JP7406300B2 - Method for producing iodine-containing silicon compound - Google Patents

Method for producing iodine-containing silicon compound Download PDF

Info

Publication number
JP7406300B2
JP7406300B2 JP2018212146A JP2018212146A JP7406300B2 JP 7406300 B2 JP7406300 B2 JP 7406300B2 JP 2018212146 A JP2018212146 A JP 2018212146A JP 2018212146 A JP2018212146 A JP 2018212146A JP 7406300 B2 JP7406300 B2 JP 7406300B2
Authority
JP
Japan
Prior art keywords
group
iodine
carbon atoms
silicon compound
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018212146A
Other languages
Japanese (ja)
Other versions
JP2020079208A (en
Inventor
勤 荻原
司 渡邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2018212146A priority Critical patent/JP7406300B2/en
Priority to US16/597,929 priority patent/US11518774B2/en
Priority to TW108140556A priority patent/TWI705070B/en
Priority to CN201911088837.5A priority patent/CN111171070A/en
Priority to KR1020190143460A priority patent/KR102376869B1/en
Priority to EP19208618.9A priority patent/EP3650452B1/en
Publication of JP2020079208A publication Critical patent/JP2020079208A/en
Application granted granted Critical
Publication of JP7406300B2 publication Critical patent/JP7406300B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • C07F7/1872Preparation; Treatments not provided for in C07F7/20
    • C07F7/1892Preparation; Treatments not provided for in C07F7/20 by reactions not provided for in C07F7/1876 - C07F7/1888
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers

Description

本発明は、ヨウ素含有ケイ素化合物の製造方法に関する。 The present invention relates to a method for producing an iodine-containing silicon compound.

EUV光の吸収効率の高いヨウ素含有化合物は、現在EUVリソグラフィーの工業化の課題の一つとなっているEUV用レジストの性能改善に期待が持たれている。ヨウ素含有化合物の中でも安定なものとしてヨウ素が直接芳香環と結合した有機基、特にヨウ化フェニル基が導入されたケイ素含有レジスト下層膜(以下ポリシロキサン下層膜とする)には、EUVレジストのパターニング性能改善の可能性が期待されている。 Iodine-containing compounds with high EUV light absorption efficiency are expected to improve the performance of EUV resists, which is currently one of the challenges in industrializing EUV lithography. Among iodine-containing compounds, EUV resist patterning is recommended for silicon-containing resist underlayer films (hereinafter referred to as polysiloxane underlayer films) into which organic groups in which iodine is directly bonded to aromatic rings, especially phenyl iodide groups, are introduced. The possibility of performance improvement is expected.

このようなヨウ化フェニル基を持つポリシロキサン下層膜を得るためには、ヨウ化フェニル基が導入された加水分解性ケイ素化合物(以下ヨウ素含有ケイ素化合物とする)が必要となる。このようなヨウ素含有ケイ素化合物の製造方法として、臭化フェニルシラン化合物とMgでグリニャール試薬を作りヨウ素と反応する方法(特許文献1:[0058]段落)およびヨウ化フェニレンと特定のグリニャール試薬を作用させた後、テトラアルコキシシランと反応させる方法(特許文献2:[0085]段落)などが知られている。 In order to obtain such a polysiloxane underlayer film having phenyl iodide groups, a hydrolyzable silicon compound (hereinafter referred to as an iodine-containing silicon compound) into which phenyl iodide groups have been introduced is required. Methods for producing such iodine-containing silicon compounds include a method in which a Grignard reagent is prepared from a phenylbromide silane compound and Mg and reacted with iodine (Patent Document 1: paragraph [0058]), and a method in which phenylene iodide is reacted with a specific Grignard reagent. A method of reacting with tetraalkoxysilane after the reaction (Patent Document 2: paragraph [0085]) is known.

しかし特許文献1の方法では、グリニャール試薬に対する自己反応性を防ぐために、ヨウ素含有ケイ素化合物の加水分解性アルコキシ基としては反応性の低い特定の基が必要となる。そのため、得られるヨウ素含有ケイ素化合物の加水分解性能が限定され、汎用性の低い化合物しか製造できない場合がある。更に特許文献2の方法でも自己反応を防ぐため、温和な条件で44時間と長時間かけて反応を進行させており、不経済である。 However, in the method of Patent Document 1, in order to prevent self-reactivity with the Grignard reagent, a specific group with low reactivity is required as the hydrolyzable alkoxy group of the iodine-containing silicon compound. Therefore, the hydrolysis performance of the obtained iodine-containing silicon compound is limited, and only compounds with low versatility may be produced. Furthermore, in the method of Patent Document 2, the reaction is allowed to proceed for a long time of 44 hours under mild conditions in order to prevent self-reaction, which is uneconomical.

更に、その他の有機化学的な方法として、下記反応式のようなベンゼンジアゾニウム塩を経由したヨウ化フェニル基の合成も考えられるが、反応途中で水系試薬を使用する必要があるため加水分解性ケイ素含有化合物の製造には不向きである。

Figure 0007406300000001
Furthermore, as another organic chemical method, synthesis of phenyl iodide group via benzenediazonium salt as shown in the reaction formula below can be considered, but since it is necessary to use an aqueous reagent during the reaction, it is difficult to synthesize hydrolyzable silicon. It is unsuitable for the production of containing compounds.
Figure 0007406300000001

WO01/83608号公報WO01/83608 publication 特開2008-214314号公報Japanese Patent Application Publication No. 2008-214314

以上のように、置換位置を自由に選択でき、加水分解性アルコキシ基の加水分解なく、更にアルコキシ基の種類に対して制約のないヨウ素含有ケイ素化合物のより経済的な製造方法が求められている。 As described above, there is a need for a more economical method for producing iodine-containing silicon compounds that allows the substitution position to be freely selected, does not require hydrolysis of hydrolyzable alkoxy groups, and is free from restrictions on the type of alkoxy groups. .

本発明は、上記課題を解決するためになされたものであり、加水分解性アルコキシ基の加水分解を引き起こすことなく、ヨウ化フェニル基含有ケイ素化合物を経済的に製造する方法を提供することを目的とする。 The present invention was made to solve the above problems, and an object of the present invention is to provide a method for economically producing a silicon compound containing an iodized phenyl group without causing hydrolysis of a hydrolyzable alkoxy group. shall be.

上記課題を解決するために、本発明では、下記反応式で示され、フェニル基に結合するトリアルキルシリル((RSi)基をヨウ素含有求電子試薬(I-X)によりヨウ素に置換することを特徴とするヨウ化フェニル基含有ケイ素化合物の製造方法を提供する。

Figure 0007406300000002
(上記反応式中、Rは全て同一でも異なってもよい炭素数1~6のアルキル基、Rは単結合または2価の有機基、Rは炭素数1~10の有機基、Rは炭素数1~10の有機基、Rは炭素数1~6の有機基である。n0は1、2または3、n1は1、2または3、n2は0、1または2、n3は0、1または2、1≦n1+n3≦3であり、Xは求電子活性種として働くヨウ素の対向置換基である。) In order to solve the above problems, in the present invention, as shown by the reaction formula below, a trialkylsilyl ((R 0 ) 3 Si) group bonded to a phenyl group is converted to iodine using an iodine-containing electrophile (IX). Provided is a method for producing an iodized phenyl group-containing silicon compound characterized by substitution.
Figure 0007406300000002
(In the above reaction formula, R 0 is an alkyl group having 1 to 6 carbon atoms, which may be the same or different, R 1 is a single bond or a divalent organic group, R 2 is an organic group having 1 to 10 carbon atoms, R 3 is an organic group having 1 to 10 carbon atoms, R is an organic group having 1 to 6 carbon atoms, n0 is 1, 2 or 3, n1 is 1, 2 or 3, n2 is 0, 1 or 2, and n3 is 0, 1 or 2, 1≦n1+n3≦3, and X is a countersubstituent of iodine that acts as an electrophilic active species.)

本発明の製造方法であれば、加水分解性アルコキシ基の加水分解を引き起こすことなく、ヨウ化フェニル基含有ケイ素化合物を経済的に製造することができる。 With the production method of the present invention, an iodized phenyl group-containing silicon compound can be produced economically without causing hydrolysis of a hydrolyzable alkoxy group.

本発明の製造方法では、前記Rがメチル基またはエチル基であることが好ましい。 In the production method of the present invention, R 0 is preferably a methyl group or an ethyl group.

このような製造方法であれば、トリアルキルシリル((RSi)基が脱離しやすいため、温和な条件で反応が進行し、加水分解性アルコキシ基の加水分解を引き起こすことなく、ヨウ化フェニル基含有ケイ素化合物をより経済的に製造することができる。 With this production method, the trialkylsilyl ((R 0 ) 3 Si) group is easily eliminated, so the reaction proceeds under mild conditions, and the iodine is produced without causing hydrolysis of the hydrolyzable alkoxy group. A phenyl group-containing silicon compound can be produced more economically.

また、本発明の製造方法では、前記ヨウ素含有求電子試薬が一塩化ヨウ素であることが好ましい。 Moreover, in the production method of the present invention, it is preferable that the iodine-containing electrophilic reagent is iodine monochloride.

このようなヨウ素含有求電子試薬を用いると、副反応が起きにくく、副生物の分離が容易となるため、ヨウ化フェニル基含有ケイ素化合物をより一層経済的に製造することができる。 When such an iodine-containing electrophilic reagent is used, side reactions are less likely to occur and by-products can be easily separated, so that an iodized phenyl group-containing silicon compound can be produced even more economically.

以上のように、本発明のヨウ化フェニル基含有ケイ素化合物の製造方法によれば、産業上有用な、特にEUVリソグラフィー用下層膜を製造する際に有用なヨウ化フェニル基含有のケイ素化合物を経済的に製造できるため、工業的利用価値が非常に高い。 As described above, according to the method for producing a phenyl iodide group-containing silicon compound of the present invention, it is possible to economically produce a phenyl iodide group-containing silicon compound that is industrially useful, particularly when producing an underlayer film for EUV lithography. Because it can be produced in a straightforward manner, it has very high industrial utility value.

上述のように、置換位置を自由に選択でき、加水分解性アルコキシ基の加水分解なく、更にアルコキシ基の種類に対して制約のないヨウ素含有ケイ素化合物のより経済的な製造方法の開発が求められていた。 As mentioned above, there is a need to develop a more economical method for producing iodine-containing silicon compounds that allows the substitution position to be freely selected, does not involve hydrolysis of hydrolyzable alkoxy groups, and does not impose restrictions on the type of alkoxy groups. was.

一般に、有機化合物やケイ素化合物の骨格を形成する方法として、グリニャール試薬を代表とする有機金属試薬を用いた方法が知られている。しかしながら、ヨウ素-炭素結合は、非常に反応性が高いため、ヨウ素を保持したまま有機金属試薬を調整することは、特許文献1や特許文献2で示されているように、特殊な反応条件を必要とする。このような特殊な条件を必要とする反応では、汎用性に欠けるうえ、目的とするケイ素化合物を工業的に採算が合う規模で製造することは非常に困難である。 Generally, a method using an organometallic reagent, typified by a Grignard reagent, is known as a method for forming a skeleton of an organic compound or a silicon compound. However, since the iodine-carbon bond is extremely reactive, preparing an organometallic reagent while retaining iodine requires special reaction conditions, as shown in Patent Documents 1 and 2. I need. Reactions that require such special conditions lack versatility and are extremely difficult to produce the desired silicon compound on an industrially profitable scale.

本発明者らは、上記課題について鋭意検討を重ねた結果、トリアルキルシリル基をあらかじめフェニル基上の必要な位置に導入した後、ケイ素化合物の骨格を各種有機反応で形成し、最後にトリアルキルシリル基をヨウ素に変換する方法を開発し、本発明を完成させたものである。 As a result of intensive studies on the above-mentioned issues, the present inventors have found that after introducing a trialkylsilyl group into the required position on the phenyl group in advance, the skeleton of a silicon compound is formed by various organic reactions, and finally the trialkylsilyl group is The present invention was completed by developing a method for converting silyl groups into iodine.

即ち、本発明は、下記反応式で示され、フェニル基に結合するトリアルキルシリル((RSi)基をヨウ素含有求電子試薬(I-X)によりヨウ素に置換することを特徴とするヨウ化フェニル基含有ケイ素化合物の製造方法である。

Figure 0007406300000003
(上記反応式中、Rは全て同一でも異なってもよい炭素数1~6のアルキル基、Rは単結合または2価の有機基、Rは炭素数1~10の有機基、Rは炭素数1~10の有機基、Rは炭素数1~6の有機基である。n0は1、2または3、n1は1、2または3、n2は0、1または2、n3は0、1または2、1≦n1+n3≦3であり、Xは求電子活性種として働くヨウ素の対向置換基である。) That is, the present invention is represented by the following reaction formula, and is characterized in that the trialkylsilyl ((R 0 ) 3 Si) group bonded to the phenyl group is replaced with iodine by an iodine-containing electrophile (IX). This is a method for producing an iodized phenyl group-containing silicon compound.
Figure 0007406300000003
(In the above reaction formula, R 0 is an alkyl group having 1 to 6 carbon atoms, which may be the same or different, R 1 is a single bond or a divalent organic group, R 2 is an organic group having 1 to 10 carbon atoms, R 3 is an organic group having 1 to 10 carbon atoms, R is an organic group having 1 to 6 carbon atoms, n0 is 1, 2 or 3, n1 is 1, 2 or 3, n2 is 0, 1 or 2, and n3 is 0, 1 or 2, 1≦n1+n3≦3, and X is a countersubstituent of iodine that acts as an electrophilic active species.)

以下、本発明の実施の形態を詳細に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, embodiments of the present invention will be described in detail, but the present invention is not limited thereto.

本発明は、予めフェニル基上に脱離基として導入されているトリアルキルシリル((RSi)基に対してヨウ素を含む求電子試薬を作用させることにより、トリアルキルシリル基のipso位、即ちトリアルキルシリル基それ自体がヨウ素に置換されることにより、室温程度の温和な条件下、短時間で位置選択性効率よくヨウ素を導入することが出来る。

Figure 0007406300000004
(上記反応式中、Rは全て同一でも異なってもよい炭素数1~6のアルキル基、Rは単結合または2価の有機基、Rは炭素数1~10の有機基、Rは炭素数1~10の有機基、Rは炭素数1~6の有機基である。n0は1、2または3、n1は1、2または3、n2は0、1または2、n3は0、1または2、1≦n1+n3≦3であり、Xは求電子活性種として働くヨウ素の対向置換基である。) In the present invention, the ipso of the trialkylsilyl group is produced by causing an electrophilic reagent containing iodine to act on the trialkylsilyl ((R 0 ) 3 Si) group that has been introduced as a leaving group onto the phenyl group. By substituting the trialkylsilyl group itself with iodine, iodine can be introduced with high regioselectivity and efficiency in a short period of time under mild conditions at about room temperature.
Figure 0007406300000004
(In the above reaction formula, R 0 is an alkyl group having 1 to 6 carbon atoms, which may be the same or different, R 1 is a single bond or a divalent organic group, R 2 is an organic group having 1 to 10 carbon atoms, R 3 is an organic group having 1 to 10 carbon atoms, R is an organic group having 1 to 6 carbon atoms, n0 is 1, 2 or 3, n1 is 1, 2 or 3, n2 is 0, 1 or 2, and n3 is 0, 1 or 2, 1≦n1+n3≦3, and X is a countersubstituent of iodine that acts as an electrophilic active species.)

本発明の製造方法において用いる原料、すなわち、フェニル基に結合するトリアルキルシリル((RSi)基を有するケイ素化合物は、下記一般式(1)で表される化合物(以下、「トリアルキルシリルフェニル基含有ケイ素化合物」ともいう。)である。

Figure 0007406300000005
The raw material used in the production method of the present invention, that is, the silicon compound having a trialkylsilyl ((R 0 ) 3 Si) group bonded to a phenyl group, is a compound represented by the following general formula (1) (hereinafter referred to as "trialkylsilyl"). (Also referred to as "alkylsilylphenyl group-containing silicon compound.")
Figure 0007406300000005

は全て同一でも異なってもよい炭素数1~6のアルキル基であり、炭素数1~3のアルキル基が好ましく、(RSi基の脱離能が高まるためメチル基又はエチル基であることがより好ましい。
は単結合または2価の有機基であり、2価の有機基としては、特に限定されないが、直鎖状、分岐状あるいは環状のアルキレン基、カルボニル基、エステル基(カルボニルオキシ基)、エーテル基など、並びに、これらの組み合わせを挙げることができる。アルキレン基としては、メチレン基、エチレン基、プロピレン基を挙げることができ、組み合わせの例としては、カルボニルオキシ基とアルキレン基の組み合わせ(カルボニルオキシメチレン基、カルボニルオキシプロピレン基など)を挙げることができる。
は炭素数1~10の有機基であり、直鎖状、分岐状あるいは環状のアルキル基、アルコキシ基、エステル基を挙げることができ、アルキル基はエステル基、エーテル基などを更に有していてもよい。Rとしては、メチル基、エチル基、プロピル基を挙げることができる。
は炭素数1~10の有機基であり、前記Rと同様のものを挙げることができる。
Rは炭素数1~6の有機基であり、直鎖状、分岐状あるいは環状のアルキル基を挙げることができる。Rとしては、メチル基、エチル基、プロピル基、ブチル基を挙げることができる。
n0は1、2または3、n1は1、2または3、n2は0、1または2、n3は0、1または2である。1≦n1+n3≦3であるため、上記原料は1~3の(OR)基を有しており、加水分解性を有している。
R 0 is an alkyl group having 1 to 6 carbon atoms which may be the same or different, preferably an alkyl group having 1 to 3 carbon atoms, and a methyl group or ethyl group is preferable because the elimination ability of the (R 0 ) 3 Si group is increased. More preferably, it is a group.
R 1 is a single bond or a divalent organic group, and examples of the divalent organic group include, but are not particularly limited to, linear, branched, or cyclic alkylene groups, carbonyl groups, ester groups (carbonyloxy groups), Mention may be made of ether groups, etc., as well as combinations thereof. Examples of the alkylene group include a methylene group, an ethylene group, and a propylene group. Examples of the combination include a combination of a carbonyloxy group and an alkylene group (carbonyloxymethylene group, carbonyloxypropylene group, etc.) .
R 2 is an organic group having 1 to 10 carbon atoms, and examples thereof include linear, branched, or cyclic alkyl groups, alkoxy groups, and ester groups, and the alkyl groups further include ester groups, ether groups, etc. You can leave it there. Examples of R 2 include a methyl group, an ethyl group, and a propyl group.
R 3 is an organic group having 1 to 10 carbon atoms, and examples thereof include the same groups as R 2 above.
R is an organic group having 1 to 6 carbon atoms, and examples thereof include linear, branched, or cyclic alkyl groups. Examples of R include a methyl group, an ethyl group, a propyl group, and a butyl group.
n0 is 1, 2 or 3, n1 is 1, 2 or 3, n2 is 0, 1 or 2, and n3 is 0, 1 or 2. Since 1≦n1+n3≦3, the above raw material has 1 to 3 (OR) groups and is hydrolyzable.

本発明では、トリアルキルシリルフェニル基含有ケイ素化合物のフェニル基に結合するトリアルキルシリル((RSi)基がヨウ素含有求電子試薬(I-X)によりヨウ素に置換される。このため、目的とするヨウ化フェニル基含有ケイ素化合物のヨウ素置換位置に前記トリアルキルシリル基(脱離基)を有するトリアルキルシリルフェニル基含有ケイ素化合物を原料として選択すればよい。 In the present invention, the trialkylsilyl ((R 0 ) 3 Si) group bonded to the phenyl group of the trialkylsilylphenyl group-containing silicon compound is substituted with iodine by the iodine-containing electrophile (IX). Therefore, a trialkylsilyl phenyl group-containing silicon compound having the above-mentioned trialkylsilyl group (leaving group) at the iodine substitution position of the desired iodized phenyl group-containing silicon compound may be selected as the raw material.

次に、本発明に用いられるヨウ素含有求電子試薬(I-X:Iはヨウ素であり、Xは求電子活性種として働くヨウ素の対向置換基である。)としては、ヨウ素、ハロゲン化ヨウ素(一塩化ヨウ素、一臭化ヨウ素など)とそのピリジン付加体(PyIClなど)、N-ヨードイミド類、金属ヨウ化物等を挙げることができる。特に、ヨウ素、一塩化ヨウ素が好ましい。また、反応速度を高めるために、塩化アルミニウム、塩化亜鉛、四塩化チタン、三フッ化ホウ素等のルイス酸類の添加や光照射を行ってもよい。前記求電子試薬はヨウ素化するトリアルキルシリル基1モルに対して1モル以上、最大2モル程度加えればよい。副反応を誘発しないよう、後述するように反応を追跡しながら、添加量を調整するのがより好ましい。ヨウ素含有求電子試薬は、下記溶剤に溶解して添加することもできる。 Next, the iodine-containing electrophilic reagent (I-X: I is iodine, and X is a counter substituent of iodine that acts as an electrophilic active species) used in the present invention includes iodine, halogenated iodine ( Examples include iodine monochloride, iodine monobromide, etc.), their pyridine adducts (PyICl, etc.), N-iodoimides, metal iodides, and the like. In particular, iodine and iodine monochloride are preferred. Further, in order to increase the reaction rate, Lewis acids such as aluminum chloride, zinc chloride, titanium tetrachloride, boron trifluoride, etc. may be added or light irradiation may be performed. The electrophilic reagent may be added in an amount of 1 mol or more, up to about 2 mol, per mol of the trialkylsilyl group to be iodinated. In order to avoid inducing side reactions, it is more preferable to adjust the amount added while monitoring the reaction as described below. The iodine-containing electrophilic reagent can also be added after being dissolved in the following solvent.

反応に使用される溶剤としては、酢酸、塩化メチレン、クロロフォルム、四塩化炭素、クロロベンゼン等を例示できるが、特にハロゲン化炭化水素が好ましい。反応温度は、0℃以上溶剤の沸点以下が好ましく、特に10℃以上40℃以下が経済的で好ましい。反応を溶剤の還流条件で行ってもよい。
反応を行う雰囲気は、特に限定されないが、窒素など不活性ガス雰囲気で行うことができる。このような雰囲気下、反応系に水分が入らないようにすることで、反応時の原料、生成物の加水分解を避けることができる。
Examples of the solvent used in the reaction include acetic acid, methylene chloride, chloroform, carbon tetrachloride, and chlorobenzene, with halogenated hydrocarbons being particularly preferred. The reaction temperature is preferably 0° C. or higher and lower than the boiling point of the solvent, particularly preferably 10° C. or higher and 40° C. or lower for economic reasons. The reaction may be carried out under conditions of refluxing the solvent.
The atmosphere in which the reaction is carried out is not particularly limited, but the reaction can be carried out in an inert gas atmosphere such as nitrogen. By preventing moisture from entering the reaction system in such an atmosphere, it is possible to avoid hydrolysis of raw materials and products during the reaction.

ガスクロマトグラフィー(GC)等により反応率を追跡し、反応を完結させることが収率の点で望ましいが、反応時間は求電子試薬滴下終了から0.1~5時間程度とすればよい。 From the viewpoint of yield, it is desirable to monitor the reaction rate by gas chromatography (GC) or the like and complete the reaction, but the reaction time may be about 0.1 to 5 hours from the end of dropping the electrophilic reagent.

ヨウ素含有求電子試薬(I-X)によっては、副生物としてトリアルキルハロシラン類が得られる(ヨウ素の対向置換基Xがハロゲンである場合)。この場合、反応終了後、副生物として得られるトリアルキルハロシラン類を反応溶剤とともに減圧留去することで目的物を得ることが可能である。更に別法として、反応原料が消失したところで反応停止剤としてアルコールとアミンの混合物を添加してもよい。これにより、反応の後処理中に進行する副反応を抑制することが可能である。アルコールとアミンの混合物を添加すると、トリアルキルハロシランが反応してトリアルキルアルコキシシランとハロゲン化水素のアミン塩が形成される。形成されたアミン塩を濾別した後、アルコール、アミンおよび反応溶剤を留去してヨウ素含有ケイ素化合物を得ることが出来る。ヨウ素含有求電子試薬として一塩化ヨウ素を用いると、副生するトリアルキルクロロシランを上記のようにして生成物から容易に分離できるため好ましい。 Depending on the iodine-containing electrophile (IX), trialkylhalosilanes can be obtained as by-products (when the counter substituent X of iodine is a halogen). In this case, after the reaction is completed, the desired product can be obtained by distilling off the trialkylhalosilanes obtained as by-products together with the reaction solvent under reduced pressure. As a further alternative, a mixture of alcohol and amine may be added as a reaction terminator once the reaction raw materials have disappeared. Thereby, it is possible to suppress side reactions that proceed during post-treatment of the reaction. Upon addition of the alcohol and amine mixture, the trialkylhalosilane reacts to form the amine salt of the trialkylalkoxysilane and hydrogen halide. After filtering off the formed amine salt, the alcohol, amine and reaction solvent can be distilled off to obtain an iodine-containing silicon compound. It is preferable to use iodine monochloride as the iodine-containing electrophilic reagent because the by-produced trialkylchlorosilane can be easily separated from the product as described above.

以上のような本発明の方法により製造可能なヨウ化フェニル基含有ケイ素化合物としては、特に限定されないが、以下の化合物を例示できる。

Figure 0007406300000006
The iodized phenyl group-containing silicon compound that can be produced by the method of the present invention as described above is not particularly limited, but the following compounds can be exemplified.
Figure 0007406300000006

Figure 0007406300000007
Figure 0007406300000007

Figure 0007406300000008
Figure 0007406300000008
Figure 0007406300000009
Figure 0007406300000009

Figure 0007406300000010
Figure 0007406300000010

Figure 0007406300000011
Figure 0007406300000011

Figure 0007406300000012
Figure 0007406300000012

Figure 0007406300000013
Figure 0007406300000013

Figure 0007406300000014
Figure 0007406300000014

Figure 0007406300000015
Figure 0007406300000015

Figure 0007406300000016
Figure 0007406300000016

得られたヨウ素含有ケイ素化合物は、そのままヨウ素含有ポリシロキサン製造に使用することが出来るし、場合によっては蒸留精製した後、ヨウ素含有ポリシロキサン製造に使用することが可能である。 The obtained iodine-containing silicon compound can be used as it is for producing iodine-containing polysiloxane, or in some cases, after being purified by distillation, it can be used for producing iodine-containing polysiloxane.

以下、実施例及び比較例を示して本発明を具体的に説明するが、本発明は下記実施例に制限されるものではない。 EXAMPLES Hereinafter, the present invention will be specifically explained with reference to Examples and Comparative Examples, but the present invention is not limited to the Examples below.

[実施例1]
300mlの3つ口ガラスフラスコに還流冷却器及び温度計を取り付け、内部を窒素置換した。このフラスコに、4-トリメチルシリルフェニルトリメトキシシラン27g(0.1mol)と塩化メチレン80gを仕込んだ。マグネチックスターラーで撹拌しながら内温を10℃に調整して一塩化ヨウ素16.5gと塩化メチレン80gの混合物を30分掛けて滴下した後、25℃で1時間熟成した。GCで反応を確認したところ原料が消失していたので、反応液をロータリーエバポレータで濃縮し、粗4-ヨウ化フェニルトリメトキシシランを得た。これを減圧蒸留して4-ヨウ化フェニルトリメトキシシランを28.9g(0.09mol)得た。収率は89%であった。
[Example 1]
A reflux condenser and a thermometer were attached to a 300 ml three-necked glass flask, and the inside was purged with nitrogen. This flask was charged with 27 g (0.1 mol) of 4-trimethylsilylphenyltrimethoxysilane and 80 g of methylene chloride. While stirring with a magnetic stirrer, the internal temperature was adjusted to 10° C., and a mixture of 16.5 g of iodine monochloride and 80 g of methylene chloride was added dropwise over 30 minutes, followed by aging at 25° C. for 1 hour. When the reaction was confirmed by GC, it was found that the raw materials had disappeared, so the reaction solution was concentrated using a rotary evaporator to obtain crude 4-iodinated phenyltrimethoxysilane. This was distilled under reduced pressure to obtain 28.9 g (0.09 mol) of 4-iodinated phenyltrimethoxysilane. The yield was 89%.

[実施例2]
500mlの3つ口ガラスフラスコに還流冷却器及び温度計を取り付け、内部を窒素置換した。このフラスコに、3-トリメチルシリルフェニルエチルトリエトキシシラン34g(0.1mol)と塩化メチレン100gを仕込んだ。マグネチックスターラーで撹拌しながら内温を10℃に調整して一塩化ヨウ素16.5gと塩化メチレン80gの混合物を30分掛けて滴下した後、25℃で1時間熟成した。GCで反応を確認したところ原料が消失していたので、トリエチルアミン15gとエタノール20gの混合物を25℃で5分かけて滴下し、25℃で30分間熟成した。反応液にヘキサンを100g加えてトリエチルアミン塩酸塩を沈殿させ、これを濾別し、濾液をロータリーエバポレータで濃縮し、粗3-ヨウ化フェニルエチルトリエトキシシランを得た。これを減圧蒸留して3-ヨウ化フェニルエチルトリエトキシシランを36.1g(0.09mol)得た。収率は92%であった。
[Example 2]
A reflux condenser and a thermometer were attached to a 500 ml three-necked glass flask, and the inside was purged with nitrogen. This flask was charged with 34 g (0.1 mol) of 3-trimethylsilylphenylethyltriethoxysilane and 100 g of methylene chloride. While stirring with a magnetic stirrer, the internal temperature was adjusted to 10° C., and a mixture of 16.5 g of iodine monochloride and 80 g of methylene chloride was added dropwise over 30 minutes, followed by aging at 25° C. for 1 hour. When the reaction was confirmed by GC, the raw materials had disappeared, so a mixture of 15 g of triethylamine and 20 g of ethanol was added dropwise at 25°C over 5 minutes, and the mixture was aged at 25°C for 30 minutes. 100 g of hexane was added to the reaction solution to precipitate triethylamine hydrochloride, which was filtered off and the filtrate was concentrated using a rotary evaporator to obtain crude 3-iodinated phenylethyltriethoxysilane. This was distilled under reduced pressure to obtain 36.1 g (0.09 mol) of 3-iodinated phenylethyltriethoxysilane. The yield was 92%.

[実施例3]
1000mlの3つ口ガラスフラスコに還流冷却器及び温度計を取り付け、内部を窒素置換した。このフラスコに、3、4-ビストリメチルシリルフェニルトリメトキシシラン34g(0.1mol)と塩化メチレン200gを仕込んだ。マグネチックスターラーで撹拌しながら内温を10℃に調整して一塩化ヨウ素33gと塩化メチレン200gの混合物を30分掛けて滴下した後、25℃で2時間熟成した。GCで反応を確認したところ原料が消失していたので、トリエチルアミン30gとメタノール30gの混合物を25℃で10分かけて滴下し、25℃で30分間熟成した。反応液にヘキサンを300g加えてトリエチルアミン塩酸塩を沈殿させ、これを濾別し、濾液をロータリーエバポレータで濃縮し、粗3、4-二ヨウ化フェニルトリメトキシシランを得た。これを減圧蒸留して3、4-二ヨウ化フェニルトリメトキシシランを38.4g(0.09mol)得た。収率は84%であった。
[Example 3]
A reflux condenser and a thermometer were attached to a 1000 ml three-necked glass flask, and the inside was purged with nitrogen. This flask was charged with 34 g (0.1 mol) of 3,4-bistrimethylsilylphenyltrimethoxysilane and 200 g of methylene chloride. The internal temperature was adjusted to 10° C. while stirring with a magnetic stirrer, and a mixture of 33 g of iodine monochloride and 200 g of methylene chloride was added dropwise over 30 minutes, followed by aging at 25° C. for 2 hours. When the reaction was confirmed by GC, the raw materials had disappeared, so a mixture of 30 g of triethylamine and 30 g of methanol was added dropwise at 25°C over 10 minutes, and the mixture was aged at 25°C for 30 minutes. 300 g of hexane was added to the reaction solution to precipitate triethylamine hydrochloride, which was filtered off and the filtrate was concentrated using a rotary evaporator to obtain crude 3,4-diiodide phenyltrimethoxysilane. This was distilled under reduced pressure to obtain 38.4 g (0.09 mol) of 3,4-diiodinated phenyltrimethoxysilane. The yield was 84%.

[比較合成例1]
300mlの3つ口ガラスフラスコに還流冷却器及び温度計を取り付け、内部を窒素置換した。このフラスコに、フェニルトリメトキシシラン20g(0.1mol)と塩化メチレン80gを仕込んだ。マグネチックスターラーで撹拌しながら内温10℃に調整して一塩化ヨウ素16.5gと塩化メチレン80gの混合物を30分掛けて滴下した後、25℃で1時間熟成した。GCで反応を確認したが原料が未反応で残っていた。更に反応温度を40℃にして3時間反応したところ、原料が分解してヨウ化ベンゼンのピークが発生していた。
[Comparative synthesis example 1]
A reflux condenser and a thermometer were attached to a 300 ml three-necked glass flask, and the inside was purged with nitrogen. This flask was charged with 20 g (0.1 mol) of phenyltrimethoxysilane and 80 g of methylene chloride. While stirring with a magnetic stirrer, the internal temperature was adjusted to 10°C, and a mixture of 16.5 g of iodine monochloride and 80 g of methylene chloride was added dropwise over 30 minutes, followed by aging at 25°C for 1 hour. The reaction was confirmed by GC, but raw materials remained unreacted. When the reaction temperature was further increased to 40° C. and the reaction was continued for 3 hours, the raw materials were decomposed and a peak of iodized benzene was generated.

[比較合成例2]
300mlの3つ口ガラスフラスコに還流冷却器及び温度計を取り付け、内部を窒素置換した。このフラスコに、フェニルエチルトリメトキシシラン23g(0.1mol)と塩化メチレン80gを仕込んだ。マグネチックスターラーで撹拌しながら内温10℃に調整して一塩化ヨウ素16.5gと塩化メチレン80gの混合物を30分掛けて滴下した後、25℃で1時間熟成した。GCで反応を確認したが原料が未反応で残っていた。更に反応温度を40℃にして30時間反応したが、反応の進行は見られなかった。
[Comparative synthesis example 2]
A reflux condenser and a thermometer were attached to a 300 ml three-necked glass flask, and the inside was purged with nitrogen. This flask was charged with 23 g (0.1 mol) of phenylethyltrimethoxysilane and 80 g of methylene chloride. While stirring with a magnetic stirrer, the internal temperature was adjusted to 10°C, and a mixture of 16.5 g of iodine monochloride and 80 g of methylene chloride was added dropwise over 30 minutes, followed by aging at 25°C for 1 hour. The reaction was confirmed by GC, but raw materials remained unreacted. Further, the reaction temperature was raised to 40° C. and the reaction was continued for 30 hours, but no progress of the reaction was observed.

実施例では、25℃(室温程度)で1~2時間反応することで、原料が分解することなしに、原料を消失させることができ、高い収率で目的とするヨウ化フェニル基含有ケイ素化合物を得ることができる。
一方、比較例では、本発明で用いるトリアルキルシリルフェニル基含有ケイ素化合物と異なる原料を用いているため、ヨウ素含有求電子試薬として一塩化ヨウ素を用いても、室温程度では原料は消失せず、反応温度を上げ、更に反応時間も長くすると原料が分解してしまい、目的とするヨウ化フェニル基含有ケイ素化合物を得ることができない。
In the examples, by reacting at 25°C (about room temperature) for 1 to 2 hours, the raw materials can be eliminated without decomposition, and the desired iodized phenyl group-containing silicon compound can be obtained in high yield. can be obtained.
On the other hand, in the comparative example, since a raw material different from the trialkylsilylphenyl group-containing silicon compound used in the present invention is used, even if iodine monochloride is used as the iodine-containing electrophile, the raw material does not disappear at around room temperature. If the reaction temperature is increased and the reaction time is also increased, the raw materials will decompose, making it impossible to obtain the desired iodized phenyl group-containing silicon compound.

上記の結果より、トリアルキルシリル基を温和な条件で短時間にヨウ素に置き換えることでヨウ素含有ケイ素化合物の製造が可能であること、すなわち、加水分解性アルコキシ基の加水分解を引き起こすことなく、ヨウ化フェニル基含有ケイ素化合物を経済的に製造できることが示された。
本発明では、EUVリソグラフィーの性能改善に期待されるヨウ化フェニル基含有ポリシロキサン下層膜を形成するためのヨウ化フェニル基含有加水分解性ケイ素化合物を経済的に製造できるため、工業的利用価値が非常に高い。
The above results show that it is possible to produce iodine-containing silicon compounds by replacing trialkylsilyl groups with iodine under mild conditions in a short time. It has been shown that phenyl group-containing silicon compounds can be produced economically.
In the present invention, it is possible to economically produce a hydrolyzable silicon compound containing an iodide phenyl group for forming a polysiloxane underlayer film containing an iodide phenyl group, which is expected to improve the performance of EUV lithography. Very expensive.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 Note that the present invention is not limited to the above embodiments. The above-mentioned embodiments are illustrative, and any embodiment that has substantially the same configuration as the technical idea stated in the claims of the present invention and has similar effects is the present invention. covered within the technical scope of.

Claims (3)

下記反応式で示され、フェニル基に結合するトリアルキルシリル((RSi)基をヨウ素含有求電子試薬(I-X)によりヨウ素に置換することを特徴とするヨウ化フェニル基含有ケイ素化合物の製造方法。
Figure 0007406300000017
(上記反応式中、Rは全て同一でも異なってもよい炭素数1~6のアルキル基、Rは単結合または2価の有機基であり、ここで、前記2価の有機基は、直鎖状、分岐状あるいは環状のアルキレン基、カルボニル基、エステル基(カルボニルオキシ基)、エーテル基、又はこれら組み合わせであり、Rは炭素数1~10の直鎖状か、炭素数3~10の分岐状あるいは環状のアルキル基であり、ここで、前記アルキル基はエステル基又はエーテル基を更に有していてもよく、Rは炭素数1~10の直鎖状か、炭素数3~10の分岐状あるいは環状のアルキル基、又はアルコキシ基であり、ここで、前記アルキル基はエステル基又はエーテル基を更に有していてもよく、Rは炭素数1~6の直鎖状か、炭素数3~6の分岐状あるいは環状のアルキル基である。n0は1、2または3、n1は1、2または3、n2は0、1または2、n3は0、1または2、1≦n1+n3≦3であり、Xは求電子活性種として働くヨウ素の対向置換基である。)
An iodized phenyl group-containing compound represented by the following reaction formula, characterized in that the trialkylsilyl ((R 0 ) 3 Si) group bonded to the phenyl group is replaced with iodine by an iodine-containing electrophile (IX) Method for producing silicon compounds.
Figure 0007406300000017
(In the above reaction formula, R 0 is an alkyl group having 1 to 6 carbon atoms, which may be the same or different, R 1 is a single bond or a divalent organic group, and the divalent organic group is A linear, branched or cyclic alkylene group, carbonyl group, ester group (carbonyloxy group), ether group, or a combination thereof; 10 branched or cyclic alkyl groups , where the alkyl group may further have an ester group or an ether group, and R 3 is a linear chain having 1 to 10 carbon atoms or a straight chain having 3 carbon atoms. ~10 branched or cyclic alkyl groups or alkoxy groups , where the alkyl group may further have an ester group or ether group, and R is a linear or alkoxy group having 1 to 6 carbon atoms. is a branched or cyclic alkyl group having 3 to 6 carbon atoms. n0 is 1, 2 or 3, n1 is 1, 2 or 3, n2 is 0, 1 or 2, n3 is 0, 1 or 2, 1 ≦n1+n3≦3, and X is the opposite substituent of iodine that acts as an electrophilic active species.)
前記Rがメチル基またはエチル基であることを特徴とする請求項1に記載のヨウ化フェニル基含有ケイ素化合物の製造方法。 The method for producing an iodized phenyl group-containing silicon compound according to claim 1, wherein the R 0 is a methyl group or an ethyl group. 前記ヨウ素含有求電子試薬が一塩化ヨウ素であることを特徴とする請求項1又は2に記載のヨウ化フェニル基含有ケイ素化合物の製造方法。 The method for producing an iodized phenyl group-containing silicon compound according to claim 1 or 2, wherein the iodine-containing electrophile is iodine monochloride.
JP2018212146A 2018-11-12 2018-11-12 Method for producing iodine-containing silicon compound Active JP7406300B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2018212146A JP7406300B2 (en) 2018-11-12 2018-11-12 Method for producing iodine-containing silicon compound
US16/597,929 US11518774B2 (en) 2018-11-12 2019-10-10 Method for producing iodine-containing silicon compound
TW108140556A TWI705070B (en) 2018-11-12 2019-11-08 Method for producing iodine-containing silicon compound
CN201911088837.5A CN111171070A (en) 2018-11-12 2019-11-08 Method for producing iodine-containing silicon compound
KR1020190143460A KR102376869B1 (en) 2018-11-12 2019-11-11 Method for producing iodine-containing silicon compound
EP19208618.9A EP3650452B1 (en) 2018-11-12 2019-11-12 Method for producing iodine-containing silicon compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018212146A JP7406300B2 (en) 2018-11-12 2018-11-12 Method for producing iodine-containing silicon compound

Publications (2)

Publication Number Publication Date
JP2020079208A JP2020079208A (en) 2020-05-28
JP7406300B2 true JP7406300B2 (en) 2023-12-27

Family

ID=68581265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018212146A Active JP7406300B2 (en) 2018-11-12 2018-11-12 Method for producing iodine-containing silicon compound

Country Status (6)

Country Link
US (1) US11518774B2 (en)
EP (1) EP3650452B1 (en)
JP (1) JP7406300B2 (en)
KR (1) KR102376869B1 (en)
CN (1) CN111171070A (en)
TW (1) TWI705070B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003531942A (en) 2000-04-27 2003-10-28 ダウ・コ−ニング・コ−ポレ−ション Curable silicone resin composition and reactive silicon compound
WO2011108712A1 (en) 2010-03-04 2011-09-09 国立大学法人北海道大学 6,13-dihalogen-5,14-dihydropentacene derivative and method for producing 6,13-substituted-5,14-dihydropentacene derivative using same
WO2013056073A1 (en) 2011-10-14 2013-04-18 The Board Of Trustees Of The University Of Illinois Compounds and anti-tumor nqo1 substrates
JP2015122437A (en) 2013-12-24 2015-07-02 富士フイルム株式会社 Organic membrane transistor, organic semiconductor membrane and organic semiconductor material

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4048206A (en) * 1975-04-22 1977-09-13 Mikhail Grigorievich Voronkov Process for the production of 1-organylsilatranes and carbofunctional derivatives thereof
JP4380229B2 (en) * 2003-06-09 2009-12-09 旭硝子株式会社 New compounds and their uses
DE112006000604T5 (en) * 2005-03-15 2008-01-24 Isis Innovation Ltd. Highly branched dendrimers
JP4411369B2 (en) 2007-03-07 2010-02-10 株式会社豊田中央研究所 Organosilane compound and organosilica obtained using the same
US8053588B2 (en) * 2007-03-07 2011-11-08 Kabushiki Kaisha Toyota Chuo Kenkyusho Organosilane compound and organosilica obtained therefrom
CN102051121A (en) * 2009-12-02 2011-05-11 合肥凯蒙新材料有限公司 Antireflection coating for 193-nano-wavelength photolithography and preparation method and application thereof
JP5830044B2 (en) * 2013-02-15 2015-12-09 信越化学工業株式会社 Resist underlayer film forming composition and pattern forming method
JP6671265B2 (en) * 2016-08-17 2020-03-25 キヤノン株式会社 Image processing apparatus, control method therefor, and program
JP7024744B2 (en) * 2018-02-22 2022-02-24 信越化学工業株式会社 Resist material and pattern formation method using it
JP7357505B2 (en) * 2018-11-21 2023-10-06 信越化学工業株式会社 Iodine-containing thermosetting silicon-containing material, composition for forming a resist underlayer film for EUV lithography containing the same, and pattern forming method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003531942A (en) 2000-04-27 2003-10-28 ダウ・コ−ニング・コ−ポレ−ション Curable silicone resin composition and reactive silicon compound
WO2011108712A1 (en) 2010-03-04 2011-09-09 国立大学法人北海道大学 6,13-dihalogen-5,14-dihydropentacene derivative and method for producing 6,13-substituted-5,14-dihydropentacene derivative using same
WO2013056073A1 (en) 2011-10-14 2013-04-18 The Board Of Trustees Of The University Of Illinois Compounds and anti-tumor nqo1 substrates
JP2015122437A (en) 2013-12-24 2015-07-02 富士フイルム株式会社 Organic membrane transistor, organic semiconductor membrane and organic semiconductor material

Also Published As

Publication number Publication date
US11518774B2 (en) 2022-12-06
US20200148709A1 (en) 2020-05-14
EP3650452A1 (en) 2020-05-13
EP3650452B1 (en) 2021-09-08
TWI705070B (en) 2020-09-21
TW202024104A (en) 2020-07-01
JP2020079208A (en) 2020-05-28
KR102376869B1 (en) 2022-03-18
CN111171070A (en) 2020-05-19
KR20200054896A (en) 2020-05-20

Similar Documents

Publication Publication Date Title
JP2006312642A (en) METHOD FOR PRODUCING N,N'-DISUBSTITUTED p-QUINONEDIIMINE, STABILIZER FORMED OUT OF THE DIIMINE, ORGANOSILANE COMPOSITION, METHOD FOR STABILIZING THE SAME, AND PHASE TRANSITION CATALYTIC METHOD
US20150315110A1 (en) Aluminum catalyst
CN101039949B (en) Method of producing silylalkoxymethyl halide
US8575381B2 (en) Trihydridosilyl-terminated polysilanes and methods of preparation
US8513465B2 (en) Potassium organotrifluoroborate derivative and a production method therefor
JP3733635B2 (en) Method for producing organosilicon compound
JP7406300B2 (en) Method for producing iodine-containing silicon compound
JP2009263316A (en) Method for producing incompletely condensed oligosilsesquioxane
JP4934823B2 (en) Silicon-containing cross-coupling reagent and method for producing organic compound using the same
JP3555646B2 (en) Method for producing chlorosilane containing acryloxy group or methacryloxy group
JP7322762B2 (en) Method for producing organosilicon compound having ketimine structure
JP4054957B2 (en) Method for reducing the chlorine content of tetrakis (dimethylamino) silane
EP2167516B1 (en) Process for producing phosphine oxide vitamin d precursors
US6777570B2 (en) Process for producing norbornene derivative having organosilyl group
US9073952B1 (en) Synthesis method for carbosilanes
EP0403952B1 (en) An environmentally safe method of preparing a certain dialkylamine
US20190225629A1 (en) Method for preparing silahydrocarbons
JP5321414B2 (en) Method for producing dimethylvinylsilyl triflate
JPH0748387A (en) Tert-butylakoxysilane and production thereof
JP2000327685A (en) Production of silylated aniline derivative
JP2010235595A (en) Method of preparing alkylated indoles
JP2620462B2 (en) Method for producing dicycloalkyl dialkoxysilane
JP2903487B2 (en) Cyclopentadienyl group-containing silane compound and method for producing the same
JP2009108045A (en) METHOD FOR PRODUCING PYRROLE OR ITS DERIVATIVE ALKYLATED AT beta-POSITION
JP4800933B2 (en) Process for producing cyclopropane monoacetal derivative and its intermediate

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191004

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210901

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220412

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220412

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220419

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220426

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20220603

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20220607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231215

R150 Certificate of patent or registration of utility model

Ref document number: 7406300

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150