CF 2 H, BrCF 2 -CF 2 -CF 2 -CF 2 H, BrCF 2 -CF 2 -CF 2 -CF 2 -CF 2 H , BrCF 2 -CF 2 -CF 2 -CF 2 -CF 2 -CF 2 H are preferred, BrCF 2 -CF 2 -CF 2 -CF 2 H, BrCF 2 -CF 2 -CF 2 -CF 2 -CF 2 H, BrCF 2 —CF 2 —CF 2 —CF 2 —CF 2 —CF 2 H, and the like are more preferable.
 この本開示のパーフルオロアルカジエン組成物において、本開示のパーフルオロアルカジエン組成物の総量を100モル%として、一般式(1)で表されるパーフルオロアルカジエン化合物の含有量は80~99.8モル%(特に85~99モル%)が好ましく、一般式(3)で表される化合物の含有量は0.1~12モル%(特に0.5~10モル%)が好ましく、一般式(4A)及び/又は(4B)で表される化合物の総含有量は0.01~0.6モル%(特に0.02~0.5モル%)が好ましく、一般式(5)で表される化合物の含有量は0.05~1モル%(特に0.1~0.5モル%)が好ましい。また、本開示のパーフルオロアルカジエン組成物において、上記以外の成分(その他成分)の含有量は、0~5モル%(特に0.01~4モル%)が好ましい。このその他成分には分離しにくい不純物(一般式(1)で表されるパーフルオロアルカジエン化合物としてヘキサフルオロブタジエンを得ようとする場合は、1,1,1,2,4,4,4-ヘプタフルオロ-2-ブテン(CF3CF=CHCF3)等)が含まれ得ることからその他成分の含有量は極力少なくすることが好ましい。 In this perfluoroalkadiene composition of the present disclosure, the total amount of the perfluoroalkadiene composition of the present disclosure is 100 mol%, and the content of the perfluoroalkadiene compound represented by the general formula (1) is 80 to 99.8. Mol% (especially 85 to 99 mol%) is preferable, and the content of the compound represented by the general formula (3) is preferably 0.1 to 12 mol% (particularly 0.5 to 10 mol%), and the general formula (4A) and / or Alternatively, the total content of the compound represented by (4B) is preferably 0.01 to 0.6 mol% (particularly 0.02 to 0.5 mol%), and the content of the compound represented by the general formula (5) is 0.05 to 1 mol% ( Particularly preferred is 0.1 to 0.5 mol%). In the perfluoroalkadiene composition of the present disclosure, the content of components other than the above (other components) is preferably 0 to 5 mol% (particularly 0.01 to 4 mol%). These other components are difficult to separate impurities (when obtaining hexafluorobutadiene as a perfluoroalkadiene compound represented by the general formula (1), 1,1,1,2,4,4,4- Since heptafluoro-2-butene (CF 3 CF = CHCF 3 ) and the like can be contained, it is preferable to reduce the content of other components as much as possible.
 このような本開示のパーフルオロアルカジエン組成物は、上記したパーフルオロアルカジエン化合物単独の場合と同様に、半導体、液晶等の最先端の微細構造を形成するためのエッチングガスをはじめとして、冷媒、熱移動媒体、発泡剤、樹脂モノマー等の各種用途に有効利用できる。 Such a perfluoroalkadiene composition of the present disclosure includes, as in the case of the above-mentioned perfluoroalkadiene compound alone, a coolant including an etching gas for forming a state-of-the-art microstructure such as a semiconductor and a liquid crystal. It can be effectively used for various applications such as heat transfer media, foaming agents and resin monomers.
 以下に実施例を示し、本開示の特徴を明確にする。本開示はこれら実施例に限定されるものではない。 Examples are given below to clarify the features of the present disclosure. The present disclosure is not limited to these examples.
 実施例1:ClCF 2 -CFCl-CF 2 -CF 2 I;ZnI 2  0.18モル%
 -78℃に冷却したトラップが連結されたコンデンサー付きナスフラスコに200g(0.53mol)のキシレン、34.93g(0.53mol)の亜鉛、0.30g(0.001mol;亜鉛に対して0.18mol%)のZnI2を加え、撹拌下、内温が140℃になるまで加熱した。内温が一定になった後、還流しながらN,N-ジメチルホルムアミド(DMF)を滴下速度0.52mol/時間(亜鉛1モルに対して1.04mol/時間)で1時間滴下し、撹拌しながら0.5時間加熱還流を続けた。次いで、還流しながら原料(ClCF2-CFCl-CF2-CF2I)を滴下速度0.24mol/時間(亜鉛1モルに対して0.48mol/時間)で1時間滴下し、攪拌しながら3時間加熱還流を続け反応させた。反応終了後、捕集ボンベの気相、液相及び反応液をガスクロトマトグラフィーで分析し、それぞれを考慮して転化率及び選択率を算出したところ、転化率は100モル%であり、各成分の選択率は、CF2=CFCF=CF2が88モル%、CF2=CF-CF2-CF2Hが8.2モル%、ClCF2-CFCl-CF=CF2が0.051モル%、ClCF2-CFCl-CF2-CF2Hが0.32モル%、その他副生成物(CF3CF=CHCF3等)が合計3.4モル%であった。
Example 1: ClCF 2 -CFCl-CF 2 -CF 2 I; ZnI 2 0.18 mol%
200g (0.53mol) xylene, 34.93g (0.53mol) zinc, 0.30g (0.001mol; 0.18mol% with respect to zinc) ZnI 2 in a condenser eggplant flask connected to a trap cooled to -78 ° C The mixture was heated with stirring until the internal temperature reached 140 ° C. After the internal temperature became constant, N, N-dimethylformamide (DMF) was added dropwise at a dropping rate of 0.52 mol / hour (1.04 mol / hour with respect to 1 mol of zinc) while refluxing, and the mixture was stirred for 0.5 hour. Heating at reflux was continued for an hour. Next, the raw material (ClCF 2 -CFCl-CF 2 -CF 2 I) was added dropwise at a dropping rate of 0.24 mol / hour (0.48 mol / hour with respect to 1 mol of zinc) while refluxing, and heated for 3 hours with stirring. The reaction was continued under reflux. After completion of the reaction, the gas phase, liquid phase and reaction liquid of the collection cylinder were analyzed by gas chromatography, and the conversion rate and selectivity were calculated in consideration of each, the conversion rate was 100 mol%, each component The selectivity of CF 2 = CFCF = CF 2 is 88 mol%, CF 2 = CF-CF 2 -CF 2 H is 8.2 mol%, ClCF 2 -CFCl-CF = CF 2 is 0.051 mol%, ClCF 2- CFCl—CF 2 —CF 2 H was 0.32 mol%, and other by-products (CF 3 CF═CHCF 3 etc.) were a total of 3.4 mol%.
 実施例2:ClCF 2 -CFCl-CF 2 -CF 2 I;ZnI 2  0.6モル%
 ZnI2の使用量を0.95g(0.003mol;亜鉛に対して0.56mol%)としたこと以外は実施例1と同様に処理を行った。反応終了後、捕集ボンベの気相、液相及び反応液をガスクロトマトグラフィーで分析し、それぞれを考慮して転化率及び選択率を算出したところ、転化率は100モル%であり、各成分の選択率は、CF2=CFCF=CF2が91モル%、CF2=CF-CF2-CF2Hが6.8モル%、ClCF2-CFCl-CF=CF2が0.042モル%、ClCF2-CFCl-CF2-CF2Hが0.18モル%、その他副生成物(CF3CF=CHCF3等)が合計2.0モル%であった。
Example 2: ClCF 2 —CFCl —CF 2 —CF 2 I; ZnI 2 0.6 mol%
The treatment was performed in the same manner as in Example 1 except that the amount of ZnI 2 used was 0.95 g (0.003 mol; 0.56 mol% based on zinc). After completion of the reaction, the gas phase, liquid phase and reaction liquid of the collection cylinder were analyzed by gas chromatography, and the conversion rate and selectivity were calculated in consideration of each, the conversion rate was 100 mol%, each component The selectivity of CF 2 = CFCF = CF 2 is 91 mol%, CF 2 = CF-CF 2 -CF 2 H is 6.8 mol%, ClCF 2 -CFCl-CF = CF 2 is 0.042 mol%, ClCF 2- CFCl—CF 2 —CF 2 H was 0.18 mol%, and other by-products (CF 3 CF═CHCF 3 etc.) were 2.0 mol% in total.
 実施例3:ClCF 2 -CFCl-CF 2 -CF 2 I;ZnI 2  1.6モル%
 ZnI2の使用量を2.70g(0.53mol;亜鉛に対して1.6mol%)としたこと以外は実施例1と同様に処理を行った。反応終了後、捕集ボンベの気相、液相及び反応液をガスクロトマトグラフィーで分析し、それぞれを考慮して転化率及び選択率を算出したところ、転化率は100モル%であり、各成分の選択率は、CF2=CFCF=CF2が93モル%、CF2=CF-CF2-CF2Hが5.6モル%、ClCF2-CFCl-CF=CF2が0.082モル%、ClCF2-CFCl-CF2-CF2Hが0.27モル%、その他副生成物(CF3CF=CHCF3等)が合計1.0モル%であった。
Example 3: ClCF 2 —CFCl —CF 2 —CF 2 I; ZnI 2 1.6 mol%
The treatment was performed in the same manner as in Example 1 except that the amount of ZnI 2 used was 2.70 g (0.53 mol; 1.6 mol% based on zinc). After completion of the reaction, the gas phase, liquid phase and reaction liquid of the collection cylinder were analyzed by gas chromatography, and the conversion rate and selectivity were calculated in consideration of each, the conversion rate was 100 mol%, each component The selectivity of CF 2 = CFCF = CF 2 is 93 mol%, CF 2 = CF-CF 2 -CF 2 H is 5.6 mol%, ClCF 2 -CFCl-CF = CF 2 is 0.082 mol%, ClCF 2- CFCl—CF 2 —CF 2 H was 0.27 mol%, and other by-products (CF 3 CF═CHCF 3 etc.) were 1.0 mol% in total.
 実施例4:ClCF 2 -CFCl-CF 2 -CF 2 I;I 2  1.6モル%
 0.30g(0.001mol;亜鉛に対して0.18mol%)のZnI2ではなく、2.20g(0.009mol;亜鉛に対して1.6mol%)のI2を使用したこと以外は実施例1と同様に処理を行った。反応終了後、捕集ボンベの気相、液相及び反応液をガスクロトマトグラフィーで分析し、それぞれを考慮して転化率及び選択率を算出したところ、転化率は100モル%であり、各成分の選択率は、CF2=CFCF=CF2が96モル%、CF2=CF-CF2-CF2Hが2.6モル%、ClCF2-CFCl-CF=CF2が0.031モル%、ClCF2-CFCl-CF2-CF2Hが0.17モル%、その他副生成物(CF3CF=CHCF3等)が合計1.2モル%であった。
Example 4: ClCF 2 -CFCl-CF 2 -CF 2 I; I 2 1.6 mol%
Treatment as in Example 1 except that 2.20 g (0.009 mol; 1.6 mol% with respect to zinc) I 2 was used instead of 0.30 g (0.001 mol; 0.18 mol% with respect to zinc) ZnI 2 Went. After completion of the reaction, the gas phase, liquid phase and reaction liquid of the collection cylinder were analyzed by gas chromatography, and the conversion rate and selectivity were calculated in consideration of each, the conversion rate was 100 mol%, each component The selectivity of CF 2 = CFCF = CF 2 is 96 mol%, CF 2 = CF-CF 2 -CF 2 H is 2.6 mol%, ClCF 2 -CFCl-CF = CF 2 is 0.031 mol%, ClCF 2- CFCl—CF 2 —CF 2 H was 0.17 mol%, and other by-products (CF 3 CF═CHCF 3 etc.) were 1.2 mol% in total.
 実施例5:ClCF 2 -CFCl-CF 2 -CF 2 I;NaI 1.6モル%
 0.30g(0.001mol;亜鉛に対して0.18mol%)のZnI2ではなく、1.27g(0.0085mol;亜鉛に対して1.6mol%)のNaIを使用したこと以外は実施例1と同様に処理を行った。反応終了後、捕集ボンベの気相、液相及び反応液をガスクロトマトグラフィーで分析し、それぞれを考慮して転化率及び選択率を算出したところ、転化率は100モル%であり、各成分の選択率は、CF2=CFCF=CF2が91モル%、CF2=CF-CF2-CF2Hが6.1モル%、ClCF2-CFCl-CF=CF2が0.053モル%、ClCF2-CFCl-CF2-CF2Hが0.32モル%、その他副生成物(CF3CF=CHCF3等)が合計2.5モル%であった。
Example 5: ClCF 2 —CFCl —CF 2 —CF 2 I; NaI 1.6 mol%
Treatment as in Example 1 except that 1.27 g (0.0085 mol; 1.6 mol% relative to zinc) NaI was used instead of 0.30 g (0.001 mol; 0.18 mol% relative to zinc) ZnI 2 went. After completion of the reaction, the gas phase, liquid phase and reaction liquid of the collection cylinder were analyzed by gas chromatography, and the conversion rate and selectivity were calculated in consideration of each, the conversion rate was 100 mol%, each component The selectivity of CF 2 = CFCF = CF 2 is 91 mol%, CF 2 = CF-CF 2 -CF 2 H is 6.1 mol%, ClCF 2 -CFCl-CF = CF 2 is 0.053 mol%, ClCF 2- CFCl—CF 2 —CF 2 H was 0.32 mol%, and other by-products (CF 3 CF═CHCF 3 etc.) were 2.5 mol% in total.
 実施例6:ClCF 2 -CFCl-CF 2 -CF 2 I;NaI 3.2モル%
 0.30g(0.001mol;亜鉛に対して0.18mol%)のZnI2ではなく、2.54g(0.017mol;亜鉛に対して3.2mol%)のNaIを使用したこと以外は実施例1と同様に処理を行った。反応終了後、捕集ボンベの気相、液相及び反応液をガスクロトマトグラフィーで分析し、それぞれを考慮して転化率及び選択率を算出したところ、転化率は100モル%であり、各成分の選択率は、CF2=CFCF=CF2が94モル%、CF2=CF-CF2-CF2Hが5.1モル%、ClCF2-CFCl-CF=CF2が0.044モル%、ClCF2-CFCl-CF2-CF2Hが0.12モル%、その他副生成物(CF3CF=CHCF3等)が合計0.72モル%であった。
Example 6: ClCF 2 -CFCl-CF 2 -CF 2 I; NaI 3.2 mol%
The same treatment as in Example 1, except that 0.34 g (0.001 mol; 0.18 mol% relative to zinc) ZnI 2 was used instead of 2.54 g (0.017 mol; 3.2 mol% relative to zinc) NaI. went. After completion of the reaction, the gas phase, liquid phase and reaction liquid of the collection cylinder were analyzed by gas chromatography, and the conversion rate and selectivity were calculated in consideration of each, the conversion rate was 100 mol%, each component The selectivity of CF 2 = CFCF = CF 2 is 94 mol%, CF 2 = CF-CF 2 -CF 2 H is 5.1 mol%, ClCF 2 -CFCl-CF = CF 2 is 0.044 mol%, ClCF 2- CFCl—CF 2 —CF 2 H was 0.12 mol%, and other by-products (CF 3 CF = CHCF 3 etc.) were 0.72 mol% in total.
 参考例1:ClCF 2 -CFCl-CF 2 -CF 2 I;含ヨウ素無機材料なし
 ZnI2を使用しなかったこと以外は実施例1と同様に処理を行った。反応終了後、捕集ボンベの気相、液相及び反応液をガスクロトマトグラフィーで分析し、それぞれを考慮して転化率及び選択率を算出したところ、転化率は100モル%であり、各成分の選択率は、CF2=CFCF=CF2が78モル%、CF2=CF-CF2-CF2Hが14モル%、ClCF2-CFCl-CF=CF2が0.66モル%、ClCF2-CFCl-CF2-CF2Hが1.5モル%、その他副生成物(CF3CF=CHCF3等)が合計5.9モル%であった。
Reference example 1: ClCF 2 —CFCl —CF 2 —CF 2 I; treatment was performed in the same manner as in Example 1 except that no ZnI 2 without iodine-containing inorganic material was used. After completion of the reaction, the gas phase, liquid phase and reaction liquid of the collection cylinder were analyzed by gas chromatography, and the conversion rate and selectivity were calculated in consideration of each, the conversion rate was 100 mol%, each component The selectivity of CF 2 = CFCF = CF 2 is 78 mol%, CF 2 = CF-CF 2 -CF 2 H is 14 mol%, ClCF 2 -CFCl-CF = CF 2 is 0.66 mol%, ClCF 2- CFCl—CF 2 —CF 2 H was 1.5 mol%, and other by-products (CF 3 CF═CHCF 3 etc.) were 5.9 mol% in total.
 実施例7:ICF 2 -CF2-CF 2 -CF 2 I;ZnI 2  1.6モル%
 基質としてClCF2-CFCl-CF2-CF2IではなくICF2-CF2-CF2-CF2Iを使用し、ZnI2の使用量を2.70g(0.53mol;亜鉛に対して1.6mol%)としたこと以外は実施例1と同様に処理を行った。反応終了後、捕集ボンベの気相、液相及び反応液をガスクロトマトグラフィーで分析し、それぞれを考慮して転化率及び選択率を算出したところ、転化率は100モル%であり、各成分の選択率は、CF2=CFCF=CF2が87モル%、CF2=CF-CF2-CF2Hが5.4モル%、HCF2-CF2-CF2-CF2Hが2.2モル%、ICF2-CF2-CF2-CF2Hが2.1モル%、その他副生成物(CF3CF=CHCF3等)が合計3.3モル%であった。
Example 7: ICF 2 -CF2-CF 2 -CF 2 I; ZnI 2 1.6 mol%
Using the ClCF 2 -CFCl-CF 2 In -CF 2 I without ICF 2 -CF2-CF 2 -CF 2 I as substrate, 2.70 g usage ZnI 2 (0.53mol; 1.6mol% relative to the zinc) The treatment was performed in the same manner as in Example 1 except that. After completion of the reaction, the gas phase, liquid phase and reaction liquid of the collection cylinder were analyzed by gas chromatography, and the conversion rate and selectivity were calculated in consideration of each, the conversion rate was 100 mol%, each component The selectivity of CF 2 = CFCF = CF 2 is 87 mol%, CF 2 = CF-CF 2 -CF 2 H is 5.4 mol%, HCF 2 -CF 2 -CF 2 -CF 2 H is 2.2 mol%, ICF 2 -CF 2 -CF 2 -CF 2 H was 2.1 mol%, and other by-products (CF 3 CF = CHCF 3 etc.) were 3.3 mol% in total.
 参考例2:ICF 2 -CF2-CF 2 -CF 2 I;含ヨウ素無機材料なし
 基質としてClCF2-CFCl-CF2-CF2IではなくICF2-CF2-CF2-CF2Iを使用し、ZnI2を使用しなかったこと以外は実施例1と同様に処理を行った。反応終了後、捕集ボンベの気相、液相及び反応液をガスクロトマトグラフィーで分析し、それぞれを考慮して転化率及び選択率を算出したところ、転化率は100モル%であり、各成分の選択率は、CF2=CFCF=CF2が63モル%、CF2=CF-CF2-CF2Hが25モル%、HCF2-CF2-CF2-CF2Hが2.2モル%、ICF2-CF2-CF2-CF2Hが2.1モル%、その他副生成物(CF3CF=CHCF3等)が合計7.7モル%であった。
Reference Example 2: ICF 2 -CF2-CF 2 -CF 2 I; ClCF 2 -CFCl-CF 2 using -CF 2 I rather ICF 2 -CF2-CF 2 -CF 2 I as no iodine containing inorganic material substrate The treatment was performed in the same manner as in Example 1 except that ZnI 2 was not used. After completion of the reaction, the gas phase, liquid phase and reaction liquid of the collection cylinder were analyzed by gas chromatography, and the conversion rate and selectivity were calculated in consideration of each, the conversion rate was 100 mol%, each component The selectivity of CF 2 = CFCF = CF 2 is 63 mol%, CF 2 = CF-CF 2 -CF 2 H is 25 mol%, HCF 2 -CF 2 -CF 2 -CF 2 H is 2.2 mol%, ICF 2 —CF 2 —CF 2 —CF 2 H was 2.1 mol%, and other by-products (CF 3 CF═CHCF 3 etc.) were 7.7 mol% in total.
 実施例8:BrCF 2 -CF2-CF 2 -CF 2 Br;ZnI 2  1.6モル%
 基質としてClCF2-CFCl-CF2-CF2IではなくBrCF2-CF2-CF2-CF2Brを使用したこと以外は実施例1と同様に処理を行った。反応終了後、捕集ボンベの気相、液相及び反応液をガスクロトマトグラフィーで分析し、それぞれを考慮して転化率及び選択率を算出したところ、転化率は100モル%であり、各成分の選択率は、CF2=CFCF=CF2が96モル%、CF2=CF-CF2-CF2Hが3.0モル%、HCF2-CF2-CF2-CF2Hが0.51モル%、BrCF2-CF2-CF2-CF2Hが0.28モル%、その他副生成物(CF3CF=CHCF3等)が合計0.21モル%であった。
Example 8: BrCF 2 -CF2-CF 2 -CF 2 Br; ZnI 2 1.6 mol%
But using ClCF 2 -CFCl-CF 2 In -CF 2 I without BrCF 2 -CF2-CF 2 -CF 2 Br as a substrate was treated in the same manner as in Example 1. After completion of the reaction, the gas phase, liquid phase and reaction liquid of the collection cylinder were analyzed by gas chromatography, and the conversion rate and selectivity were calculated in consideration of each, the conversion rate was 100 mol%, each component the selectivity, CF 2 = CFCF = CF 2 is 96 mol%, CF 2 = CFCF 2 -CF 2 H 3.0 mol%, HCF 2 -CF 2 -CF 2 -CF 2 H 0.51 mole%, BrCF 2 —CF 2 —CF 2 —CF 2 H was 0.28 mol%, and other by-products (CF 3 CF═CHCF 3 etc.) were 0.21 mol% in total.
 参考例3:BrCF 2 -CF2-CF 2 -CF 2 Br;含ヨウ素無機材料なし
 基質としてClCF2-CFCl-CF2-CF2IではなくBrCF2-CF2-CF2-CF2Brを使用し、ZnI2を使用しなかったこと以外は実施例1と同様に処理を行った。反応終了後、捕集ボンベの気相、液相及び反応液をガスクロトマトグラフィーで分析し、それぞれを考慮して転化率及び選択率を算出したところ、転化率は100モル%であり、各成分の選択率は、CF2=CFCF=CF2が76モル%、CF2=CF-CF2-CF2Hが13モル%、HCF2-CF2-CF2-CF2Hが1.9モル%、BrCF2-CF2-CF2-CF2Hが2.1モル%、その他副生成物(CF3CF=CHCF3等)が合計7.0モル%であった。
Reference Example 3: BrCF 2 -CF2-CF 2 -CF 2 Br; BrCF 2 -CF2-CF 2 -CF 2 Br was used instead of ClCF 2 -CFCl-CF 2 -CF 2 I as the substrate without iodine-containing inorganic material. The treatment was performed in the same manner as in Example 1 except that ZnI 2 was not used. After completion of the reaction, the gas phase, liquid phase and reaction liquid of the collection cylinder were analyzed by gas chromatography, and the conversion rate and selectivity were calculated in consideration of each, the conversion rate was 100 mol%, each component The selectivity of CF 2 = CFCF = CF 2 is 76 mol%, CF 2 = CF-CF 2 -CF 2 H is 13 mol%, HCF 2 -CF 2 -CF 2 -CF 2 H is 1.9 mol%, BrCF 2 —CF 2 —CF 2 —CF 2 H was 2.1 mol%, and other by-products (CF 3 CF═CHCF 3 and the like) were 7.0 mol% in total.
 結果を表1~3に示す。 Results are shown in Tables 1-3.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003

Claims (14)

  1. 一般式(1):
    CF2=CF-(CF2)n-4-CF=CF2   (1)
    [式中、nは4~20の整数を示す。]
    で表されるパーフルオロアルカジエン化合物の製造方法であって、
    有機溶媒中で、含窒素化合物、含ヨウ素無機材料、並びに亜鉛若しくは亜鉛合金の存在下に、
    一般式(2):
    CF2X1-CFX2-(CF2)n-4-CFX3-CF2X4   (2)
    [式中、nは前記に同じである。X1、X2、X3及びX4は同一又は異なって、ハロゲン原子を示す。ただし、X1及びX2の双方がフッ素原子となることはなく、且つ、X3及びX4の双方がフッ素原子となることはない。]
    で表される化合物を反応させる反応工程
    を備える、製造方法。
    General formula (1):
    CF 2 = CF- (CF 2 ) n-4 -CF = CF 2 (1)
    [Wherein n represents an integer of 4 to 20. ]
    A process for producing a perfluoroalkadiene compound represented by:
    In an organic solvent, in the presence of a nitrogen-containing compound, an iodine-containing inorganic material, and zinc or a zinc alloy,
    General formula (2):
    CF 2 X 1 -CFX 2- (CF 2 ) n-4 -CFX 3 -CF 2 X 4 (2)
    [Wherein n is the same as defined above. X 1 , X 2 , X 3 and X 4 are the same or different and each represents a halogen atom. However, both X 1 and X 2 are not fluorine atoms, and both X 3 and X 4 are not fluorine atoms. ]
    A manufacturing method provided with the reaction process which makes the compound represented by these react.
  2. 前記含ヨウ素無機材料の使用量が、前記亜鉛若しくは亜鉛合金1モルに対して0.0005モル以上であり、且つ、前記有機溶媒の溶解度以下である、請求項1に記載の製造方法。 2. The production method according to claim 1, wherein the amount of the iodine-containing inorganic material used is 0.0005 mol or more with respect to 1 mol of the zinc or zinc alloy and is not more than the solubility of the organic solvent.
  3. 前記含ヨウ素無機材料がヨウ素及び/又は金属ヨウ化物である、請求項1又は2に記載の製造方法。 The production method according to claim 1 or 2, wherein the iodine-containing inorganic material is iodine and / or metal iodide.
  4. 前記反応工程が、前記含ヨウ素無機材料と前記亜鉛若しくは亜鉛合金と前記有機溶媒とを含む溶液と、前記含窒素化合物とを混合する第1混合工程を含む、請求項1~3のいずれか1項に記載の製造方法。 4. The method according to claim 1, wherein the reaction step includes a first mixing step of mixing the nitrogen-containing compound with a solution containing the iodine-containing inorganic material, the zinc or zinc alloy, and the organic solvent. The production method according to item.
  5. 前記第1混合工程においては、前記亜鉛若しくは亜鉛合金を含む溶液に対して、前記含窒素化合物を前記亜鉛若しくは亜鉛合金1モルに対して0.1~600mol/時間の添加速度で添加する、請求項4に記載の製造方法。 5. In the first mixing step, the nitrogen-containing compound is added to the solution containing zinc or zinc alloy at an addition rate of 0.1 to 600 mol / hour with respect to 1 mol of zinc or zinc alloy. The manufacturing method as described in.
  6. 前記反応工程が、前記第1混合工程の後に、得られた混合液を前記一般式(2)で表される化合物と混合する第2混合工程を含む、請求項4又は5に記載の製造方法。 The manufacturing method according to claim 4 or 5, wherein the reaction step includes a second mixing step of mixing the obtained mixed liquid with the compound represented by the general formula (2) after the first mixing step. .
  7. 前記第2混合工程においては、前記第1混合工程で得られた混合液に対して、前記一般式(2)で表される化合物を前記亜鉛若しくは亜鉛合金1モルに対して0.05~30mol/時間の添加速度で添加する、請求項6に記載の製造方法。 In the second mixing step, 0.05 to 30 mol / hour of the compound represented by the general formula (2) with respect to 1 mol of the zinc or the zinc alloy with respect to the mixed solution obtained in the first mixing step. The production method according to claim 6, which is added at an addition rate of
  8. 前記第1混合工程は、前記含ヨウ素無機材料と亜鉛若しくは亜鉛合金と前記有機溶媒とを含む溶液と前記含窒素化合物とを混合する際に50~200℃の温度である、請求項4~7のいずれか1項に記載の製造方法。 The first mixing step is a temperature of 50 to 200 ° C. when the nitrogen-containing compound and the solution containing the iodine-containing inorganic material, zinc or zinc alloy, and the organic solvent are mixed. The manufacturing method of any one of these.
  9. 前記含窒素化合物がN,N-ジメチルホルムアミドである、請求項1~8のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 8, wherein the nitrogen-containing compound is N, N-dimethylformamide.
  10. 前記有機溶媒の沸点が、前記含窒素化合物の沸点以下である、請求項1~9のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 9, wherein a boiling point of the organic solvent is not more than a boiling point of the nitrogen-containing compound.
  11. 一般式(1):
    CF2=CF-(CF2)n-4-CF=CF2   (1)
    [式中、nは4~20の整数を示す。]
    で表されるパーフルオロアルカジエン化合物と、
    一般式(3):
    CF2=CF-(CF2)n-4-CFX3-CF2H   (3)
    [式中、nは前記に同じである。X3はハロゲン原子を示す。]
    で表される化合物と、
    一般式(4A):
    CF2X1-CFX2-(CF2)n-4-CF=CF2   (4A)
    [式中、nは前記に同じである。X1及びX2は同一又は異なって、ハロゲン原子を示す。ただし、X1及びX2の双方がフッ素原子となることはない。]
    で表される化合物、及び/又は一般式(4B):
    CF2H-CFX2-(CF2)n-4-CFX3-CF2H   (4B)
    [式中、nは前記に同じである。X2及びX3は同一又は異なって、ハロゲン原子を示す。]
    で表される化合物と、
    一般式(5):
    CF2X1-CFX2-(CF2)n-4-CFX3-CF2H   (5)
    [式中、nは前記に同じである。X1、X2及びX3は同一又は異なって、ハロゲン原子を示す。ただし、X1及びX2の双方がフッ素原子となることはない。]
    で表される化合物と
    を含有する、パーフルオロアルカジエン組成物。
    General formula (1):
    CF 2 = CF- (CF 2 ) n-4 -CF = CF 2 (1)
    [Wherein n represents an integer of 4 to 20. ]
    A perfluoroalkadiene compound represented by:
    General formula (3):
    CF 2 = CF- (CF 2 ) n-4 -CFX 3 -CF 2 H (3)
    [Wherein n is the same as defined above. X 3 represents a halogen atom. ]
    A compound represented by
    General formula (4A):
    CF 2 X 1 -CFX 2- (CF 2 ) n-4 -CF = CF 2 (4A)
    [Wherein n is the same as defined above. X 1 and X 2 are the same or different and each represents a halogen atom. However, both X 1 and X 2 are not fluorine atoms. ]
    And / or general formula (4B):
    CF 2 H-CFX 2- (CF 2 ) n-4 -CFX 3 -CF 2 H (4B)
    [Wherein n is the same as defined above. X 2 and X 3 are the same or different and each represents a halogen atom. ]
    A compound represented by
    General formula (5):
    CF 2 X 1 -CFX 2- (CF 2 ) n-4 -CFX 3 -CF 2 H (5)
    [Wherein n is the same as defined above. X 1 , X 2 and X 3 are the same or different and represent a halogen atom. However, both X 1 and X 2 are not fluorine atoms. ]
    A perfluoroalkadiene composition comprising a compound represented by:
  12. 前記パーフルオロアルカジエン組成物の総量を100モル%として、前記一般式(1)で表される化合物の含有量が80~99.8モル%である、請求項11に記載のパーフルオロアルカジエン組成物。 The perfluoroalkadiene composition according to claim 11, wherein the total amount of the perfluoroalkadiene composition is 100 mol%, and the content of the compound represented by the general formula (1) is 80 to 99.8 mol%. .
  13. 前記パーフルオロアルカジエン化合物が、ヘキサフルオロブタジエンである、請求項11又は12に記載のパーフルオロアルカジエン組成物。 The perfluoroalkadiene composition according to claim 11 or 12, wherein the perfluoroalkadiene compound is hexafluorobutadiene.
  14. 請求項11~13のいずれか1項に記載のパーフルオロアルカジエン組成物からなる、エッチングガス、冷媒、熱移動媒体、発泡剤又は樹脂モノマー。 An etching gas, a refrigerant, a heat transfer medium, a foaming agent or a resin monomer comprising the perfluoroalkadiene composition according to any one of claims 11 to 13.
PCT/JP2019/023600 2018-06-15 2019-06-14 Method for manufacturing perfluoroalkadiene compound WO2019240248A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020217001248A KR102556278B1 (en) 2018-06-15 2019-06-14 Method for producing a perfluoroalkadiene compound
CN201980040023.6A CN112313198A (en) 2018-06-15 2019-06-14 Process for producing perfluorodiene compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018114895A JP7158906B2 (en) 2018-06-15 2018-06-15 Method for producing perfluoroalkadiene compound
JP2018-114895 2018-06-15

Publications (1)

Publication Number Publication Date
WO2019240248A1 true WO2019240248A1 (en) 2019-12-19

Family

ID=68842589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/023600 WO2019240248A1 (en) 2018-06-15 2019-06-14 Method for manufacturing perfluoroalkadiene compound

Country Status (5)

Country Link
JP (1) JP7158906B2 (en)
KR (1) KR102556278B1 (en)
CN (1) CN112313198A (en)
TW (1) TW202014397A (en)
WO (1) WO2019240248A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7411124B2 (en) 2020-06-17 2024-01-10 浙江省化工研究院有限公司 Method for producing hexafluoro-1,3-butadiene and its intermediates

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7337759B2 (en) 2018-06-15 2023-09-04 ダイキン工業株式会社 Method for producing perfluoroalkadiene compound
CN114014743A (en) * 2021-12-02 2022-02-08 苏州金宏气体股份有限公司 Method for continuously producing hexafluorobutadiene
CN115160103A (en) * 2022-06-27 2022-10-11 苏州金宏气体股份有限公司 Industrial synthesis method and device of hexafluorobutadiene

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6226240A (en) * 1985-05-29 1987-02-04 アウシモント・ソチエタ・ペル・アツイオニ Synthesis of hexafluorobutadiene and higher perfluorinated diene
JP2001192347A (en) * 1999-10-26 2001-07-17 Kanto Denka Kogyo Co Ltd Method for producing perfluoroalkadiene
JP2001192345A (en) * 2000-01-12 2001-07-17 Daikin Ind Ltd Method or producing perfluoroalkadiene
JP2001192346A (en) * 1999-10-26 2001-07-17 Kanto Denka Kogyo Co Ltd Method for producing perfluoroalkadiene
JP2004026800A (en) * 2002-03-08 2004-01-29 Kanto Denka Kogyo Co Ltd Method for manufacturing perfluoro unsaturated hydrocarbon by dehalogenation reaction
JP2011509268A (en) * 2008-01-08 2011-03-24 ソルヴェイ・ソレクシス・エッセ・ピ・ア Method for synthesizing perfluorobutadiene

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU540858A1 (en) 1975-04-18 1976-12-30 Предприятие П/Я В-8415 The method of producing perfluorbutadiene
KR100852900B1 (en) * 2007-04-20 2008-08-19 (주)후성 Method of manufacturing perfluroalkadiene
CN103922890A (en) 2014-04-17 2014-07-16 中蓝晨光化工研究设计院有限公司 Method of preparing fluorine-containing olefin
JP6226240B2 (en) 2014-08-07 2017-11-08 パナソニックIpマネジメント株式会社 Activity map analyzer, activity map analysis system, and activity map analysis method
JP6813003B2 (en) 2018-06-15 2021-01-13 ダイキン工業株式会社 Method for producing perfluoroalkaziene compound

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6226240A (en) * 1985-05-29 1987-02-04 アウシモント・ソチエタ・ペル・アツイオニ Synthesis of hexafluorobutadiene and higher perfluorinated diene
JP2001192347A (en) * 1999-10-26 2001-07-17 Kanto Denka Kogyo Co Ltd Method for producing perfluoroalkadiene
JP2001192346A (en) * 1999-10-26 2001-07-17 Kanto Denka Kogyo Co Ltd Method for producing perfluoroalkadiene
JP2001192345A (en) * 2000-01-12 2001-07-17 Daikin Ind Ltd Method or producing perfluoroalkadiene
JP2004026800A (en) * 2002-03-08 2004-01-29 Kanto Denka Kogyo Co Ltd Method for manufacturing perfluoro unsaturated hydrocarbon by dehalogenation reaction
JP2011509268A (en) * 2008-01-08 2011-03-24 ソルヴェイ・ソレクシス・エッセ・ピ・ア Method for synthesizing perfluorobutadiene

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7411124B2 (en) 2020-06-17 2024-01-10 浙江省化工研究院有限公司 Method for producing hexafluoro-1,3-butadiene and its intermediates

Also Published As

Publication number Publication date
KR20210020128A (en) 2021-02-23
JP7158906B2 (en) 2022-10-24
KR102556278B1 (en) 2023-07-18
CN112313198A (en) 2021-02-02
RU2021127285A (en) 2021-11-23
TW202014397A (en) 2020-04-16
JP2019218275A (en) 2019-12-26

Similar Documents

Publication Publication Date Title
KR102556278B1 (en) Method for producing a perfluoroalkadiene compound
TWI785252B (en) Process for producing perfluoroalkadiene compounds
TWI670277B (en) Method for preparing tris (trialkylsilyl) phosphine
WO2016152226A1 (en) Method for producing dialkylaminosilane
US11225446B2 (en) Method for producing perfluoroalkadiene compounds
WO2001051436A1 (en) Process for production of perfluoroalkadienes
JP7337759B2 (en) Method for producing perfluoroalkadiene compound
JP2008266279A (en) Method for producing perfluoro-unsaturated hydrocarbon
JP2020203942A (en) Production method of perfluoroalkadiene compound
JP6860032B2 (en) Method for producing perfluoroalkyne compound
JP2023021148A (en) Method for producing perfluoroalkadiene compound
JP5034322B2 (en) Synthesis method of nitrogen halides
JP5397641B2 (en) High purity trialkylindium and process for producing the same
RU2780650C2 (en) Method for production of perfluoroalkadiene compound
JP2008184419A (en) High-purity trialkylindium and its production method
JP5478095B2 (en) Method for producing arylpyridines
JP2020203942A5 (en)
WO2023190846A1 (en) Method for producing fluorine-containing aromatic compound
JP2021522402A (en) Functionalized semiconductor nanoparticles and methods for their production
JPH0977700A (en) Production of fluorine-containing olefin
JPH0656715A (en) Production of active telogen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19820048

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217001248

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19820048

Country of ref document: EP

Kind code of ref document: A1