JP7410932B2 - ライダーセンサーを取り付けられた自動車両のための道路検出の方法 - Google Patents

ライダーセンサーを取り付けられた自動車両のための道路検出の方法 Download PDF

Info

Publication number
JP7410932B2
JP7410932B2 JP2021513205A JP2021513205A JP7410932B2 JP 7410932 B2 JP7410932 B2 JP 7410932B2 JP 2021513205 A JP2021513205 A JP 2021513205A JP 2021513205 A JP2021513205 A JP 2021513205A JP 7410932 B2 JP7410932 B2 JP 7410932B2
Authority
JP
Japan
Prior art keywords
vehicle
angle
plane
lidar data
lidar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021513205A
Other languages
English (en)
Other versions
JP2022503671A (ja
Inventor
ファルーク ガラビ,
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault SAS
Original Assignee
Renault SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault SAS filed Critical Renault SAS
Publication of JP2022503671A publication Critical patent/JP2022503671A/ja
Application granted granted Critical
Publication of JP7410932B2 publication Critical patent/JP7410932B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/4808Evaluating distance, position or velocity data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0234Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using optical markers or beacons
    • G05D1/0236Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using optical markers or beacons in combination with a laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/53Road markings, e.g. lane marker or crosswalk
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/10Path keeping
    • B60W30/12Lane keeping

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Optics & Photonics (AREA)
  • Traffic Control Systems (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

本発明の技術分野は、自律車両の制御、より詳細には、そのような車両を制御するための交通車線検出である。
現在使用されている衛星測位システムは、数メートル以内までの正確さで位置を取得することを可能にするグローバルナビゲーション衛星システム(GNSS)である。リアルタイムキネマティック(RTK)補正を用いるGNSSシステムは、5cmのオーダーの正確さを有することに留意されたい。しかしながら、そのようなシステムは、極めてコストがかかり、連続生産車両のために使用され得ない。
場合によっては、商業GNSSシステムを追加のセンサーと融合させることにより、そのシステムにおけるギャップを埋めることが可能になる。追加のセンサーは、加速度計、ジャイロスコープまたはオドメーターであり得る。「u-blox」センサーなど、追加のセンサーを用いてこのようにして補完された商業GNSSシステムについて得られる正確さは約2~3mである。
この正確さは、車両がそれの中に位置する交通車線の位置特定(「車線レベル」)を達成するためには依然として十分でない。
カメラ価格の低下および認識アルゴリズムの改善により、マーキングラインを検出するために、したがって、運転車線を認識するためにカメラを使用することによって、この問題を改善することが可能になる。とはいえ、検出は完全ではない。カメラはパッシブセンサーであるので、それ自体の光源を生成せず、したがって、光がない場合には機能しない。その上、カメラの原理は2D平面図上の3D環境の投影形状に依拠するので、環境の3D情報の損失が生じる。それにより、単一のカメラの事例(単眼の事例)において環境の3D再構成のタスクが困難になる。
しかしながら、ライダー(LIDAR)センサー(光に基づいて距離を検出し、決定する「光による検知と測距(Light Detection and Ranging)」の頭字語)など、環境の3D表現を提供する、現在市場で入手可能なアクティブセンサーを伴うソリューションがある。そのようなセンサーは、センサーの各完全な1回転について700,000ポイントに達し得る、ポイントの極めて密なクラウドを収集することが可能である。このようにして得られたポイントのクラウドは、周期的にリフレッシュされる大量のデータを表す。そのようなデータをリアルタイムで処理することは真の技術的課題である。
この特定の事例において、1つの目的は、処理されるべきデータの量を低減し、データの処理をスピードアップするために、道路をセグメントに区分することである。
事実上、道路はライダーデータの全体のサブセットのみを表す。
最新技術から、車両の近傍の道路の表面を取得するためのセンサーの使用が知られている。センサーを使用して道路の測定が復元されると、道路を表すデータは、道路マーキングのみを保持するためにフィルタを適用することによって消去される。車線境界を検出するための差分フィルタと、ガウシアンフィルタの、2つのフィルタが挙げられる。フィルタ処理されたデータは、次いで、予想される車線マーキングと比較される。予想される車線マーキングに関する情報は、特定のポイントにおける車線幅、車線の位置、および車線間の関係など、道路セクションに関するデータを備えるパイル中に存在する。
しかしながら、本文書は、マーキングを分離することが可能であるために道路がどのように識別されるかについては説明せず、道路を表すデータを採用する。本文書はまた、システムが使用可能であるために事前作業を必要とする、処理を簡略化するための車線の事前識別に依拠する。
解決されるべき技術的問題は、したがって、道路を効果的かつ効率的に画成する技術的問題である。
本発明の主題は、回転マルチレイヤライダーセンサーと、少なくとも1つのデータ処理手段とを備える自動車両のための道路検出方法であって、
自動車両の環境のライダーデータが、ライダーセンサーを用いて極座標として取得されるステップと、
車両の平面に対するビームの角度に関係する極座標が0以上であるデータが、取得されたライダーデータから消去されるステップと
を含み、
車両の平面に対するビームの各角度について、および各ライダーデータについて、
ライダーデータに対応するポイントの理論座標が、特に、車両の平面に対するビームの角度と、車両の平面内のビームの角度との関数として決定されるステップと、
理論座標とライダーデータの座標との間の偏差が決定されるステップと、
差が事前定義されたしきい値よりも小さい場合、ライダーデータが道路の一部を形成することが決定されるステップと
が実行される、道路検出方法である。
1つのライダーデータは、1回転にわたってライダーセンサーによって取得されたポイントのクラウドの1つのポイントであるか、または、車両の平面に対して同じビーム角度を有する、ライダーセンサーによって取得されたポイントのクラウドのうちの少なくとも2つの連続するポイントを備えるセクションであり得る。
ライダーデータが、ポイントのクラウドの1つのポイントであるとき、ライダーデータに対応するポイントの理論座標を、車両を中心とする、道路の平面に内接する理想円中に含まれている1つのポイントの理論座標として決定することが可能である。
ライダーデータが、ポイントのクラウドのうちの少なくとも2つのポイントを備えるセクションであるとき、理論座標およびセクションの座標は、デカルト座標(Cartesian coordinate)として定義され、車両の平面内の車両の移動方向における座標と、車両の平面内の車両の移動方向に直角な方向における座標と、車両の平面への垂線上の理論座標とを含み、
車両の平面への垂線上の理論座標は、セクション内に含まれているライダーセンサーによって取得されたポイントのクラウドのポイントの車両の平面への垂線上の座標の平均として定義され得、
他の理論座標は、車両を中心とする、道路の平面に内接する理想円上のポイントの座標として定義されることが可能である。
各セクタが、セクタを走査する方向に関連付けられた、少なくとも2つのセクタを車両の平面内で決定することが可能であり、
各セクタについて、
ライダーデータが走査方向において走査されるステップと、各ライダーデータが道路に属するかどうかに関する決定が行われるステップと、1つのライダーデータが道路に属さないことが決定されるとすぐに、ライダーデータの走査が中断されるステップと、走査されていない、セクタのライダーデータが道路に属さないことが決定されるステップとが実行され得る。
各セクタについて、不整の影響を低減するために、ガウシアンフィルタ、特に、サイズ3のカーネルをもつ、標準偏差5のガウシアンフィルタが差の決定の結果に適用され得る。
前進している車両の移動方向が、車両の平面内のビームの角度の角度0に対応するものとして定義され得、
4つのセクタが車両の平面内で定義され得、
第1のセクタは、車両の平面内の角度が角度0から角度π/2まで延びるライダーデータを備え、そのライダーデータが、車両の平面内で初期角度0から最終角度π/2まで走査され、
第2のセクタは、車両の平面内の角度が角度π/2から角度πまで延びるライダーデータを備え、そのライダーデータが、車両の平面内で初期角度πから最終角度π/2まで走査され、
第3のセクタは、車両の平面内の角度が角度πから角度3π/2まで延びるライダーデータを備え、そのライダーデータが、車両の平面内で初期角度πから最終角度3π/2まで走査され、
第4のセクタは、車両の平面内の角度が角度3π/2から角度0まで延びるライダーデータを備え、そのライダーデータが、車両の平面内で初期角度0から最終角度3π/2まで走査される。
各セクタに関係するステップは別個の処理手段を介して実行され得る。
車両の平面に対するビームの各角度について、ライダーセンサーによって知覚された反射された光強度が所定のしきい値よりも低い場合、道路に属するライダーデータが地面上のマーキングに対応することが決定され得る。道路が少なくとも部分遮へいを受けるときに道路の追跡を保証するために、追跡方法が使用され得る。
自動車両は自律車両であり得る。
本発明の他の目的、特徴および利点は、純粋に非限定的な例として、添付の図を参照しながら与えられる、以下の説明を読むと明らかになろう。
車両の平面に対するレーザービームの1つの角度について取得されたライダーデータの極観(polar view)を示す図である。 本方法によって走査されるセクタの一例を示す図である。
本道路検出方法により、回転マルチレイヤライダーセンサーの使用によって、車両に対する道路の位置を決定することが可能になる。
ライダーは、レーザービームを一定の間隔で放出することによってセンサーと障害物との間の距離を決定することを可能にするセンサーであり、ビームは環境の物体によって反射されることが想起されよう。このようにして反射されたビームは、そのビームを反射した物体の位置を推定するために、ライダーによって検出される。
ライダーセンサーはまた、それの環境のポイントの位置を検出するために、特に360°の回転運動によって駆動され得る。
そのようなライダーセンサー(図1中の参照番号1)は、それぞれ車両の平面に対して異なる角度で配向させられた、いくつかのレーザーを備える。向きを変えることによって、および1回転中に複数の収集を実行することによって、ライダーセンサーは、表面上の各レーザービームの反射点の位置を決定し、ライダーセンサーに対する反射点の相対位置に対応する座標をもつポイントのクラウドを生成する。
反射点Pの座標は、一般に、(r、θ、φ)の形態の極座標として表され、rはセンサーと反射点との間の距離を示し、θは車両の平面に対するビームの角度を示し、φは車両の平面内のビームの角度を示す。図1はそのような基準座標系(reference frame)を示す。車両の平面は、車両のシャシーの平面であるか、または車両のシャシーに平行な平面であると理解される。また、一方の基準座標系から他方の基準座標系に切り替えるために回転による変換が必要でないように、車両にリンクされる基準座標系はライダーの基準座標系にリンクされることに留意されたい。
ライダーセンサーは、各完全な1回転においてポイントの極めて大きいクラウドを生成するので、計算時間を制限するために、クラウドのセグメンテーションを実行することが必要である。説明の残りについて、ポイントのクラウドの1つのポイントが1つのライダーデータであると考えられる。
セグメンテーションの第1のステップ中に、考慮される唯一のデータは、角度θが負であるライダーデータ、すなわち、車両の平面と平行にセンサーを通る平面より下の角度で放出されたレーザービームから導出されたライダーデータである。事実上、これらのビームのみが道路と相互作用することができる。
セグメンテーションの第2のステップ中に、ライダーデータは、車両の平面に対するライダーデータの角度θの関数として分離される。事実上、発明者らは、車両の平面に対して所与の角度θで放出されたレーザービームが、滑らかで、連続した、ほぼ平坦であると考えられる道路上の理想円を形成することを認識している。
対照的に、レーザービームが、路側など、道路以外の何かの上を通るとき、理想円の周りの位置の分散が得られる。
道路のポイントを識別するために、車両の平面に対する角度θに関連付けられたライダーデータの各セットについて、以下のサブステップが実行される。
理想円のポイントの理論座標(xth、yth、zth)は、特に、車両の平面に対する角度θの関数として決定される。
車両の平面に対する所与の角度θについて、および車両の平面内の各角度φについて、同一の角度φについての理論座標(xth、yth、zth)とライダーデータの座標(xi、yi、zi)との間の差σが、以下の式Eq.1の適用によって決定される。
Figure 0007410932000001
上記で導入されたセグメンテーションにもかかわらず、処理されるべきデータの量は大きいままである。車両の平面に対する所与の角度θについて、ライダーセンサーは、車両の平面内の角度φに対して360°または2πの走査を行うことに留意されたい。
ライダーセンサーから取得されたポイントのクラウドのセグメンテーションを改善するために、車両の平面内の角度φに関係するポイントの数を低減することが提案される。
そのことを達成するために、道路検出容量に対する著しい影響なしにライダーセンサーの分解能を低下させることができることが考えられる。
次いで、セクションSi内で、車両の平面に対して同一の角度θを有し、車両の平面内の角度φが、連続しており、事前定義された角度間隔Δφにわたって延びる、いくつかのポイントがグループ化される。事前定義された角度間隔は、1°と5°との間にある値を取ることができる。図1はそのようなセクションSiを示す。ポイントのグループ化は、セクションのポイントの座標の平均値の決定によって実行され得る。セクションSiは、したがって、ライダーセンサーから取得されたポイントのクラウドのポイントの代替ライダーデータを形成する。
セクションSi(iは1からnまで変動し、nはセクションの総数である)内のポイントのそのようなグループ化は、車両の平面に対して同一の角度θを有するすべてのポイントについて実行され、このことは差σの決定の前に行われる。
代替実施形態では、セクションSiがライダーデータと考えられるとき、各セクションSiについて、理想円のポイントの理論高さzthは、セクションSi中に含まれているポイントのクラウドのポイントの高さziの平均値zμによって置き換えられる。次いで、差σを決定するために、式Eq.1の修正版が使用される。
Figure 0007410932000002
式Eq.1およびEq.2はデカルト座標で表される。しかしながら、これらの式の、極基準座標系(polar reference frame)で表される式への変換は、当業者の一般的な知識の一部を形成する。したがって、本方法のすべてのステップについて極基準座標系を保持することが可能である。
考慮されるライダーデータ、ポイントのクラウドまたはセクションSiのポイントとは無関係に、差σが事前定義されたしきい値を下回るライダーデータは道路の一部を形成し、他のセクションは道路の一部を形成しないことが決定される。
処理されるべきデータの量をさらに低減するために、差σを決定する際に、同一の角度θを有するライダーデータのすべてを走査しないことが提案される。
そのために、車両の平面内の、角度φに対応する空間がセクタに再分割される。図2によって示された一実施形態では、車両の前方左側を第1のセクタQ1と定義し、車両の後方左側を第2のセクタQ2と定義し、車両の後方右側を第3のセクタQ3と定義し、車両の前方右側を第4のセクタQ4と定義することが可能である。セクタをそれらの限界角度φに関して定義することも可能である。したがって、第1のセクタQ1は角度φ=0から角度φ=π/2まで延び、第2のセクタQ2は角度φ=π/2からφ=πまで延び、第3のセクタQ3は角度φ=πからφ=3π/2まで延び、第4のセクタQ4はφ=3π/2からφ=0まで延び、φ=0は、前進している車両の移動方向と整合させられる。
同一の角度θを有するどのライダーデータが道路に属するかを決定しようとするとき、ライダーデータは、第1のセクタQ1については0からπ/2まで、第2のセクタQ2についてはπからπ/2まで、第3のセクタQ3についてはπから3π/2まで、第4のセクタについては0から3π/2まで変動する角度φについて走査される。そのような走査順序により、車両の移動の優先度を付けられた方向である、車両の前方および後方における道路の検出に優先度を付けることが可能になる。
セクタを走査するとき、道路に対応しないライダーデータ、すなわち、差σが所定のしきい値を上回るライダーデータが求められる。探索は、上記で特定された角度間の各セクタについて、上記で特定された方向において、差が所定のしきい値以上になる角度まで実行される。次いで、そのセクタのライダーデータの走査が停止される。走査されていない残っているライダーデータは、道路の一部を形成しないと考えられる。
4つのセクタにわたって探索を実行した後、道路のライダーデータのみを保持するように、道路に対応しないライダーデータが消去される。
セクタの処理は、計算ユニットの数と能力とに応じて、連続的にまたは同時に実行され得る。
特定の実施形態では、道路に属するポイントまたはセクションの探索の前に、不整の影響を低減するために、標準偏差σをもつガウシアンフィルタが各セクタQ1、Q2、Q3、Q4に適用される。サイズ3のカーネルをもつ、標準偏差5のガウシアンフィルタがこの用途に特に好適である。
特定の実施形態では、車線マーキングが、各ポイントについて反射されたレーザービームの強度の関数として求められる。事実上、ライダーセンサーにより、戻された光の強度に基づいて、異なる材料を検出することが可能になる。したがって、地面上のマーキングの反射率を使用して道路上の車線境界を識別することが可能である。
そのために、道路に対応する各ポイントに関連する強度が所定のしきい値と比較される。地面上のマーキングは、強度が、道路に属する所定のしきい値よりも低いポイントである。
特定の実施形態では、道路限界が(たとえば車両によって)遮へいを受けたときに道路限界の追跡を保証するために、追跡方法が使用される。

Claims (9)

  1. 回転マルチレイヤライダーセンサー(1)と、少なくとも1つのデータ処理手段とを備える自動車の車道路検出方法であって、
    前記車両の環境のライダーデータが、前記ライダーセンサー(1)を用いて極座標として取得されるステップと、
    前記車両の平面に対するビームの角度に関係する前記極座標が0以上であるデータが、取得された前記ライダーデータから消去されるステップと
    を含み、
    前記車両の前記平面に対してなす前記ビームの毎にまた、前記ライダーデータ毎に
    前記ライダーデータに対応するポイントの理論座標が、前記車両の前記平面に対して前記ビームのなす角度と、前記車両の前記平面内前記ビームのなす角度とに基づいて決定されるステップと、
    前記理論座標と前記ライダーデータの標との間の差が決定されるステップと、
    前記差が所定のしきい値よりも小さい場合、前記ライダーデータ道路の一部であると決定されるステップと
    が実行され、
    各セクタが前記セクタの走査方向に関連付けられた、少なくとも2つのセクタが前記車両の前記平面内で決定され、
    各セクタについて、前記ライダーデータが前記走査方向において走査され、各ライダーデータが前記道路に属するかどうかに関する決定が行われ、1つのライダーデータが前記道路に属さないことが決定されるとすぐに、そのセクタに対する前記ライダーデータの走査が中断され、走査が中断された当該セクタの当該ライダーデータは前記道路に属さないと決定される、
    道路検出方法。
  2. 1つのライダーデータが、1回転にわたって前記ライダーセンサーによって取得されたポイントのクラウドの1つのポイントであるか、または、前記車両の前記平面に対して同じビーム角度を有する、前記ライダーセンサーによって取得されたポイントの前記クラウドのうちの少なくとも2つの連続するポイントを備えるセクションである、請求項1に記載の方法。
  3. 前記ライダーデータが、ポイントの前記クラウドの1つのポイントであるとき、前記ライダーデータに対応する前記ポイントの前記理論座標が、前記車両を中心とする、前記道路の前記平面に内接する理想円内に含まれている1つのポイントの理論座標として決定される、請求項2に記載の方法。
  4. 前記ライダーデータが、ポイントの前記クラウドのうちの少なくとも2つのポイントを備えるセクションであるとき、
    前記理論座標および前記セクションの前記座標が、デカルト座標として定義され、前記車両の前記平面内の前記車両の移動方向における座標と、前記車両の前記平面内の前記車両の前記移動方向に直角な方向における座標と、前記車両の前記平面への垂線上の理論座標とを含み、
    前記車両の前記平面への前記垂線上の前記理論座標が、前記セクション内に含まれている前記ライダーセンサーによって取得されたポイントの前記クラウドの前記ポイントの前記車両の前記平面への前記垂線上の前記座標の平均として定義され、
    他の理論座標が、前記車両を中心とする、前記道路の前記平面に内接する理想円上のポイントの前記座標として定義される、請求項2に記載の方法。
  5. 各セクタについて、不整の影響を低減するために、イズ3のカーネルをもつ、標準偏差5のガウシアンフィルタが前記差の前記決定の結果に適用される、請求項に記載の方法。
  6. 前進している前記車両の移動方向が、前記車両の前記平面内の前記ビームの前記角度の角度0に対応するものとして定義され、
    4つのセクタが前記車両の前記平面内で定義され、
    第1のセクタは、前記車両の前記平面内の前記角度が角度0から角度π/2まで延びるライダーデータを備え、前記ライダーデータが、前記車両の前記平面内で初期角度0から最終角度π/2まで走査され、
    第2のセクタは、前記車両の前記平面内の前記角度が角度π/2から角度πまで延びるライダーデータを備え、前記ライダーデータが、前記車両の前記平面内で初期角度πから最終角度π/2まで走査され、
    第3のセクタは、前記車両の前記平面内の前記角度が角度πから角度3π/2まで延びるライダーデータを備え、前記ライダーデータが、前記車両の前記平面内で初期角度πから最終角度3π/2まで走査され、
    第4のセクタは、前記車両の前記平面内の前記角度が角度3π/2から角度0まで延びるライダーデータを備え、前記ライダーデータが、前記車両の前記平面内で初期角度0から最終角度3π/2まで前記車両の前記平面内で走査される、請求項またはに記載の方法。
  7. 各セクタに関係する前記ステップが別個の処理手段を介して実行される、請求項1、5および6のいずれか一項に記載の方法。
  8. 前記車両の前記平面に対する前記ビームの各角度について、前記ライダーセンサーによって知覚された反射された光強度が所定のしきい値よりも低い場合、前記道路に属するライダーデータが地面上のマーキングに対応することが決定される、請求項1からのいずれか一項に記載の方法。
  9. 前記自動車両が自律車両である、請求項1からのいずれか一項に記載の方法。
JP2021513205A 2018-09-11 2019-07-08 ライダーセンサーを取り付けられた自動車両のための道路検出の方法 Active JP7410932B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR1858137 2018-09-11
FR1858137A FR3085656B1 (fr) 2018-09-11 2018-09-11 Procede de detection de route pour un vehicule automobile muni d'un capteur lidar
PCT/EP2019/068265 WO2020052830A1 (fr) 2018-09-11 2019-07-08 Procede de detection de route pour un vehicule automobile muni d'un capteur lidar

Publications (2)

Publication Number Publication Date
JP2022503671A JP2022503671A (ja) 2022-01-12
JP7410932B2 true JP7410932B2 (ja) 2024-01-10

Family

ID=65201368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021513205A Active JP7410932B2 (ja) 2018-09-11 2019-07-08 ライダーセンサーを取り付けられた自動車両のための道路検出の方法

Country Status (7)

Country Link
US (1) US20210333397A1 (ja)
EP (1) EP3850397B1 (ja)
JP (1) JP7410932B2 (ja)
KR (1) KR20210048552A (ja)
CN (1) CN112673280A (ja)
FR (1) FR3085656B1 (ja)
WO (1) WO2020052830A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230271607A1 (en) * 2022-02-28 2023-08-31 Nissan North America, Inc. Vehicle lane marking detection system
CN116153057A (zh) * 2022-09-12 2023-05-23 东北林业大学 基于激光雷达点云估算车道宽度的方法
CN115453549A (zh) * 2022-09-13 2022-12-09 浙江科聪控制技术有限公司 一种基于二维激光雷达的环境直角点坐标角度的提取方法
CN117468941B (zh) * 2023-12-28 2024-03-12 四川省铁路建设有限公司 基于智能自检台车的隧道缺陷检测方法及自检台车
CN117872330B (zh) * 2024-03-11 2024-05-31 安徽大学 面向复杂环境的无人驾驶多激光雷达标定与融合建图方法
CN117991288B (zh) * 2024-04-03 2024-06-14 浙江浙能数字科技有限公司 基于激光雷达的车厢检测预警装置及方法
CN118311537B (zh) * 2024-06-06 2024-08-06 台州安奇灵智能科技有限公司 一种基于激光雷达的路面检测方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001118200A (ja) 1999-10-21 2001-04-27 Fujitsu Ten Ltd 情報処理装置、情報入手装置、情報統合装置、制御装置、物体検出装置、および情報処理方法
JP2011232325A (ja) 2010-04-09 2011-11-17 Denso Corp 物体認識装置
JP2012225806A (ja) 2011-04-20 2012-11-15 Toyota Central R&D Labs Inc 道路勾配推定装置及びプログラム
US20140081573A1 (en) 2012-09-20 2014-03-20 Google Inc. Detecting road weather conditions
CN104950313A (zh) 2015-06-11 2015-09-30 同济大学 一种路面提取及道路坡度识别方法
JP2016206025A (ja) 2015-04-23 2016-12-08 株式会社デンソー 姿勢推定装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006151125A (ja) * 2004-11-26 2006-06-15 Omron Corp 車載用画像処理装置
US8699755B2 (en) * 2009-02-20 2014-04-15 Navteq B.V. Determining travel path features based on retroreflectivity
US8929607B2 (en) * 2011-12-01 2015-01-06 Sony Corporation System and method for performing depth estimation utilizing defocused pillbox images
US20180211119A1 (en) * 2017-01-23 2018-07-26 Ford Global Technologies, Llc Sign Recognition for Autonomous Vehicles
CN107292276B (zh) * 2017-06-28 2020-01-07 武汉大学 一种车载点云聚类方法及系统
US10705534B2 (en) * 2018-04-19 2020-07-07 Faraday&Future Inc. System and method for ground plane detection

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001118200A (ja) 1999-10-21 2001-04-27 Fujitsu Ten Ltd 情報処理装置、情報入手装置、情報統合装置、制御装置、物体検出装置、および情報処理方法
JP2011232325A (ja) 2010-04-09 2011-11-17 Denso Corp 物体認識装置
JP2012225806A (ja) 2011-04-20 2012-11-15 Toyota Central R&D Labs Inc 道路勾配推定装置及びプログラム
US20140081573A1 (en) 2012-09-20 2014-03-20 Google Inc. Detecting road weather conditions
JP2016206025A (ja) 2015-04-23 2016-12-08 株式会社デンソー 姿勢推定装置
CN104950313A (zh) 2015-06-11 2015-09-30 同济大学 一种路面提取及道路坡度识别方法

Also Published As

Publication number Publication date
US20210333397A1 (en) 2021-10-28
KR20210048552A (ko) 2021-05-03
CN112673280A (zh) 2021-04-16
FR3085656A1 (fr) 2020-03-13
JP2022503671A (ja) 2022-01-12
EP3850397A1 (fr) 2021-07-21
FR3085656B1 (fr) 2023-04-28
WO2020052830A1 (fr) 2020-03-19
EP3850397B1 (fr) 2024-01-10

Similar Documents

Publication Publication Date Title
JP7410932B2 (ja) ライダーセンサーを取り付けられた自動車両のための道路検出の方法
KR102083909B1 (ko) 포인트 클라우드 맵 기반의 자율주행차량용 차선데이터 정보 자동 추출 방법
CN111060946B (zh) 用于估计位置的方法和装置
CN109791408B (zh) 自身位置推定方法及自身位置推定装置
CN110674705B (zh) 基于多线激光雷达的小型障碍物检测方法及装置
EP3671643A1 (en) Method and apparatus for calibrating the extrinsic parameter of an image sensor
JP2019517089A (ja) 地面マーキングを認識するための画像処理方法、および地面マーキングを検出するためのシステム
US20150233720A1 (en) Geographic feature-based localization with feature weighting
KR102069666B1 (ko) 포인트 클라우드 맵 기반의 자율주행차량용 실시간 주행경로 설정 방법
US20230266473A1 (en) Method and system for object detection for a mobile robot with time-of-flight camera
JP7471481B2 (ja) 情報処理装置、情報処理方法及びプログラム
CN113673282A (zh) 目标检测方法和装置
JP7077910B2 (ja) 区画線検出装置及び区画線検出方法
JP5941091B2 (ja) 車線ベースの位置特定
CN112130158B (zh) 对象距离测量装置和方法
CN110109144B (zh) 基于多线激光雷达的路肩检测方法及装置
JP2019096132A (ja) 物体認識装置
WO2018212287A1 (ja) 測定装置、測定方法およびプログラム
JP7179687B2 (ja) 障害物検知装置
KR102003387B1 (ko) 조감도 이미지를 이용한 교통 장애물의 검출 및 거리 측정 방법, 교통 장애물을 검출하고 거리를 측정하는 프로그램을 저장한 컴퓨터 판독가능 기록매체
JP2018055222A (ja) 走路検出方法及び走路検出装置
JP7526858B2 (ja) 測定装置、測定方法およびプログラム
JP2010176592A (ja) 車両用運転支援装置
CN115718304A (zh) 目标对象检测方法、装置、车辆及存储介质
CN114212106B (zh) 一种车辆的可行驶区域内安全概率的确定方法及装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230523

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230822

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231222

R150 Certificate of patent or registration of utility model

Ref document number: 7410932

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150