JP7403502B2 - Combustion furnace and boiler - Google Patents

Combustion furnace and boiler Download PDF

Info

Publication number
JP7403502B2
JP7403502B2 JP2021112260A JP2021112260A JP7403502B2 JP 7403502 B2 JP7403502 B2 JP 7403502B2 JP 2021112260 A JP2021112260 A JP 2021112260A JP 2021112260 A JP2021112260 A JP 2021112260A JP 7403502 B2 JP7403502 B2 JP 7403502B2
Authority
JP
Japan
Prior art keywords
furnace
fuel
nitrogen
air
burners
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021112260A
Other languages
Japanese (ja)
Other versions
JP2021165629A (en
Inventor
恵美 大野
貴弘 小崎
大樹 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2021112260A priority Critical patent/JP7403502B2/en
Publication of JP2021165629A publication Critical patent/JP2021165629A/en
Application granted granted Critical
Publication of JP7403502B2 publication Critical patent/JP7403502B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Combustion Of Fluid Fuel (AREA)

Description

本発明は、燃焼炉及びボイラに関する。 The present invention relates to combustion furnaces and boilers.

下記特許文献1には、アンモニアを含む燃料を燃焼させる複合エネルギーシステムが開示されている。この複合エネルギーシステムは、二酸化炭素の排出量を削減することを目的として、主燃料である天然ガスにアンモニアを添加して燃焼させるものである。 Patent Document 1 listed below discloses a composite energy system that burns fuel containing ammonia. This combined energy system burns natural gas, which is the main fuel, with ammonia added to it, with the aim of reducing carbon dioxide emissions.

特開2016-032391号公報Japanese Patent Application Publication No. 2016-032391

ところで、アンモニアを燃料の一部として燃焼させた場合には燃焼ガスに含まれる窒素酸化物(NOx)の増加が懸念される。上記背景技術は、専ら二酸化炭素の排出量の削減を目的としており、窒素酸化物(NOx)を低減さることについて何ら解決策を提示するものではない。天然ガスのような炭素燃料とアンモニアのような窒素含有燃料とを一緒に燃焼させる場合には、実用性の観点から窒素酸化物(NOx)の増加を抑制することが必要不可欠である。 By the way, when ammonia is burned as part of the fuel, there is a concern that nitrogen oxides (NOx) contained in the combustion gas will increase. The above-mentioned background technology is aimed exclusively at reducing carbon dioxide emissions, and does not provide any solutions for reducing nitrogen oxides (NOx). When burning a carbon fuel such as natural gas and a nitrogen-containing fuel such as ammonia together, it is essential to suppress the increase in nitrogen oxides (NOx) from a practical standpoint.

本発明は、上述した事情に鑑みてなされたものであり、炭素燃料と窒素含有燃料とを一緒に燃焼させる場合における窒素酸化物(NOx)の増加を抑制することを目的とするものである。 The present invention has been made in view of the above-mentioned circumstances, and aims to suppress the increase in nitrogen oxides (NOx) when carbon fuel and nitrogen-containing fuel are combusted together.

上記目的を達成するために、本発明では、燃焼炉に係る第1の解決手段として、理論空気量よりも低い空気雰囲気に設定される火炉と、炭素燃料と窒素含有燃料とを前記火炉に噴射して燃焼させる複数の複合バーナとを備え、前記複合バーナは、軸中心に同心円状に設けられた二重筒から前記炭素燃料を噴射し、前記二重筒の外側に軸中心周りに所定角度で複数設けられた単筒から前記窒素含有燃料を噴射する、という手段を採用する。 In order to achieve the above object, the present invention provides, as a first solving means related to a combustion furnace, a furnace set to an air atmosphere lower than the theoretical air amount, and a carbon fuel and a nitrogen-containing fuel injected into the furnace. and a plurality of composite burners that inject the carbon fuel from a double cylinder provided concentrically around the shaft center, and inject the carbon fuel at a predetermined angle around the shaft center to the outside of the double cylinder. In this method, the nitrogen-containing fuel is injected from a plurality of single cylinders.

本発明では、燃焼炉に係る第2の解決手段として、理論空気量よりも低い空気雰囲気に設定される火炉と、炭素燃料と窒素含有燃料とを前記火炉に噴射して燃焼させる複数の複合バーナとを備え、前記複合バーナは、軸中心周りに所定角度で複数設けられた単筒から前記窒素含有燃料を噴射し、前記単筒よりも軸中心から遠く同心円状に設けられた二重筒から前記炭素燃料を噴射する、という手段を採用する。 In the present invention, as a second solving means related to a combustion furnace, a furnace is provided with a furnace set to an air atmosphere lower than the theoretical air amount, and a plurality of composite burners that inject and burn carbon fuel and nitrogen-containing fuel into the furnace. The composite burner injects the nitrogen-containing fuel from a plurality of single cylinders provided at a predetermined angle around the shaft center, and injects the nitrogen-containing fuel from double cylinders provided concentrically further from the shaft center than the single cylinders. A method of injecting the carbon fuel is adopted.

本発明では、燃焼炉に係る第3の解決手段として、上記第1または第2の解決手段において、前記複合バーナは、予混合された前記炭素燃料及び前記窒素含有燃料を噴射する、という手段を採用する。 In the present invention, as a third solution related to a combustion furnace, in the first or second solution, the composite burner injects the premixed carbon fuel and the nitrogen-containing fuel. adopt.

本発明では、燃焼炉に係る第4の解決手段として、上記第1~第3のいずれかの解決手段において、前記炭素燃料は微粉炭であり、前記窒素含有燃料はアンモニアである、という手段を採用する。 In the present invention, as a fourth solving means related to a combustion furnace, the carbon fuel is pulverized coal and the nitrogen-containing fuel is ammonia in any one of the first to third solving means. adopt.

本発明では、ボイラに係る解決手段として、上記第1~第4のいずれかの解決手段に係る燃焼炉を備える、という手段を採用する。 In the present invention, the boiler is provided with a combustion furnace according to any one of the first to fourth solutions.

本発明によれば、炭素燃料と窒素含有燃料とを一緒に燃焼させる場合における窒素酸化物(NOx)の増加を抑制することが可能である。 According to the present invention, it is possible to suppress an increase in nitrogen oxides (NOx) when carbon fuel and nitrogen-containing fuel are combusted together.

本発明の第1実施形態に係る燃焼炉A及び当該燃焼炉Aを備えるボイラの要部構成を示す正面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a front view which shows the main part structure of the combustion furnace A based on 1st Embodiment of this invention, and the boiler provided with the said combustion furnace A. 図1のX-X線における矢視図である。FIG. 2 is a view taken along line XX in FIG. 1; 本発明の第2実施形態に係る燃焼炉B及び当該燃焼炉Bを備えるボイラの要部構成を示す断面図である。FIG. 2 is a sectional view showing a main part configuration of a combustion furnace B and a boiler including the combustion furnace B according to a second embodiment of the present invention. 本発明の第3実施形態に係る燃焼炉C及び当該燃焼炉Cを備えるボイラの要部構成を示す断面図である。FIG. 2 is a sectional view showing a main part configuration of a combustion furnace C and a boiler including the combustion furnace C according to a third embodiment of the present invention. 本発明の第3実施形態におけるバーナの構成を示す断面図である。It is a sectional view showing composition of a burner in a 3rd embodiment of the present invention.

以下、図面を参照して、本発明の実施形態について説明する。
〔第1実施形態〕
最初に、本発明の第1実施形態に係る燃焼炉A及び当該燃焼炉Aを備えるボイラについて、図1及び図2を参照して説明する。
Embodiments of the present invention will be described below with reference to the drawings.
[First embodiment]
First, a combustion furnace A according to a first embodiment of the present invention and a boiler including the combustion furnace A will be described with reference to FIGS. 1 and 2.

この第1実施形態に係るボイラは、火炉1、熱交換機器2、複数(合計24個)のバーナM11~M34、N11~N34、微粉炭供給装置3及びアンモニア供給装置4を要部として備えている。なお、これら複数の構成要素のうち、火炉1の一部(下部)及び複数のバーナM11~M34、N11~N34は、第1実施形態に係る燃焼炉Aを構成している。 The boiler according to the first embodiment includes a furnace 1, a heat exchange device 2, a plurality of burners M11 to M34 (24 in total), N11 to N34, a pulverized coal supply device 3, and an ammonia supply device 4 as main parts. There is. Note that among these plurality of components, a part (lower part) of the furnace 1 and the plurality of burners M11 to M34 and N11 to N34 constitute the combustion furnace A according to the first embodiment.

火炉1は、垂直かつ筒状に設けられた炉壁によって構成され、燃料を燃焼させて燃焼熱を発生させる炉体である。この火炉1では、燃料が燃焼することによって高温の燃焼ガスが発生する。このような火炉1の後段には、図示しない煙道が設けられている。上記燃焼ガスは、上記煙道を介して大気中に放出されるが、煙道を通過する間に窒素酸化物(NOx)や硫化物(SOx)が除去される。なお、このような火炉1の底部には、燃料の燃焼によって発生する灰分を外部に排出する排出口1aが設けられている。 The furnace 1 is a furnace body configured with a vertical, cylindrical furnace wall that combusts fuel to generate combustion heat. In this furnace 1, high-temperature combustion gas is generated by burning fuel. A flue (not shown) is provided at the rear stage of such a furnace 1. The combustion gas is released into the atmosphere through the flue, and nitrogen oxides (NOx) and sulfides (SOx) are removed while passing through the flue. Incidentally, at the bottom of such a furnace 1, an outlet 1a is provided for discharging ash generated by combustion of fuel to the outside.

熱交換機器2は、上記火炉1の上部や炉壁に設けられた複数の伝熱管から構成されており、内部に水が流通している。この熱交換機器2は、過熱器や再熱器等、ボイラに設けられる熱交換機器を総称するものであり、燃焼ガスが有する燃焼熱を伝熱管内の水と熱交換させることにより水蒸気を発生させる。 The heat exchange device 2 is composed of a plurality of heat transfer tubes provided on the upper part and the furnace wall of the furnace 1, and water flows inside. This heat exchange device 2 is a general term for heat exchange devices installed in a boiler such as a superheater and a reheater, and generates steam by exchanging combustion heat of combustion gas with water in a heat transfer tube. let

複数(合計24個)のバーナM11~M34、N11~N34は、火炉1の下部に二次元状かつ対向配置されており、火炉1内に燃料を噴射して燃焼させる。すなわち、12個のバーナM11~M34は、火炉1において対向する一対の炉壁の一方に直交配置され、残りの12個のバーナN11~N34は、上記一対の炉壁の他方に直交配置されている。より詳細には、12個のバーナM11~M34及びバーナN11~N34は、上下方向に3段かつ水平方向に4つ所定間隔を空けて直交配置されている。 A plurality of burners M11 to M34 (24 in total) and N11 to N34 are arranged two-dimensionally and facing each other in the lower part of the furnace 1, and inject fuel into the furnace 1 for combustion. That is, the 12 burners M11 to M34 are arranged orthogonally to one of the pair of opposing furnace walls in the furnace 1, and the remaining 12 burners N11 to N34 are arranged orthogonally to the other of the pair of furnace walls. There is. More specifically, the 12 burners M11 to M34 and the burners N11 to N34 are orthogonally arranged in three stages in the vertical direction and four stages in the horizontal direction at predetermined intervals.

これら合計24個のバーナM11~M34、N11~N34のうち、20個のバーナM11~M24、N11~N34は、何れも微粉炭(炭素燃料)のみを燃料として火炉1内に噴射する微粉炭専用バーナ(炭素燃料専用バーナ)であり、本発明における第1のバーナに相当する。また、残り(4個)のバーナM31~M34は、何れもアンモニア(窒素含有燃料)のみを燃料として火炉1内に噴射するアンモニア専用バーナ(窒素含有燃料専用バーナ)であり、本発明における第2のバーナに相当する。 Of these 24 burners M11 to M34 and N11 to N34 in total, 20 burners M11 to M24 and N11 to N34 are dedicated to pulverized coal that is injected into the furnace 1 using only pulverized coal (carbon fuel) as fuel. It is a burner (burner exclusively for carbon fuel), and corresponds to the first burner in the present invention. In addition, the remaining (four) burners M31 to M34 are all ammonia-only burners (nitrogen-containing fuel-only burners) that inject only ammonia (nitrogen-containing fuel) into the furnace 1, and are the second burners in the present invention. equivalent to a burner.

なお、図示しないが、火炉1には複数のバーナM11~M34、N11~N34から噴射された燃料(アンモニアあるいは微粉炭)を着火させる着火装置が設けられている。各バーナM11~M34、N11~N34から火炉1内に噴射された燃料(アンモニアあるいは微粉炭)は、上記着火装置の働きによって着火して燃焼する。 Although not shown, the furnace 1 is provided with an ignition device that ignites fuel (ammonia or pulverized coal) injected from a plurality of burners M11 to M34 and N11 to N34. Fuel (ammonia or pulverized coal) injected into the furnace 1 from each of the burners M11 to M34 and N11 to N34 is ignited and combusted by the action of the ignition device.

微粉炭供給装置3は、上述した20個のバーナM11~M24、N11~N34(微粉炭専用バーナ)に微粉炭を供給する燃料供給装置である。この微粉炭供給装置3は、20個のバーナM11~M24、N11~N34のうち各段毎に石炭ミルを備えており、当該石炭ミルを介して20個のバーナM11~M24、N11~N34に微粉炭を供給する。すなわち、この微粉炭供給装置3は、合計5個の石炭ミルを備えており、各石炭ミルによって石炭を粉砕して微粉炭を生成する。 The pulverized coal supply device 3 is a fuel supply device that supplies pulverized coal to the above-mentioned 20 burners M11 to M24 and N11 to N34 (burners dedicated to pulverized coal). This pulverized coal supply device 3 is equipped with a coal mill for each stage of the 20 burners M11 to M24 and N11 to N34, and is supplied to the 20 burners M11 to M24 and N11 to N34 via the coal mill. Supply pulverized coal. That is, this pulverized coal supply device 3 includes a total of five coal mills, and each coal mill pulverizes coal to produce pulverized coal.

このような5個の石炭ミルのうち、第1の石炭ミルは1つの段を構成する4個のバーナM11~M14に微粉炭を供給し、第2の石炭ミルは同じく1つの段を構成する4個のバーナM21~M24に微粉炭を供給し、第3の石炭ミルは同じく1つの段を構成する4個のバーナN11~N14に微粉炭を供給し、第4の石炭ミルは同じく1つの段を構成する4個のバーナN21~N24に微粉炭を供給し、第5の石炭ミルは同じく1つの段を構成する4個のバーナN31~N34に微粉炭を供給する。 Among these five coal mills, the first coal mill supplies pulverized coal to four burners M11 to M14 forming one stage, and the second coal mill also forming one stage. The pulverized coal is supplied to four burners M21 to M24, the third coal mill supplies pulverized coal to four burners N11 to N14, which also constitute one stage, and the fourth coal mill also supplies pulverized coal to four burners N11 to N14, which also constitute one stage. Pulverized coal is supplied to four burners N21 to N24 that constitute a stage, and the fifth coal mill supplies pulverized coal to four burners N31 to N34 that also constitute one stage.

アンモニア供給装置4は、上述した4個のバーナM31~M34(アンモニア炭専用バーナ)にアンモニアを供給する燃料供給装置である。なお、アンモニアは、分子式(NH3)によって示されるように水素(H)と窒素(N)との化合物であり、構成原子として炭素(C)を含まない。また、このアンモニアは、難燃性の物質として知られるものの、メタン(CH)と同様に3つの水素原子を有する水素キャリア物質であり、所定の高温環境下では比較的良好に燃焼する窒素含有燃料である。 The ammonia supply device 4 is a fuel supply device that supplies ammonia to the four burners M31 to M34 (burners dedicated to ammonia charcoal) described above. Note that ammonia is a compound of hydrogen (H) and nitrogen (N), as shown by the molecular formula (NH3), and does not contain carbon (C) as a constituent atom. In addition, although this ammonia is known as a flame-retardant substance, it is a hydrogen carrier substance that has three hydrogen atoms, similar to methane (CH 3 ), and is a nitrogen-containing substance that burns relatively well in a specified high-temperature environment. It's fuel.

続いて、本第1実施形態に係る燃焼炉A及びボイラの動作について詳しく説明する。 この燃焼炉A及びボイラでは、20個のバーナM11~M24、N11~N34(微粉炭専用バーナ)に微粉炭供給装置3から微粉炭が供給され、4個のバーナM31~M34(アンモニア炭専用バーナ)にアンモニア供給装置4からアンモニアが供給される。 Next, the operation of the combustion furnace A and the boiler according to the first embodiment will be explained in detail. In this combustion furnace A and boiler, pulverized coal is supplied from the pulverized coal supply device 3 to 20 burners M11 to M24 and N11 to N34 (burners dedicated to pulverized coal), and pulverized coal is supplied to 4 burners M31 to M34 (burners dedicated to ammonia coal). ) is supplied with ammonia from an ammonia supply device 4.

そして、20個のバーナM11~M24、N11~N34(微粉炭専用バーナ)から火炉1内に微粉炭が噴射されて燃焼すると共に、4個のバーナM31~M34(アンモニア炭専用バーナ)から火炉1内にアンモニアが噴射されて燃焼する。この結果、火炉1内には、図1及び図2に示すように、微粉炭が燃焼することによって微粉炭火炎Saが形成され、またアンモニアが燃焼することによってアンモニア火炎Sbが形成される。 Then, pulverized coal is injected into the furnace 1 from 20 burners M11 to M24 and N11 to N34 (burners dedicated to pulverized coal) and burned, and pulverized coal is injected into the furnace 1 from four burners M31 to M34 (burners dedicated to ammonia charcoal). Ammonia is injected into the tank and combusts. As a result, in the furnace 1, as shown in FIGS. 1 and 2, a pulverized coal flame Sa is formed by burning pulverized coal, and an ammonia flame Sb is formed by burning ammonia.

ここで、火炉1内における空気雰囲気は、理論空気量よりも低い状態に維持される。すなわち、各バーナM11~M34、N11~N34は、火炉1内に微粉炭あるいはアンモニアを噴射するが、同時に一定量の燃焼用空気を火炉1内に供給する。この燃焼用空気の供給量は、火炉1内において微粉炭火炎Sa及びアンモニア火炎Sbを包含する空間の空気量が理論空気量よりも低くなるように設定される。図1及び図2では、火炉1内において空気量が理論空気量よりも低い領域を空気不足領域Skとしている。 Here, the air atmosphere in the furnace 1 is maintained in a state lower than the theoretical air amount. That is, each burner M11 to M34 and N11 to N34 injects pulverized coal or ammonia into the furnace 1, but at the same time supplies a certain amount of combustion air into the furnace 1. The amount of combustion air supplied is set such that the amount of air in the space containing the pulverized coal flame Sa and the ammonia flame Sb in the furnace 1 is lower than the theoretical amount of air. In FIGS. 1 and 2, an area in the furnace 1 where the air amount is lower than the theoretical air amount is defined as an air shortage area Sk.

火炉1内では、微粉炭及びアンモニアが燃焼することによって燃焼熱を伴った燃焼ガスが発生する。そして、この燃焼ガスが火炉1内を上昇して熱交換機器2に作用することにより、燃焼ガスの燃焼熱によって水が気化して水蒸気が発生する。ボイラは、このようにして発生させた水蒸気を発電機等の外部機器に供給する。なお、熱交換機器2と熱交換された後の燃焼ガスは、火炉1から煙道を経由して外気に放出される。 In the furnace 1, pulverized coal and ammonia are burned to generate combustion gas accompanied by combustion heat. Then, when this combustion gas rises in the furnace 1 and acts on the heat exchange device 2, water is vaporized by the combustion heat of the combustion gas and water vapor is generated. The boiler supplies the steam generated in this way to external equipment such as a generator. Note that the combustion gas after heat exchange with the heat exchange device 2 is released from the furnace 1 to the outside air via a flue.

ここで、本第1実施形態に係る燃焼炉A及びボイラでは、上述した空気不足領域Sk内で微粉炭及びアンモニアが燃焼するので、アンモニア(NH)の熱分解によって発生するアンモニア原子(N)は、空気中の酸素(O)の熱分解によって発生する酸素原子(O)と結合して一酸化窒素(NO)になることが抑制され、他のアンモニア原子(N)と結合してアンモニア分子(N)となる。 Here, in the combustion furnace A and the boiler according to the first embodiment, since pulverized coal and ammonia are burned in the air-deficient region Sk described above, ammonia atoms (N) generated by thermal decomposition of ammonia (NH 3 ) is suppressed from combining with oxygen atoms (O) generated by the thermal decomposition of oxygen (O 2 ) in the air to become nitrogen monoxide (NO), and combining with other ammonia atoms (N) to form ammonia The molecule becomes (N 2 ).

すなわち、空気不足領域Skでは、下式(1)の反応は抑制され、下式(2)の反応が活発になる。例えば、空気不足領域Skにおける空気量は、空気過剰率という指標で示した場合に0.8~0.9程度である。
NH+5/4O→NO+3/2HO (1)
NH+3/4O→1/2N+3/2HO (2)
That is, in the air shortage region Sk, the reaction expressed by the following equation (1) is suppressed, and the reaction expressed by the following equation (2) becomes active. For example, the amount of air in the air deficit region Sk is approximately 0.8 to 0.9 when expressed as an index called excess air ratio.
NH3 +5/ 4O2 →NO+3/ 2H2O (1)
NH 3 + 3/4O 2 → 1/2N 2 + 3/2H 2 O (2)

このような第1実施形態によれば、空気量が理論空気量よりも低い空気不足領域Sk内で微粉炭(炭素燃料)及びアンモニア(窒素含有燃料)を燃焼させるので、微粉炭(炭素燃料)及びアンモニア(窒素含有燃料)を一緒に燃焼させる場合における一酸化窒素(NO)等の窒素酸化物(NOx)の増加を抑制することが可能である。 According to the first embodiment, since pulverized coal (carbon fuel) and ammonia (nitrogen-containing fuel) are combusted in the air shortage region Sk where the air amount is lower than the theoretical air amount, pulverized coal (carbon fuel) It is possible to suppress the increase in nitrogen oxides (NOx) such as nitrogen monoxide (NO) when ammonia and ammonia (nitrogen-containing fuel) are burned together.

〔第2実施形態〕
次に、本発明の第2実施形態に係る燃焼炉B及び当該燃焼炉Bを備えるボイラについて、図3を参照して説明する。なお、図3では、上述した図1及び図2に示した構成要素と同一の構成要素には同一符号を付している。
[Second embodiment]
Next, a combustion furnace B according to a second embodiment of the present invention and a boiler including the combustion furnace B will be described with reference to FIG. 3. In FIG. 3, the same components as those shown in FIGS. 1 and 2 described above are given the same reference numerals.

この燃焼炉Bは、上述した燃焼炉Aと同一の構成要素を備えているが、微粉炭(炭素燃料)とアンモニア(窒素含有燃料)とが予混合された混合燃料を複数(24個)のバーナM11~M34、N11~N34から火炉1内に噴射する。すなわち、この燃焼炉Bにおける微粉炭供給装置3及びアンモニア供給装置4は、微粉炭(炭素燃料)とアンモニア(窒素含有燃料)とを混合した混合燃料を全てのバーナM11~M34、N11~N34に供給する。 This combustion furnace B has the same components as the above-mentioned combustion furnace A, but uses a plurality of (24) mixed fuels in which pulverized coal (carbon fuel) and ammonia (nitrogen-containing fuel) are premixed. It is injected into the furnace 1 from burners M11 to M34 and N11 to N34. That is, the pulverized coal supply device 3 and the ammonia supply device 4 in this combustion furnace B supply a mixed fuel of pulverized coal (carbon fuel) and ammonia (nitrogen-containing fuel) to all burners M11 to M34 and N11 to N34. supply

このような第2実施形態によれば、混合燃料が燃焼することによって混合火炎Scが火炉1内に形成される。この混合火炎Scは、上述した燃焼炉Aと同様に空気不足領域Sk内に形成されるので、上式(1)の反応は抑制され、上式(2)の反応が活発になる。したがって、この第2実施形態によれば、第1実施形態と同様に、一酸化窒素(NO)等の窒素酸化物(NOx)の増加を抑制することが可能である。 According to the second embodiment, a mixed flame Sc is formed in the furnace 1 by burning the mixed fuel. Since this mixed flame Sc is formed in the air-deficient region Sk similarly to the combustion furnace A described above, the reaction of the above equation (1) is suppressed, and the reaction of the above equation (2) becomes active. Therefore, according to the second embodiment, similarly to the first embodiment, it is possible to suppress the increase in nitrogen oxides (NOx) such as nitric oxide (NO).

〔第3実施形態〕
最後に、本発明の第3実施形態に係る燃焼炉C及び当該燃焼炉Cを備えるボイラについて、図4及び図5を参照して説明する。なお、図3では、上述した図1及び図2に示した構成要素と同一の構成要素には同一符号を付している。
[Third embodiment]
Finally, a combustion furnace C according to a third embodiment of the present invention and a boiler equipped with the combustion furnace C will be described with reference to FIGS. 4 and 5. In FIG. 3, the same components as those shown in FIGS. 1 and 2 described above are given the same reference numerals.

この燃焼炉Cにおける複数(24個)のバーナP11~P34、Q11~Q34は、個別に受け入れた微粉炭とアンモニアとを火炉1内に個別に噴射する複合バーナである。すなわち、この燃焼炉Cにおける微粉炭供給装置3は、全てのバーナP11~P34、Q11~Q34に微粉炭を供給し、アンモニア供給装置4は、全てのバーナP11~P34、Q11~Q34にアンモニアを供給する。 A plurality of (24) burners P11 to P34 and Q11 to Q34 in this combustion furnace C are composite burners that individually inject individually received pulverized coal and ammonia into the furnace 1. That is, the pulverized coal supply device 3 in this combustion furnace C supplies pulverized coal to all burners P11 to P34 and Q11 to Q34, and the ammonia supply device 4 supplies ammonia to all burners P11 to P34 and Q11 to Q34. supply

このような燃焼炉Cでは、火炉1内において微粉炭とアンモニアとが個別にあるいは混合して燃焼することによって複合火炎Sdが形成される。この複合火炎Sdは、上述した燃焼炉A,Bと同様に空気不足領域Sk内に形成されるので、上式(1)の反応は抑制され、上式(2)の反応が活発になる。したがって、この第3実施形態によれば、第1実施形態及び第2実施形態と同様に、一酸化窒素(NO)等の窒素酸化物(NOx)の増加を抑制することが可能である。 In such a combustion furnace C, a composite flame Sd is formed by burning pulverized coal and ammonia individually or as a mixture in the furnace 1. Since this composite flame Sd is formed in the air-deficient region Sk like the combustion furnaces A and B mentioned above, the reaction of the above equation (1) is suppressed, and the reaction of the above equation (2) becomes active. Therefore, according to the third embodiment, similarly to the first and second embodiments, it is possible to suppress the increase in nitrogen oxides (NOx) such as nitric oxide (NO).

ここで、第3実施形態における各バーナP11~P34、Q11~Q34(複合バーナ)として、図5に示す構造のものが例示できる。例えば、図5(a)に示す複合バーナRaは、全体として略円筒状に形成されており、軸中心に同心円状に設けられた二重筒r1から微粉炭を噴射し、この二重筒r1の外側に軸中心周りに60°毎の角度で6個設けられた単筒r2からアンモニアを噴射する。すなわち、この複合バーナRaは、軸中心に比較的近い内側から微粉炭を噴射し、軸心から比較的遠い外側からアンモニアを噴射する。 Here, as each of the burners P11 to P34 and Q11 to Q34 (composite burner) in the third embodiment, one having the structure shown in FIG. 5 can be exemplified. For example, the composite burner Ra shown in FIG. 5(a) is formed into a substantially cylindrical shape as a whole, and pulverized coal is injected from a double cylinder r1 provided concentrically around the axis. Ammonia is injected from six single cylinders r2 provided at angles of 60 degrees around the axial center on the outside of the cylinder. That is, this composite burner Ra injects pulverized coal from the inside relatively close to the shaft center, and injects ammonia from the outside relatively far from the shaft center.

一方、図5(b)に示す複合バーナRbは、全体として略円筒状に形成されており、上記二重筒r1に代えて、単筒r2よりも軸心から遠い二重筒r3を備え、この二重筒r3から微粉炭を噴射する。すなわち、この複合バーナRbは、軸中心に比較的近い内側からアンモニアを噴射し、軸心から比較的遠い外側から微粉炭を噴射する。 On the other hand, the composite burner Rb shown in FIG. 5(b) is formed into a substantially cylindrical shape as a whole, and includes a double cylinder r3 that is farther from the axis than the single cylinder r2 in place of the double cylinder r1, Pulverized coal is injected from this double cylinder r3. That is, this composite burner Rb injects ammonia from the inside relatively close to the shaft center, and injects pulverized coal from the outside relatively far from the shaft center.

一方、図5(c)に示す複合バーナRcは、全体として略円筒状に形成されており、軸心を含む単筒r4からアンモニアを噴射し、この単筒r4の外側に同心状に設けられた二重筒r5から微粉炭を噴射する。すなわち、この複合バーナRcは、軸中心に比較的近い内側から軸心からアンモニアを噴射し、比較的遠い外側から微粉炭を噴射する。なお、この複合バーナRcにおける単筒r4の先端は、単純な開口ではなく、複数の噴射孔が形成された円板を備える。 On the other hand, the composite burner Rc shown in FIG. 5(c) has a generally cylindrical shape as a whole, injects ammonia from a single cylinder r4 including the axis, and is provided concentrically on the outside of this single cylinder r4. Pulverized coal is injected from the double cylinder r5. That is, this composite burner Rc injects ammonia from the inside relatively close to the shaft center, and injects pulverized coal from the outside relatively far away. Note that the tip of the single cylinder r4 in this composite burner Rc is not a simple opening, but is provided with a disk in which a plurality of injection holes are formed.

なお、本発明は上記各実施形態に限定されるものではなく、例えば以下のような変形例が考えられる。
(1)上記各実施形態では、炭素燃料の一種である微粉炭を燃料として採用し、また窒素含有燃料の一種であるアンモニアを燃料として採用したが、本発明はこれに限定されない。微粉炭以外の低炭素燃料を採用してもよいし、アンモニア以外の窒素含有燃料を採用してもよい。例えば、炭素燃料として天然ガスを採用してもよい。
Note that the present invention is not limited to the above-described embodiments, and the following modifications may be considered, for example.
(1) In each of the above embodiments, pulverized coal, which is a type of carbon fuel, is used as a fuel, and ammonia, which is a type of nitrogen-containing fuel, is used as a fuel, but the present invention is not limited thereto. Low-carbon fuels other than pulverized coal may be used, and nitrogen-containing fuels other than ammonia may be used. For example, natural gas may be used as the carbon fuel.

(2)上記各実施形態では、ボイラの燃焼炉A~Cに本発明を適用した場合について説明したが、本発明はこれに限定されない。本発明は、1あるいは複数のバーナを備える燃焼炉であれば、ボイラ以外にも適用可能である。 (2) In each of the above embodiments, the present invention is applied to combustion furnaces A to C of a boiler, but the present invention is not limited thereto. The present invention is applicable to combustion furnaces other than boilers as long as they are equipped with one or more burners.

(3)上記各実施形態では、火炉1の下部において合計24個のバーナM11~M34、N11~N34、P11~P34、Q11~Q34を設けたが、本発明はこれに限定されない。本発明における複数のバーナの個数は24個以外でもよく、また配置は直交配置でなくてもよい。例えば各バーナを同心円状に設けてもよい。 (3) In each of the above embodiments, a total of 24 burners M11 to M34, N11 to N34, P11 to P34, and Q11 to Q34 are provided in the lower part of the furnace 1, but the present invention is not limited thereto. The number of burners in the present invention may be other than 24, and the arrangement may not be orthogonal. For example, the burners may be provided concentrically.

(4)上記第3実施形態では、複合バーナの構成を例示したが、本発明における複合バーナはこれに限定されない。 (4) Although the configuration of the composite burner was illustrated in the third embodiment, the composite burner in the present invention is not limited to this.

A、B、C 燃焼炉
M11~M34、N11~N34 バーナ(専用バーナ)
P11~P34、Q11~Q34 バーナ(複合バーナ)
Sa 微粉炭火炎
Sb アンモニア火炎
Sc 混合火炎
Sd 複合火炎
1 火炉
2 熱交換機器
3 微粉炭供給装置
4 アンモニア供給装置
A, B, C Combustion furnace M11~M34, N11~N34 Burner (dedicated burner)
P11~P34, Q11~Q34 Burner (compound burner)
Sa Pulverized coal flame Sb Ammonia flame Sc Mixed flame Sd Composite flame 1 Furnace 2 Heat exchange equipment 3 Pulverized coal supply device 4 Ammonia supply device

Claims (4)

理論空気量よりも低い空気雰囲気に設定される火炉と、
噴射孔が円形であり、炭素燃料と窒素含有燃料とを前記火炉に噴射して燃焼させる複数の複合バーナとを備え、
前記複合バーナは、軸中心に同心円状に設けられた二重筒から前記炭素燃料を噴射し、前記二重筒の外側に軸中心周りに所定角度で複数設けられた単筒から前記窒素含有燃料を噴射し、
前記火炉内において空気量が前記理論空気量よりも低い領域である空気不足領域における空気量は、空気過剰率という指標で示した場合に0.8~0.9程度である、
ことを特徴とする燃焼炉。
a furnace set to an air atmosphere lower than the theoretical air amount;
A plurality of composite burners having circular injection holes and injecting carbon fuel and nitrogen-containing fuel into the furnace for combustion,
The composite burner injects the carbon fuel from a double cylinder provided concentrically around the shaft center, and injects the nitrogen-containing fuel from a plurality of single cylinders provided outside the double cylinder at a predetermined angle around the shaft center. inject,
The amount of air in the air deficit region, which is a region where the amount of air is lower than the theoretical air amount in the furnace, is about 0.8 to 0.9 when expressed as an index called excess air ratio.
A combustion furnace characterized by:
理論空気量よりも低い空気雰囲気に設定される火炉と、
炭素燃料と窒素含有燃料とを前記火炉に噴射して燃焼させる複数の複合バーナとを備え、
前記複合バーナは、軸中心又は軸中心周りに設けられた少なくとも一つの単筒から前記窒素含有燃料を噴射し、前記単筒よりも軸中心から遠く同心円状に設けられた二重筒から前記炭素燃料を噴射し、
前記火炉内において空気量が前記理論空気量よりも低い領域である空気不足領域における空気量は、空気過剰率という指標で示した場合に0.8~0.9程度であり、
前記単筒は、軸中心周りに所定角度で複数設けられている、
ことを特徴とする燃焼炉。
a furnace set to an air atmosphere lower than the theoretical air amount;
a plurality of composite burners that inject carbon fuel and nitrogen-containing fuel into the furnace and burn them;
The composite burner injects the nitrogen-containing fuel from at least one single cylinder provided at or around the axial center, and injects the nitrogen-containing fuel from a double cylinder provided concentrically farther from the axial center than the single cylinder. inject fuel,
The air amount in the air deficiency region, which is a region where the air amount is lower than the theoretical air amount in the furnace, is about 0.8 to 0.9 when expressed as an index called excess air ratio,
A plurality of the single cylinders are provided at a predetermined angle around the axial center,
A combustion furnace characterized by:
前記炭素燃料は微粉炭であり、前記窒素含有燃料はアンモニアであることを特徴とする請求項1または2に記載の燃焼炉。 The combustion furnace according to claim 1 or 2 , wherein the carbon fuel is pulverized coal and the nitrogen-containing fuel is ammonia. 請求項1~3のいずれか一項に記載の燃焼炉を備えることを特徴とするボイラ。 A boiler comprising the combustion furnace according to any one of claims 1 to 3 .
JP2021112260A 2017-05-29 2021-07-06 Combustion furnace and boiler Active JP7403502B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021112260A JP7403502B2 (en) 2017-05-29 2021-07-06 Combustion furnace and boiler

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017105319A JP2018200144A (en) 2017-05-29 2017-05-29 Combustion furnace and boiler
JP2021112260A JP7403502B2 (en) 2017-05-29 2021-07-06 Combustion furnace and boiler

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017105319A Division JP2018200144A (en) 2017-05-29 2017-05-29 Combustion furnace and boiler

Publications (2)

Publication Number Publication Date
JP2021165629A JP2021165629A (en) 2021-10-14
JP7403502B2 true JP7403502B2 (en) 2023-12-22

Family

ID=64668019

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017105319A Pending JP2018200144A (en) 2017-05-29 2017-05-29 Combustion furnace and boiler
JP2021112260A Active JP7403502B2 (en) 2017-05-29 2021-07-06 Combustion furnace and boiler

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2017105319A Pending JP2018200144A (en) 2017-05-29 2017-05-29 Combustion furnace and boiler

Country Status (1)

Country Link
JP (2) JP2018200144A (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7081407B2 (en) * 2018-09-11 2022-06-07 株式会社Ihi boiler
JP7485500B2 (en) * 2018-09-11 2024-05-16 株式会社Ihi Combustion equipment and boilers
JP7498654B2 (en) 2020-12-09 2024-06-12 川崎重工業株式会社 Burner, its control method, and combustion furnace
KR20230125279A (en) 2021-02-19 2023-08-29 가부시키가이샤 아이에이치아이 Combustion equipment and boilers
WO2023037867A1 (en) * 2021-09-09 2023-03-16 三菱重工業株式会社 Boiler, boiler control method, and boiler modification method
CN113944926A (en) * 2021-10-26 2022-01-18 西安热工研究院有限公司 NH for simultaneous combustion3Cyclone burner for mixing coal powder
CN113915607A (en) * 2021-11-23 2022-01-11 北京丰润铭科贸有限责任公司 Coal-fired boiler capable of fully combusting coal mixed with hydrogen
JP2023094322A (en) * 2021-12-23 2023-07-05 三菱重工業株式会社 Ammonia combustion burner and boiler
JP2023094301A (en) * 2021-12-23 2023-07-05 三菱重工業株式会社 Ammonia combustion burner, boiler and operating method for boiler
WO2023120701A1 (en) * 2021-12-24 2023-06-29 三菱重工業株式会社 Burner and boiler equipped with same, and burner operation method
JP2023094928A (en) * 2021-12-24 2023-07-06 三菱重工業株式会社 Ammonia fuel boiler system
CN114278939A (en) * 2022-01-30 2022-04-05 烟台龙源电力技术股份有限公司 Burner and combustion system
JP2023147929A (en) * 2022-03-30 2023-10-13 三菱重工業株式会社 Burner and boiler

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002243108A (en) 2001-02-19 2002-08-28 Babcock Hitachi Kk Mixed-fuel fired device of coal and biofuel and operating method thereof
JP5135004B2 (en) 2008-02-29 2013-01-30 株式会社東芝 Nonvolatile semiconductor memory device and depletion type MOS transistor
JP2013217579A (en) 2012-04-09 2013-10-24 Babcock Hitachi Kk Multi-fuel firing device of coal and biomass and boiler equipped therewith
JP5379782B2 (en) 2010-12-21 2013-12-25 古河電気工業株式会社 Semiconductor laser driving circuit and optical fiber pulse laser device
JP2016191533A (en) 2015-03-31 2016-11-10 大陽日酸株式会社 Burner flame forming method
JP6189614B2 (en) 2013-03-26 2017-08-30 キヤノンファインテックニスカ株式会社 Liquid discharge head and liquid discharge apparatus

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5135004Y1 (en) * 1967-02-13 1976-08-30
JPS6287709A (en) * 1985-10-11 1987-04-22 Babcock Hitachi Kk Pulverized coal burner using low calorie gas as assist fuel
US6973883B1 (en) * 2001-03-22 2005-12-13 The Texas A&M University System Reburn system with feedlot biomass
JP5269631B2 (en) * 2009-01-23 2013-08-21 出光興産株式会社 N2O emission suppression combustion apparatus and N2O emission suppression method
JP2016041990A (en) * 2014-08-18 2016-03-31 東洋エンジニアリング株式会社 Heat generating device including boiler
JP7109158B2 (en) * 2016-11-07 2022-07-29 三菱重工業株式会社 Thermal power plant, boiler and boiler modification method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002243108A (en) 2001-02-19 2002-08-28 Babcock Hitachi Kk Mixed-fuel fired device of coal and biofuel and operating method thereof
JP5135004B2 (en) 2008-02-29 2013-01-30 株式会社東芝 Nonvolatile semiconductor memory device and depletion type MOS transistor
JP5379782B2 (en) 2010-12-21 2013-12-25 古河電気工業株式会社 Semiconductor laser driving circuit and optical fiber pulse laser device
JP2013217579A (en) 2012-04-09 2013-10-24 Babcock Hitachi Kk Multi-fuel firing device of coal and biomass and boiler equipped therewith
JP6189614B2 (en) 2013-03-26 2017-08-30 キヤノンファインテックニスカ株式会社 Liquid discharge head and liquid discharge apparatus
JP2016191533A (en) 2015-03-31 2016-11-10 大陽日酸株式会社 Burner flame forming method

Also Published As

Publication number Publication date
JP2021165629A (en) 2021-10-14
JP2018200144A (en) 2018-12-20

Similar Documents

Publication Publication Date Title
JP7403502B2 (en) Combustion furnace and boiler
JP7027817B2 (en) Combustion device and boiler
JP7485500B2 (en) Combustion equipment and boilers
JP7049773B2 (en) Combined combustion furnace and combined combustion boiler
JP6880823B2 (en) Combustor and boiler
RU2442929C1 (en) Method of reduction of nitrogen oxides in the boiler working with dispenced carbon where internal combustion type burners are used
WO2019189297A1 (en) Thermal power generation plant, mixed combustion boiler, and method for modifying boiler
JP7109158B2 (en) Thermal power plant, boiler and boiler modification method
JP6926960B2 (en) boiler
JP2791029B2 (en) Pulverized coal burner
Zhang et al. Industrial scale testing on the combustion and NOx emission characteristics of ammonia cofiring in a 40 MWth coal-fired boiler
JP2014173777A (en) Combustion burner and boiler
CN211146455U (en) Plasma low-nitrogen combustion device
KR101905839B1 (en) Urea carburetor using plasma burner
JP4018809B2 (en) Additional combustion method using gas turbine exhaust gas and additional burner using this additional combustion method
JP2016050711A (en) Combustion burner and boiler
WO2017200337A1 (en) Plasma burner
KR102504638B1 (en) Biomass burner
JP7494358B1 (en) Dual-fuel burners and boilers
Roslyakov et al. Computational investigations of low-emission burner facilities for char gas burning in a power boiler
JP2017142042A (en) Combustion burner, combustor, and boiler
JP2022154831A (en) Burner
Do¨ bbeling et al. 25 years of BBC/ABB/Alstom lean premix combustion technologies
JP2022130326A (en) Burner
US4462788A (en) Method for using alcohol to reduce nitrogen oxides in a fuel gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220613

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221007

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20221007

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20221020

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20221025

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20221111

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20221115

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20221213

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20230307

C19 Decision taken to dismiss amendment

Free format text: JAPANESE INTERMEDIATE CODE: C19

Effective date: 20230314

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20230314

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20230411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231212

R150 Certificate of patent or registration of utility model

Ref document number: 7403502

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150