JP7405250B2 - Rail manufacturing method - Google Patents

Rail manufacturing method Download PDF

Info

Publication number
JP7405250B2
JP7405250B2 JP2022527100A JP2022527100A JP7405250B2 JP 7405250 B2 JP7405250 B2 JP 7405250B2 JP 2022527100 A JP2022527100 A JP 2022527100A JP 2022527100 A JP2022527100 A JP 2022527100A JP 7405250 B2 JP7405250 B2 JP 7405250B2
Authority
JP
Japan
Prior art keywords
cooling
temperature
rail
transformation
pearlite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022527100A
Other languages
Japanese (ja)
Other versions
JPWO2022209293A1 (en
Inventor
啓之 福田
顕一 大須賀
悟史 上岡
友彬 佛淵
佳祐 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JPWO2022209293A1 publication Critical patent/JPWO2022209293A1/ja
Application granted granted Critical
Publication of JP7405250B2 publication Critical patent/JP7405250B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/04Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rails
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)

Description

本発明はオーステナイト域温度以上で熱間圧延された、あるいはオーステナイト域温度以上に加熱された高温レールに対し、冷却媒体(空気、水、ミストなど)によって加速冷却することにより、その頭部の耐摩耗性を向上させたレールとその製造方法に関するものである。 The present invention accelerates cooling of a high-temperature rail that has been hot-rolled above the austenite range temperature or heated above the austenite range temperature using a cooling medium (air, water, mist, etc.), thereby improving the durability of the head of the high-temperature rail. The present invention relates to a rail with improved wear resistance and a method for manufacturing the same.

レール頭部を微細なパーライト組織となしその耐摩耗性を向上させた従来の高硬度レールの一般的な製造方法について説明する。 A general method for manufacturing a conventional high-hardness rail in which the rail head is made of a fine pearlite structure to improve wear resistance will be described.

オーステナイト域温度以上で熱間圧延された、あるいは、オーステナイト域温度以上に加熱されたレールは、正立した(頭頂部が上方、足裏部が下方になった)状態で熱処理装置に搬入される。この場合、例えば100m程度の圧延長のまま熱処理装置に搬入されることもあるし、1本当たりの長さが例えば25m程度の長さになるように分割(以下、鋸断と称する)されてから搬入されることもある。鋸断されてから冷却することを基本としている場合には、熱処理装置もそれに応じた長さのゾーンに分割されていることもある。 Rails that have been hot-rolled above the austenite range temperature or heated above the austenite range temperature are carried into the heat treatment equipment in an upright position (the top of the head is upward and the sole of the foot is downward). . In this case, it may be delivered to the heat treatment equipment as a rolled length of, for example, about 100 m, or it may be divided (hereinafter referred to as sawing) into pieces each having a length of, for example, about 25 m. It may also be brought in from If the principle is to cool the material after sawing, the heat treatment equipment may also be divided into zones of corresponding lengths.

熱処理装置において、レールはその足先部を例えばクランプで拘束され、頭頂面、頭側面、足裏面、さらに必要に応じて腹部面を冷却媒体(空気、水、ミストなど)で強制冷却される。その温度履歴をコントロールすることにより、頭内部を含めた頭部全体を微細なパーライト組織としている。 In the heat treatment apparatus, the toes of the rail are restrained by, for example, clamps, and the top surface, side surface of the head, sole surface of the foot, and, if necessary, the abdominal surface are forcibly cooled with a cooling medium (air, water, mist, etc.). By controlling the temperature history, the entire head including the inside of the head has a fine pearlite structure.

熱処理終了後には、正立または転倒した状態で冷却床に搬入され、室温程度になるまで放冷され、矯正や検査等の工程を経て製品となる。 After the heat treatment is completed, the product is transported to a cooling bed in an upright or inverted state, left to cool to about room temperature, and undergoes processes such as straightening and inspection to become a product.

加速冷却によって高硬度化するためには、低い温度でパーライト変態させることが有効であり、冷却速度を大きくすることで、変態温度を低くすることが可能となる。また、頭内部まで高硬度を得ようとするには、頭表面からの熱伝導によって冷却するため、比較的長い時間の冷却が必要となる。 In order to increase the hardness by accelerated cooling, it is effective to perform pearlite transformation at a low temperature, and by increasing the cooling rate, it is possible to lower the transformation temperature. In addition, in order to obtain high hardness to the inside of the head, cooling is performed by heat conduction from the head surface, which requires cooling for a relatively long time.

しかしながら、冷却速度が高く、冷却量が大きくなりすぎると、冷却面近傍でパーライト以外の組織である、ベイナイト組織やマルテンサイト組織等が生成してしまう。パーライト組織と比較すると、ベイナイト組織は、その分率が大きくなるほど耐摩耗性を低下させ、マルテンサイト組織は靱性を大きく低下させてしまうため好ましくない。 However, if the cooling rate is high and the amount of cooling is too large, a structure other than pearlite, such as a bainite structure or a martensitic structure, will be generated near the cooling surface. Compared to a pearlite structure, a bainite structure lowers wear resistance as its fraction increases, and a martensitic structure significantly lowers toughness, so it is not preferable.

このため、加速冷却によって微細なパーライト組織を生成させるためには、精緻な温度履歴の制御が必要であった。特許文献1では、冷却装置内に設置した温度計で変態挙動を監視しながら温度履歴をコントロールする方法が記載されている。 Therefore, in order to generate a fine pearlite structure by accelerated cooling, precise temperature history control was required. Patent Document 1 describes a method of controlling temperature history while monitoring transformation behavior with a thermometer installed in a cooling device.

国際公開第2014/157198号International Publication No. 2014/157198

図2に特許文献1における所望の冷却を実施するための頭頂エアヘッダの圧力スケジュールとレール頭部表面温度の履歴の模式を示す。図2に示すように、オーステナイト域での冷却開始温度で冷却を開始し、図中t1のタイミングで変態発熱による昇温が開始する。昇温が大きくなりすぎると、高温で変態し硬度が低下してしまう。これを防止するために、昇温とほぼ同じか、それより少し前にヘッダ圧力を大きくし、冷却能力を上昇させる必要がある。これにより、変態発熱による昇温を低減し、高硬度化することが可能となる。このとき、内部は表面から遅れて変態するため、内部を高硬度させるためには、表面をベイナイト生成温度域まで冷却し、熱伝導によって内部の冷却速度を高くする必要がある。しかしながら、レール表面からの冷却中の温度測定では、内部の変態の完了を把握することができない。そのため、加速冷却中の冷却量を大きくし、加速冷却終了後の復熱した頭部表面温度が、パーライト変態温度以下となることが一般的である。 FIG. 2 schematically shows the pressure schedule of the top air header and the history of the rail head surface temperature for implementing desired cooling in Patent Document 1. As shown in FIG. 2, cooling starts at the cooling start temperature in the austenite region, and temperature rise due to transformation heat generation starts at timing t1 in the figure. If the temperature rise is too large, transformation occurs at high temperatures and hardness decreases. To prevent this, it is necessary to increase the header pressure at approximately the same time as the temperature rise, or slightly before it, to increase the cooling capacity. This makes it possible to reduce temperature rise due to transformation heat generation and increase hardness. At this time, the interior transforms later than the surface, so in order to make the interior highly hard, it is necessary to cool the surface to a bainite formation temperature range and increase the cooling rate of the interior by heat conduction. However, by measuring the temperature during cooling from the rail surface, it is not possible to determine the completion of internal transformation. Therefore, it is common to increase the amount of cooling during accelerated cooling so that the surface temperature of the recuperated head after the accelerated cooling ends is equal to or lower than the pearlite transformation temperature.

しかしながら、レール全長を冷却する場合で、冷却開始前に長手方向に温度ばらつきが発生しているレールを特許文献1に記載の方法で冷却制御しようとすると、変態開始のタイミングが温度ばらつきに応じて変化してしまう。このため、ばらつきがある位置全てに温度計を設置する必要があり、設備設置コストがかさんでしまう。また、温度計を設置できたとしても、条件によっては所望の制御ができない場合がある。例えば、衝風冷却の場合、複数の冷却ヘッダに対して1つのブロワーから冷却エアを供給していることが通常である。この中で長手方向の温度ばらつきに対応するために、冷却速度を大きく変化させる必要がある場合、ヘッダ毎に設置されている流量圧力調整弁では対応できず、変態挙動に応じた冷却制御ができなくなる。この結果、高い温度でパーライト変態し、硬度が低下したり、加速冷却中にパーライト変態が完了せず、多量のベイナイト組織やマルテンサイト組織が生成したりする。 However, when cooling the entire length of the rail and attempting to control cooling with the method described in Patent Document 1 for a rail in which temperature variations have occurred in the longitudinal direction before the cooling starts, the timing of the start of transformation varies depending on the temperature variations. It will change. For this reason, it is necessary to install thermometers at all positions where there are variations, which increases equipment installation costs. Further, even if a thermometer can be installed, desired control may not be possible depending on the conditions. For example, in the case of blast cooling, cooling air is usually supplied from one blower to a plurality of cooling headers. In this case, if the cooling rate needs to be changed significantly in order to cope with temperature variations in the longitudinal direction, the flow pressure regulating valve installed in each header cannot handle this, and cooling control according to the transformation behavior cannot be done. It disappears. As a result, pearlite transformation occurs at high temperatures and hardness decreases, or pearlite transformation is not completed during accelerated cooling and a large amount of bainite structure or martensite structure is generated.

また、冷却開始前のレールの長手方向の温度ばらつきを修正するためにはIH等による加熱も考えられるが、設備設置コストがかさんでしまう。また、全長一斉冷却とせず、冷却装置内をレールの端部から通過させて冷却する場合にも、冷却時間が長いと、冷却設備長が長くなる。その結果、IHによるサーマルランダウン補償が必要である等、設備設置コストがかさんでしまう。 Further, in order to correct temperature variations in the longitudinal direction of the rail before cooling starts, heating using IH or the like may be considered, but this increases the equipment installation cost. Furthermore, even when the rails are cooled by passing through the cooling device from the end of the rail instead of cooling the entire length all at once, if the cooling time is long, the length of the cooling equipment becomes long. As a result, equipment installation costs increase, such as the need for thermal rundown compensation by IH.

さらに温度ばらつきとして、素材によるばらつきおよび頭部の断面内でのばらつきが挙げられる。加熱や圧延および加速冷却装置までの搬送における温度および時間のばらつきのため、素材により温度ばらつきが発生してしまう。また、圧延から加速冷却装置までの搬送はレールが転倒した状態でなされるため、レール頭部の放熱状態が異なり、頭部の断面内に温度差が発生してしまう。 Furthermore, temperature variations include variations due to materials and variations within the cross section of the head. Due to variations in temperature and time during heating, rolling, and transportation to the accelerated cooling device, temperature variations occur depending on the material. Further, since the rail is transported from rolling to the accelerated cooling device in an overturned state, the heat dissipation state of the rail head is different, and a temperature difference occurs within the cross section of the head.

したがって、本発明は上述した問題を解決するためになされたものであって、その目的は、冷却開始前のレールの温度ばらつきによらず、高硬度で高品質のレールを簡便な冷却方法で製造する方法を提供するものである。ここで、「高硬度」とは、表面硬度がHB430以上、且つ、内部硬度がHB385以上を意味する。また、「高品質」とは、耐摩耗性を低下させる、レール頭部の冷却面から5mm深さの位置のベイナイト生成率が15%以下を意味する。 Therefore, the present invention has been made to solve the above-mentioned problems, and its purpose is to manufacture high-hardness, high-quality rails using a simple cooling method, regardless of temperature variations in the rails before cooling starts. This provides a method to do so. Here, "high hardness" means a surface hardness of HB430 or higher and an internal hardness of HB385 or higher. Furthermore, "high quality" means that the bainite production rate at a depth of 5 mm from the cooling surface of the rail head, which reduces wear resistance, is 15% or less.

筆者らは鋭意調査した結果、ベイナイト組織が生成する場合は、加速冷却終了後の放冷時に多量に生成することを突き止めた。すなわち、加速冷却終了後の復熱およびその後の放冷過程の温度履歴に応じて、加速冷却時に変態しなかったオーステナイトがパーライトやベイナイトに変態することが判明した。 As a result of intensive investigation, the authors found that when a bainite structure is formed, it is formed in large quantities during cooling after accelerated cooling. That is, it was found that austenite that was not transformed during accelerated cooling was transformed into pearlite or bainite, depending on the temperature history of the recuperation after the accelerated cooling and the subsequent cooling process.

図3に示すように、加速冷却が終了した時点で、加速冷却中に発生した断面内の温度分布がほぼなくなるように熱伝導によって復熱が生じ、表面は温度上昇する。加速冷却終了時にパーライト変態が未完了で、オーステナイトが残存し、復熱過程でベイナイト変態温度域であった場合には、残存していたオーステナイトがベイナイトに変態する。加速冷却中にパーライト変態がほとんど発生しなかった場合には、多量のベイナイトが生成してしまう。なお、図3の変態率のグラフにおいて、100-変態率(%)がオーステナイトの残存率である。 As shown in FIG. 3, at the end of accelerated cooling, heat conduction causes recuperation so that the temperature distribution within the cross section that occurred during accelerated cooling almost disappears, and the temperature of the surface increases. If the pearlite transformation is not completed at the end of accelerated cooling and austenite remains, and the temperature is in the bainite transformation temperature range during the reheating process, the remaining austenite transforms into bainite. If pearlite transformation hardly occurs during accelerated cooling, a large amount of bainite will be produced. In addition, in the transformation rate graph of FIG. 3, 100-transformation rate (%) is the residual rate of austenite.

一方、図1に示すように、加速冷却終了時にパーライト変態が未完了で、オーステナイトが残存し、ベイナイト生成温度域であっても、復熱過程で再びパーライト変態温度域まで到達する。そして、残存していたオーステナイトの大部分が、復熱過程およびその後の自然放冷中にパーライト変態する。これにより、所望とするパーライト組織が得られることがわかった。 On the other hand, as shown in FIG. 1, even if the pearlite transformation is not completed at the end of accelerated cooling and austenite remains, and the temperature is in the bainite formation temperature range, the pearlite transformation temperature range is reached again in the reheating process. Most of the remaining austenite transforms into pearlite during the recuperation process and subsequent natural cooling. It was found that the desired pearlite structure could be obtained by this method.

本発明は、以上の知見に基づいてなされたものであり、その要旨は以下のとおりである。
[1] オーステナイト域温度以上の温度を有するレールを加速冷却する工程を有する、レールの製造方法であって、前記加速冷却が終了した時点のレール頭部の冷却面から5mm深さにおける領域の70%以下がオーステナイトであり、加速冷却終了後に生じる復熱の完了時のレール頭部表面の温度がパーライト変態温度域である、レールの製造方法。
[2] 前記加速冷却終了後に生じる復熱過程における前記レール頭部表面の最高温度が、パーライト変態温度域下限以上パーライト変態温度域下限+75℃以下である、[1]に記載のレールの製造方法。
[3] 前記加速冷却終了後に前記レールを放冷し、前記レール頭部表面の温度が200℃以下となった後は1℃/s以上の速度で冷却する、[1]又は[2]に記載のレールの製造方法。
[4] レール頭部の冷却面から5mm深さまでの範囲において、ベイナイト生成率が15%以下である、レール。
The present invention has been made based on the above findings, and the gist thereof is as follows.
[1] A rail manufacturing method comprising the step of accelerating cooling of a rail having a temperature equal to or higher than the austenite range temperature, the rail manufacturing method comprising the step of accelerating cooling of a rail having a temperature equal to or higher than the austenite range temperature, the rail manufacturing method comprising: % or less is austenite, and the temperature of the rail head surface at the completion of recuperation that occurs after the completion of accelerated cooling is in the pearlite transformation temperature range.
[2] The method for producing a rail according to [1], wherein the maximum temperature of the rail head surface in the recuperation process that occurs after the accelerated cooling is higher than the lower limit of the pearlite transformation temperature range and lower limit of the pearlite transformation temperature range +75°C or lower. .
[3] In [1] or [2], the rail is allowed to cool after the accelerated cooling is completed, and after the temperature of the rail head surface becomes 200° C. or less, the rail is cooled at a rate of 1° C./s or more. Method of manufacturing the rails described.
[4] A rail in which the bainite production rate is 15% or less in a range up to a depth of 5 mm from the cooling surface of the rail head.

本発明の製造方法を用いることで、冷却開始前のレールの温度ばらつきによらず、高硬度で高品質のレールが製造可能となる。 By using the manufacturing method of the present invention, a rail with high hardness and high quality can be manufactured regardless of temperature variations in the rail before cooling starts.

図1は、本発明に係る、加速冷却開始からのレール頭部表面の温度履歴とレール頭部の冷却面から5mm深さまでの範囲における変態率の関係を表す模式図である。FIG. 1 is a schematic diagram showing the relationship between the temperature history of the rail head surface from the start of accelerated cooling and the transformation rate in a range up to a depth of 5 mm from the cooling surface of the rail head, according to the present invention. 図2は、特許文献1に係るレール頭部表面冷却用頭頂エアヘッダの圧力スケジュールとレール頭部表面温度の履歴の模式図である。FIG. 2 is a schematic diagram of the pressure schedule and the history of the rail head surface temperature of the top air header for cooling the rail head surface according to Patent Document 1. 図3は、比較例に係る、加速冷却終了後に生じる復熱の完了時の温度がベイナイト変態温度域である場合の、レール頭部表面の温度履歴と冷却面から5mm深さまでの範囲における変態率の関係を表す模式図である。Figure 3 shows the temperature history of the rail head surface and the transformation rate in the range from the cooling surface to a depth of 5 mm when the temperature at the completion of recuperation after the end of accelerated cooling is in the bainite transformation temperature range, according to a comparative example. FIG.

以下、図面を参照して、本発明の製造方法について説明する。 Hereinafter, the manufacturing method of the present invention will be explained with reference to the drawings.

図1に示すように、加速冷却終了時にレール頭部の冷却面から5mm深さにおける領域のパーライト変態が未完了で、オーステナイトが残存し、レール頭部表面の温度がベイナイト生成温度域である場合を考える。この後の復熱過程で再びパーライト変態温度域まで到達することで、残存していたオーステナイトの大部分が、復熱過程およびその後の自然放冷中にパーライト変態する。なお、残存するオーステナイトは、通常70%以下である。この時、加速冷却終了後に生じる復熱の完了時のレール頭部表面の温度がパーライト変態温度域となるように加速冷却を制御することにより、微細なパーライト組織を得ることができる。また、オーステナイト残存量は常法にて確認可能である。 As shown in Figure 1, when the pearlite transformation in a region 5 mm deep from the cooling surface of the rail head is not completed at the end of accelerated cooling, austenite remains, and the temperature of the rail head surface is in the bainite generation temperature range. think of. By reaching the pearlite transformation temperature range again in the subsequent reheating process, most of the remaining austenite transforms into pearlite during the reheating process and the subsequent natural cooling. Note that the remaining austenite is usually 70% or less. At this time, a fine pearlite structure can be obtained by controlling the accelerated cooling so that the temperature of the rail head surface at the completion of the recuperation that occurs after the accelerated cooling is in the pearlite transformation temperature range. In addition, the remaining amount of austenite can be confirmed by a conventional method.

ここで、加速冷却中および復熱過程中のベイナイト生成温度域で微量のベイナイトが生成する場合がある。レール頭部の冷却面から5mm深さにおける領域のベイナイト生成率が15%以下であれば、耐摩耗性に関してフルパーライト、即ち、パーライト100%との差異は無視できる程度である。なお、加速冷却後にパーライト変態が未完了でオーステナイトが残存していることの確認は、変態率計を用いた測定、冷却中に測定した温度実績のサーメックによる再現などにより行うことができる。また、冷却時間をあえて延長させ、復熱後の温度域をベイナイト変態温度域とさせたレールとの比較などの方法をとってもよい。ここでいうベイナイト変態温度域とは、等温状態で保持した時にベイナイトが生成する温度域のことである。あらかじめ、試験片などを用いて、恒温変態曲線を作成することで、ベイナイトやパーライトの変態温度域を把握することができる。 Here, a trace amount of bainite may be generated in the bainite generation temperature range during accelerated cooling and reheating process. If the bainite production rate in the region 5 mm deep from the cooling surface of the rail head is 15% or less, the difference in wear resistance from full pearlite, that is, 100% pearlite, is negligible. It should be noted that confirmation that pearlite transformation has not been completed and austenite remains after accelerated cooling can be performed by measurement using a transformation rate meter, reproduction of temperature results measured during cooling using a THERMEC, etc. Alternatively, a comparison may be made with a rail in which the cooling time is intentionally extended and the temperature range after reheating is set to the bainite transformation temperature range. The bainite transformation temperature range here refers to the temperature range in which bainite is generated when the material is maintained in an isothermal state. By creating a isothermal transformation curve in advance using a test piece, it is possible to understand the transformation temperature range of bainite and pearlite.

また、レール頭部表面の温度とは、レール頭部の角の温度を放射温度計で測定することによって得られた値である。なお、加速冷却終了後にレールを正立させて搬送させる場合には、復熱過程でレール頭部断面内の温度はほぼ同じになるため、頭部中央部表面を含む両側頭角表面の範囲のいずれの位置でも問題ない。また、レール頭部の冷却面から5mm深さにおける領域とは、レール頭部の中央部表面および両側頭角表面から5mm深さの領域のミクロ組織の平均値を意味する。 Moreover, the temperature of the rail head surface is a value obtained by measuring the temperature of the corner of the rail head with a radiation thermometer. Note that when the rail is conveyed in an upright position after accelerated cooling, the temperature within the cross section of the rail head becomes almost the same during the recuperation process, so any part of the range of both lateral surfaces including the central surface of the head There is no problem in this position. Further, the region at a depth of 5 mm from the cooling surface of the rail head means the average value of the microstructure of the region at a depth of 5 mm from the central surface and both temporal corner surfaces of the rail head.

また、加速冷却終了後の復熱過程のレール頭部の最高温度がパーライト変態温度域の下限から+75℃以下であれば、生成するパーライトはより微細となり、レールの硬度がより高くなるため好ましい。さらに好ましくは、パーライト変態温度の下限から+50℃以下である。 Further, it is preferable that the maximum temperature of the rail head during the recuperation process after the end of accelerated cooling is +75° C. or less from the lower limit of the pearlite transformation temperature range, since the pearlite produced will be finer and the hardness of the rail will be higher. More preferably, the temperature is +50° C. or lower from the lower limit of the pearlite transformation temperature.

冷却床での室温程度までの冷却において、レール頭部表面の温度が200℃以下になるまでは放冷とし、その後に1℃/s以上の速度で冷却することが好ましい。レールの温度が200℃以下であれば、レールは全て変態完了しているため、特性に影響を及ぼさず、放冷時間の短縮が可能となる。また、冷却床での冷却によるレールの反りへの影響もない。また、200℃以下の放冷では、室温との温度差が小さくなるため、常温程度に冷却するのに1時間以上の時間を要する。1℃/s以上の冷却速度とすることで、冷却床での処理時間が大幅に短縮することが可能となる。 In cooling to about room temperature on a cooling bed, it is preferable to let the rail head cool until the temperature of the rail head surface becomes 200° C. or less, and then cool at a rate of 1° C./s or more. If the temperature of the rail is 200° C. or lower, all the rails have completed transformation, so the characteristics are not affected and the cooling time can be shortened. Furthermore, cooling on the cooling bed does not affect the warpage of the rail. Furthermore, if the temperature is allowed to cool to 200° C. or lower, the temperature difference from room temperature becomes small, so it takes one hour or more to cool to about room temperature. By setting the cooling rate to 1° C./s or more, the processing time on the cooling bed can be significantly shortened.

冷却床での冷却のタイミングは、200℃以下となるような時間を予め把握して、所定時間後に冷却を開始しても良い。また、温度計でレール頭部表面の温度を測定して、200℃以下になっていることを確認した後、冷却を開始しても良い。冷却床での冷却方法については、上方からの水スプレー冷却等公知の方法で問題ない。 The timing of cooling on the cooling bed may be such that the time when the temperature becomes 200° C. or lower is determined in advance, and cooling may be started after a predetermined time. Alternatively, cooling may be started after measuring the temperature of the surface of the rail head with a thermometer and confirming that it is below 200°C. Regarding the cooling method on the cooling bed, known methods such as water spray cooling from above can be used without any problem.

加速冷却終了後の復熱過程およびその後の自然放冷中のレール頭部の温度を常に温度測定する必要はなく、加速冷却終了後から30s以上、150s以下のタイミングで温度を測定すればよい。30sより小さいと復熱がまだ完了しておらず、レール頭部表面の温度が所望とするパーライト変態温度域の範囲内か否かを把握できず、レールの硬度が低下している恐れがある。また、150sより大きい場合には、復熱過程後の自然放冷での温度低下量が大きくなってしまい、復熱過程の温度を把握することが困難となり、レールの硬度が低下する恐れがある。レールは加速冷却終了後、冷却床に移送され、常温近くまで自然放冷されるのが一般的である。このため、加速冷却終了後から30s以上、150s以下となるような、冷却床への搬送中に温度を測定することが好ましい。これにより温度計一台でレール全長を測定することが可能となる。 It is not necessary to always measure the temperature of the rail head during the recuperation process after the end of accelerated cooling and during the subsequent natural cooling, but it is sufficient to measure the temperature at a timing of 30 seconds or more and 150 seconds or less after the end of accelerated cooling. If it is shorter than 30 seconds, the recuperation has not yet been completed, and it is not possible to determine whether the temperature of the rail head surface is within the desired pearlite transformation temperature range, and the hardness of the rail may be reduced. . In addition, if it is longer than 150 seconds, the amount of temperature drop due to natural cooling after the recuperation process will become large, making it difficult to grasp the temperature during the recuperation process, and there is a risk that the hardness of the rail will decrease. . After accelerated cooling, the rails are generally transferred to a cooling bed and left to cool naturally to near room temperature. For this reason, it is preferable to measure the temperature during transportation to the cooling bed, which is 30 seconds or more and 150 seconds or less after the end of accelerated cooling. This makes it possible to measure the entire rail length with a single thermometer.

測定結果から所望の温度となっていない場合には、次材以降のレールに対して、冷却量の調整をすればよい。すなわち、温度が高ければ、冷却量を多くするために、噴射する冷媒の流量を多くして冷却能力を上げる、もしくは、冷却時間を延ばせばよい。また、温度が低ければ、冷却量を少なくするために、噴射する冷媒の流量を少なくして冷却能力を下げるか、もしくは、冷却時間を短くすればよい。 If the measurement results show that the desired temperature is not achieved, the amount of cooling may be adjusted for the next rail and subsequent rails. That is, if the temperature is high, in order to increase the amount of cooling, the flow rate of the refrigerant to be injected may be increased to increase the cooling capacity, or the cooling time may be extended. Furthermore, if the temperature is low, in order to reduce the amount of cooling, the flow rate of the refrigerant to be injected may be reduced to lower the cooling capacity, or the cooling time may be shortened.

加速冷却中の冷却速度については、レール頭部表面を1℃/s以上7℃/s以下で冷却し、表面近傍、即ちレール頭部表面の冷却面から5mm深さまでの範囲をパーライト変態開始させることが好ましい。より好ましくは、4℃/s以上、6℃/s以下である。衝風冷却などで冷却する場合には、温度が低下するとともに、冷却能力も低下してしまうため、レールの温度低下に伴い風量を上げることが好ましい。 Regarding the cooling rate during accelerated cooling, the rail head surface is cooled at 1°C/s or more and 7°C/s or less, and pearlite transformation is started in the vicinity of the surface, that is, a range up to 5 mm deep from the cooling surface of the rail head surface. It is preferable. More preferably, it is 4°C/s or more and 6°C/s or less. When cooling by blast cooling or the like, the temperature decreases and the cooling capacity also decreases, so it is preferable to increase the air volume as the temperature of the rail decreases.

表面近傍の変態が開始すると、その変態発熱で、温度が上昇する。変態発熱による温度上昇は50℃以下とすることが好ましい。より好ましくは30℃以下である。 When transformation near the surface begins, the temperature rises due to the heat generated by the transformation. It is preferable that the temperature rise due to transformation heat generation is 50° C. or less. More preferably it is 30°C or lower.

表面近傍の変態発熱による温度上昇が終了したのちは、1℃/s以上、5℃/s以下で冷却することが好ましい。より好ましくは、1.5℃/s以上、2.5℃/s以下である。5℃/sより大きいと、より大きな冷却装置が必要となり、設備コストがかさんでしまう。また、冷却量の調整量のバラツキも大きくなってしまい、より高精度な冷却措置の制御が要求されるため、設備コストがかさんでしまう。 After the temperature rise due to transformation heat generation in the vicinity of the surface ends, cooling is preferably performed at a rate of 1° C./s or more and 5° C./s or less. More preferably, it is 1.5°C/s or more and 2.5°C/s or less. If it is higher than 5° C./s, a larger cooling device is required, which increases the equipment cost. Moreover, the variation in the amount of adjustment of the cooling amount becomes large, and more precise control of the cooling measure is required, which increases the equipment cost.

上記の冷却方法で冷却したレール頭部の冷却面から5mm深さまでの範囲において、ベイナイト生成率が15%以下である必要がある。残部組織はパーライト生成率が85%以上であることが好ましい。ベイナイト生成率が15%より大きくなると、フルパーライトと比較して耐摩耗性に劣るためである。なお、ここでいうベイナイト生成率とは、通常の光学顕微鏡による組織観察で視認可能なベイナイトの面積率である。なお、ベイナイト以外の組織の生成率についても同様に、生成率とは面積率を意味する。 The bainite production rate must be 15% or less in the range up to a depth of 5 mm from the cooling surface of the rail head cooled by the above cooling method. It is preferable that the remaining structure has a pearlite production rate of 85% or more. This is because when the bainite production rate is greater than 15%, the wear resistance is inferior to that of full pearlite. In addition, the bainite production rate here is the area ratio of bainite that can be visually recognized by microstructure observation using a normal optical microscope. Note that similarly to the formation rate of structures other than bainite, the generation rate means the area ratio.

なお、レールの成分組成については従来公知の範囲でよく、質量%で、例えばCの含有量:0.7以上1.00以下%、Siの含有量:0.20以上1.20以下%、Mnの含有量:0.20以上1.50以下%、Pの含有量:0.035以下%、Sの含有量:0.012以下%、Crの含有量:0.20以上1.50以下%、この他任意に、Cu、Ni、Mo、V、Nb、Al、Ti、Sbの中から選ばれる少なくとも1種を夫々0.01以上1.00以下%、B、Ca、Mg、REMの少なくとも1種を夫々0.001以上0.10以下%含んでも良く、残部は鉄及び不可避的不純物であることが好ましい。本発明のレール頭部の冷却面から5mm深さまでの領域以外の鋼組織については特に限定はなく、従来のものであっても良い。 Note that the component composition of the rail may be within a conventionally known range, and in terms of mass%, for example, C content: 0.7 to 1.00%, Si content: 0.20 to 1.20%, Mn content: 0.20 or more and 1.50 or less%, P content: 0.035 or less%, S content: 0.012 or less%, Cr content: 0.20 or more and 1.50 or less %, and optionally at least one selected from Cu, Ni, Mo, V, Nb, Al, Ti, and Sb, respectively from 0.01 to 1.00%, B, Ca, Mg, and REM. It is preferable that at least one kind is contained in an amount of 0.001 to 0.10%, and the balance is iron and inevitable impurities. There is no particular limitation on the steel structure other than the region up to a depth of 5 mm from the cooling surface of the rail head of the present invention, and a conventional structure may be used.

表1に示す成分組成を有し、900℃で熱間圧延を終了させた長尺のレールを冷却装置に全長ほぼ同時に挿入し、レール頭部の表面温度が770℃の状態からヘッダを近づけて空気によって冷却した。冷却中のレール頭部の角の温度を放射温度計で測定し、レール頭部表面の冷却速度を測定した。加速冷却開始からレール表面近傍の変態発熱による温度上昇が発生するまでは、5.5℃/sで冷却し、表面近傍の変態発熱による温度上昇が終了した後は、1.5℃/sで冷却した。加速冷却終了後、レールを冷却装置から取り出し、冷却床へ搬送した。この際、冷却床へ搬送している途中のレールの頭部表面の温度を測定し、復熱の完了時のレール頭部表面の温度とした。この温度が所定の値になるように、表面近傍の変態発熱による温度上昇が終了した後の冷却時間を調整した。 A long rail having the composition shown in Table 1 and hot-rolled at 900°C is inserted into the cooling device almost simultaneously over its entire length, and the header is brought close to the rail from a state where the surface temperature of the rail head is 770°C. Cooled by air. The temperature at the corner of the rail head during cooling was measured using a radiation thermometer, and the cooling rate of the rail head surface was measured. From the start of accelerated cooling until the temperature rises due to transformation heat generation near the rail surface, cooling is performed at a rate of 5.5℃/s, and after the temperature rise due to transformation heat generation near the surface ends, cooling is performed at 1.5℃/s. Cooled. After the accelerated cooling was completed, the rail was taken out from the cooling device and transported to the cooling bed. At this time, the temperature of the surface of the head of the rail while it was being transported to the cooling bed was measured, and this was taken as the temperature of the surface of the head of the rail at the completion of recuperation. The cooling time after the temperature rise due to transformation heat generation in the vicinity of the surface was completed was adjusted so that this temperature became a predetermined value.

Figure 0007405250000001
Figure 0007405250000001

常温となったレールから、JIS Z 2243に従ってサンプルを切断し、頭部中央の表面の位置および内部23mm位置の硬度を測定し、頭部中央および両側頭角表面から5mm深さの位置の平均パーライト生成率を調査した。結果を表2に示す。また、測定した表面温度の履歴をサーメックで再現し、冷却中の変態挙動を調査した。なお、パーライト以外の組織は全てベイナイトであった。なお、表1で示した成分の恒温変態曲線を作成すると、パーライトの変態温度域は750~525℃であった。表面硬度がHB430以上を表面硬度が良好と判断した。また、内部硬度がHB385以上を内部硬度が良好と判断した。常温でのパーライト生成率が85%以上を本発明の範囲とし、常温でのパーライト生成率が高い程、より組織が良好であると判断した。なお、加速冷却終了時の各パーライト生成率を100%から差し引いた値がオーステナイトの残存量とみなされる。 A sample was cut from the rail at room temperature according to JIS Z 2243, and the hardness was measured at the surface position at the center of the head and at a position 23 mm inside. We investigated the rate. The results are shown in Table 2. In addition, the measured surface temperature history was reproduced using THERMEC, and the transformation behavior during cooling was investigated. All structures other than pearlite were bainite. In addition, when creating a constant temperature transformation curve for the components shown in Table 1, the transformation temperature range of pearlite was 750 to 525°C. A surface hardness of HB430 or higher was judged to be good. Moreover, the internal hardness was judged to be good if the internal hardness was HB385 or higher. The range of the present invention is a pearlite production rate of 85% or more at room temperature, and it was determined that the higher the pearlite production rate at room temperature, the better the structure. Note that the value obtained by subtracting each pearlite production rate from 100% at the end of accelerated cooling is regarded as the remaining amount of austenite.

Figure 0007405250000002
Figure 0007405250000002

実施例1では、復熱完了時のレール頭部表面の温度を610℃としたので、硬度と組織が良好であった。実施例2では、復熱完了時のレール頭部表面の温度を550℃としたので、実施例1と比較して、さらに硬度が上昇した。どちらの実施例でも、加速冷却終了直後のレール表面でのパーライト変態率は35%であったが、その後の復熱過程でパーライト変態した。 In Example 1, the temperature of the rail head surface at the completion of reheating was 610° C., so the hardness and texture were good. In Example 2, the temperature of the rail head surface upon completion of reheating was 550° C., so the hardness was further increased compared to Example 1. In both examples, the pearlite transformation rate on the rail surface immediately after the end of accelerated cooling was 35%, but pearlite transformation occurred during the subsequent reheating process.

一方、比較例では、加速冷却終了直後のレール表面でのパーライト変態率は35%であり、復熱完了時のレール頭部表面の温度を450℃としたので、加速冷却終了後の復熱過程でパーライト変態しなかった。そのため、表面近傍に多量のベイナイトが生成してしまい、表面硬度が大幅に低下した。 On the other hand, in the comparative example, the pearlite transformation rate on the rail surface immediately after the end of accelerated cooling was 35%, and the temperature of the rail head surface at the end of recuperation was 450°C, so the recuperation process after the end of accelerated cooling was And perlite did not metamorphose. As a result, a large amount of bainite was generated near the surface, resulting in a significant decrease in surface hardness.

Claims (2)

オーステナイト域温度以上の温度を有するレールを加速冷却する工程を有する、レール頭部の表面硬度がHB430以上、レール内部23mm位置の内部硬度がHB385以上であり、レール頭部の冷却面から5mm深さまでの範囲のベイナイト生成率が15%以下であり、残部がパーライトである、レールの製造方法であって、
前記加速冷却が終了した時点のレール頭部の冷却面から5mm深さにおける領域の70%以下がオーステナイトであり、
加速冷却終了時に生じる復熱の完了時のレール頭部表面の温度がパーライト変態温度域下限以上パーライト変態温度域下限+50℃以下である、レールの製造方法。
The surface hardness of the rail head is HB430 or higher, the internal hardness at the 23mm position inside the rail is HB385 or higher, and the rail head has a temperature of 5mm deep from the cooling surface of the rail head. A method for manufacturing a rail, wherein the bainite production rate in the range of 15% or less, the remainder being pearlite,
70% or less of the area at a depth of 5 mm from the cooling surface of the rail head at the end of the accelerated cooling is austenite,
A method for producing a rail, wherein the temperature of the rail head surface at the completion of recuperation occurring at the end of accelerated cooling is greater than or equal to the lower limit of the pearlite transformation temperature range and less than or equal to the lower limit of the pearlite transformation temperature range +50°C.
前記加速冷却終了後に前記レールを放冷し、前記レール頭部表面の温度が200℃以下となった後は1℃/s以上の速度で冷却する、請求項1に記載のレールの製造方法。 The rail manufacturing method according to claim 1, wherein the rail is allowed to cool after the accelerated cooling is completed, and after the temperature of the rail head surface becomes 200° C. or less, the rail is cooled at a rate of 1° C./s or more.
JP2022527100A 2021-03-31 2022-02-04 Rail manufacturing method Active JP7405250B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2021060122 2021-03-31
JP2021060122 2021-03-31
PCT/JP2022/004530 WO2022209293A1 (en) 2021-03-31 2022-02-04 Rail and method for manufacturing same

Publications (2)

Publication Number Publication Date
JPWO2022209293A1 JPWO2022209293A1 (en) 2022-10-06
JP7405250B2 true JP7405250B2 (en) 2023-12-26

Family

ID=83458841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022527100A Active JP7405250B2 (en) 2021-03-31 2022-02-04 Rail manufacturing method

Country Status (3)

Country Link
EP (1) EP4282991A4 (en)
JP (1) JP7405250B2 (en)
WO (1) WO2022209293A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001020040A (en) 1999-07-08 2001-01-23 Nippon Steel Corp Pearlitic rail excellent in wear resistance and internal fatigue damage resistance and its production
JP2003129182A (en) 2001-10-22 2003-05-08 Nippon Steel Corp Pearlitic rail superior in surface damage resistance and manufacturing method therefor
US20110253268A1 (en) 2010-04-16 2011-10-20 Pangang Group Co., Ltd. High carbon content and high strength heat-treated steel rail and method for producing the same
WO2014157252A1 (en) 2013-03-27 2014-10-02 Jfeスチール株式会社 Pearlite rail and method for manufacturing pearlite rail
WO2015182759A1 (en) 2014-05-29 2015-12-03 新日鐵住金株式会社 Rail and production method therefor
JP2016156071A (en) 2015-02-25 2016-09-01 新日鐵住金株式会社 Pearlitic steel rail
WO2020054339A1 (en) 2018-09-10 2020-03-19 日本製鉄株式会社 Rail, and method for manufacturing rail

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09316598A (en) * 1996-03-27 1997-12-09 Nippon Steel Corp Pearlitic rail, excellent in wear resistance and weldability, and its production
ES2796328T3 (en) * 2015-01-23 2020-11-26 Nippon Steel Corp Rail
CN113966406B (en) * 2019-06-20 2022-09-16 杰富意钢铁株式会社 Steel rail and method for manufacturing same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001020040A (en) 1999-07-08 2001-01-23 Nippon Steel Corp Pearlitic rail excellent in wear resistance and internal fatigue damage resistance and its production
JP2003129182A (en) 2001-10-22 2003-05-08 Nippon Steel Corp Pearlitic rail superior in surface damage resistance and manufacturing method therefor
US20110253268A1 (en) 2010-04-16 2011-10-20 Pangang Group Co., Ltd. High carbon content and high strength heat-treated steel rail and method for producing the same
WO2014157252A1 (en) 2013-03-27 2014-10-02 Jfeスチール株式会社 Pearlite rail and method for manufacturing pearlite rail
WO2015182759A1 (en) 2014-05-29 2015-12-03 新日鐵住金株式会社 Rail and production method therefor
JP2016156071A (en) 2015-02-25 2016-09-01 新日鐵住金株式会社 Pearlitic steel rail
WO2020054339A1 (en) 2018-09-10 2020-03-19 日本製鉄株式会社 Rail, and method for manufacturing rail

Also Published As

Publication number Publication date
JPWO2022209293A1 (en) 2022-10-06
WO2022209293A1 (en) 2022-10-06
EP4282991A4 (en) 2024-07-03
EP4282991A1 (en) 2023-11-29

Similar Documents

Publication Publication Date Title
JP2007277696A (en) Dead soft high-carbon hot-rolled steel sheet and its manufacturing method
JP2008069452A (en) Hot-rolled high-carbon steel sheet and process for production of the same
JP5440203B2 (en) Manufacturing method of high carbon hot rolled steel sheet
JP6658895B2 (en) Rail cooling device and manufacturing method
US10563278B2 (en) Rail manufacturing method and manufacturing equipment
JP2006249570A (en) Steel for high-temperature carburization superior in grain-coarsening resistance, manufacturing method therefor, formed article for high-temperature carburization, and carburizing and quenching method therefor
KR101979477B1 (en) High-carbon hot rolled steel sheet with excellent hardenability and small in-plane anisotropy and method for manufacturing the same
JP5041282B2 (en) Method for producing martensitic stainless steel pipe
JP2009263753A (en) Rail whose internal has high hardness
JP5153221B2 (en) Soft nitriding non-tempered machine parts
JP6977880B2 (en) High carbon hot-rolled steel sheet and its manufacturing method
JP7405250B2 (en) Rail manufacturing method
AU2015304699A1 (en) Head Hardened Rail Manufacturing Method and Manufacturing Apparatus
WO2016181891A1 (en) Method for producing steel material, apparatus for cooling steel material, and steel material
JP2003183733A (en) Method for manufacturing wire rod
JP2016216809A (en) Low carbon steel sheet excellent in cold moldability and toughness after heat treatment and manufacturing method therefor
JP3999457B2 (en) Wire rod and steel bar excellent in cold workability and manufacturing method thereof
JP4267334B2 (en) Heat treatment method for high carbon steel pearlite rail
JP5248222B2 (en) Cold tool steel manufacturing method
JP6752624B2 (en) Manufacturing method of carburized steel
JP4280202B2 (en) High carbon steel plate with excellent hardenability and stretch flangeability
JP4331646B2 (en) Rolled steel bar and manufacturing method thereof
JP2021031703A (en) Thin steel plate and production method thereof
JP2002194432A (en) Method for manufacturing steel stock for spring
JP7329780B2 (en) Cold-rolled steel and steel parts

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230808

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231127

R150 Certificate of patent or registration of utility model

Ref document number: 7405250

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150