JP5478095B2 - Method for producing arylpyridines - Google Patents

Method for producing arylpyridines Download PDF

Info

Publication number
JP5478095B2
JP5478095B2 JP2009057585A JP2009057585A JP5478095B2 JP 5478095 B2 JP5478095 B2 JP 5478095B2 JP 2009057585 A JP2009057585 A JP 2009057585A JP 2009057585 A JP2009057585 A JP 2009057585A JP 5478095 B2 JP5478095 B2 JP 5478095B2
Authority
JP
Japan
Prior art keywords
pyridine
nickel
group
cdcl
nmr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009057585A
Other languages
Japanese (ja)
Other versions
JP2010209006A (en
Inventor
哲 山川
修 小林
大輔 浦口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sagami Chemical Research Institute (Sagami CRI)
Tosoh Corp
Original Assignee
Sagami Chemical Research Institute (Sagami CRI)
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sagami Chemical Research Institute (Sagami CRI), Tosoh Corp filed Critical Sagami Chemical Research Institute (Sagami CRI)
Priority to JP2009057585A priority Critical patent/JP5478095B2/en
Publication of JP2010209006A publication Critical patent/JP2010209006A/en
Application granted granted Critical
Publication of JP5478095B2 publication Critical patent/JP5478095B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Pyridine Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、医農薬等の製造原料として有用なアリールピリジン類の製造方法に関する。   The present invention relates to a method for producing aryl pyridines useful as a raw material for producing pharmaceuticals and agricultural chemicals.

ピリジンの炭素−水素結合を活性化し、ハロゲン化アリール類とカップリングさせることによるアリールピリジン類の製造方法として、イリジウム錯体を触媒として用い、マイクロ波照射下でピリジンとヨウ化ベンゼンを反応させることにより、三種類の異性体、すなわち2−フェニルピリジン、3−フェニルピリジンおよび4−フェニルピリジンの混合物が得られることが開示されている(例えば、非特許文献1参照)。また、ピリジンを酸化して一旦ピリジン−N−オキシドとし、その後パラジウム錯体またはパラジウム錯体と銅化合物を触媒として用い、ピリジン−N−オキシドのオルト位の炭素−水素結合を活性化してハロゲン化アリール類とカップリングさせることにより2−(アリール)ピリジン−N−オキシドを得、さらにパラジウム触媒存在下に水素還元することによって、2−(アリール)ピリジンを製造する方法が開示されている(例えば、非特許文献2,3参照)。しかしながら、非特許文献1に記載されている方法は、基質がヨウ化ベンゼンに限定されており、また3つの異性体の合計収率は最大41%に留まっている。さらに、マイクロ波照射を必要とする反応であるため、工業的製造方法としては必ずしも有利ではない。また、非特許文献2および3の方法は、得られるアリールピリジン類が2−(アリール)ピリジンに限定されており、また製造に3段階の反応を要するため、工業的製造方法としては必ずしも有利ではない。   As a method for producing arylpyridines by activating the carbon-hydrogen bond of pyridine and coupling with aryl halides, by reacting pyridine and benzene iodide under microwave irradiation using an iridium complex as a catalyst. It is disclosed that a mixture of three isomers, namely 2-phenylpyridine, 3-phenylpyridine and 4-phenylpyridine can be obtained (for example, see Non-Patent Document 1). In addition, pyridine is oxidized to pyridine-N-oxide, and then a palladium complex or a palladium complex and a copper compound are used as a catalyst to activate a carbon-hydrogen bond at the ortho position of the pyridine-N-oxide to produce aryl halides. A method of producing 2- (aryl) pyridine by obtaining 2- (aryl) pyridine-N-oxide by coupling with hydrogen and further hydrogen reduction in the presence of a palladium catalyst is disclosed (for example, non- (See Patent Documents 2 and 3). However, in the method described in Non-Patent Document 1, the substrate is limited to iodobenzene, and the total yield of the three isomers remains at a maximum of 41%. Furthermore, since the reaction requires microwave irradiation, it is not necessarily advantageous as an industrial production method. In addition, the methods of Non-Patent Documents 2 and 3 are not necessarily advantageous as an industrial production method because the obtained arylpyridines are limited to 2- (aryl) pyridine and require three-step reaction for production. Absent.

本発明のニッケル触媒を用いてピリジンの炭素−水素結合を活性化し、ハロゲン化アリール類とカップリングさせるアリールピリジン類の製造方法については、これまでに報告されていない。   There has been no report on a method for producing arylpyridines in which the carbon-hydrogen bond of pyridine is activated using the nickel catalyst of the present invention and coupled with aryl halides.

Organic Letters,10巻,4673ページ,2008年.Organic Letters, 10, 4673, 2008. Journal of American Chemical Society,127巻,18020ページ,2005年.Journal of American Chemical Society, 127, 18020, 2005. Angewandte Chemie,International Edition,45巻,7781ページ,2006年.Angelwandte Chemie, International Edition, 45, 7781, 2006.

本発明は、ハロゲン化アリール類とピリジンを原料とし、簡便かつ高収率でアリールピリジン類を製造する方法を提供することにある。   An object of the present invention is to provide a method for producing arylpyridines simply and in high yield, using aryl halides and pyridine as raw materials.

本発明者らは上記課題を解決すべく鋭意検討した結果、カリウムtert−ブトキシド、還元剤およびニッケル触媒の存在下、一般式
Ar−X (1)
(式中、Arは置換されていても良いフェニル基またはナフチル基を示し、Xはヨウ素、臭素または塩素を示す。)
で表されるハロゲン化アリール類とピリジンを反応させることにより、効率良くアリールピリジン類の混合物を製造できることを見出し、本発明を完成させるに至った。
As a result of intensive studies to solve the above problems, the present inventors have found that in the presence of potassium tert-butoxide, a reducing agent, and a nickel catalyst, a compound represented by the general formula Ar-X (1)
(In the formula, Ar represents an optionally substituted phenyl group or naphthyl group, and X represents iodine, bromine or chlorine.)
It has been found that a mixture of arylpyridines can be efficiently produced by reacting an aryl halide represented by general formula (II) with pyridine, and the present invention has been completed.

すなわち本発明は、カリウムtert−ブトキシド、還元剤およびニッケル触媒の存在下、一般式
Ar−X (1)
(式中、Arは置換されていても良いフェニル基またはナフチル基を示し、Xはヨウ素、臭素または塩素を示す。)
で表されるハロゲン化アリール類とピリジンを反応させることを特徴とするアリールピリジン類の混合物の製造方法に関する。
That is, the present invention provides a compound of the general formula Ar-X (1) in the presence of potassium tert-butoxide, a reducing agent and a nickel catalyst.
(In the formula, Ar represents an optionally substituted phenyl group or naphthyl group, and X represents iodine, bromine or chlorine.)
The present invention relates to a method for producing a mixture of arylpyridines, which comprises reacting an aryl halide represented by general formula (II) with pyridine.

Arで表されるフェニル基またはナフチル基は、ハロゲン原子、炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基およびフェニル基等で置換されていても良い。   The phenyl group or naphthyl group represented by Ar may be substituted with a halogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, a phenyl group, or the like.

ハロゲン原子としては、具体的には、フッ素原子、塩素原子、臭素原子、ヨウ素原子を例示することができる。炭素数1〜4のアルキル基としては、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、シクロプロピル基、ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基、シクロブチル基、シクロプロピルメチル基等を例示することができる。炭素数1〜4のアルコキシ基としては、具体的には、メトキシ基、エトキシ基、プロポキシ基、イソプロピルオキシ基、シクロプロピルオキシ基、ブトキシ基、イソブチルオキシ基、sec−ブチルオキシ基、tert−ブチルオキシ基、シクロブチルオキシ基、シクロプロピルメチルオキシ基等を例示することができる。   Specific examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. Specific examples of the alkyl group having 1 to 4 carbon atoms include methyl group, ethyl group, propyl group, isopropyl group, cyclopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, and cyclobutyl group. And a cyclopropylmethyl group. Specific examples of the alkoxy group having 1 to 4 carbon atoms include a methoxy group, an ethoxy group, a propoxy group, an isopropyloxy group, a cyclopropyloxy group, a butoxy group, an isobutyloxy group, a sec-butyloxy group, and a tert-butyloxy group. , Cyclobutyloxy group, cyclopropylmethyloxy group and the like.

次に、本発明の製造方法について詳しく述べる。   Next, the production method of the present invention will be described in detail.

本発明で用いることのできるニッケル触媒としては、例えば、フッ化ニッケル、塩化ニッケル、臭化ニッケル、ヨウ化ニッケル、酢酸ニッケル、硝酸ニッケル、酸化ニッケル、硫酸ニッケル、水酸化ニッケル、炭酸ニッケル、ステアリン酸ニッケル、ジ(アセチルアセトナト)ニッケル、ビス(ヘキサフルオロアセチルアセトナト)ニッケル、ジブロモ(ジメトキシエタン)ニッケル、アリル(シクロペンタジエニル)ニッケル、ビス(1,5−シクロオクタジエン)ニッケル、ビス(シクロペンタジエニル)ニッケル、ビス(メチルシクロペンタジエニル)ニッケル、ビス(エチルシクロペンタジエニル)ニッケル、ビス(テトラメチルシクロペンタジエニル)ニッケル、(シクロペンタジエニル)(カルボニル)ニッケルダイマー等を挙げることができる。収率が良い点で、ビス(シクロペンタジエニル)ニッケルが好ましい。   Examples of the nickel catalyst that can be used in the present invention include nickel fluoride, nickel chloride, nickel bromide, nickel iodide, nickel acetate, nickel nitrate, nickel oxide, nickel sulfate, nickel hydroxide, nickel carbonate, and stearic acid. Nickel, di (acetylacetonato) nickel, bis (hexafluoroacetylacetonato) nickel, dibromo (dimethoxyethane) nickel, allyl (cyclopentadienyl) nickel, bis (1,5-cyclooctadiene) nickel, bis ( Cyclopentadienyl) nickel, bis (methylcyclopentadienyl) nickel, bis (ethylcyclopentadienyl) nickel, bis (tetramethylcyclopentadienyl) nickel, (cyclopentadienyl) (carbonyl) nickel dimer, etc. Raised Rukoto can. Bis (cyclopentadienyl) nickel is preferred because of its good yield.

ニッケル化合物とハロゲン化アリール類(1)とのモル比は、1:1〜1:100が好ましく、収率が良い点で1:5〜1:50がさらに好ましい。   The molar ratio of the nickel compound to the aryl halides (1) is preferably 1: 1 to 1: 100, and more preferably 1: 5 to 1:50 in terms of a good yield.

本発明で用いることのできる溶媒は、反応を阻害しない溶媒であれば良く、具体的には、テトラヒドロフラン、ジエチルエーテル、1,4−ジオキサン、1,2−ジメトキシエタン、ベンゼン、トルエン、アニソール等を挙げることができ、適宜これらを組み合わせて用いても良い。また、ピリジンを基質兼溶媒として用いても良い。収率が良い点で、ピリジンが好ましい。   The solvent that can be used in the present invention may be any solvent that does not inhibit the reaction. Specifically, tetrahydrofuran, diethyl ether, 1,4-dioxane, 1,2-dimethoxyethane, benzene, toluene, anisole and the like can be used. These may be mentioned, and these may be used in combination as appropriate. Further, pyridine may be used as a substrate and solvent. Pyridine is preferred because of its good yield.

ピリジンとハロゲン化アリール類とのモル比は、ピリジンが過剰量であれば特に制限はない。   The molar ratio of pyridine and aryl halides is not particularly limited as long as pyridine is in an excess amount.

本発明で用いることのできる還元剤としては、具体的には、トリフェニルホスフィン等のホスフィン類、トリエチルボラン、トリブチルボラン、ボラン−THF錯体、9−ボラビシクロ[3.3.1]ノナン等のホウ素化合物、トリメチルアルミニウム、トリエチルアルミニウム等の有機アルミニウム類、ジエチル亜鉛等の有機亜鉛類、アゾビスイソブチロニトリル等の有機物が例示できる。収率が良い点で、トリフェニルホスフィンが好ましい。ニッケル化合物と還元剤とのモル比は、1:0.5〜1:10が好ましく、収率が良い点で1:1〜1:5がさらに好ましい。   Specific examples of the reducing agent that can be used in the present invention include phosphines such as triphenylphosphine, boron such as triethylborane, tributylborane, borane-THF complex, and 9-borabicyclo [3.3.1] nonane. Examples include compounds, organic aluminums such as trimethylaluminum and triethylaluminum, organic zincs such as diethylzinc, and organic substances such as azobisisobutyronitrile. Triphenylphosphine is preferable in terms of good yield. The molar ratio between the nickel compound and the reducing agent is preferably 1: 0.5 to 1:10, and more preferably 1: 1 to 1: 5 in terms of good yield.

ニッケル化合物とカリウムtert−ブトキシドとのモル比は、1:1〜1:100が好ましく、収率が良い点で1:10〜1:50がさらに好ましい。   The molar ratio of the nickel compound and potassium tert-butoxide is preferably 1: 1 to 1: 100, and more preferably 1:10 to 1:50 in terms of good yield.

反応を密閉系で行う場合、大気圧(0.1MPa)〜1.0MPaの範囲から適宜選ばれる圧力で行うことができるが、大気圧下でも反応は充分に進行する。また、反応の際の雰囲気は、アルゴン、窒素等の不活性ガス下で行うことが好ましい。   When the reaction is carried out in a closed system, it can be carried out at a pressure appropriately selected from the range of atmospheric pressure (0.1 MPa) to 1.0 MPa, but the reaction proceeds sufficiently even under atmospheric pressure. Further, the atmosphere during the reaction is preferably performed under an inert gas such as argon or nitrogen.

反応後、生成物であるアリールピリジン類を単離する方法に特に限定はないが、溶媒抽出、カラムクロマトグラフィー、分取薄層クロマトグラフィー、分取液体クロマトグラフィー、再結晶、蒸留、昇華等の汎用的な方法で目的物を得ることができる。   The method for isolating the product arylpyridines after the reaction is not particularly limited, but includes solvent extraction, column chromatography, preparative thin layer chromatography, preparative liquid chromatography, recrystallization, distillation, sublimation, etc. The object can be obtained by a general-purpose method.

本発明の製造方法を用いることにより、医農薬等の製造原料として有用なアリールピリジン類を簡便かつ高収率で得ることができる。   By using the production method of the present invention, arylpyridines useful as a raw material for production of medical and agricultural chemicals can be obtained simply and in high yield.

以下、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。   Hereinafter, although an example is given and the present invention is explained still in detail, the present invention is not limited to these.

実施例1   Example 1

Figure 0005478095
スクリューキャップ付試験管(10mL)に、ビス(シクロペンタジエニル)ニッケル 0.0047g(0.025mmol)、トリフェニルホスフィン 0.0066g(0.025mmol)およびカリウムtert−ブトキシド 0.056g(0.5mmol)を加え、容器内をアルゴンで置換した。この混合物にアルゴン雰囲気下で、ブロモベンゼン 0.053mL(0.5mmol)とピリジン 2.5mLを加え、10分間攪拌した。この混合溶液を100℃で12時間攪拌した。反応溶液を室温まで冷却し、水 2mLとトルエン 3mLを加えて分液した。有機層を濃縮した残渣をシリカゲルカラムクロマトグラフィー(溶離液 ヘキサン:クロロホルム=100:0〜2:1)に通すことにより、2−フェニルピリジン(0.0250g、収率32%)、3−フェニルピリジン(0.0234g、収率30%)、4−フェニルピリジン(0.0060g、収率8%)をそれぞれ無色液体、黄色液体、白色固体として得た。
Figure 0005478095
In a test tube (10 mL) with a screw cap, 0.0047 g (0.025 mmol) of bis (cyclopentadienyl) nickel, 0.0066 g (0.025 mmol) of triphenylphosphine and 0.056 g (0.5 mmol) of potassium tert-butoxide ) Was added, and the inside of the container was replaced with argon. Under an argon atmosphere, 0.053 mL (0.5 mmol) of bromobenzene and 2.5 mL of pyridine were added to the mixture and stirred for 10 minutes. The mixed solution was stirred at 100 ° C. for 12 hours. The reaction solution was cooled to room temperature, and 2 mL of water and 3 mL of toluene were added for liquid separation. The residue obtained by concentrating the organic layer was passed through silica gel column chromatography (eluent hexane: chloroform = 100: 0 to 2: 1) to give 2-phenylpyridine (0.0250 g, yield 32%), 3-phenylpyridine. (0.0234 g, yield 30%) and 4-phenylpyridine (0.0060 g, yield 8%) were obtained as a colorless liquid, a yellow liquid, and a white solid, respectively.

2−フェニルピリジン
H−NMR(CDCl,TMS,ppm):δ8.68(td,J=4.8,1.3Hz,1H),7.98(dd,J=7.9Hz,1.5Hz,2H),7.73−7.68(m,2H),7.49−7.43(m,2H),7.42−7.37(m,1H),7.22−7.16(m,1H).
13C−NMR(CDCl,ppm):δ157.4,149.6,139.3,136.6,128.9,128.6,122.0,120.5.
MS:155(M).
3−フェニルピリジン
H−NMR(CDCl,TMS,ppm):δ8.84(dd,J=2.3,0.6Hz,1H),8.58(dd,J=4.8,1.6Hz,1H),7.85(ddd,J=7.9,2.3,1.7Hz,1H),7.57(dd,J=8.3,1.2Hz,2H),7.49−7.44(m,2H),7.42−7.37(m,1H),7.34(ddd,J=7.9,4.8,0.8Hz,1H).
13C−NMR(CDCl,ppm):δ148.3,148.2,137.7,136.5,134.3,129.0,128.0,127.0,123.4.
MS:155(M).
4−フェニルピリジン
H−NMR(CDCl,TMS,ppm):δ8.66(dd,J=4.5,1.6Hz,2H),7.74(d,J=7.0Hz,2H),7.53−7.42(m,5H).
13C−NMR(CDCl,ppm):δ150.2,148.3,138.1,129.1,129.0,127.0,121.6.
MS:155(M).
実施例2
2-Phenylpyridine
1 H-NMR (CDCl 3 , TMS, ppm): δ 8.68 (td, J = 4.8, 1.3 Hz, 1H), 7.98 (dd, J = 7.9 Hz, 1.5 Hz, 2H) , 7.73-7.68 (m, 2H), 7.49-7.43 (m, 2H), 7.42-7.37 (m, 1H), 7.22-7.16 (m, 1H).
13 C-NMR (CDCl 3 , ppm): δ 157.4, 149.6, 139.3, 136.6, 128.9, 128.6, 122.0, 120.5.
MS: 155 (M <+> ).
3-phenylpyridine
1 H-NMR (CDCl 3 , TMS, ppm): δ 8.84 (dd, J = 2.3, 0.6 Hz, 1H), 8.58 (dd, J = 4.8, 1.6 Hz, 1H) 7.85 (ddd, J = 7.9, 2.3, 1.7 Hz, 1H), 7.57 (dd, J = 8.3, 1.2 Hz, 2H), 7.49-7.44. (M, 2H), 7.42-7.37 (m, 1H), 7.34 (ddd, J = 7.9, 4.8, 0.8 Hz, 1H).
13 C-NMR (CDCl 3 , ppm): δ 148.3, 148.2, 137.7, 136.5, 134.3, 129.0, 128.0, 127.0, 123.4.
MS: 155 (M <+> ).
4-phenylpyridine
1 H-NMR (CDCl 3 , TMS, ppm): δ 8.66 (dd, J = 4.5, 1.6 Hz, 2H), 7.74 (d, J = 7.0 Hz, 2H), 7.53 -7.42 (m, 5H).
13 C-NMR (CDCl 3 , ppm): δ 150.2, 148.3, 138.1, 129.1, 129.0, 127.0, 121.6.
MS: 155 (M <+> ).
Example 2

Figure 0005478095
スクリューキャップ付試験管(10mL)に、ビス(シクロペンタジエニル)ニッケル 0.0047g(0.025mmol)、トリフェニルホスフィン 0.0066g(0.025mmol)およびカリウムtert−ブトキシド 0.056g(0.5mmol)を加え、容器内をアルゴンで置換した。この混合物にアルゴン雰囲気下で、4−ブロモアニソール 0.063mL(0.5mmol)とピリジン 2.5mLを加え、10分間攪拌した。この混合溶液を100℃で12時間攪拌した。反応溶液を室温まで冷却し、水 2mLとトルエン 3mLを加えて分液した。有機層を濃縮した残渣をシリカゲルカラムクロマトグラフィー(溶離液 ヘキサン:クロロホルム=100:0〜2:1)に通すことにより、2−(4−メトキシフェニル)ピリジン(0.0236g、収率25%)、3−(4−メトキシフェニル)ピリジン(0.0177g、収率19%)、4−(4−メトキシフェニル)ピリジン(0.0079g、収率8%)をそれぞれ淡黄色固体、淡黄色固体、白色固体として得た。
Figure 0005478095
In a test tube (10 mL) with a screw cap, 0.0047 g (0.025 mmol) of bis (cyclopentadienyl) nickel, 0.0066 g (0.025 mmol) of triphenylphosphine and 0.056 g (0.5 mmol) of potassium tert-butoxide ) Was added, and the inside of the container was replaced with argon. Under an argon atmosphere, 0.063 mL (0.5 mmol) of 4-bromoanisole and 2.5 mL of pyridine were added to the mixture and stirred for 10 minutes. The mixed solution was stirred at 100 ° C. for 12 hours. The reaction solution was cooled to room temperature, and 2 mL of water and 3 mL of toluene were added for liquid separation. The residue obtained by concentrating the organic layer was passed through silica gel column chromatography (eluent hexane: chloroform = 100: 0 to 2: 1) to give 2- (4-methoxyphenyl) pyridine (0.0236 g, yield 25%). , 3- (4-methoxyphenyl) pyridine (0.0177 g, yield 19%) and 4- (4-methoxyphenyl) pyridine (0.0079 g, yield 8%) were respectively pale yellow solid, pale yellow solid, Obtained as a white solid.

2−(4−メトキシフェニル)ピリジン
H−NMR(CDCl,TMS,ppm):δ8.65(ddd,J=4.8,1.7,1.0Hz,1H),7.95(md,J=8.9Hz,2H),7.73−7.65(m,2H),7.17(ddd,J=7.2,4.8,1.3Hz,1H),7.00(md,J=8.9Hz,2H),3.86(s,3H).
13C−NMR(CDCl,ppm):δ160.4,157.1,149.5,136.6,132.0,128.1,121.4,119.8,114.1,55.3.
3−(4−メトキシフェニル)ピリジン
H−NMR(CDCl,TMS,ppm):δ8.84(dd,J=2.0,0.5Hz,1H),8.53(dd,J=4.8,1.6Hz,1H),7.81(ddd,J=7.9,2.2,1.7Hz,1H),7.51(md,J=8.8Hz,2H),7.30(ddd,J=7.9,4.8,0.7Hz,1H),7.00(md,J=8.8Hz,2H),3.85(s,3H).
13C−NMR(CDCl,ppm):δ159.7,147.9,147.7,136.2,133.8,130.1,128.1,123.4,114.5,55.3.
4−(4−メトキシフェニル)ピリジン
H−NMR(CDCl,TMS,ppm):δ8.61(dd,J=4.6,1.5Hz,2H),7.59(md,J=8.6Hz,2H),7.46(dd,J=4.5,1.6Hz,2H),7.00(md,J=8.8Hz,2H),3.86(s,3H).
13C−NMR(CDCl,ppm):δ160.5,150.1,147.8,130.3,128.1,121.0,114.5,55.3.
実施例3
2- (4-Methoxyphenyl) pyridine
1 H-NMR (CDCl 3 , TMS, ppm): δ 8.65 (ddd, J = 4.8, 1.7, 1.0 Hz, 1H), 7.95 (md, J = 8.9 Hz, 2H) , 7.73-7.65 (m, 2H), 7.17 (ddd, J = 7.2, 4.8, 1.3 Hz, 1H), 7.00 (md, J = 8.9 Hz, 2H) ), 3.86 (s, 3H).
13 C-NMR (CDCl 3 , ppm): δ 160.4, 157.1, 149.5, 136.6, 132.0, 128.1, 121.4, 119.8, 114.1, 55.3 .
3- (4-Methoxyphenyl) pyridine
1 H-NMR (CDCl 3 , TMS, ppm): δ 8.84 (dd, J = 2.0, 0.5 Hz, 1H), 8.53 (dd, J = 4.8, 1.6 Hz, 1H) 7.81 (ddd, J = 7.9, 2.2, 1.7 Hz, 1H), 7.51 (md, J = 8.8 Hz, 2H), 7.30 (ddd, J = 7.9) , 4.8, 0.7 Hz, 1H), 7.00 (md, J = 8.8 Hz, 2H), 3.85 (s, 3H).
13 C-NMR (CDCl 3 , ppm): δ 159.7, 147.9, 147.7, 136.2, 133.8, 130.1, 128.1, 123.4, 114.5, 55.3 .
4- (4-Methoxyphenyl) pyridine
1 H-NMR (CDCl 3 , TMS, ppm): δ 8.61 (dd, J = 4.6, 1.5 Hz, 2H), 7.59 (md, J = 8.6 Hz, 2H), 7.46 (Dd, J = 4.5, 1.6 Hz, 2H), 7.00 (md, J = 8.8 Hz, 2H), 3.86 (s, 3H).
13 C-NMR (CDCl 3 , ppm): δ 160.5, 150.1, 147.8, 130.3, 128.1, 121.0, 114.5, 55.3.
Example 3

Figure 0005478095
スクリューキャップ付試験管(10mL)に、ビス(シクロペンタジエニル)ニッケル 0.0047g(0.025mmol)、トリフェニルホスフィン 0.0066g(0.025mmol)、4−ブロモビフェニル 0.1166g(0.5mmol)及びカリウムtert−ブトキシド 0.056g(0.5mmol)を加え、容器内をアルゴンで置換した。この混合物にアルゴン気流下で、ピリジン 2.5mLを加え、10分間攪拌した。この混合溶液を100℃で12時間攪拌した。反応溶液を室温まで冷却し、水 2mLとトルエン 3mLを加えて分液した。有機層を濃縮した残渣をシリカゲルカラムクロマトグラフィー(溶離液 ヘキサン:クロロホルム=100:0〜2:1)に通すことにより、2−(4−ビフェニリル)ピリジン(0.0405g、収率35%)、3−(4−ビフェニリル)ピリジン(0.0346g、収率30%)、4−(4−ビフェニリル)ピリジン(0.0084g、収率7%)をそれぞれ淡い茶色固体、淡い茶色固体、黄色固体として得た。
Figure 0005478095
In a test tube with a screw cap (10 mL), 0.0047 g (0.025 mmol) of bis (cyclopentadienyl) nickel, 0.0066 g (0.025 mmol) of triphenylphosphine, 0.1166 g (0.5 mmol) of 4-bromobiphenyl ) And 0.056 g (0.5 mmol) of potassium tert-butoxide were added, and the inside of the container was replaced with argon. Under an argon stream, 2.5 mL of pyridine was added to this mixture and stirred for 10 minutes. The mixed solution was stirred at 100 ° C. for 12 hours. The reaction solution was cooled to room temperature, and 2 mL of water and 3 mL of toluene were added for liquid separation. The residue obtained by concentrating the organic layer was passed through silica gel column chromatography (eluent hexane: chloroform = 100: 0 to 2: 1) to give 2- (4-biphenylyl) pyridine (0.0405 g, yield 35%), 3- (4-biphenylyl) pyridine (0.0346 g, yield 30%) and 4- (4-biphenylyl) pyridine (0.0084 g, yield 7%) as a light brown solid, light brown solid, and yellow solid, respectively. Obtained.

2−(4−ビフェニリル)ピリジン
H−NMR(CDCl,TMS,ppm):δ8.72(d,J=4.6Hz,1H),8.08(d,J=8.4Hz,2H),7.80−7.75(m,2H),7.72(d,J=8.4Hz,2H),7.66(d,J=7.2Hz,2H),7.46(dd,J=7.6,7.6Hz,2H),7.37(dd,J=7.4,7.4Hz,1H),7.27−7.21(m,1H).
13C−NMR(CDCl,ppm):δ157.1,149.8,141.8,140.6,138.3,136.9,128.9,127.6,127.5,127.4,127.2,122.2,120.5.
MS:231(M).
3−(4−ビフェニリル)ピリジン
H−NMR(CDCl,TMS,ppm):δ8.91(d,J=1.8Hz,1H),8.61(dd,J=4.8,1.4Hz,1H),7.93(dt,J=7.9,1.9Hz,1H),7.72(d,J=8.4Hz,2H),7.69−7.62(m,4H),7.47(dd,J=7.6,7.6Hz,2H),7.41−7.37(m,2H).
13C−NMR(CDCl,ppm):δ148.6,148.3,141.1,140.4,136.7,136.3,134.3,129.0,127.9,127.7,127.6,127.2,123.7.
MS:231(M).
4−(4−ビフェニリル)ピリジン
H−NMR(CDCl,TMS,ppm):δ8.68(d,J=5.5Hz,2H),7.72(s,4H),7.64(d,J=7.3Hz,2H),7.56(d,J=6.0Hz,2H),7.48(dd,J=7.6,7.6Hz,2H),7.39(t,J=7.4Hz,1H).
13C−NMR(CDCl,ppm):δ150.2,148.1,142.1,140.3,136.9,129.0,127.9,127.8,127.5,127.2,121.6.
MS:231(M).
実施例4
2- (4-Biphenylyl) pyridine
1 H-NMR (CDCl 3 , TMS, ppm): δ 8.72 (d, J = 4.6 Hz, 1H), 8.08 (d, J = 8.4 Hz, 2H), 7.80-7.75 (M, 2H), 7.72 (d, J = 8.4 Hz, 2H), 7.66 (d, J = 7.2 Hz, 2H), 7.46 (dd, J = 7.6, 7. 6 Hz, 2H), 7.37 (dd, J = 7.4, 7.4 Hz, 1H), 7.27-7.21 (m, 1H).
13 C-NMR (CDCl 3 , ppm): δ 157.1, 149.8, 141.8, 140.6, 138.3, 136.9, 128.9, 127.6, 127.5, 127.4 , 127.2, 122.2, 120.5.
MS: 231 (M <+> ).
3- (4-Biphenylyl) pyridine
1 H-NMR (CDCl 3 , TMS, ppm): δ 8.91 (d, J = 1.8 Hz, 1H), 8.61 (dd, J = 4.8, 1.4 Hz, 1H), 7.93 (Dt, J = 7.9, 1.9 Hz, 1H), 7.72 (d, J = 8.4 Hz, 2H), 7.69-7.62 (m, 4H), 7.47 (dd, J = 7.6, 7.6 Hz, 2H), 7.41-7.37 (m, 2H).
13 C-NMR (CDCl 3 , ppm): δ 148.6, 148.3, 141.1, 140.4, 136.7, 136.3, 134.3, 129.0, 127.9, 127.7 , 127.6, 127.2, 123.7.
MS: 231 (M <+> ).
4- (4-Biphenylyl) pyridine
1 H-NMR (CDCl 3 , TMS, ppm): δ 8.68 (d, J = 5.5 Hz, 2H), 7.72 (s, 4H), 7.64 (d, J = 7.3 Hz, 2H) ), 7.56 (d, J = 6.0 Hz, 2H), 7.48 (dd, J = 7.6, 7.6 Hz, 2H), 7.39 (t, J = 7.4 Hz, 1H) .
13 C-NMR (CDCl 3 , ppm): δ 150.2, 148.1, 142.1, 140.3, 136.9, 129.0, 127.9, 127.8, 127.5, 127.2 , 121.6.
MS: 231 (M <+> ).
Example 4

Figure 0005478095
スクリューキャップ付試験管(10mL)に、ビス(シクロペンタジエニル)ニッケル 0.0047g(0.025mmol)、トリフェニルホスフィン 0.0066g(0.025mmol)およびカリウムtert−ブトキシド 0.056g(0.5mmol)を加え、容器内をアルゴンで置換した。この混合物にアルゴン雰囲気下で、4−ブロモ−tert−ブチルベンゼン 0.087mL(0.5mmol)とピリジン 2.5mLを加え、10分間攪拌した。この混合溶液を100℃で12時間攪拌した。反応溶液を室温まで冷却し、水 2mLとトルエン 3mLを加えて分液した。有機層を濃縮した残渣をシリカゲルカラムクロマトグラフィー(溶離液 ヘキサン:クロロホルム=100:0〜2:1)に通すことにより、2−(4−tert−ブチルフェニル)ピリジン(0.0292g、収率28%)、3−(4−tert−ブチルフェニル)ピリジン(0.0228g、収率22%)、4−(4−tert−ブチルフェニル)ピリジン(0.0114g、収率11%)をそれぞれ無色透明液体、黄色固体、白色固体として得た。
Figure 0005478095
In a test tube (10 mL) with a screw cap, 0.0047 g (0.025 mmol) of bis (cyclopentadienyl) nickel, 0.0066 g (0.025 mmol) of triphenylphosphine and 0.056 g (0.5 mmol) of potassium tert-butoxide ) Was added, and the inside of the container was replaced with argon. Under an argon atmosphere, 0.087 mL (0.5 mmol) of 4-bromo-tert-butylbenzene and 2.5 mL of pyridine were added to the mixture and stirred for 10 minutes. The mixed solution was stirred at 100 ° C. for 12 hours. The reaction solution was cooled to room temperature, and 2 mL of water and 3 mL of toluene were added for liquid separation. The residue obtained by concentrating the organic layer was passed through silica gel column chromatography (eluent hexane: chloroform = 100: 0 to 2: 1) to give 2- (4-tert-butylphenyl) pyridine (0.0292 g, yield 28). %), 3- (4-tert-butylphenyl) pyridine (0.0228 g, yield 22%) and 4- (4-tert-butylphenyl) pyridine (0.0114 g, yield 11%) were each colorless and transparent. Obtained as a liquid, yellow solid, white solid.

2−(4−tert−ブチルフェニル)ピリジン
H−NMR(CDCl,TMS,ppm):δ8.66(td,J=4.8,1.4Hz,1H),7.92(md,J=8.6Hz,2H),7.72−7.67(m,2H),7.49(md,J=8.6Hz,2H),7.17(ddd,J=8.9,8.9,4.6Hz,1H),1.35(brs,9H).
13C−NMR(CDCl,ppm):δ157.4,152.0,149.5,136.6,136.5,126.5,125.6,121.7,120.2,34.6,31.2.
MS:211(M).
3−(4−tert−ブチルフェニル)ピリジン
H−NMR(CDCl,TMS,ppm):δ8.85(dd,J=2.6,0.7Hz,1H),8.56(dd,J=4.8,1.6Hz,1H),7.86(ddd,J=7.9,2.3,1.7Hz,1H),7.55−7.48(m,4H),7.33(ddd,J=7.9,4.8,0.8Hz,1H),1.36(brs,9H).
13C−NMR(CDCl,ppm):δ151.2,148.14,148.1,136.4,134.8,134.1,126.7,126.0,123.5,34.5,31.2.
MS:211(M).
4−(4−tert−ブチルフェニル)ピリジン
H−NMR(CDCl,TMS,ppm):δ8.63(d,J=6.2Hz,2H),7.59(d,J=8.5Hz,2H),7.51(d,J=8.5Hz,2H),7.50(d,J=8.5Hz,2H),1.37(brs,9H).
13C−NMR(CDCl,ppm):δ152.4,150.1,148.1,135.1,126.6,126.0,121.4,34.7,31.2.
MS:211(M
2- (4-tert-Butylphenyl) pyridine
1 H-NMR (CDCl 3 , TMS, ppm): δ 8.66 (td, J = 4.8, 1.4 Hz, 1H), 7.92 (md, J = 8.6 Hz, 2H), 7.72 −7.67 (m, 2H), 7.49 (md, J = 8.6 Hz, 2H), 7.17 (ddd, J = 8.9, 8.9, 4.6 Hz, 1H), 1. 35 (brs, 9H).
13 C-NMR (CDCl 3 , ppm): δ 157.4, 152.0, 149.5, 136.6, 136.5, 126.5, 125.6, 121.7, 120.2, 34.6 31.2.
MS: 211 (M <+> ).
3- (4-tert-butylphenyl) pyridine
1 H-NMR (CDCl 3 , TMS, ppm): δ 8.85 (dd, J = 2.6, 0.7 Hz, 1H), 8.56 (dd, J = 4.8, 1.6 Hz, 1H) 7.86 (ddd, J = 7.9, 2.3, 1.7 Hz, 1H), 7.55-7.48 (m, 4H), 7.33 (ddd, J = 7.9, 4 .8, 0.8 Hz, 1H), 1.36 (brs, 9H).
13 C-NMR (CDCl 3 , ppm): δ 151.2, 148.14, 148.1, 136.4, 134.8, 134.1, 126.7, 126.0, 123.5, 34.5 31.2.
MS: 211 (M <+> ).
4- (4-tert-butylphenyl) pyridine
1 H-NMR (CDCl 3 , TMS, ppm): δ 8.63 (d, J = 6.2 Hz, 2H), 7.59 (d, J = 8.5 Hz, 2H), 7.51 (d, J = 8.5 Hz, 2H), 7.50 (d, J = 8.5 Hz, 2H), 1.37 (brs, 9H).
13 C-NMR (CDCl 3 , ppm): δ 152.4, 150.1, 148.1, 135.1, 126.6, 126.0, 121.4, 34.7, 31.2.
MS: 211 (M + )

Claims (1)

カリウムtert−ブトキシド、トリフェニルホスフィンおよびビス(シクロペンタジエニル)ニッケルの存在下、一般式
Ar−X (1)
(式中、Arはハロゲン原子、炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基若しくはフェニル基で置換されていても良いフェニル基またはナフチル基を示し、Xはヨウ素、臭素または塩素を示す。)
で表されるハロゲン化アリール類とピリジンを反応させることを特徴とするアリールピリジン類の製造方法。
Ar-X (1) in the presence of potassium tert-butoxide, triphenylphosphine and bis (cyclopentadienyl) nickel
(In the formula, Ar represents a halogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a phenyl group or naphthyl group optionally substituted with a phenyl group, and X represents iodine, bromine or Indicates chlorine.)
A process for producing arylpyridines, characterized by reacting an aryl halide represented by general formula (II) with pyridine.
JP2009057585A 2009-03-11 2009-03-11 Method for producing arylpyridines Active JP5478095B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009057585A JP5478095B2 (en) 2009-03-11 2009-03-11 Method for producing arylpyridines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009057585A JP5478095B2 (en) 2009-03-11 2009-03-11 Method for producing arylpyridines

Publications (2)

Publication Number Publication Date
JP2010209006A JP2010209006A (en) 2010-09-24
JP5478095B2 true JP5478095B2 (en) 2014-04-23

Family

ID=42969584

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009057585A Active JP5478095B2 (en) 2009-03-11 2009-03-11 Method for producing arylpyridines

Country Status (1)

Country Link
JP (1) JP5478095B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111499566A (en) * 2020-04-30 2020-08-07 南京工业大学 Pyridine derivative compound and preparation method thereof
CN114315699B (en) * 2022-01-14 2023-09-19 江苏海洋大学 Method for synthesizing 2-alkenyl pyridine compound by copper catalysis

Also Published As

Publication number Publication date
JP2010209006A (en) 2010-09-24

Similar Documents

Publication Publication Date Title
US6156925A (en) Process for the preparation of halogenated phenylmaloates
IL259400A (en) 4-((6-(2-(2,4-difluorophenyl)-1,1-difluoro-2-oxoethyl) pyridin-3-yl)oxy)benzonitrile and processes of preparation
JPWO2016152226A1 (en) Method for producing dialkylaminosilane
JP5478095B2 (en) Method for producing arylpyridines
CN109942433B (en) Chemical synthesis method of 3&#39;,4&#39;,5&#39; -trifluoro-2-aminobiphenyl
JP2005238218A (en) Palladium catalyst for carbon-carbon bond forming reaction and production method of olefin group-substituted aromatic compound using the palladium catalyst
JP2013241421A (en) METHOD FOR PRODUCING α-FLUOROMALONIC ACID DIALKYL ESTER
EP3368513B1 (en) Process for the synthesis of pirfenidone
JP2007091627A (en) Method for producing cyanopyridine derivative
JP6498048B2 (en) Fluorine-containing organic compound and method for producing biaryl compound using this and Grignard reagent
JP7023176B2 (en) Method for producing 9- (1-naphthyl) -9H-carbazole derivative
JP4948030B2 (en) Method for producing fluorine-containing alcohol derivative
JP2010132593A (en) Method for producing 4-alkylresorcinol
EP1002788B1 (en) Process for preparing halogenated phenylmalonates
WO2003014067A1 (en) PROCESS FOR PRODUCING ß-OXONITRILE COMPOUND OR ALKALI METAL SALT THEREOF
JP2008143857A (en) Method for producing benzofluorene derivative and its intermediate
JPWO2015174214A1 (en) Process for producing α-bromoacetophenone compound
JP4978762B2 (en) Method for producing cyclohex-3-en-1-ol derivative
JP4032861B2 (en) Process for producing β-oxonitrile derivative or alkali metal salt thereof
JP6235286B2 (en) (Bromodifluoromethyl) benzene derivatives and methods for producing them
JP4839678B2 (en) Method for producing dihalogenated biaryl derivative
JP5374085B2 (en) Process for producing 4-alkylresorcinol and 4-alkenylresorcinol
JP6347460B2 (en) (Trihalomethyl) benzene derivative and method for producing the same
JP2016169192A (en) Method of producing 7-octenyl halide
JP5507147B2 (en) Process for producing pyrimidinyl alcohol derivatives and synthetic intermediates thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130827

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140210

R150 Certificate of patent or registration of utility model

Ref document number: 5478095

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150