WO2023037867A1 - Boiler, boiler control method, and boiler modification method - Google Patents

Boiler, boiler control method, and boiler modification method Download PDF

Info

Publication number
WO2023037867A1
WO2023037867A1 PCT/JP2022/031671 JP2022031671W WO2023037867A1 WO 2023037867 A1 WO2023037867 A1 WO 2023037867A1 JP 2022031671 W JP2022031671 W JP 2022031671W WO 2023037867 A1 WO2023037867 A1 WO 2023037867A1
Authority
WO
WIPO (PCT)
Prior art keywords
ammonia
burner
air
pulverized coal
fuel
Prior art date
Application number
PCT/JP2022/031671
Other languages
French (fr)
Japanese (ja)
Inventor
幸洋 冨永
聡彦 嶺
明正 ▲高▼山
直季 富澤
康弘 山内
康裕 竹井
猛 甘利
Original Assignee
三菱重工業株式会社
三菱パワー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021200928A external-priority patent/JP2023039881A/en
Application filed by 三菱重工業株式会社, 三菱パワー株式会社 filed Critical 三菱重工業株式会社
Priority to KR1020247006397A priority Critical patent/KR20240041970A/en
Publication of WO2023037867A1 publication Critical patent/WO2023037867A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C1/00Combustion apparatus specially adapted for combustion of two or more kinds of fuel simultaneously or alternately, at least one kind of fuel being either a fluid fuel or a solid fuel suspended in a carrier gas or air
    • F23C1/12Combustion apparatus specially adapted for combustion of two or more kinds of fuel simultaneously or alternately, at least one kind of fuel being either a fluid fuel or a solid fuel suspended in a carrier gas or air gaseous and pulverulent fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C1/00Combustion apparatus specially adapted for combustion of two or more kinds of fuel simultaneously or alternately, at least one kind of fuel being either a fluid fuel or a solid fuel suspended in a carrier gas or air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C99/00Subject-matter not provided for in other groups of this subclass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D1/00Burners for combustion of pulverulent fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/02Premix gas burners, i.e. in which gaseous fuel is mixed with combustion air upstream of the combustion zone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N3/00Regulating air supply or draught
    • F23N3/002Regulating air supply or draught using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/003Systems for controlling combustion using detectors sensitive to combustion gas properties

Definitions

  • the present invention relates to a boiler that burns ammonia and pulverized coal, a boiler control method, and a boiler modification method.
  • This application is based on Japanese Patent Application No. 2021-146609 filed with the Japan Patent Office on September 9, 2021 and Japanese Patent Application No. 2021-200928 filed with the Japan Patent Office on December 10, 2021. Priority is claimed and its contents are hereby incorporated by reference.
  • a combustion device 4A that is installed in a furnace and capable of burning ammonia as a fuel includes an inner cylinder nozzle 41 that is arranged in the center when viewed from the direction of fuel injection and that injects ammonia, and the direction of fuel injection. and an outer cylinder nozzle 42 that surrounds the inner cylinder nozzle 41 from the outside in the radial direction when viewed from above and injects ammonia around the inner cylinder nozzle 41 . Further, a swirler 45 is provided inside the outer cylinder nozzle 42 to swirl the flow of ammonia injected around the inner cylinder nozzle 41 .
  • the ammonia injected from the inner cylinder nozzle 41 forms a reduction region in which the concentration of ammonia is high and the concentration of oxygen is low in the central portion of the flame when viewed from the fuel injection direction.
  • the nitrogen oxides produced by mixing and burning ammonia injected from the outer cylinder nozzle around the inner cylinder nozzle ride on the circulating flow that recirculates from the outer edge of the flame toward the center. supplied to the reduction region.
  • nitrogen oxides produced at the outer edge of the flame are reduced to nitrogen gas (N2) in the reduction zone formed by the ammonia injected from the inner cylinder nozzle. Therefore, according to Patent Document 1, it is possible to suppress an increase in nitrogen oxides in a boiler capable of burning ammonia using fuel.
  • the ammonia fuel burner uses another fuel to make the combustion environment in the boiler a reducing region, and the air ratio near the ignition point is preferably controlled precisely.
  • Patent Document 1 does not specifically disclose such a configuration.
  • increasing the co-firing rate of ammonia increases the air ratio of the coal nozzle.
  • the amount of conveying air must be kept constant.
  • Increasing the ammonia co-firing rate only reduces the amount of coal fed, so the amount of conveying air increases relative to the coal flow rate. do.
  • the co-firing rate of ammonia is high, the air ratio around the ammonia nozzle becomes high, resulting in a rapid increase in nitrogen oxides derived from ammonia oxidation.
  • an object of the present invention is to provide a boiler, a boiler control method, and a boiler modification method that can burn ammonia fuel under conditions that can suppress the generation of nitrogen oxides.
  • the burner arrangement of the boiler according to at least one embodiment of the present invention is to separate ammonia and pulverized coal burners. That is, a boiler according to at least one embodiment of the present invention includes a furnace including a furnace wall, an ammonia burner provided on the furnace wall for burning ammonia fuel, and a position different from the ammonia burner on the furnace wall. and a pulverized coal burner for burning pulverized coal.
  • the boiler includes a control device that controls the supply amounts of the ammonia fuel, the pulverized coal, and the combustion air, and the control device controls the theoretical amount of air required for burning the ammonia fuel.
  • a first calculation unit that calculates an ammonia-air ratio, which is the ratio of the ammonia combustion air amount supplied to the fuel, and a theoretical amount of air required to burn the pulverized coal, which is supplied to the pulverized coal a second calculation unit that calculates a pulverized coal-air ratio that is a ratio of air amounts for pulverized coal combustion; and a control unit for controlling the supply amount.
  • the first calculation unit calculates the ammonia air ratio for each of the plurality of ammonia burners,
  • the control unit is characterized in that the supply amount is controlled such that each of the ammonia air ratios satisfies the first reference range.
  • the first calculation unit calculates the ammonia air ratio using the amount of air for ammonia combustion that includes the amount of air supplied to the ammonia fuel in the amount of air injected from the air nozzle. do.
  • the upper limit of the first reference range is lower than the upper limit of the second reference range.
  • the first reference range is characterized by being 0.8 or less.
  • the first reference range is characterized by being 0.7 or less.
  • the first reference range is characterized by being set based on the value of nitrogen oxides in the combustion gas discharged from the furnace.
  • the boiler has an auxiliary air nozzle adjacent to the ammonia burner and supplying auxiliary air, and the auxiliary air nozzle is provided with a damper capable of adjusting the amount of auxiliary air that can be supplied in the direction of the ammonia burner.
  • the ammonia burner is an ammonia nozzle for injecting the ammonia fuel; and a starting fuel nozzle for injecting starting fuel.
  • the ammonia burner is characterized by being provided adjacent to the pulverized coal burner.
  • the ammonia burner is characterized by being provided adjacent to the pulverized coal burner.
  • the furnace wall includes a burner arrangement area in which the ammonia burner and the pulverized coal burner are provided, and an additional air supply area in which an additional air supply section for supplying additional air is provided downstream of the burner arrangement area,
  • the ammonia burner is characterized by being positioned on the uppermost stage of the burner arrangement area.
  • the ammonia burner is characterized by being a diffusion burner or a partially premixed burner.
  • the diffusion burner or the partially premixed burner is characterized by being a partially premixed spud type burner, a diffusion type swirler type with a different flame stabilizer structure, or a diffuser type burner.
  • a boiler control method includes a furnace including a furnace wall, an ammonia burner provided on the furnace wall for burning ammonia fuel, and a position different from the ammonia burner on the furnace wall. and a pulverized coal burner for burning pulverized coal, a boiler control method for controlling the supply amounts of the ammonia fuel, the pulverized coal, and combustion air, the boiler control method necessary for burning the ammonia fuel a first calculation step of calculating an ammonia air ratio, which is the ratio of the ammonia combustion air amount supplied to the ammonia fuel to the theoretical air amount, and calculating the theoretical air amount required to burn the pulverized coal.
  • a boiler modification method comprises a furnace including a furnace wall, a pulverized coal burner provided on the furnace wall for burning pulverized coal, and a position different from the pulverized coal burner on the furnace wall. and a control device, wherein at least one of the plurality of injection units is equipped with ammonia fuel.
  • the control device includes a replacement step of replacing the ammonia burner to be burned, and controls the supply amounts of the ammonia fuel, the pulverized coal, and the combustion air, and the theoretical amount of air required to burn the ammonia fuel a first calculation unit that calculates an ammonia air ratio, which is a ratio of the amount of air for combustion of ammonia supplied to the ammonia fuel; a second calculation unit that calculates a pulverized coal-air ratio that is a ratio of the pulverized coal combustion air amount supplied to the and a control unit for controlling the supply amount so as to satisfy a reference range.
  • FIG. 1 is a conceptual diagram of a boiler operating system according to one embodiment;
  • FIG. It is a conceptual diagram of a burner showing a conventional example.
  • FIG. 4 is a cross-sectional view showing the burner arrangement of the boiler before modification according to one embodiment (example of modification of coal burners).
  • FIG. 4 is a cross-sectional view showing the burner arrangement of the boiler after modification according to one embodiment (example of modification of the coal burner).
  • FIG. 2 is a conceptual diagram showing the correspondence relationship of burner arrangement before and after modification of a boiler according to one embodiment (an example of modification of a coal burner).
  • FIG. 4 is an explanatory diagram of air flow related to combustion of an ammonia burner according to one embodiment;
  • FIG. 4 is an explanatory diagram showing the relationship between the ammonia burner air ratio and the amount of nitrogen oxides generated in the burner according to one embodiment.
  • FIG. 4 is an explanatory diagram showing the relationship between the burner shape, the ammonia burner air ratio, and the amount of nitrogen oxides generated according to one embodiment.
  • FIG. 4 is an explanatory diagram showing the relationship among the ammonia co-firing rate, the ammonia burner air ratio, and the amount of nitrogen oxides generated according to one embodiment.
  • FIG. 4 is a cross-sectional view showing the burner arrangement of the boiler before modification according to one embodiment (an example of modification of the start-up fuel burner).
  • FIG. 4 is a cross-sectional view showing the burner arrangement of the boiler after modification according to one embodiment (an example of modification of the start-up fuel burner).
  • FIG. 4 is a conceptual diagram showing a corresponding relationship of burner arrangement before and after modification of a boiler according to one embodiment (example of modification of start-up fuel burners).
  • FIG. 4 is a cross-sectional view showing the burner arrangement of the boiler after remodeling according to one embodiment (an example of remodeling air nozzles).
  • FIG. 4 is a conceptual diagram showing the correspondence relationship of burner arrangement before and after modification of the boiler according to one embodiment (example of modification of air nozzles).
  • FIG. 4 is a cross-sectional view showing the burner arrangement of the boiler after modification according to one embodiment (an example of modification of the uppermost air nozzle).
  • FIG. 4 is a conceptual diagram showing the corresponding relationship of burner arrangement before and after modification of the boiler according to one embodiment (an example of modification of the air nozzle at the uppermost stage). It is a control system diagram of a boiler according to one embodiment.
  • 1 is a flow diagram of a method for controlling a boiler according to one embodiment;
  • FIG. FIG. 4 is a flow diagram of NOx control processing according to one embodiment;
  • FIG. 4 is a control logic diagram for calculating a combustion air amount control command value according to one embodiment;
  • 1 is an ammonia burner arrangement of opposed combustion burners according to one embodiment.
  • FIG. 11B is a cross-sectional view taken along line AA in FIG. 11A.
  • FIG. 11B is a cross-sectional view taken along line BB in FIG. 11A.
  • FIG. 4 is a conceptual diagram showing a reduction-oxidation state in a boiler according to one embodiment; It is a figure which shows the structure of a spud burner. It is a figure which shows the structure of a diffuser burner. It is a figure which shows the structure of a swirler burner. It is a flow chart of a boiler remodeling method.
  • FIG. 1 is a conceptual diagram of a boiler operating system 1 according to one embodiment.
  • the boiler operation system 1 includes, for example, a boiler 2 incorporated in a thermal power plant (not shown), a supply system 15 for supplying air and fuel to the boiler 2, and a measurement system 9 for measuring parameters related to the operation of the boiler 2. and
  • the fuel supplied to the boiler 2 from the supply system 15 contains ammonia fuel.
  • the ammonia fuel can be either liquid ammonia or ammonia gas.
  • the following illustrates embodiments in which the ammonia fuel is liquid ammonia.
  • the boiler 2 is supplied with liquid ammonia in liquid form. Liquid ammonia does not contain gas such as hydrogen gas, but may contain impurities (for example, urea) that do not affect combustion in the boiler 2 .
  • Liquid ammonia is vaporized into ammonia gas within the boiler 2 .
  • the fuel supplied from the supply system 15 to the boiler 2 includes fuel other than ammonia fuel.
  • fuel other than ammonia fuel For example, after combustion using another fuel is performed in the boiler 2, mixed combustion of ammonia and another fuel or single combustion of ammonia is performed.
  • Carbon-containing fuels which are examples of fuels other than ammonia, include biomass fuels and fossil fuels.
  • Fossil fuels are liquefied natural gas, oils such as heavy or light oil, or coal such as pulverized coal. The following exemplifies embodiments in which the carbon-containing fuel is oil and pulverized coal.
  • the boiler 2 of one embodiment includes a furnace 20 that includes a furnace wall 19 .
  • the furnace wall 19 includes a burner placement area 21 in which at least one burner unit 30 is provided, and an additional air supply area 22 in which an additional air supply section 4 for supplying additional air is provided.
  • the additional air supply area 22 is located downstream of the burner arrangement area 21 .
  • the furnace 20 is a cylindrical hollow body in which the fuel injected by the burner unit 30 reacts with the combustion air and burns, and may take various forms such as a cylindrical shape and a square prism shape.
  • the furnace 20 of one embodiment also includes a nose 11 that projects into the furnace 20 .
  • the nose 11 is configured so that gases (eg, combustion gases and unburned gases) produced in the combustion space 7 of the furnace 20 properly flow into the flow path downstream of the furnace 20 .
  • gases eg, combustion gases and unburned gases
  • An exemplary flow path downstream of the furnace 20 is the flue 8 .
  • the at least one burner unit 30 is arranged such that fuel burns in the combustion space 7 of the furnace 20 .
  • the burner units 30 are arranged in three stages along the direction in which the gas generated in the combustion space 7 flows (arrow A in FIG. 1).
  • the burner units 30 in each stage may be referred to as a first burner unit 31, a second burner unit 32, and a third burner unit 33 in order from the downstream side in the gas flow direction, and these three stage burners are collectively referred to.
  • burner unit 30 may be referred to as a burner unit 30.
  • the burner units 30 may be arranged in two stages or four stages.
  • the boiler 2 of one embodiment is a swirling combustion type boiler, and the burner units 30 provided in each stage are arranged at regular intervals along the circumferential direction of the furnace 20 .
  • the number of burner units 30 in each stage is four as an example, only one burner unit 30 in each stage is illustrated in FIG.
  • the number of burner units 30 in each stage may be three or five or more.
  • a boiler 2 according to another embodiment is a facing combustion type boiler. In this case, at least one pair of burner units 30 in each stage are provided at positions facing each other.
  • Each burner unit 30 includes at least one burner.
  • the burner is an ammonia burner 306 configured to inject liquid ammonia into the furnace 20 while it is in a liquid state.
  • Ammonia burner 306 may be configured to inject only liquid ammonia.
  • the ammonia burner 306 may be configured to inject liquid ammonia with (or instead of) the carbon-containing fuel after injecting the carbon-containing fuel.
  • first burner unit 31 includes an ammonia burner 306 .
  • the second burner unit 32 and the third burner unit 33 may or may not include the ammonia burner 306 .
  • ammonia burner 306 may be included only in second burner unit 32 or third burner unit 33 .
  • either burner unit 30 may include coal burners 302, 304 (pulverized coal burners 302, 304 shown in FIG. 3A) for injecting pulverized coal, which is an example of a carbon-containing fuel, into the furnace 20.
  • a starting fuel burner 307 for injecting oil, which is an example of a starting fuel, into the furnace 20
  • an auxiliary air nozzle (air nozzle) 301 for injecting auxiliary air, 305 (see FIG. 3A). Details will be described later.
  • the supply system 15 is configured to supply the burner unit 30 with primary air and fuel.
  • the fuel supplied to the burner unit 30 liquid ammonia and carbon-containing fuel in this example
  • the burner unit 30 of either stage may be supplied with liquid ammonia after the carbon-containing fuel (eg, oil) is supplied.
  • the measurement system 9 of one embodiment includes a plurality of flowmeters for measuring the flow rate of air or fuel supplied from the supply system 15, and a furnace thermometer 6 for measuring the representative temperature inside the furnace 20.
  • the representative temperature in the furnace 20 is the temperature that correlates with the gas temperature, which is the temperature of the gas in the combustion space 7 of the furnace 20 .
  • the representative temperature in the furnace 20 is the temperature of the inner wall surface of the nose 11 (hereinafter referred to as nose temperature). Nose temperature is measured by a furnace thermometer 6 .
  • the representative temperature inside the furnace 20 may be, for example, the gas temperature.
  • the boiler operating system 1 may be operated by an operator, controlled by a controller 5 (see FIG. 9), which will be described later, or by a combination thereof.
  • a controller 5 see FIG. 9
  • the ammonia fuel and the other fuel are co-combusted. good.
  • the air ratio at the time of combustion has a great effect on the generation of nitrogen oxides when fuel containing nitrogen such as coal and ammonia is burned.
  • the air ratio is calculated for ammonia fuel and carbon-containing fuel as another fuel. The case of calculation will be explained below.
  • the air ratio of the comparative example is the ratio of the amount of air supplied to the furnace 20 to the theoretical amount of air required to burn the ammonia fuel and other fuels supplied to the furnace 20 .
  • the amount of air supplied to the furnace 20 described above does not include additional air.
  • the air ratio constituting the ammonia co-firing condition is also a value obtained by multiplying the total air ratio by the supply ratio of the air other than the additional air in the total air supplied to the furnace 20 .
  • the air ratio (hereinafter sometimes referred to as the burner section air ratio) that constitutes the ammonia co-firing condition is defined by the following equation (1).
  • ⁇ b ⁇ x (100-AA)/100 Equation (1)
  • ⁇ b is the burner section air ratio
  • is the total air ratio
  • AA is the ratio of additional air supplied to the total amount of air supplied to the boiler 2 .
  • the total air ratio ( ⁇ ) is defined by equations (2), (3), and (4).
  • Q Air /Q x Expression (2)
  • Q x Q mf ⁇ A mf Expression (3)
  • a mf (100 ⁇ X)/100 ⁇ A car +X/100 ⁇ A NH3 Formula (4)
  • Q Air is the total air supply.
  • Q mf is the supply amount of ammonia fuel and other fuel (carbon-containing fuel in this example) when the combustion in the furnace 20 is ammonia co-firing (co-firing ratio in terms of weight: X%).
  • Qx is the air flow rate for the air ratio to be 1 during co-firing.
  • a mf is the theoretical air amount of the fuel (ammonia fuel and carbon-containing fuel in this example) when the above co-firing is performed
  • a car is the theoretical air amount of the carbon-containing fuel
  • a NH3 is the amount of ammonia fuel. This is the theoretical air volume.
  • the ammonia air ratio which is the ratio of the ammonia combustion air amount supplied to the ammonia fuel to the theoretical air amount of the ammonia fuel supplied to the furnace 20, and the theoretical air amount of the other fuel , other fuel air ratios, which are ratios of combustion air amounts supplied to other fuels, are calculated separately for each fuel.
  • the ammonia-air ratio (hereinafter also referred to as the ammonia burner-air ratio) is obtained from equations (5) and (6).
  • ⁇ NH3 Q Air_NH3 /Q x_NH3 Equation (5)
  • Q x_NH3 Q NH3 x A NH3 Formula (6)
  • ⁇ NH3 in equation (5) is the ammonia air ratio
  • Q Air_NH3 is the ammonia combustion air amount
  • Q x_NH3 is the air flow rate for the ammonia fuel air ratio to be 1.
  • Q NH3 in the equation (6) is the supply amount of ammonia fuel
  • a NH3 is the theoretical air amount of the ammonia fuel.
  • the air ratio of carbon-containing fuel can be obtained from equations (7) and (8).
  • ⁇ car Qair_car / Qx_car Equation (7)
  • Q x_car Q car x A car Equation (8)
  • ⁇ car in equation (7) is the air ratio of the carbon-containing fuel
  • Q Air_car is the amount of air for combustion of the carbon-containing fuel
  • Q x_car is the air ratio of the carbon-containing fuel to be 1. is the air flow rate.
  • Q car in equation (8) is the supply amount of the carbon-containing fuel
  • a car is the theoretical air amount of the carbon-containing fuel.
  • the ammonia air ratio ⁇ NH3 and the carbon-containing fuel air ratio ⁇ car can be individually adjusted.
  • the formulas (5) and (6) are applied for the air ratio of the ammonia burner 306, and the formula (7) and (8) apply.
  • the parameters of the carbon-containing fuel expressed by equations (7) and (8) are both parameters of pulverized coal.
  • air ratios refer to those calculated in this example.
  • coal burner 302 and ammonia burner 306 are separated as shown in FIGS. ).
  • the air ratio can be adjusted individually, and even if the co-firing ratio of ammonia is increased, the air ratio of ammonia can be reduced regardless of the operation of the coal burner, suppressing a sharp increase in NOx.
  • the coal burner 302 of this embodiment is configured to burn coal (pulverized coal).
  • coal burner 302 may be referred to as pulverized coal burner 302 .
  • the upper limit of the burner section air ratio is 0.8 or less. If the supply of ammonia fuel to the furnace 20 is started under the condition that the burner air ratio is 0.8 or less, the burner air ratio at the start of combustion of the ammonia fuel is also 0.8 or less. This effectively reduces NOx generated in the furnace 20 .
  • the upper limit of the burner section air ratio may be 0.7 or less. In this case, combustion of the ammonia fuel is started under the condition that the air ratio is 0.7 or less, and excessive generation of NOx is suppressed. In addition, in a boiler 2 having a general size used in a thermal power plant, it is not realistic for the burner section air ratio to be less than 0.6.
  • the burner part air ratio constituting the ammonia co-firing condition which is a condition to be satisfied before starting the supply of ammonia fuel, is preferably 0.6 or more and 0.8 or less, more preferably 0.6 or more and 0.7 or less.
  • the ammonia air ratio ⁇ NH3 for each ammonia burner 306 unit.
  • the amount of NOx generated varies greatly depending on the ammonia air ratio, so the ammonia air ratio is strictly calculated for each burner so that the supply amounts of ammonia fuel and ammonia combustion air can be controlled.
  • Controller 5 which is a component of boiler 2 in one embodiment, adjusts the ammonia air ratio to the amount of air supplied from ammonia burner 306 (see FIGS. 3B and 3C) and the amount of air adjacent to ammonia burner 306. It is calculated from the amount of air supplied from the auxiliary air nozzles 303 and 305. Regarding the amount of air supplied from the auxiliary air nozzles 303 and 305, only the amount of air contributing to combustion of ammonia is calculated as the amount of air for combustion of ammonia. If it is sandwiched adjacent to 306 and coal burner 302, half the amount of air is calculated as ammonia burner air.
  • FIG. 5A shows an example of the ammonia burner air ratio and the amount of NOx generated.
  • the optimal point for the ammonia burner air ratio is 0.6. If the ammonia burner air ratio is lowered below 0.6, the amount of NOx increases. Unburned ammonia reaches the completion zone and is converted to NOx. Therefore, while maintaining the ammonia burner air ratio at 0.6, the ratio of the amount of additional air to the total amount of air introduced into the boiler 2 is reduced to reduce the amount of unburned ammonia that reaches the combustion completion zone. This reduces NOx generated in the combustion completion zone.
  • Ammonia burner 306 replaces (modifies) a portion of coal burner 304 as shown in FIGS. 3A-3C.
  • Pulverized coal injected from the coal burner 304 is supplied with auxiliary air from an auxiliary air nozzle 303 adjacent to the ammonia burner 306 and having a starting fuel burner 307 installed therein.
  • the auxiliary air nozzle 303 in which the starting fuel burner 307 is installed is a damper that can adjust the amount of auxiliary air that can be supplied in the direction of the ammonia burner 306 (the amount of auxiliary air that can be supplied to ammonia fuel injected into the furnace 12).
  • auxiliary air nozzle When an air nozzle (auxiliary air nozzle) 303 that supplies auxiliary air is sandwiched between the coal burner 302 and the ammonia burner 306, adjusting the amount of air supplied from the nozzle to the optimum air amount for the coal burner 302 results in The amount of air to reduce nitrogen oxides in burner 306 is in excess. Conversely, if the air amount is adjusted to reduce the NOx of the ammonia burner, the air amount becomes insufficient from the optimum air ratio of the coal burner 302, leading to an increase in unburned ash.
  • the auxiliary air nozzle 303 sandwiched between the coal burner 302 and the ammonia burner 306 is divided vertically into flow paths 303A and 303B along with modification of the boiler 2, and the respective flow rates can be controlled by dampers. (See FIGS. 3C and 4).
  • the air amounts for the coal burner 302 and the ammonia burner 306 can be individually adjusted.
  • the coal burner air ratio is about 0.7 to 0.9.
  • a first reference range may be set.
  • the first reference range may be set based on the measurement results of a measuring device that measures the NOx concentration provided in the boiler 2 .
  • the boiler 2 has a starting fuel burner 307 that burns starting fuel as shown in FIGS. 6A to 6C, and the ammonia burner 306 is one of the starting fuel burners 307. It can be provided by replacing (modifying) the part.
  • the ammonia burner 306 includes an ammonia nozzle 306A that injects ammonia.
  • the ammonia nozzle 306A also functions as a start-up fuel nozzle that injects start-up fuel (oil as a specific example). When starting the boiler 2, the ammonia nozzle 306A injects starting fuel, and then injects ammonia when the ammonia co-firing condition is satisfied.
  • the starting fuel nozzle may be configured as a nozzle separate from the ammonia nozzle 306A and provided in the same compartment as the ammonia nozzle 306A. If the starting fuel burner 307 is modified to the ammonia burner 306, the air nozzle 303 on one side adjacent to the coal burners 302 and 304 is eliminated, and a sufficient amount of auxiliary air for the coal burner 302 cannot be secured. Therefore, by increasing the amount of air from the auxiliary air nozzles 301 and 305 on the opposite side to the ammonia burner 306, the air ratio of the coal burners 302 and 304 is set to an appropriate value of 0.7 to 0.9. .
  • only the air supplied from the ammonia burner 306 is used for calculating the ammonia air ratio.
  • a boiler 2 has a plurality of auxiliary air nozzles 301 and 305 for supplying auxiliary air as shown in FIGS. A part of 305 is replaced and provided.
  • an ammonia burner 306 is provided to replace the auxiliary air nozzle 305 .
  • the loss of the auxiliary air nozzle 305 on one side of the coal burner 304 causes the coal burner 304 to run out of air.
  • the compartment height of the auxiliary air nozzle 305 is low, it is difficult to install the ammonia burner 306 with a flame stabilizer.
  • a nozzle in which an ammonia burner 306 adjacent to the coal burner 304 and a starting fuel burner 307 on the opposite side are installed is used as an auxiliary air nozzle 303, and the amount of air is increased to adjust to a predetermined air amount.
  • the coal burner 304 shown in FIG. 7B has the auxiliary air nozzle 303 on one side, but the coal burner 302 on the upper side has the auxiliary air nozzles 301 and 303 on the upper and lower sides. It is divided into flow paths 303A and 303B vertically, and each flow rate can be controlled by a damper so that the air amount can be increased only in the lower flow path 303B, and the air ratio of the coal burner 304 can be optimized.
  • the height of the windbox where the auxiliary air nozzle 305 is installed is lower than the height of the coal burner 302 and the starting fuel burner 307, the height of the windbox without the flame stabilizer A low ammonia burner 306 is installed.
  • a premixed spud nozzle or the like shown in FIG. 13 is used.
  • the auxiliary air nozzle 301 located at the uppermost stage of the burner arrangement area 21 is replaced (remodeled) to replace the ammonia burner.
  • 306 is provided.
  • Ammonia burner 306 is provided adjacent to coal burner 302 .
  • the ammonia burner 306 is installed in the auxiliary air nozzle 305, the amount of air in the coal burner 302 becomes insufficient due to the absence of the auxiliary air nozzle 301 on one side of the coal burner 302.
  • the compartment height of the auxiliary air nozzle 301 is low, it is difficult to attach the ammonia burner 306 with a flame stabilizer.
  • the air flow path of the starting fuel burner 307 is divided vertically into flow paths 303A and 303B so that the flow paths 303A and 303B can be individually controlled.
  • Install a partial premix nozzle (see Figure 13) which is an ammonia nozzle with a low windbox height.
  • ammonia can be used not only as a fuel but also as a denitration agent.
  • a diffusion combustion burner or a partially premixed combustion burner (also called a spud burner) is used as the burner used in the above embodiment.
  • a swirler type or a diffuser type can be used as a flame stabilizer.
  • FIG. 13 shows an example of a structural drawing of a partially premixed spud burner
  • FIG. 14 shows an example of a structural drawing of a diffuser burner
  • FIG. 15 shows an example of a structural drawing of a swirler burner.
  • FIG. 13 shows an example of a spud burner.
  • the spud burner is composed of a nozzle 132 for supplying ammonia to the inside of the wind box 131 and an outer cylinder 133 .
  • Combustion air is supplied from a wind box 131 , and a damper for flow rate adjustment is installed upstream of the wind box 131 .
  • Ammonia is injected into the outer cylinder 133 and injected into the furnace while being premixed with the combustion air that flows in from the gap between the nozzle 132 and the outer cylinder 133 .
  • Ammonia spontaneously ignites when it is mixed with an ignitable amount of air by the hot gases in the furnace. Since ammonia and air are partially premixed, the ignition point is formed at the point where the blowing flow rate of the entire nozzle coincides with the combustion rate of the premixed ammonia and air.
  • FIG. 14 shows an example of a structural drawing of a diffuser burner.
  • An ammonia nozzle 142 and a disk-shaped flame stabilizer 143 are installed at the tip of the ammonia nozzle 142 inside the wind box 141 .
  • Ammonia is injected from a plurality of holes 142A provided in an ammonia nozzle 142 (two holes 142A are shown in the figure).
  • Combustion air is supplied from a wind box 141, and a damper for adjusting the flow rate is installed on the upstream side. Since the combustion air flows around the flame stabilizer 143 at an accelerated rate, a vortex is formed on the outer circumference of the disk-shaped flame stabilizer 143 . An ignition point is formed on the flame stabilizer 143 because ammonia is caught in this vortex and mixed with air to ignite.
  • FIG. 15 shows an example of a structural drawing of a swirler burner.
  • An ammonia nozzle 152 and a flame stabilizer 153 (referred to as a swirler) having swirl vanes are installed inside the wind box 151 at the tip of the ammonia nozzle 152 .
  • Ammonia is injected from a plurality of holes 152A provided in the ammonia nozzle 152 (two holes 152A are shown in the figure).
  • Combustion air is supplied from a wind box 151, and a damper for adjusting the flow rate is installed on the upstream side.
  • the combustion air passes through the flame stabilizer 153 , it turns into a swirling flow by the swirl vanes and flows around the ammonia nozzle 152 .
  • a circulating flow is generated inside the swirling flow, and the ammonia and the circulating flow are mixed and ignited. Therefore, the ignition point of the ammonia flame is formed near the downstream side of the flame stabilizer 153 .
  • FIG. 16 is a flow chart showing the boiler modification method of the present invention.
  • the boiler 2 before modification includes a pulverized coal burner 302 and a pulverized coal burner 302, a starting fuel, which may be pulverized coal, such as oil, or auxiliary air. and a plurality of injection parts for injecting.
  • Each jet is a coal burner 304, a starting fuel burner 307, or an auxiliary air nozzle 301,303.
  • S11 shown in FIG. 16 shows the step of replacing this injection part with the ammonia burner 306.
  • FIG. By executing S11, for example, an existing boiler 2 capable of burning only coal can be modified into a boiler 2 for burning ammonia fuel.
  • a boiler control method includes a furnace 20 including a furnace wall 19, an ammonia burner 306 provided on the furnace wall 19 for burning ammonia fuel, and the ammonia burner on the furnace wall 19.
  • a boiler control method for controlling the supply amounts of the ammonia fuel, the pulverized coal, and combustion air.
  • a first calculation step (S10-1) of calculating an ammonia air ratio which is a ratio of the amount of ammonia combustion air supplied to the ammonia fuel to the theoretical amount of air required to burn the ammonia fuel.
  • the upper limit of the first reference range for the ammonia-air ratio is preferably set smaller than the upper limit of the second reference range for the pulverized coal-air ratio.
  • the optimum air ratio for minimizing NOx emissions is about 0.6 for ammonia fuel, which is smaller than that for pulverized coal (usually about 0.7 to 0.8). By referring to the optimum value and setting the upper limit of the reference range, it becomes easier to minimize the NOx emissions.
  • FIG. 9 shows a specific configuration of the boiler operating system 1 according to one embodiment.
  • the boiler operation system 1 includes a controller 5 for controlling the operation of the boiler 2 in addition to the boiler 2 , supply system 15 and measurement system 9 already described.
  • the controller 5 of one embodiment includes a processor 91 , ROM 92 , RAM 93 and memory 94 .
  • the processor 91 is configured to read the boiler operating program stored in the ROM 92, load it into the RAM 93, and execute the instructions contained in the boiler operating program.
  • the processor 91 is a CPU, GPU, MPU, DSP, various arithmetic devices other than these, or a combination thereof.
  • Processor 91 may be implemented by an integrated circuit such as PLD, ASIC, FPGA, and MCU.
  • the memory 94 stores various data as the boiler operation program is executed.
  • the memory 94 is flash memory as an example.
  • Processor 91 is electrically connected to supply system 15 and measurement system 9 .
  • the processor 91 of one embodiment includes a different fuel combustion command for burning a fuel other than ammonia fuel in the furnace 20, an ammonia supply start command for causing the supply system 15 to start supplying the ammonia fuel, and an ammonia is configured to generate an ammonia mono-firing start command for starting mono-firing of the ammonia in the furnace 20.
  • these control commands are sent to delivery system 15 .
  • the processor 91 of one embodiment generates an ammonia supply start command when determining based on the measurement result of the measurement system 9 that the ammonia co-firing conditions for starting the ammonia co-firing are satisfied.
  • the processor 91 of one embodiment determines that the ammonia mono-firing condition for starting ammonia mono-firing is satisfied, the processor 91 initiates an ammonia mono-firing command.
  • the ammonia single-firing conditions are, for example, that the representative temperature in the furnace 20 has reached a specified temperature, that a specified time has elapsed since the start of ammonia co-combustion, and that a specified set value has been set after a specified input operation has been performed by the operator. or a combination of these.
  • the supply system 15 includes a primary air supply system 110 for supplying primary air, an additional air supply system 120 for supplying additional air, an ammonia supply system 100 for supplying liquid ammonia, and an oil supply system. and a pulverized coal supply system 70 for supplying pulverized coal.
  • Oil supply system 80 and pulverized coal supply system 70 are each an example of a system for supplying carbon-containing fuel.
  • Primary air, liquid ammonia, pulverized coal and oil are supplied to the burner unit 30 and additional air is supplied to the additional air supply 4 provided in the furnace wall 19 .
  • the supply system 15 is arranged to be controlled by the controller 5 .
  • An air supply line 112 of the primary air supply system 110 is connected to all burner units 30 .
  • the air supply line 112 is provided with a flow control valve 116 for adjusting the flow rate of the primary air and a switching valve 118 for switching the communication state of the air supply line 112 .
  • An air supply line 122 of the additional air supply system 120 is connected to the additional air supply 4 .
  • the air supply line 122 is provided with a flow control valve 126 for adjusting the flow rate of the additional air and a switching valve 128 for switching the communication state of the air supply line 122 .
  • the flow control valves 116 , 126 and switching valves 118 , 128 are configured to operate according to control commands sent from the control device 5 .
  • the ammonia supply system 100 includes the above-described ammonia burner 306, an ammonia tank 101 in which liquid ammonia is stored, an ammonia supply line 102 connecting the ammonia tank 101 and the ammonia burner 306, and a pump provided in the ammonia supply line 102. 103, a pressure regulating valve 105 for regulating the pressure of the ammonia supply line 102, a switching valve 107 provided in the ammonia supply line 102 for switching the state of communication between the ammonia tank 101 and the ammonia burner 306, and ammonia supply. and a flow control valve 108 for regulating the flow rate of liquid ammonia flowing through the line 102 .
  • the pressure control valve 105 , switching valve 107 and flow control valve 108 are configured to operate according to control instructions from the processor 91 .
  • the ammonia supply system 100 can change between a supply stop state in which none of the ammonia burners 306 supply liquid ammonia and a supply state in which all the ammonia burners 306 are supplied with liquid ammonia.
  • oil is supplied from the oil supply system 80 to the ammonia burners 306 of the second burner unit 32 and the third burner unit 33 .
  • the oil supply system 80 of one embodiment includes an oil supply device 81, an oil supply line 82 connecting the oil supply device 81 and the ammonia burner 306, and an oil flow control valve 86 for adjusting the flow rate of the oil flowing through the oil supply line 82. , and a switching valve 88 for switching the communication state of the oil supply line 82 .
  • the oil supply line 82 of this example is connected to the ammonia burner 306 of each of the second burner unit 32 and the third burner unit 33 .
  • the oil supply device 81 , the oil flow control valve 86 and the switching valve 88 are configured to operate according to control commands from the control device 5 .
  • the oil supply system 80 can change between a supply state in which oil is supplied to the ammonia burner 306 connected to the oil supply line 82 and a supply stop state in which the oil supply is stopped.
  • the oil supply line 82 may be connected to the starting fuel burner 37 for injecting oil.
  • the oil supply line 82 may be configured to receive atomized vapor. In this case oil and atomized steam are supplied to the burner unit 30 .
  • a pulverized coal supply system 70 of one embodiment includes a pulverized coal supply device 71 for supplying pulverized coal using a carrier gas, a pulverized coal supply line 72 connecting the pulverized coal supply device 71 and the burner unit 30, and pulverized coal supply.
  • a pulverized coal flow control valve 76 for adjusting the flow rate of pulverized coal flowing through the line 72 and a switching valve 78 for switching the communication state of the pulverized coal supply line 72 are provided.
  • the pulverized coal supply line 72 of this example is connected to the first burner unit 31 , the second burner unit 32 and the third burner unit 33 .
  • the pulverized coal supply device 71 , the pulverized coal flow rate adjustment valve 76 and the switching valve 78 are configured to operate according to control commands from the control device 5 .
  • the pulverized coal supply system 70 can change between a supply stop state in which the pulverized coal supply is stopped and a supply state in which the pulverized coal is supplied to the burner unit 30 .
  • the pulverized coal supply system 70 is in the supply state, pulverized coal is supplied to the pulverized coal burners 302 and 304 described above.
  • the measurement system 9 includes an air flow meter 114 for measuring the flow rate of primary air supplied by the primary air supply system 110, and an air flow rate meter 114 for measuring the flow rate of additional air supplied by the additional air supply system 120.
  • meter 124 an ammonia flow meter 109 for measuring the diversion of ammonia fuel supplied by the ammonia supply system 100, an oil flow meter 84 for measuring the flow rate of oil supplied by the oil supply system 80, and a pulverized coal supply system. It includes a pulverized coal flow meter 74 for measuring the flow rate of pulverized coal supplied by 70 and the furnace thermometer 6 already mentioned. These flow meters are configured to send measurement results to processor 91 .
  • the boiler operating system 1 operates according to control commands sent from the processor 91, for example, as shown in the flowchart of FIG. 10A.
  • the processor 91 sends another fuel combustion command to the supply system 15 (S51).
  • the primary air supply system 110 and the additional air supply system 120 each supply air.
  • the ammonia supply system 100 is in a supply stop state, and both the oil supply system 80 and the pulverized coal supply system 70 are in a supply state. Therefore, the burner unit 30 is supplied with oil and pulverized coal.
  • the ammonia burner 306 of the first burner unit 31 is stopped, and the ammonia burners 306 of the second burner unit 32 and the third burner unit 33 inject oil. Inside the furnace 12, oil and pulverized coal are burned.
  • the processor 91 sends an ammonia supply start command to the supply system 15 (S55).
  • the oil supply system 80 changes to the supply stop state, and the ammonia supply system 100 changes to the supply state.
  • the first burner unit 31 injects liquid ammonia, and the fuel injected from the second burner unit 32 and the third burner unit 33 is switched from oil to liquid ammonia.
  • the pulverized coal supply system 70 maintains the supply state.
  • the boiler 2 co-fires ammonia and pulverized coal.
  • the control device 5 sends an ammonia mono-firing command to the supply system 15 (S59).
  • the pulverized coal supply system 70 changes to the supply stop state, and the burners functioning as coal burners are stopped. Also, the ammonia supply system 100 increases the amount of liquid ammonia supplied. As a result, in the boiler 2, mono-firing of ammonia is performed.
  • the supply system 15 that receives the other fuel combustion command from the processor 91 may first supply oil to the burner unit 30 and then supply oil and pulverized coal to the burner unit 30 . Further, after the ammonia supply start command is sent to the supply system 15, co-firing of ammonia fuel and oil may be performed, or co-firing of ammonia fuel, pulverized coal, and oil may be performed.
  • FIG. 10B is a flowchart showing NOx control processing according to one embodiment.
  • the NOx control process is a control method for suppressing the NOx generation amount when co-firing ammonia fuel and another fuel (pulverized coal in this example).
  • the processor 91 first reads the boiler load and the ammonia co-firing rate (a more specific example of the co-firing rate of ammonia and pulverized coal) (S61). Reading is executed when the processor 91 receives a demand.
  • the processor 91 performs a first calculation to calculate the ammonia air ratio, which is the ratio of the amount of air for combustion of ammonia supplied to the ammonia fuel to the amount of air required to burn the ammonia fuel (S10-1). .
  • the method for calculating the ammonia air ratio is as described above.
  • the processor 91 then performs a second calculation to calculate the pulverized coal air ratio, which is the ratio of the amount of pulverized coal combustion air supplied to the pulverized coal to the theoretical amount of air required to burn the pulverized coal. (S10-2).
  • the method of calculating the pulverized coal air ratio ( ⁇ car ), which is an example of the air ratio of the carbon-containing fuel, is as described above.
  • the processor 91 controls ammonia fuel, The supply amounts of pulverized coal and combustion air are controlled (S10-3).
  • processor 91 controls liquid ammonia flow control valve 108, pulverized coal flow control valve 76, and primary air flow control valve 116, respectively.
  • the processor 91 determines whether or not the ammonia co-firing has ended (S63). While ammonia co-firing is being performed (S63: NO), the processor 91 repeats S10-1, S10-2, and S10-3 in order. If it is determined that the ammonia co-firing has ended (S63: YES), the processor 91 ends the NOx control process.
  • FIG. 10C shows the coal and ammonia air content control logic.
  • the control device 5 multiplies the measured value of the pulverized coal flow meter 74 of the coal burner 302 (pulverized coal burner 302) by the coal burner air ratio (indicated value) and the theoretical coal air amount, thereby controlling the combustion of the coal burner 302. Calculate the amount of air (Q Air — car ). The difference between the calculated combustion air amount of the coal burner 302 and the combustion air amount (measured value) of the coal burner 302 is obtained, and the control device 5 obtains the combustion air amount control command value of the coal burner 302 .
  • the combustion air amount (Q Air — NH3 ) of the ammonia burner 306 is calculated by multiplying the measured value of the ammonia flow meter 109 by the ammonia burner air ratio and the ammonia theoretical air amount. The difference between the calculated combustion air amount of the ammonia burner 306 and the combustion air amount (measured value) of the ammonia burner 306 is taken, and the control device 5 obtains the ammonia burner combustion air amount command value.
  • FIGS. 11A-11E The arrangement of the ammonia burners in the case of opposed combustion burners is shown in FIGS. 11A-11E.
  • pulverized coal is supplied from a single coal grinder to burners installed horizontally on each wall, so when co-firing with ammonia, all horizontally arranged burners are replaced with ammonia combustion burners.
  • FIG. 11A shows an example in which burners are arranged in six stages, each in three stages, on the front and rear walls.
  • a single-stage burner consists of a plurality of horizontally installed burners.
  • FIG. 11A (a) schematically shows the burner arrangement of the boiler 2 capable of firing only coal before modification.
  • One stage of the six-stage burners is used as a spare burner and is inactive during normal operation.
  • reference numeral 1104 indicates a rest burner.
  • Coal burner stages 1101, 1102, 1105 are coal burners with oil burners in order to heat the furnace with oil at start-up.
  • (b) and (c) of FIG. 11A show a modified example (burner arrangement example) for changing the boiler 2 of (a) to a boiler 2 using ammonia fuel.
  • (b) shows a case where the coal burners 1103 and 1106 and the idle burner 1104 are remodeled into an ammonia burner 1108.
  • FIG. In this case, the coal burners 1103 and 1106 are modified into ammonia-only burners 1107 and 1109 .
  • FIG. 11 shows an example in which burners 1101, 1102 and 1105 equipped with a coal burner and an oil burner are modified into burners 1120, 1121 and 1123 for both ammonia and oil.
  • the idle burner 1104 operates as a coal burner 1104 .
  • FIGS. 11B and 11D respectively show a burner arrangement example and a side view of the ammonia burner in the AA cross section of (b) of FIG. 11A.
  • FIGS. 11C and 11E respectively show an example of burner arrangement and a side view of the oil+ammonia burner in the BB cross section of (c) of FIG. 11A.
  • ammonia (or oil only at startup) is injected from the center, and primary, secondary, and tertiary air passages are provided around it as ammonia combustion air.
  • ammonia-air ratio for each opposing combustion burner, only the air supplied to the ammonia burner as ammonia combustion air (primary to tertiary air described above) is considered.
  • opposed combustion there is no auxiliary air nozzle as in swirl combustion.
  • FIG. 12 schematically shows the state inside the furnace in the case of co-firing with ammonia.
  • a reducing and denitrifying atmosphere with insufficient air is formed by pulverized coal combustion.
  • air ratio is 1 or less
  • ammonia can be injected into the reducing atmosphere at a high temperature (usually 1400 ° C. or higher) formed by the coal burner, and thermal decomposition and reduction of ammonia can occur.
  • the ammonia burner is introduced into the high-temperature reducing atmosphere formed by coal at an ammonia burner air ratio of 0.8 or less, so that the reducing atmosphere of the coal is not damaged, and thermal decomposition occurs by mixing with the high-temperature coal flame. Reduction can occur.
  • 5A and 5B are graphs showing the relationship between the burner air ratio and the NOx emission amount when the ammonia co-firing ratio is a predetermined value (FIG. 5B shows the relationship for each burner type).
  • This combustion test was carried out in a horizontal cylindrical combustion furnace, and the co-firing rate of ammonia and pulverized coal was 25% in terms of calorific value.
  • the coal burner and the ammonia burner were installed separately in the vertical direction, with the coal burner at the top, the ammonia burner at the bottom, and auxiliary air nozzles above and below each burner.
  • Three types of ammonia burners were used: a spud burner, which is a premixed burner, and a diffuser type burner and a swirler type, which are diffusion type burners with different structures of flame stabilizers.
  • the oxygen concentration at the furnace outlet was set to about 4%, and NOx was compared by converting to 6% concentration according to the following (Equation 9) in order to correct the difference in the oxygen concentration at the furnace outlet.
  • NOx (6% conversion value) NOx measured value ⁇ (21% - 6%) ⁇ (21% - measured furnace outlet oxygen concentration) (Formula 9)
  • FIG. 5C is a graph showing the relationship between the burner air ratio and the amount of NOx emissions when the ammonia co-firing ratio is changed.
  • NOx drops most when the ammonia burner air ratio is 0.6, and NOx increases at both higher and lower air ratios.
  • the NOx value is about 1.5 times the NOx value at 0.6.
  • the NOx value in the case of coal firing is about 150 to 200 ppm, so if the ammonia burner air ratio is 0.8 or less, there is no big difference from coal firing. Also, the higher the ammonia burner air ratio, the greater the increase in NOx. Even if the ammonia burner air ratio is zero, that is, if only ammonia is injected from the ammonia burner, NOx will increase, but co-firing with coal was possible. If the ammonia burner air ratio is lowered below 0.6, NOx will start to increase. may have reached and converted to NOx.
  • the auxiliary air of the adjacent coal burner is increased, so that a part of the air is mixed in the ammonia burner side, and the air ratio of the ammonia burner is substantially increased.
  • the NOx value can be controlled by further lowering the air ratio of the ammonia burner from 0.6. In this way, even when the ammonia co-firing rate was changed from 11% to 33%, the NOx value was able to suppress the amount of NOx generation by appropriately controlling the air ratio of the ammonia burner.
  • the ratio (ratio between the theoretical air ratio of coal and the amount of primary air) increases with an increase in the co-firing ratio, the NOx value can be controlled below a certain value by controlling the air ratios of the coal burner and the ammonia burner individually. It is shown that.
  • the flame stabilizer is a diffuser type and a swirler type in a diffusion type burner
  • the amount of NOx generated tends to be lower in the diffuser type than in the swirler type.
  • a disc-shaped diffuser is installed at the tip of the burner, and air flows around it to stabilize the flame, so the ignition point is close to the burner.
  • the swirler type a swirl flow centered on the burner is generated by the swirler, and the circulating flow stabilizes the flame, so that the ignition point is formed downstream from the tip of the burner.
  • the reducing atmosphere formed by the ammonia burner is between the ignition point and the additional air input point, the closer the ignition point is to the tip of the burner, the longer the distance of the reducing atmosphere and the longer the residence time of the reducing atmosphere, and the more NOx is reduced. That's what I think.
  • the air ratio for the ammonia burner that minimizes NOx even for the diffusion type burner has not been determined, but it tends to be lower than that of the spud type burner. It can be said that it can be controlled.
  • expressions such as “in a certain direction”, “along a certain direction”, “parallel”, “perpendicular”, “center”, “concentric” or “coaxial”, etc. express relative or absolute arrangements. represents not only such arrangement strictly, but also the state of being relatively displaced with a tolerance or an angle or distance to the extent that the same function can be obtained.
  • expressions such as “identical”, “equal”, and “homogeneous”, which express that things are in the same state not only express the state of being strictly equal, but also have tolerances or differences to the extent that the same function can be obtained. It shall also represent the existing state.
  • expressions representing shapes such as a quadrilateral shape and a cylindrical shape not only represent shapes such as a quadrilateral shape and a cylindrical shape in a geometrically strict sense, but also within the range in which the same effect can be obtained. , a shape including an uneven portion, a chamfered portion, and the like.
  • the expressions “comprising”, “including”, or “having” one component are not exclusive expressions excluding the presence of other components.
  • a boiler (2) according to at least one embodiment of the present disclosure, a furnace (2) comprising a furnace wall (19); an ammonia burner (50) provided on the furnace wall (19) for burning ammonia fuel; Pulverized coal burners (302, 304) for burning pulverized coal, provided at positions different from the ammonia burner (50) on the furnace wall (19); including.
  • the boiler (2) of 1) above wherein A control device (5) for controlling the amount of supply of the ammonia fuel, the pulverized coal, and the combustion air,
  • the control device (5) is a first calculation unit that calculates an ammonia air ratio, which is a ratio of the amount of ammonia combustion air supplied to the ammonia fuel to the theoretical amount of air required to burn the ammonia fuel; a second calculation unit that calculates a pulverized coal air ratio, which is a ratio of the amount of pulverized coal combustion air supplied to the pulverized coal to the theoretical amount of air required to burn the pulverized coal; a control unit that controls the supply amount such that the ammonia air ratio satisfies a first reference range and the pulverized coal air ratio satisfies a second reference range; have
  • the boiler (2) of 2) above wherein The first calculation unit calculates the ammonia air ratio for each of the plurality of ammonia burners (50), The control unit controls the supply amount so that each ammonia-air ratio satisfies the first reference range.
  • the boiler (2) of any one of 2) to 5) above, The first reference range is 0.8 or less.
  • the boiler (2) of any one of 2) to 5) above, The first reference range is 0.7 or less.
  • the boiler (2) of any one of 2) to 7) above, The first reference range is set based on the value of nitrogen oxides in the combustion gas discharged from the furnace (2).
  • the ammonia burner (50) is an ammonia nozzle (142, 152) for injecting the ammonia fuel; and a starting fuel nozzle (ammonia nozzle 306A) for injecting starting fuel.
  • the boiler (2) of 8) above, wherein
  • the furnace wall (19) comprises: a burner arrangement area where the ammonia burner (50) and the pulverized coal burner (302, 304) are provided; an additional air supply area provided with an additional air supply section that supplies additional air downstream of the burner arrangement area,
  • the ammonia burner (50) is positioned at the top of the burner arrangement area.
  • the diffusion burner or the partially premixed burner is a partially premixed spud type burner, a diffusion type swirler type burner having a different flame stabilizer structure, or a diffuser type burner.
  • a boiler control method for controlling the supply amount of the ammonia fuel, the pulverized coal and the combustion air in a boiler comprising a first calculation step (S10-1) of calculating an ammonia air ratio, which is the ratio of the amount of ammonia combustion air supplied to the ammonia fuel to the theoretical amount of air required to burn the ammonia fuel; A second calculation step (S10-2) of calculating a pulverized coal air ratio, which is a ratio of the amount of pulverized coal combustion air supplied to the pulverized coal to the theoretical amount of air required to burn the pulverized coal. and, a control step (S10-3) of controlling the supply amount such that
  • a boiler modification method according to at least one embodiment of the present disclosure, a furnace (2) comprising a furnace wall (19); Pulverized coal burners (302, 304) provided on the furnace wall (19) for burning pulverized coal; a plurality of injection parts provided at positions different from the pulverized coal burners (302, 304) on the furnace wall (19) for injecting pulverized coal, starting fuel, or auxiliary air; a controller (5);
  • a boiler modification method for a boiler comprising A replacement step of replacing at least one of the plurality of injection units with an ammonia burner (50) that burns ammonia fuel;
  • the control device (5) for controlling the supply amounts of the ammonia fuel, the pulverized coal, and the combustion air, a first calculation unit that calculates an ammonia air ratio, which is a ratio of the amount of ammonia combustion air supplied to the ammonia fuel to the theoretical amount of air required to burn the ammonia fuel; a second calculation unit that calculates a pulverized coal air ratio, which is a ratio

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Of Fluid Fuel (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

In the present invention burners in a boiler are arranged separately as ammonia burners and fine powdered coal burners. Specifically, a boiler according to a number of embodiments of the present invention includes: a furnace that includes a furnace wall; an ammonia burner that is provided on the furnace wall, and that burns an ammonia fuel; and a fine powdered coal burner that is provided at a different position on the furnace wall than the ammonia burner, and that burns fine powdered coal.

Description

ボイラ、ボイラ制御方法、及び、ボイラ改造方法BOILER, BOILER CONTROL METHOD, AND BOILER MODIFICATION METHOD
 本発明は、アンモニアと微粉炭を燃焼させるボイラ、ボイラ制御方法、及び、ボイラ改造方法に関する。
 本願は、2021年9月9日に日本国特許庁に出願された特願2021-146609号と、2021年12月10日に日本国特許庁に出願された特願2021-200928号とに基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a boiler that burns ammonia and pulverized coal, a boiler control method, and a boiler modification method.
This application is based on Japanese Patent Application No. 2021-146609 filed with the Japan Patent Office on September 9, 2021 and Japanese Patent Application No. 2021-200928 filed with the Japan Patent Office on December 10, 2021. Priority is claimed and its contents are hereby incorporated by reference.
 従来、アンモニアが燃料として火炉内に供給されるボイラが知られている。アンモニアが燃料として用いられる場合、窒素酸化物(NOx)が排出されるのを抑制する必要がある。例えば、特許文献1で開示されるバーナ(図2に示す)では、アンモニアを投入するノズルに周囲から旋回させてアンモニアを供給するノズルを設置(旋回はしなくてもいいと記載)し、旋回微粉炭火炎にアンモニアを混合している。さらに詳細には次の開示がある。すなわち、火炉に設置されると共にアンモニアを燃料として燃焼可能な燃焼装置4Aであって、燃料の噴射方向から見て中心部に配置されると共にアンモニアを噴射する内筒ノズル41と、燃料の噴射方向から見て内筒ノズル41を径方向外側から囲んで配置されると共に内筒ノズル41の周囲にアンモニアを噴射する外筒ノズル42とを備える。また、外筒ノズル42の内部に配置され、内筒ノズル41の周囲に噴射されるアンモニアの流れを旋回させる旋回器45を備える。特許文献1によれば、内筒ノズル41から噴射されたアンモニアが燃料の噴射方向から見て火炎の中央部にアンモニア濃度が高く酸素濃度が低い還元領域を形成する。一方で、外筒ノズルから内筒ノズルの周囲に噴射されたアンモニアが酸素と混合して燃焼されることによって生成された窒素酸化物は、火炎の外縁から中央に向けて還流する循環流に乗って還元領域に供給される。この結果、火炎の外縁で生成された窒素酸化物が内筒ノズルから噴射されたアンモニアによって形成された還元領域にて還元されて窒素ガス(N2)となる。よって、特許文献1によれば、アンモニアを燃料として燃焼可能なボイラにおいて、窒素酸化物の増加を抑制することが可能となる。  Conventionally, boilers in which ammonia is supplied as fuel to the furnace are known. When ammonia is used as fuel, it is necessary to suppress the emission of nitrogen oxides (NOx). For example, in the burner disclosed in Patent Document 1 (shown in FIG. 2), a nozzle for supplying ammonia is swirled around the nozzle for supplying ammonia (it is stated that the nozzle does not have to be swirled), and the nozzle is swirled. Ammonia is mixed in the pulverized coal flame. Further details are disclosed in the following disclosures. That is, a combustion device 4A that is installed in a furnace and capable of burning ammonia as a fuel includes an inner cylinder nozzle 41 that is arranged in the center when viewed from the direction of fuel injection and that injects ammonia, and the direction of fuel injection. and an outer cylinder nozzle 42 that surrounds the inner cylinder nozzle 41 from the outside in the radial direction when viewed from above and injects ammonia around the inner cylinder nozzle 41 . Further, a swirler 45 is provided inside the outer cylinder nozzle 42 to swirl the flow of ammonia injected around the inner cylinder nozzle 41 . According to Patent Document 1, the ammonia injected from the inner cylinder nozzle 41 forms a reduction region in which the concentration of ammonia is high and the concentration of oxygen is low in the central portion of the flame when viewed from the fuel injection direction. On the other hand, the nitrogen oxides produced by mixing and burning ammonia injected from the outer cylinder nozzle around the inner cylinder nozzle ride on the circulating flow that recirculates from the outer edge of the flame toward the center. supplied to the reduction region. As a result, nitrogen oxides produced at the outer edge of the flame are reduced to nitrogen gas (N2) in the reduction zone formed by the ammonia injected from the inner cylinder nozzle. Therefore, according to Patent Document 1, it is possible to suppress an increase in nitrogen oxides in a boiler capable of burning ammonia using fuel.
特開2020-41748号公報Japanese Unexamined Patent Application Publication No. 2020-41748
 発明者らの知見によれば、窒素酸化物の排出量を抑制するためには、アンモニア燃料バーナは、他の燃料を用いてボイラ内の燃焼環境を還元領域にするとともに、着火点付近の空気比を正確に制御することが好ましい。しかし、特許文献1にはこういった構成の具体的な開示はない。
 また、特許文献1に示されるバーナでアンモニアを混焼する際、アンモニアの混焼率を増加させると、石炭ノズルの空気比が増加してしまう。石炭ノズルではノズル内の石炭沈降を防止するため、搬送用空気量は一定に保つ必要があり、アンモニア混焼率を増加させると給炭量のみを低下させるため、石炭流量に対する搬送用空気量が増加する。これにより、アンモニア高混焼率時には、アンモニアノズル周囲の空気比が高くなってしまい、アンモニア酸化由来の窒素酸化物の急増が発生するからである。
According to the knowledge of the inventors, in order to suppress the amount of nitrogen oxide emissions, the ammonia fuel burner uses another fuel to make the combustion environment in the boiler a reducing region, and the air ratio near the ignition point is preferably controlled precisely. However, Patent Document 1 does not specifically disclose such a configuration.
Further, when co-firing ammonia with the burner disclosed in Patent Document 1, increasing the co-firing rate of ammonia increases the air ratio of the coal nozzle. In order to prevent the coal from settling in the nozzle, the amount of conveying air must be kept constant. Increasing the ammonia co-firing rate only reduces the amount of coal fed, so the amount of conveying air increases relative to the coal flow rate. do. As a result, when the co-firing rate of ammonia is high, the air ratio around the ammonia nozzle becomes high, resulting in a rapid increase in nitrogen oxides derived from ammonia oxidation.
 よって、本発明の目的は、窒素酸化物の発生を抑制できる条件下でアンモニア燃料を燃焼できるボイラ、ボイラ制御方法、及び、ボイラ改造方法を提供することである。 Therefore, an object of the present invention is to provide a boiler, a boiler control method, and a boiler modification method that can burn ammonia fuel under conditions that can suppress the generation of nitrogen oxides.
 本発明の少なくとも一実施形態に係るボイラのバーナ配置はアンモニアと微粉炭バーナを別置きとすることである。
 すなわち、本発明の少なくとも一実施形態に係るボイラは、火炉壁を含む火炉と、前記火炉壁に設けられ、アンモニア燃料を燃焼させるアンモニアバーナと、前記火炉壁の前記アンモニアバーナとは異なる位置に設けられ、微粉炭を燃焼させる微粉炭バーナと、を含む。
The burner arrangement of the boiler according to at least one embodiment of the present invention is to separate ammonia and pulverized coal burners.
That is, a boiler according to at least one embodiment of the present invention includes a furnace including a furnace wall, an ammonia burner provided on the furnace wall for burning ammonia fuel, and a position different from the ammonia burner on the furnace wall. and a pulverized coal burner for burning pulverized coal.
 前記ボイラは、前記アンモニア燃料、前記微粉炭および燃焼用空気の供給量を制御する制御装置を備え、当該制御装置は、前記アンモニア燃料を燃焼させるために必要な理論空気量に対して、前記アンモニア燃料に供給されるアンモニア燃焼用空気量の比であるアンモニア空気比を算定する第一算定部と、前記微粉炭を燃焼させるために必要な理論空気量に対して、前記微粉炭に供給される微粉炭燃焼用空気量の比である微粉炭空気比を算定する第二算定部と、前記アンモニア空気比が第一基準範囲を満たすように、かつ前記微粉炭空気比が第二基準範囲を満たすように前記供給量を制御する制御部と、を有することを特徴とする。 The boiler includes a control device that controls the supply amounts of the ammonia fuel, the pulverized coal, and the combustion air, and the control device controls the theoretical amount of air required for burning the ammonia fuel. A first calculation unit that calculates an ammonia-air ratio, which is the ratio of the ammonia combustion air amount supplied to the fuel, and a theoretical amount of air required to burn the pulverized coal, which is supplied to the pulverized coal a second calculation unit that calculates a pulverized coal-air ratio that is a ratio of air amounts for pulverized coal combustion; and a control unit for controlling the supply amount.
 前記第一算定部は、複数の前記アンモニアバーナの各々について、前記アンモニア空気比を算定し、
 前記制御部は、各々の前記アンモニア空気比が前記第一基準範囲を満たすように前記供給量を制御することを特徴とする。
The first calculation unit calculates the ammonia air ratio for each of the plurality of ammonia burners,
The control unit is characterized in that the supply amount is controlled such that each of the ammonia air ratios satisfies the first reference range.
 前記火炉壁に前記アンモニアバーナと隣接するように設けられる空気ノズルを備え、
 前記第一算定部は、前記空気ノズルから噴射される空気量のうち前記アンモニア燃料に供給される空気量が含まれる前記アンモニア燃焼用空気量を用いて前記アンモニア空気比を算定することを特徴とする。
An air nozzle provided adjacent to the ammonia burner on the furnace wall,
The first calculation unit calculates the ammonia air ratio using the amount of air for ammonia combustion that includes the amount of air supplied to the ammonia fuel in the amount of air injected from the air nozzle. do.
 前記第一基準範囲の上限値は、前記第二基準範囲の上限値よりも低いことを特徴とする。 The upper limit of the first reference range is lower than the upper limit of the second reference range.
 前記第一基準範囲は、0.8以下であることを特徴とする。 The first reference range is characterized by being 0.8 or less.
 前記第一基準範囲は、0.7以下であることを特徴とする。 The first reference range is characterized by being 0.7 or less.
 前記第一基準範囲は、前記火炉から排出される燃焼ガス中の窒素酸化物の値に基づいて設定されることを特徴とする。 The first reference range is characterized by being set based on the value of nitrogen oxides in the combustion gas discharged from the furnace.
 前記ボイラは、前記アンモニアバーナに隣接し、補助空気を供給する補助空気ノズルを有し、前記補助空気ノズルは、前記アンモニアバーナの方向に供給できる補助空気の量を調整できるダンパーを備える、ことを特徴とする。 The boiler has an auxiliary air nozzle adjacent to the ammonia burner and supplying auxiliary air, and the auxiliary air nozzle is provided with a damper capable of adjusting the amount of auxiliary air that can be supplied in the direction of the ammonia burner. Characterized by
 前記アンモニアバーナは、
  前記アンモニア燃料を噴射するアンモニアノズルと、
  起動用燃料を噴射する起動用燃料ノズルと
を含むことを特徴とする。
The ammonia burner is
an ammonia nozzle for injecting the ammonia fuel;
and a starting fuel nozzle for injecting starting fuel.
 前記アンモニアバーナは、前記微粉炭バーナと隣接して設けられることを特徴とする。 The ammonia burner is characterized by being provided adjacent to the pulverized coal burner.
 前記アンモニアバーナは、前記微粉炭バーナと隣接して設けられる、ことを特徴とする。 The ammonia burner is characterized by being provided adjacent to the pulverized coal burner.
 前記火炉壁は、前記アンモニアバーナと前記微粉炭バーナが設けられるバーナ配置領域と、前記バーナ配置領域よりも下流で追加空気を供給する追加空気供給部が設けられる追加空気供給領域と、を含み、前記アンモニアバーナは、前記バーナ配置領域の最上段に位置することを特徴とする。 The furnace wall includes a burner arrangement area in which the ammonia burner and the pulverized coal burner are provided, and an additional air supply area in which an additional air supply section for supplying additional air is provided downstream of the burner arrangement area, The ammonia burner is characterized by being positioned on the uppermost stage of the burner arrangement area.
 前記アンモニアバーナは、拡散型バーナまたは部分予混合型バーナであることを特徴とする。 The ammonia burner is characterized by being a diffusion burner or a partially premixed burner.
 前記拡散型バーナまたは前記部分予混合型バーナは、部分予混合型のスパッド型、拡散型で保炎器の構造が異なるスワラー型、またはディフューザ型のいずれかである、ことを特徴とする。 The diffusion burner or the partially premixed burner is characterized by being a partially premixed spud type burner, a diffusion type swirler type with a different flame stabilizer structure, or a diffuser type burner.
 本発明の少なくとも一実施形態に係るボイラ制御方法は、火炉壁を含む火炉と、前記火炉壁に設けられ、アンモニア燃料を燃焼させるアンモニアバーナと、前記火炉壁の前記アンモニアバーナとは異なる位置に設けられ、微粉炭を燃焼させる微粉炭バーナと、を含むボイラにおいて、前記アンモニア燃料、前記微粉炭および燃焼用空気の供給量を制御するボイラ制御方法であって、前記アンモニア燃料を燃焼させるために必要な理論空気量に対して、前記アンモニア燃料に供給されるアンモニア燃焼用空気量の比であるアンモニア空気比を算定する第一算定ステップと、前記微粉炭を燃焼させるために必要な理論空気量に対して、前記微粉炭に供給される微粉炭燃焼用空気量の比である微粉炭空気比を算定する第二算定ステップと、前記アンモニア空気比が第一基準範囲を満たすように、かつ前記微粉炭空気比が第二基準範囲を満たすように前記供給量を制御する制御ステップと、を有することを特徴とするボイラ制御方法である。 A boiler control method according to at least one embodiment of the present invention includes a furnace including a furnace wall, an ammonia burner provided on the furnace wall for burning ammonia fuel, and a position different from the ammonia burner on the furnace wall. and a pulverized coal burner for burning pulverized coal, a boiler control method for controlling the supply amounts of the ammonia fuel, the pulverized coal, and combustion air, the boiler control method necessary for burning the ammonia fuel a first calculation step of calculating an ammonia air ratio, which is the ratio of the ammonia combustion air amount supplied to the ammonia fuel to the theoretical air amount, and calculating the theoretical air amount required to burn the pulverized coal. On the other hand, a second calculation step of calculating a pulverized coal-air ratio that is a ratio of the pulverized coal combustion air amount supplied to the pulverized coal; and a control step of controlling the supply amount so that the charcoal-air ratio satisfies a second reference range.
 本発明の少なくとも一実施形態に係るボイラ改造方法は、火炉壁を含む火炉と、前記火炉壁に設けられ、微粉炭を燃焼させる微粉炭バーナと、前記火炉壁において前記微粉炭バーナとは異なる位置に設けられ、微粉炭、起動用燃料、または補助空気を噴射する複数の噴射部と、制御装置と、を備えるボイラ改造方法であって、前記複数の噴射部の少なくとも1つを、アンモニア燃料を燃焼させるアンモニアバーナに置換する置換ステップを備え、前記アンモニア燃料、前記微粉炭、および燃焼用空気の供給量を制御する前記制御装置は、前記アンモニア燃料を燃焼させるために必要な理論空気量に対して、前記アンモニア燃料に供給されるアンモニア燃焼用空気量の比であるアンモニア空気比を算定する第一算定部と、前記微粉炭を燃焼させるために必要な理論空気量に対して、前記微粉炭に供給される微粉炭燃焼用空気量の比である微粉炭空気比を算定する第二算定部と、前記アンモニア空気比が第一基準範囲を満たすように、かつ前記微粉炭空気比が第二基準範囲を満たすように前記供給量を制御する制御部とを有するボイラ改造方法である。 A boiler modification method according to at least one embodiment of the present invention comprises a furnace including a furnace wall, a pulverized coal burner provided on the furnace wall for burning pulverized coal, and a position different from the pulverized coal burner on the furnace wall. and a control device, wherein at least one of the plurality of injection units is equipped with ammonia fuel. The control device includes a replacement step of replacing the ammonia burner to be burned, and controls the supply amounts of the ammonia fuel, the pulverized coal, and the combustion air, and the theoretical amount of air required to burn the ammonia fuel a first calculation unit that calculates an ammonia air ratio, which is a ratio of the amount of air for combustion of ammonia supplied to the ammonia fuel; a second calculation unit that calculates a pulverized coal-air ratio that is a ratio of the pulverized coal combustion air amount supplied to the and a control unit for controlling the supply amount so as to satisfy a reference range.
 本発明によれば、NOxの発生を抑制できる条件下でアンモニア燃料を燃焼できるボイラ、ボイラ制御方法及びボイラ改造方法を提供できる。 According to the present invention, it is possible to provide a boiler, a boiler control method, and a boiler modification method that can burn ammonia fuel under conditions that can suppress the generation of NOx.
一実施形態に係るボイラ運転システムの概念図である。1 is a conceptual diagram of a boiler operating system according to one embodiment; FIG. 従来例をしめすバーナの概念図である。It is a conceptual diagram of a burner showing a conventional example. 一実施形態に係る改造前のボイラのバーナ配置を示す断面図である(石炭バーナの改造例)。FIG. 4 is a cross-sectional view showing the burner arrangement of the boiler before modification according to one embodiment (example of modification of coal burners). 一実施形態に係る改造後のボイラのバーナ配置を示す断面図である(石炭バーナの改造例)。FIG. 4 is a cross-sectional view showing the burner arrangement of the boiler after modification according to one embodiment (example of modification of the coal burner). 一実施形態に係るボイラの改造前後におけるバーナ配置の対応関係を示す概念図である(石炭バーナの改造例)。FIG. 2 is a conceptual diagram showing the correspondence relationship of burner arrangement before and after modification of a boiler according to one embodiment (an example of modification of a coal burner). 一実施形態に係るアンモニアバーナの燃焼に関係する空気流れの説明図である。FIG. 4 is an explanatory diagram of air flow related to combustion of an ammonia burner according to one embodiment; 一実施形態に係るバーナのアンモニアバーナ空気比と窒素酸化物発生量の関係を示す説明図である。FIG. 4 is an explanatory diagram showing the relationship between the ammonia burner air ratio and the amount of nitrogen oxides generated in the burner according to one embodiment. 一実施形態に係るバーナ形状、アンモニアバーナ空気比、及び窒素酸化物発生量の関係を示す説明図である。FIG. 4 is an explanatory diagram showing the relationship between the burner shape, the ammonia burner air ratio, and the amount of nitrogen oxides generated according to one embodiment. 一実施形態に係るアンモニア混焼率、アンモニアバーナ空気比、及び窒素酸化物発生量の関係を示す説明図である。FIG. 4 is an explanatory diagram showing the relationship among the ammonia co-firing rate, the ammonia burner air ratio, and the amount of nitrogen oxides generated according to one embodiment. 一実施形態に係る改造前のボイラのバーナ配置を示す断面図である(起動用燃料バーナの改造例)。FIG. 4 is a cross-sectional view showing the burner arrangement of the boiler before modification according to one embodiment (an example of modification of the start-up fuel burner). 一実施形態に係る改造後のボイラのバーナ配置を示す断面図である(起動用燃料バーナの改造例)。FIG. 4 is a cross-sectional view showing the burner arrangement of the boiler after modification according to one embodiment (an example of modification of the start-up fuel burner). 一実施形態に係るボイラの改造前後におけるバーナ配置の対応関係を示す概念図である(起動用燃料バーナの改造例)。FIG. 4 is a conceptual diagram showing a corresponding relationship of burner arrangement before and after modification of a boiler according to one embodiment (example of modification of start-up fuel burners). 一実施形態に係る改造後のボイラのバーナ配置を示す断面図である(空気ノズルの改造例)。FIG. 4 is a cross-sectional view showing the burner arrangement of the boiler after remodeling according to one embodiment (an example of remodeling air nozzles). 一実施形態に係るボイラの改造前後におけるバーナ配置の対応関係を示す概念図である(空気ノズルの改造例)。FIG. 4 is a conceptual diagram showing the correspondence relationship of burner arrangement before and after modification of the boiler according to one embodiment (example of modification of air nozzles). 一実施形態に係る改造後のボイラのバーナ配置を示す断面図である(最上段にある空気ノズルの改造例)。FIG. 4 is a cross-sectional view showing the burner arrangement of the boiler after modification according to one embodiment (an example of modification of the uppermost air nozzle). 一実施形態に係るボイラの改造前後におけるバーナ配置の対応関係を示す概念図である(最上段にある空気ノズルの改造例)。FIG. 4 is a conceptual diagram showing the corresponding relationship of burner arrangement before and after modification of the boiler according to one embodiment (an example of modification of the air nozzle at the uppermost stage). 一実施形態に係るボイラの制御系統図である。It is a control system diagram of a boiler according to one embodiment. 一実施形態に係るボイラの制御方法のフロー図である。1 is a flow diagram of a method for controlling a boiler according to one embodiment; FIG. 一実施形態に係るNOx制御処理のフロー図である。FIG. 4 is a flow diagram of NOx control processing according to one embodiment; 一実施形態に係る燃焼空気量の制御指令値を算出するための制御ロジック図である。FIG. 4 is a control logic diagram for calculating a combustion air amount control command value according to one embodiment; 一実施形態に係る対向燃焼バーナのアンモニアバーナ配置である。1 is an ammonia burner arrangement of opposed combustion burners according to one embodiment. 図11AにおけるA-A線矢視方向断面図である。FIG. 11B is a cross-sectional view taken along line AA in FIG. 11A. 図11AにおけるB-B線矢視方向断面図である。FIG. 11B is a cross-sectional view taken along line BB in FIG. 11A. 一実施形態に係るアンモニアバーナの側面図である。It is a side view of an ammonia burner concerning one embodiment. 一実施形態に係る油アンモニアバーナの側面図である。It is a side view of an oil ammonia burner concerning one embodiment. 一実施形態に係るボイラ内の還元酸化状態を示す概念図である。FIG. 4 is a conceptual diagram showing a reduction-oxidation state in a boiler according to one embodiment; スパッドバーナの構造を示す図である。It is a figure which shows the structure of a spud burner. ディフューザバーナの構造を示す図である。It is a figure which shows the structure of a diffuser burner. スワラーバーナの構造を示す図である。It is a figure which shows the structure of a swirler burner. ボイラ改造方法のフロー図である。It is a flow chart of a boiler remodeling method.
 以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。 Several embodiments of the present invention will be described below with reference to the accompanying drawings. However, the dimensions, materials, shapes, relative arrangements, etc. of the components described as embodiments or shown in the drawings are not intended to limit the scope of the present invention, and are merely illustrative examples. do not have.
 図1は、一実施形態に係るボイラ運転システム1の概念図である。
 ボイラ運転システム1は、例えば図示外の火力発電プラントに組み込まれるボイラ2と、ボイラ2に空気及び燃料を供給するための供給システム15と、ボイラ2の運転に関するパラメータを計測するための計測システム9とを備える。
 供給システム15からボイラ2に供給される燃料には、アンモニア燃料が含まれる。アンモニア燃料は、液体アンモニアまたはアンモニアガスのいずれであってもよい。以下では、アンモニア燃料が液体アンモニアである実施形態を例示する。一実施形態では、ボイラ2に液体アンモニアが液状のまま供給される。液体アンモニアは水素ガスなどの気体を含まないが、ボイラ2での燃焼に影響を与えない程度の不純物(例えば尿素)を含んでいてもよい。液体アンモニアはボイラ2内でアンモニアガスに気化する。
 また、供給システム15からボイラ2に供給される燃料には、アンモニア燃料以外の他の燃料が含まれる。例えば、ボイラ2内では他の燃料を用いた燃焼が行われた後に、アンモニアと他の燃料との混焼またはアンモニアの専焼が行われる。
 アンモニア以外の他の燃料の一例である炭素含有燃料は、バイオマス燃料または化石燃料などである。化石燃料は、液化天然ガス、重油または軽油などの油、もしくは微粉炭などの石炭である。以下では、炭素含有燃料が油と微粉炭である実施形態を例示する。
FIG. 1 is a conceptual diagram of a boiler operating system 1 according to one embodiment.
The boiler operation system 1 includes, for example, a boiler 2 incorporated in a thermal power plant (not shown), a supply system 15 for supplying air and fuel to the boiler 2, and a measurement system 9 for measuring parameters related to the operation of the boiler 2. and
The fuel supplied to the boiler 2 from the supply system 15 contains ammonia fuel. The ammonia fuel can be either liquid ammonia or ammonia gas. The following illustrates embodiments in which the ammonia fuel is liquid ammonia. In one embodiment, the boiler 2 is supplied with liquid ammonia in liquid form. Liquid ammonia does not contain gas such as hydrogen gas, but may contain impurities (for example, urea) that do not affect combustion in the boiler 2 . Liquid ammonia is vaporized into ammonia gas within the boiler 2 .
Further, the fuel supplied from the supply system 15 to the boiler 2 includes fuel other than ammonia fuel. For example, after combustion using another fuel is performed in the boiler 2, mixed combustion of ammonia and another fuel or single combustion of ammonia is performed.
Carbon-containing fuels, which are examples of fuels other than ammonia, include biomass fuels and fossil fuels. Fossil fuels are liquefied natural gas, oils such as heavy or light oil, or coal such as pulverized coal. The following exemplifies embodiments in which the carbon-containing fuel is oil and pulverized coal.
 一実施形態のボイラ2は、火炉壁19を含む火炉20を含む。火炉壁19は、少なくとも1つのバーナユニット30が設けられるバーナ配置領域21と、追加空気(アディショナルエア)を供給する追加空気供給部4が設けられる追加空気供給領域22とを含む。追加空気供給領域22はバーナ配置領域21よりも下流に位置する。
 火炉20は、バーナユニット30によって噴射された燃料が燃焼用空気と反応して燃焼するための筒状の中空体であり、例えば、円筒形状や四角柱状など種々の形態をとり得る。
 また、一実施形態の火炉20は、火炉20内に向けて突出するノーズ11を含む。ノーズ11は、火炉20の燃焼空間7で生じたガス(例えば燃焼ガス及び未燃焼ガス)が、火炉20の下流側にある流路に適正に流れるように構成される。火炉20の下流側にある流路は一例として煙道8である。
 少なくとも1つのバーナユニット30は、燃料が火炉20の燃焼空間7で燃焼するように構成される。図1で例示される実施形態では、バーナユニット30は、燃焼空間7で生じたガスが流れる方向(図1の矢印A)に沿って3段に分かれて配置される。以下では、ガスの流れ方向の下流側から順に各段のバーナユニット30を第1バーナユニット31、第2バーナユニット32、及び第3バーナユニット33という場合があり、これら3段のバーナを総称してバーナユニット30という場合がある。なお、バーナユニット30は、2段または4段などに分かれて配置されてもよい。
 一実施形態のボイラ2は旋回燃焼型ボイラであり、各段に設けられたバーナユニット30は、火炉20の周方向に沿って等間隔に複数配置される。各段のバーナユニット30の個数は一例として4個であるが、図1では各段のバーナユニット30を1つのみ図示している。なお、各段のバーナユニット30は、3個または5個以上であってもよい。
 他の実施形態に係るボイラ2は、対向燃焼型ボイラである。この場合、各段のバーナユニット30は、互いに対向する位置に少なくとも一対設けられる。
The boiler 2 of one embodiment includes a furnace 20 that includes a furnace wall 19 . The furnace wall 19 includes a burner placement area 21 in which at least one burner unit 30 is provided, and an additional air supply area 22 in which an additional air supply section 4 for supplying additional air is provided. The additional air supply area 22 is located downstream of the burner arrangement area 21 .
The furnace 20 is a cylindrical hollow body in which the fuel injected by the burner unit 30 reacts with the combustion air and burns, and may take various forms such as a cylindrical shape and a square prism shape.
The furnace 20 of one embodiment also includes a nose 11 that projects into the furnace 20 . The nose 11 is configured so that gases (eg, combustion gases and unburned gases) produced in the combustion space 7 of the furnace 20 properly flow into the flow path downstream of the furnace 20 . An exemplary flow path downstream of the furnace 20 is the flue 8 .
The at least one burner unit 30 is arranged such that fuel burns in the combustion space 7 of the furnace 20 . In the embodiment illustrated in FIG. 1, the burner units 30 are arranged in three stages along the direction in which the gas generated in the combustion space 7 flows (arrow A in FIG. 1). Hereinafter, the burner units 30 in each stage may be referred to as a first burner unit 31, a second burner unit 32, and a third burner unit 33 in order from the downstream side in the gas flow direction, and these three stage burners are collectively referred to. may be referred to as a burner unit 30. Note that the burner units 30 may be arranged in two stages or four stages.
The boiler 2 of one embodiment is a swirling combustion type boiler, and the burner units 30 provided in each stage are arranged at regular intervals along the circumferential direction of the furnace 20 . Although the number of burner units 30 in each stage is four as an example, only one burner unit 30 in each stage is illustrated in FIG. The number of burner units 30 in each stage may be three or five or more.
A boiler 2 according to another embodiment is a facing combustion type boiler. In this case, at least one pair of burner units 30 in each stage are provided at positions facing each other.
 各々のバーナユニット30は、少なくとも1つのバーナを含む。そして、少なくとも1つのバーナユニット30では、上記バーナが、液体アンモニアを液状のまま火炉20の内部に噴射するように構成されたアンモニアバーナ306である。アンモニアバーナ306は、液体アンモニアのみを噴射するように構成されてもよい。もしくはアンモニアバーナ306は、炭素含有燃料を噴射した後に、炭素含有燃料と共に(または炭素含有燃料に代えて)液体アンモニアを噴射するように構成されてもよい。
 一実施形態では、第1バーナユニット31がアンモニアバーナ306を含む。第2バーナユニット32と第3バーナユニット33は、アンモニアバーナ306を含んでもよいし、含まなくてもよい。他の実施形態では、アンモニアバーナ306は、第2バーナユニット32または第3バーナユニット33のみに含まれてもよい。
 さらに、いずれのかのバーナユニット30は、炭素含有燃料の一例である微粉炭を火炉20内に噴射するための石炭バーナ302、304(図3Aで示す微粉炭バーナ302、304)を含んでもよいし、起動用燃料の一例である油を火炉20内に噴射するための起動用燃料バーナ307(図3A参照)を含んでもよいし、補助空気を噴射するための補助空気ノズル(空気ノズル)301、305(図3A参照)を含んでもよい。詳細は後述する。
Each burner unit 30 includes at least one burner. In at least one burner unit 30 , the burner is an ammonia burner 306 configured to inject liquid ammonia into the furnace 20 while it is in a liquid state. Ammonia burner 306 may be configured to inject only liquid ammonia. Alternatively, the ammonia burner 306 may be configured to inject liquid ammonia with (or instead of) the carbon-containing fuel after injecting the carbon-containing fuel.
In one embodiment, first burner unit 31 includes an ammonia burner 306 . The second burner unit 32 and the third burner unit 33 may or may not include the ammonia burner 306 . In other embodiments, ammonia burner 306 may be included only in second burner unit 32 or third burner unit 33 .
Additionally, either burner unit 30 may include coal burners 302, 304 (pulverized coal burners 302, 304 shown in FIG. 3A) for injecting pulverized coal, which is an example of a carbon-containing fuel, into the furnace 20. , a starting fuel burner 307 (see FIG. 3A) for injecting oil, which is an example of a starting fuel, into the furnace 20, an auxiliary air nozzle (air nozzle) 301 for injecting auxiliary air, 305 (see FIG. 3A). Details will be described later.
 一実施形態では、供給システム15は、バーナユニット30に1次空気及び燃料を供給するように構成される。バーナユニット30へ供給される燃料(本例では液体アンモニア及び炭素含有燃料)は切り替わってもよい。例えば、いずれかの段のバーナユニット30では、炭素含有燃料(例えば油)が供給された後に液体アンモニアが供給されてもよい。 In one embodiment, the supply system 15 is configured to supply the burner unit 30 with primary air and fuel. The fuel supplied to the burner unit 30 (liquid ammonia and carbon-containing fuel in this example) may be switched. For example, the burner unit 30 of either stage may be supplied with liquid ammonia after the carbon-containing fuel (eg, oil) is supplied.
 一実施形態の計測システム9は、供給システム15から供給される空気または燃料の流量を計測するための複数の流量計と、火炉20内の代表温度を計測するための火炉温度計6とを含む。火炉20内の代表温度は、火炉20の燃焼空間7におけるガスの温度であるガス温度と相関する温度である。一例として火炉20内の代表温度は、上述のノーズ11の内壁面の温度(以下、ノーズ温度という)である。ノーズ温度は、火炉温度計6によって計測される。なお、火炉20内の代表温度は、例えばガス温度であってもよい。 The measurement system 9 of one embodiment includes a plurality of flowmeters for measuring the flow rate of air or fuel supplied from the supply system 15, and a furnace thermometer 6 for measuring the representative temperature inside the furnace 20. . The representative temperature in the furnace 20 is the temperature that correlates with the gas temperature, which is the temperature of the gas in the combustion space 7 of the furnace 20 . As an example, the representative temperature in the furnace 20 is the temperature of the inner wall surface of the nose 11 (hereinafter referred to as nose temperature). Nose temperature is measured by a furnace thermometer 6 . The representative temperature inside the furnace 20 may be, for example, the gas temperature.
 ボイラ運転システム1は、オペレータによる操作によって運転されてもよいし、後述の制御装置5(図9参照)による制御によって運転されてもよいし、またはこれらの組み合わせによって運転されてもよい。
 一実施形態の火炉20内では、アンモニア燃料以外の他の燃料(本例では炭素含有燃料)が燃焼した後にアンモニア燃料の供給が開始され、アンモニア燃料と他の燃料との混焼が行われてもよい。
The boiler operating system 1 may be operated by an operator, controlled by a controller 5 (see FIG. 9), which will be described later, or by a combination thereof.
In the furnace 20 of one embodiment, even if the supply of the ammonia fuel is started after the fuel other than the ammonia fuel (the carbon-containing fuel in this example) is burned, and the ammonia fuel and the other fuel are co-combusted. good.
 石炭やアンモニアなど窒素を含む燃料を燃焼させた場合の窒素酸化物の発生には燃焼させた場合の空気比が一般に大きな影響を与える。ここでは、アンモニア燃料と他の燃料を混焼する場合について、比較例として火炉全体で1つの空気比を算定する場合、実施例としてアンモニア燃料と他の燃料としての炭素含有燃料のそれぞれで空気比を算定する場合について以下説明する。
(比較例)
 比較例の空気比は、火炉20に供給されるアンモニア燃料と他の燃料を燃焼させるために必要な理論空気量に対する火炉20への空気供給量の比である。上記した火炉20への空気供給量には追加空気(アディショナルエア)が含まれない。つまり本例では、アンモニア混焼条件(詳細は後述)を構成する空気比は、火炉20に供給される全空気のうち追加空気以外の空気が占める供給割合を全空気比に乗じた値でもある。具体的には、アンモニア混焼条件を構成する空気比(以下、バーナ部空気比という場合がある)は、以下の式(1)によって規定される。
 λ=λ×(100-AA)/100  ・・・式(1)
 式(1)において、λはバーナ部空気比であり、λは全空気比であり、AAはボイラ2への全空気供給量のうちで追加空気の供給割合である。
 また、全空気比(λ)は、式(2)、式(3)、及び式(4)によって規定される。
 λ=QAir/Q  ・・・式(2)
 Q=Qmf×Amf  ・・・式(3)
 Amf=(100-X)/100×Acar+X/100×ANH3  ・・・式(4)
 式(2)~式(4)において、QAirは全空気供給量である。また、Qmfは、火炉20内で行われる燃焼がアンモニア混焼(重量換算での混焼率:X%)であるときのアンモニア燃料と他の燃料(本例では炭素含有燃料)との供給量である。Qは、該混焼時に空気比が1となるための空気流量である。Amfは、上記混焼が行われるときの燃料(本例ではアンモニア燃料と炭素含有燃料)の理論空気量であり、Acarは、炭素含有燃料の理論空気量であり、ANH3はアンモニア燃料の理論空気量である。
(実施例)
 実施例では、火炉20に供給されるアンモニア燃料の理論空気量に対して、アンモニア燃料に供給されるアンモニア燃焼用空気量の比であるアンモニア空気比と、他の燃料の理論空気量に対して、他の燃料に供給される燃焼用空気量の比である他の燃料用空気比を燃料ごとに別々に算定する。
 アンモニア空気比(以降、アンモニアバーナ空気比ということもある)は、式(5)、式(6)より求められる。
 λNH3=QAir_NH3/Qx_NH3  ・・・式(5)
 Qx_NH3=QNH3×ANH3 ・・・式(6)
 ここで、式(5)のλNH3はアンモニア空気比であり、QAir_NH3はアンモニア燃焼用空気量であり、Qx_NH3は、アンモニア燃料の空気比が1となるための空気流量である。また、式(6)のQNH3はアンモニア燃料の供給量であり、ANH3はアンモニア燃料の理論空気量である。
 また、他の燃料として炭素含有燃料を例にすると、炭素含有燃料の空気比は式(7)、式(8)より求められる。
 λcar=QAir_car/Qx_car  ・・・式(7)
 Qx_car=Qcar×Acar ・・・式(8)
 ここで、式(7)のλcarは炭素含有燃料の空気比であり、QAir_carは炭素含有燃料の燃焼用空気量であり、Qx_carは、炭素含有燃料の空気比が1となるための空気流量である。また、式(8)のQcarは炭素含有燃料の供給量であり、Acarは炭素含有燃料の理論空気量である。
 本実施例の通り、アンモニア空気比λNH3と炭素含有燃料の空気比λcarをそれぞれ算定することで、個別に調整することができるようになる。例えば、アンモニアバーナ306と微粉炭バーナ302が用いられるボイラ2では(図3B参照)、アンモニアバーナ306の空気比について式(5)、(6)が適用され、微粉炭バーナ302の空気比について式(7)、(8)が適用される。換言するとこの場合、式(7)、式(8)で示される炭素含有燃料のパラメータは、いずれも微粉炭のパラメータとなる。
 これ以降は、空気比は本実施例に算定されたものを指す。
In general, the air ratio at the time of combustion has a great effect on the generation of nitrogen oxides when fuel containing nitrogen such as coal and ammonia is burned. Here, in the case of co-firing ammonia fuel and other fuel, as a comparative example, when one air ratio is calculated for the entire furnace, as an example, the air ratio is calculated for ammonia fuel and carbon-containing fuel as another fuel. The case of calculation will be explained below.
(Comparative example)
The air ratio of the comparative example is the ratio of the amount of air supplied to the furnace 20 to the theoretical amount of air required to burn the ammonia fuel and other fuels supplied to the furnace 20 . The amount of air supplied to the furnace 20 described above does not include additional air. In other words, in this example, the air ratio constituting the ammonia co-firing condition (details will be described later) is also a value obtained by multiplying the total air ratio by the supply ratio of the air other than the additional air in the total air supplied to the furnace 20 . Specifically, the air ratio (hereinafter sometimes referred to as the burner section air ratio) that constitutes the ammonia co-firing condition is defined by the following equation (1).
λ b = λ x (100-AA)/100 Equation (1)
In equation (1), λb is the burner section air ratio, λ is the total air ratio, and AA is the ratio of additional air supplied to the total amount of air supplied to the boiler 2 .
Also, the total air ratio (λ) is defined by equations (2), (3), and (4).
λ=Q Air /Q x Expression (2)
Q x = Q mf × A mf Expression (3)
A mf = (100−X)/100×A car +X/100×A NH3 Formula (4)
In equations (2)-(4), Q Air is the total air supply. Further, Q mf is the supply amount of ammonia fuel and other fuel (carbon-containing fuel in this example) when the combustion in the furnace 20 is ammonia co-firing (co-firing ratio in terms of weight: X%). be. Qx is the air flow rate for the air ratio to be 1 during co-firing. A mf is the theoretical air amount of the fuel (ammonia fuel and carbon-containing fuel in this example) when the above co-firing is performed, A car is the theoretical air amount of the carbon-containing fuel, and A NH3 is the amount of ammonia fuel. This is the theoretical air volume.
(Example)
In the embodiment, the ammonia air ratio, which is the ratio of the ammonia combustion air amount supplied to the ammonia fuel to the theoretical air amount of the ammonia fuel supplied to the furnace 20, and the theoretical air amount of the other fuel , other fuel air ratios, which are ratios of combustion air amounts supplied to other fuels, are calculated separately for each fuel.
The ammonia-air ratio (hereinafter also referred to as the ammonia burner-air ratio) is obtained from equations (5) and (6).
λ NH3 = Q Air_NH3 /Q x_NH3 Equation (5)
Q x_NH3 = Q NH3 x A NH3 Formula (6)
Here, λ NH3 in equation (5) is the ammonia air ratio, Q Air_NH3 is the ammonia combustion air amount, and Q x_NH3 is the air flow rate for the ammonia fuel air ratio to be 1. Also, Q NH3 in the equation (6) is the supply amount of ammonia fuel, and A NH3 is the theoretical air amount of the ammonia fuel.
Taking carbon-containing fuel as another fuel, the air ratio of carbon-containing fuel can be obtained from equations (7) and (8).
λcar = Qair_car / Qx_car Equation (7)
Q x_car = Q car x A car Equation (8)
Here, λ car in equation (7) is the air ratio of the carbon-containing fuel, Q Air_car is the amount of air for combustion of the carbon-containing fuel, and Q x_car is the air ratio of the carbon-containing fuel to be 1. is the air flow rate. Also, Q car in equation (8) is the supply amount of the carbon-containing fuel, and A car is the theoretical air amount of the carbon-containing fuel.
As in the present embodiment, by calculating the ammonia air ratio λ NH3 and the carbon-containing fuel air ratio λ car , they can be individually adjusted. For example, in the boiler 2 in which the ammonia burner 306 and the pulverized coal burner 302 are used (see FIG. 3B), the formulas (5) and (6) are applied for the air ratio of the ammonia burner 306, and the formula (7) and (8) apply. In other words, in this case, the parameters of the carbon-containing fuel expressed by equations (7) and (8) are both parameters of pulverized coal.
Henceforth, air ratios refer to those calculated in this example.
 一実施形態では、石炭バーナ302とアンモニアバーナ306を旋回燃焼ボイラの例である図3A~図3Cに示すように別置きにする(図3Aは、アンモニアバーナ306が設置される前の改造前ボイラを示す)。これにより、空気比を個別に調整が可能で、アンモニアの混焼率を上げても、石炭バーナの運用にかかわらずアンモニアの空気比を低減でき、NOxの急増を抑えられる。
 なお、本実施形態の石炭バーナ302は、石炭(微粉炭)を燃焼させるように構成される。以下の説明では、石炭バーナ302を微粉炭バーナ302という場合がある。
In one embodiment, coal burner 302 and ammonia burner 306 are separated as shown in FIGS. ). As a result, the air ratio can be adjusted individually, and even if the co-firing ratio of ammonia is increased, the air ratio of ammonia can be reduced regardless of the operation of the coal burner, suppressing a sharp increase in NOx.
In addition, the coal burner 302 of this embodiment is configured to burn coal (pulverized coal). In the following description, coal burner 302 may be referred to as pulverized coal burner 302 .
 一実施形態では、バーナ部空気比の上限値は、0.8以下である。バーナ部空気比が0.8以下の条件下で火炉20へのアンモニア燃料の供給が開始されれば、アンモニア燃料の燃焼開始時のバーナ部空気比も0.8以下となる。これにより、火炉20内で生成されるNOxが効果的に低減する。
 バーナ部空気比の上限値は、0.7以下であってもよい。この場合、空気比が0.7以下となる条件下でアンモニア燃料の燃焼が開始され、過剰なNOxの生成が抑制される。
 なお、火力発電プラントに用いられる一般的な体格を有するボイラ2では、バーナ部空気比が0.6未満になることは現実的ではない。従って、アンモニア燃料の供給開始前に充足されるべき条件であるアンモニア混焼条件を構成するバーナ部空気比は、好ましくは0.6以上かつ0.8以下であり、より好ましくは0.6以上かつ0.7以下である。
 なお、アンモニアバーナ306は複数設けられている場合は、各アンモニアバーナ306単位で、アンモニア空気比λNH3を算定するのが好ましい。後述する通りアンモニア空気比によってNOx発生量が大きく変化するため、バーナ単位でアンモニア空気比を厳密に算定し、アンモニア燃料、アンモニア燃焼用空気の供給量を制御できるようにするためである。
 石炭バーナ302も同様にNOx発生量を精度よく制御できるように、各石炭バーナ302単位で炭素含有燃料の空気比λcar(石炭空気比)を算定するのが好ましい。
In one embodiment, the upper limit of the burner section air ratio is 0.8 or less. If the supply of ammonia fuel to the furnace 20 is started under the condition that the burner air ratio is 0.8 or less, the burner air ratio at the start of combustion of the ammonia fuel is also 0.8 or less. This effectively reduces NOx generated in the furnace 20 .
The upper limit of the burner section air ratio may be 0.7 or less. In this case, combustion of the ammonia fuel is started under the condition that the air ratio is 0.7 or less, and excessive generation of NOx is suppressed.
In addition, in a boiler 2 having a general size used in a thermal power plant, it is not realistic for the burner section air ratio to be less than 0.6. Therefore, the burner part air ratio constituting the ammonia co-firing condition, which is a condition to be satisfied before starting the supply of ammonia fuel, is preferably 0.6 or more and 0.8 or less, more preferably 0.6 or more and 0.7 or less.
When a plurality of ammonia burners 306 are provided, it is preferable to calculate the ammonia air ratio λ NH3 for each ammonia burner 306 unit. As will be described later, the amount of NOx generated varies greatly depending on the ammonia air ratio, so the ammonia air ratio is strictly calculated for each burner so that the supply amounts of ammonia fuel and ammonia combustion air can be controlled.
It is preferable to calculate the carbon-containing fuel air ratio λ car (coal-air ratio) for each coal burner 302 so that the coal burner 302 can similarly control the amount of NOx generated with high accuracy.
 一実施形態のボイラ2の構成要素である制御装置5(図9参照)は、アンモニア空気比を、アンモニアバーナ306(図3B、図3C参照)から供給される空気量と、アンモニアバーナ306に隣接する補助空気ノズル303、305から供給される空気量とから計算する。補助空気ノズル303、305から供給される空気量は、アンモニア燃焼に寄与する空気量のみをアンモニア燃焼用空気量として計算し、例えば図3B、図3Cに示すように補助空気ノズル303が、アンモニアバーナ306と石炭バーナ302とに隣接して挟まれる場合、その空気量の半分をアンモニアバーナ用空気として計算する。
 NOx発生量が基準値より高い場合、アンモニアバーナ空気比を例えば0.7から0.6などに下げる制御を行う。図5Aに示すアンモニアバーナ空気比とNOxの発生量の例を示す。この試験結果ではアンモニアバーナ空気比の最適点は0.6である。アンモニアバーナ空気比を0.6より下げるとNOxは増加するので、0.6まで下げてもNOx発生量が下がらなかった場合、追加空気供給領域22と略同じ高さの火炉内空間である燃焼完結域まで未燃アンモニアが到達し、NOxに転換する。よって、アンモニアバーナ空気比を0.6に保ったまま、ボイラ2に投入する空気量全体に対する追加空気(アディショナルエア)量比率を低減して、燃焼完結域に到達する未燃アンモニア量を減らすことにより、燃焼完結域にて発生するNOxの低減を図る。
Controller 5 (see FIG. 9), which is a component of boiler 2 in one embodiment, adjusts the ammonia air ratio to the amount of air supplied from ammonia burner 306 (see FIGS. 3B and 3C) and the amount of air adjacent to ammonia burner 306. It is calculated from the amount of air supplied from the auxiliary air nozzles 303 and 305. Regarding the amount of air supplied from the auxiliary air nozzles 303 and 305, only the amount of air contributing to combustion of ammonia is calculated as the amount of air for combustion of ammonia. If it is sandwiched adjacent to 306 and coal burner 302, half the amount of air is calculated as ammonia burner air.
When the NOx generation amount is higher than the reference value, control is performed to lower the ammonia burner air ratio from 0.7 to 0.6, for example. FIG. 5A shows an example of the ammonia burner air ratio and the amount of NOx generated. In this test result, the optimal point for the ammonia burner air ratio is 0.6. If the ammonia burner air ratio is lowered below 0.6, the amount of NOx increases. Unburned ammonia reaches the completion zone and is converted to NOx. Therefore, while maintaining the ammonia burner air ratio at 0.6, the ratio of the amount of additional air to the total amount of air introduced into the boiler 2 is reduced to reduce the amount of unburned ammonia that reaches the combustion completion zone. This reduces NOx generated in the combustion completion zone.
 アンモニアバーナ306は、図3A~図3Cに示すように、石炭バーナ304の一部を置換して(改造して)設けられる。石炭バーナ304から噴射される微粉炭には、アンモニアバーナ306に隣接し、起動用燃料バーナ307が設置されている補助空気ノズル303から補助空気が供給される。この起動用燃料バーナ307が設置されている補助空気ノズル303は、アンモニアバーナ306の方向に供給できる補助空気の量(火炉12内に噴射されるアンモニア燃供給できる補助空気の量)を調整できるダンパーを備える。
 補助空気を供給する空気ノズル(補助空気ノズル)303が石炭バーナ302とアンモニアバーナ306に挟まれた構成の場合、同ノズルから供給する空気量を石炭バーナ302に最適な空気量に調整すると、アンモニアバーナ306の窒素酸化物を低減させるための空気量に対して過剰になる。逆に、アンモニアバーナのNOxを低減させるための空気量に調整すると、石炭バーナ302の最適な空気比から空気量が不足し、灰中未燃分の増加につながる。
 この点、本実施形態では、石炭バーナ302とアンモニアバーナ306に挟まれる補助空気ノズル303を、ボイラ2の改造に伴い上下に流路303Aと303Bに分割し、それぞれの流量をダンパーで制御可能とする(図3C、図4参照)。これにより、石炭バーナ302、アンモニアバーナ306向けの空気量をそれぞれ個別に調整可能とする。換言すると、石炭バーナ302から噴射される微粉炭に供給される空気量と、アンモニアバーナ306から噴射されるアンモニア燃料に供給される空気量とをそれぞれ個別に調整可能とする。石炭バーナ空気比は、0.7~0.9程度とする。
 補助空気ノズル303の流路303A、303Bからの空気流量を個別に調整可能とすることで、石炭バーナによる灰中未燃分増加の抑制と、アンモニアバーナによるNOx増大抑制が可能となる。また、石炭バーナ304をアンモニアバーナ306に改造することによって、既存の石炭専焼用のボイラ2をアンモニア燃料を燃焼させるボイラ2に変更することもできる。
 なお、図3のとおり石炭バーナ302に隣接してアンモニアバーナ306を配置することで、石炭燃焼による熱をアンモニア燃焼に活用でき、アンモニアを安定燃焼することができる。
 また、アンモニアバーナ306に供給されるアンモニアの供給量と、燃焼用空気の供給量とに基づいて、ボイラ2から排出される燃焼ガスに含まれるNOxの生成量を計算し、計算結果に応じて第一基準範囲を設定してもよい。あるいは、ボイラ2に設けられるNOx濃度を計測する計測装置の計測結果に基づき、第一基準範囲を設定してもよい。
Ammonia burner 306 replaces (modifies) a portion of coal burner 304 as shown in FIGS. 3A-3C. Pulverized coal injected from the coal burner 304 is supplied with auxiliary air from an auxiliary air nozzle 303 adjacent to the ammonia burner 306 and having a starting fuel burner 307 installed therein. The auxiliary air nozzle 303 in which the starting fuel burner 307 is installed is a damper that can adjust the amount of auxiliary air that can be supplied in the direction of the ammonia burner 306 (the amount of auxiliary air that can be supplied to ammonia fuel injected into the furnace 12). Prepare.
When an air nozzle (auxiliary air nozzle) 303 that supplies auxiliary air is sandwiched between the coal burner 302 and the ammonia burner 306, adjusting the amount of air supplied from the nozzle to the optimum air amount for the coal burner 302 results in The amount of air to reduce nitrogen oxides in burner 306 is in excess. Conversely, if the air amount is adjusted to reduce the NOx of the ammonia burner, the air amount becomes insufficient from the optimum air ratio of the coal burner 302, leading to an increase in unburned ash.
In this regard, in the present embodiment, the auxiliary air nozzle 303 sandwiched between the coal burner 302 and the ammonia burner 306 is divided vertically into flow paths 303A and 303B along with modification of the boiler 2, and the respective flow rates can be controlled by dampers. (See FIGS. 3C and 4). Thereby, the air amounts for the coal burner 302 and the ammonia burner 306 can be individually adjusted. In other words, the amount of air supplied to the pulverized coal injected from the coal burner 302 and the amount of air supplied to the ammonia fuel injected from the ammonia burner 306 can be individually adjusted. The coal burner air ratio is about 0.7 to 0.9.
By making it possible to individually adjust the air flow rates from the flow paths 303A and 303B of the auxiliary air nozzle 303, it is possible to suppress the increase of unburned components in the ash by the coal burner and to suppress the increase of NOx by the ammonia burner. Further, by modifying the coal burner 304 to an ammonia burner 306, the existing boiler 2 exclusively for burning coal can be changed to a boiler 2 that burns ammonia fuel.
By arranging the ammonia burner 306 adjacent to the coal burner 302 as shown in FIG. 3, the heat of coal combustion can be utilized for ammonia combustion, and ammonia can be stably burned.
Further, based on the amount of ammonia supplied to the ammonia burner 306 and the amount of combustion air supplied, the amount of NOx generated in the combustion gas discharged from the boiler 2 is calculated, and depending on the calculation result, A first reference range may be set. Alternatively, the first reference range may be set based on the measurement results of a measuring device that measures the NOx concentration provided in the boiler 2 .
 本発明の少なくとも一実施形態に係るボイラ2は、図6A~図6Cに示すように起動用燃料を燃焼させる起動用燃料バーナ307を有し、前記アンモニアバーナ306は、起動用燃料バーナ307の一部を置換して(改造して)設けることができる。当該アンモニアバーナ306は、アンモニアを噴射するアンモニアノズル306Aを含む。アンモニアノズル306Aは、起動用燃料(具体的な一例として油)を噴射する起動用燃料ノズルとしても機能する。ボイラ2の起動時には、アンモニアノズル306Aは起動用燃料を噴射し、その後、アンモニア混焼条件が充足されたことに応じてアンモニアを噴射する。なお、他の実施形態では、起動用燃料ノズルは、アンモニアノズル306Aとは別のノズルとして構成され、且つ、アンモニアノズル306Aと同一コンパートメント内に設けられてもよい。
 起動用燃料バーナ307をアンモニアバーナ306に改造した場合、石炭バーナ302、304に隣接する片側の空気ノズル303が無くなり、石炭バーナ302向けの補助空気量を十分に確保できなくなる。
 このためアンモニアバーナ306に対して反対側の補助空気ノズル301、305からの空気量をそれぞれ増加させることにより、石炭バーナ302、304の空気比を適正値である0.7~0.9とする。本実施形態では、アンモニアバーナ306から供給される空気のみを、アンモニア空気比の計算に用いる。
 石炭バーナ302、304の空気比適正化により、石炭バーナ302、304での灰中未燃分増加の抑制ができる。
The boiler 2 according to at least one embodiment of the present invention has a starting fuel burner 307 that burns starting fuel as shown in FIGS. 6A to 6C, and the ammonia burner 306 is one of the starting fuel burners 307. It can be provided by replacing (modifying) the part. The ammonia burner 306 includes an ammonia nozzle 306A that injects ammonia. The ammonia nozzle 306A also functions as a start-up fuel nozzle that injects start-up fuel (oil as a specific example). When starting the boiler 2, the ammonia nozzle 306A injects starting fuel, and then injects ammonia when the ammonia co-firing condition is satisfied. Note that, in other embodiments, the starting fuel nozzle may be configured as a nozzle separate from the ammonia nozzle 306A and provided in the same compartment as the ammonia nozzle 306A.
If the starting fuel burner 307 is modified to the ammonia burner 306, the air nozzle 303 on one side adjacent to the coal burners 302 and 304 is eliminated, and a sufficient amount of auxiliary air for the coal burner 302 cannot be secured.
Therefore, by increasing the amount of air from the auxiliary air nozzles 301 and 305 on the opposite side to the ammonia burner 306, the air ratio of the coal burners 302 and 304 is set to an appropriate value of 0.7 to 0.9. . In this embodiment, only the air supplied from the ammonia burner 306 is used for calculating the ammonia air ratio.
By optimizing the air ratio of the coal burners 302 and 304, it is possible to suppress an increase in the unburned content in the ash in the coal burners 302 and 304.
 本発明の少なくとも一実施形態に係るボイラ2は、図7A、図7Bに示すように補助空気を供給する複数の補助空気ノズル301、305を有し、アンモニアバーナ306は、前記補助空気ノズル301、305の一部を置換して設ける。図7Bの例では、補助空気ノズル305を置換してアンモニアバーナ306が設けられる。
 起動用燃料バーナ307の改造の場合と同様に、石炭バーナ304の片側の補助空気ノズル305がなくなることで、石炭バーナ304の空気量が不足する。また、補助空気ノズル305のコンパートメント高さが低い場合は、保炎器付きのアンモニアバーナ306を取り付けることが困難である。
 石炭バーナ304に隣接するアンモニアバーナ306と反対側の起動用燃料バーナ307が設置されているノズルを補助空気ノズル303として用いこの空気量を増加させる事により、所定の空気量になるよう調節する。この際、図7Bで示される石炭バーナ304では補助空気ノズル303が片側になるが、上側の石炭バーナ302は上下に補助空気ノズル301、303がある事から、起動用油バーナの空気流路を上下に流路303A、303Bに分割し、下側の流路303Bのみ空気量を増加できるよう、それぞれの流量をダンパーにて制御可能とし、石炭バーナ304の空気比をそれぞれ最適化できることで、灰中未燃分の増加を抑制できる。
 改造前のボイラ2において、補助空気ノズル305が設置されている風箱高さが、石炭バーナ302や起動用燃料バーナ307の高さに比べて低い場合は、保炎器無しで風箱高さが低いアンモニアバーナ306を設置する。例えば図13の予混合型のスパッドノズル等を用いる。
A boiler 2 according to at least one embodiment of the present invention has a plurality of auxiliary air nozzles 301 and 305 for supplying auxiliary air as shown in FIGS. A part of 305 is replaced and provided. In the example of FIG. 7B, an ammonia burner 306 is provided to replace the auxiliary air nozzle 305 .
As with the modification of the starter fuel burner 307, the loss of the auxiliary air nozzle 305 on one side of the coal burner 304 causes the coal burner 304 to run out of air. Also, if the compartment height of the auxiliary air nozzle 305 is low, it is difficult to install the ammonia burner 306 with a flame stabilizer.
A nozzle in which an ammonia burner 306 adjacent to the coal burner 304 and a starting fuel burner 307 on the opposite side are installed is used as an auxiliary air nozzle 303, and the amount of air is increased to adjust to a predetermined air amount. At this time, the coal burner 304 shown in FIG. 7B has the auxiliary air nozzle 303 on one side, but the coal burner 302 on the upper side has the auxiliary air nozzles 301 and 303 on the upper and lower sides. It is divided into flow paths 303A and 303B vertically, and each flow rate can be controlled by a damper so that the air amount can be increased only in the lower flow path 303B, and the air ratio of the coal burner 304 can be optimized. It is possible to suppress an increase in medium unburned fuel.
In the boiler 2 before modification, if the height of the windbox where the auxiliary air nozzle 305 is installed is lower than the height of the coal burner 302 and the starting fuel burner 307, the height of the windbox without the flame stabilizer A low ammonia burner 306 is installed. For example, a premixed spud nozzle or the like shown in FIG. 13 is used.
 本発明の少なくとも一実施形態に係るボイラ2では、図8A、図8Bに示すように、バーナ配置領域21の最上段に位置する前記補助空気ノズル301を置換して(改造して)、アンモニアバーナ306は設けられる。アンモニアバーナ306は、石炭バーナ302と隣接して設けられる。
 補助空気ノズル305にアンモニアバーナ306を設置する前例と同じく石炭バーナ302の片側の補助空気ノズル301がなくなることで、石炭バーナ302の空気量が不足する。また、補助空気ノズル301のコンパートメント高さが低い場合は、保炎器付きのアンモニアバーナ306を取り付けることが困難である。起動用燃料バーナ307の空気流路を流路303A、303Bに上下に分割し、流路303A、303Bを個別に制御可能とする事と、風箱高さが低い場合は、保炎器無しで風箱高さが低いアンモニアノズルである部分予混合ノズル(図13参照)を設置する。
 この場合、アンモニアを燃料としてだけではなく、脱硝剤としての利用も可能となる。
In the boiler 2 according to at least one embodiment of the present invention, as shown in FIGS. 8A and 8B, the auxiliary air nozzle 301 located at the uppermost stage of the burner arrangement area 21 is replaced (remodeled) to replace the ammonia burner. 306 is provided. Ammonia burner 306 is provided adjacent to coal burner 302 .
As in the previous example in which the ammonia burner 306 is installed in the auxiliary air nozzle 305, the amount of air in the coal burner 302 becomes insufficient due to the absence of the auxiliary air nozzle 301 on one side of the coal burner 302. Moreover, when the compartment height of the auxiliary air nozzle 301 is low, it is difficult to attach the ammonia burner 306 with a flame stabilizer. The air flow path of the starting fuel burner 307 is divided vertically into flow paths 303A and 303B so that the flow paths 303A and 303B can be individually controlled. Install a partial premix nozzle (see Figure 13) which is an ammonia nozzle with a low windbox height.
In this case, ammonia can be used not only as a fuel but also as a denitration agent.
 前記実施例に使用するバーナは拡散燃焼型バーナまたは部分予混合燃焼型バーナ(スパッドバーナとも呼ぶ)を用いる。拡散燃焼バーナでは保炎器としてスワラー型、ディフューザ型を用いることができる。図13に部分予混合スパッドバーナの構造図の例を、図14にディフューザバーナの構造図の例を、図15にスワラーバーナの構造図の例をしめす。
 図13にスパッドバーナの例を示す。スパッドバーナは、風箱131の内部にアンモニアを供給するノズル132と外筒133から構成されている。燃焼用空気は風箱131から供給され、風箱131の上流側に流量調整用のダンパーが設置されている。アンモニアは外筒133内部に噴射され、ノズル132と外筒133の隙間から流入した燃焼用空気と予混合されながら炉内に噴射される。アンモニアは炉内の高温のガスによって着火に適した空気量と混合された時点で自然着火する。アンモニアと空気が一部予混合しているため、ノズル全体の吹き出し流速と予混合したアンモニアと空気の燃焼速度が一致した点に着火点が形成される。
 図14にディフューザバーナの構造図の例を示す。風箱141の内部にアンモニアノズル142と円板状の保炎器143(ディフューザと呼ぶ)をアンモニアノズル142の先端に設置する。アンモニアはアンモニアノズル142に設置された複数の穴142Aから噴射される(図には2つの穴142Aを示す)。燃焼空気は風箱141から供給され、上流側には流量を調整するダンパーが設置されている。燃焼用空気は保炎器143の周囲を加速されて流れるために、円板の保炎器143の外周部に渦ができる。この渦にアンモニアが巻き込まれ空気と混合して着火するために、着火点は保炎器143上に形成される。
 図15にスワラーバーナの構造図の例を示す。風箱151の内部にアンモニアノズル152と旋回羽根を有する保炎器153(スワラーと呼ぶ)をアンモニアノズル152の先端に設置する。アンモニアはアンモニアノズル152に設置された複数の穴152Aから噴射される(図には2つの穴152Aを示す)。燃焼用空気は風箱151から供給され、上流側には流量を調整するダンパーが設置されている。燃焼用空気は保炎器153を通過する際に旋回羽根によって旋回流となってアンモニアノズル152の外周を流れる。旋回流によって循環流が旋回流の内部に発生するためにアンモニアと循環流が混合し、着火する。このため、アンモニア火炎の着火点が保炎器153の後流側近傍に形成される。
A diffusion combustion burner or a partially premixed combustion burner (also called a spud burner) is used as the burner used in the above embodiment. In a diffusion combustion burner, a swirler type or a diffuser type can be used as a flame stabilizer. FIG. 13 shows an example of a structural drawing of a partially premixed spud burner, FIG. 14 shows an example of a structural drawing of a diffuser burner, and FIG. 15 shows an example of a structural drawing of a swirler burner.
FIG. 13 shows an example of a spud burner. The spud burner is composed of a nozzle 132 for supplying ammonia to the inside of the wind box 131 and an outer cylinder 133 . Combustion air is supplied from a wind box 131 , and a damper for flow rate adjustment is installed upstream of the wind box 131 . Ammonia is injected into the outer cylinder 133 and injected into the furnace while being premixed with the combustion air that flows in from the gap between the nozzle 132 and the outer cylinder 133 . Ammonia spontaneously ignites when it is mixed with an ignitable amount of air by the hot gases in the furnace. Since ammonia and air are partially premixed, the ignition point is formed at the point where the blowing flow rate of the entire nozzle coincides with the combustion rate of the premixed ammonia and air.
FIG. 14 shows an example of a structural drawing of a diffuser burner. An ammonia nozzle 142 and a disk-shaped flame stabilizer 143 (called a diffuser) are installed at the tip of the ammonia nozzle 142 inside the wind box 141 . Ammonia is injected from a plurality of holes 142A provided in an ammonia nozzle 142 (two holes 142A are shown in the figure). Combustion air is supplied from a wind box 141, and a damper for adjusting the flow rate is installed on the upstream side. Since the combustion air flows around the flame stabilizer 143 at an accelerated rate, a vortex is formed on the outer circumference of the disk-shaped flame stabilizer 143 . An ignition point is formed on the flame stabilizer 143 because ammonia is caught in this vortex and mixed with air to ignite.
FIG. 15 shows an example of a structural drawing of a swirler burner. An ammonia nozzle 152 and a flame stabilizer 153 (referred to as a swirler) having swirl vanes are installed inside the wind box 151 at the tip of the ammonia nozzle 152 . Ammonia is injected from a plurality of holes 152A provided in the ammonia nozzle 152 (two holes 152A are shown in the figure). Combustion air is supplied from a wind box 151, and a damper for adjusting the flow rate is installed on the upstream side. When the combustion air passes through the flame stabilizer 153 , it turns into a swirling flow by the swirl vanes and flows around the ammonia nozzle 152 . A circulating flow is generated inside the swirling flow, and the ammonia and the circulating flow are mixed and ignited. Therefore, the ignition point of the ammonia flame is formed near the downstream side of the flame stabilizer 153 .
 図16は、本発明のボイラ改造方法を示すフローチャートである。図3C、図6C、図7B、図8Bを用いて既述した通り、改造前のボイラ2は、微粉炭バーナ302と、微粉炭、例えば油であってもよい起動用燃料、または補助空気を噴射する複数の噴射部とを備える。各噴射部は、石炭バーナ304、起動用燃料バーナ307、または補助空気ノズル301、303である。そして、図16で示すS11は、この噴射部をアンモニアバーナ306に置換する工程を示す。S11が実行されることにより、例えば石炭専焼が行える既存のボイラ2を、アンモニア燃料を燃焼させるためのボイラ2に改造することができる。 FIG. 16 is a flow chart showing the boiler modification method of the present invention. As already described with reference to FIGS. 3C, 6C, 7B, and 8B, the boiler 2 before modification includes a pulverized coal burner 302 and a pulverized coal burner 302, a starting fuel, which may be pulverized coal, such as oil, or auxiliary air. and a plurality of injection parts for injecting. Each jet is a coal burner 304, a starting fuel burner 307, or an auxiliary air nozzle 301,303. Then, S11 shown in FIG. 16 shows the step of replacing this injection part with the ammonia burner 306. FIG. By executing S11, for example, an existing boiler 2 capable of burning only coal can be modified into a boiler 2 for burning ammonia fuel.
 一実施形態に係るボイラ制御方法(図10B参照)は、火炉壁19を含む火炉20と、前記火炉壁19に設けられ、アンモニア燃料を燃焼させるアンモニアバーナ306と、前記火炉壁19の前記アンモニアバーナ306とは異なる位置に設けられ、微粉炭を燃焼させる微粉炭バーナ302、304と、を含むボイラ2において、前記アンモニア燃料、前記微粉炭および燃焼用空気の供給量を制御するボイラ制御方法であって、前記アンモニア燃料を燃焼させるために必要な理論空気量に対して、前記アンモニア燃料に供給されるアンモニア燃焼用空気量の比であるアンモニア空気比を算定する第一算定ステップ(S10-1)と、前記微粉炭を燃焼させるために必要な理論空気量に対して、前記微粉炭に供給される微粉炭燃焼用空気量の比である微粉炭空気比を算定する第二算定ステップ(S10-2)と、前記アンモニア空気比が第一基準範囲を満たすように、かつ前記微粉炭空気比が第二基準範囲を満たすように前記供給量を制御する制御ステップ(S10-3)とを有する。
 アンモニア空気比の第一基準範囲の上限値は、微粉炭空気比の第二基準範囲の上限値よりも小さく設定するのが好ましい。NOx排出量最小化のための空気比の最適値はアンモニア燃料の場合0.6程度であり、微粉炭の場合(通常0.7~0.8程度)よりも小さい。当該最適値を参照して、基準範囲の上限値を設定することで、NOx排出量を最小化しやすくなる。
A boiler control method according to one embodiment (see FIG. 10B) includes a furnace 20 including a furnace wall 19, an ammonia burner 306 provided on the furnace wall 19 for burning ammonia fuel, and the ammonia burner on the furnace wall 19. In a boiler 2 including pulverized coal burners 302 and 304 that are provided at positions different from 306 and burn pulverized coal, a boiler control method for controlling the supply amounts of the ammonia fuel, the pulverized coal, and combustion air. A first calculation step (S10-1) of calculating an ammonia air ratio, which is a ratio of the amount of ammonia combustion air supplied to the ammonia fuel to the theoretical amount of air required to burn the ammonia fuel. and a second calculation step (S10- 2) and a control step (S10-3) of controlling the supply amount so that the ammonia air ratio satisfies the first reference range and the pulverized coal air ratio satisfies the second reference range.
The upper limit of the first reference range for the ammonia-air ratio is preferably set smaller than the upper limit of the second reference range for the pulverized coal-air ratio. The optimum air ratio for minimizing NOx emissions is about 0.6 for ammonia fuel, which is smaller than that for pulverized coal (usually about 0.7 to 0.8). By referring to the optimum value and setting the upper limit of the reference range, it becomes easier to minimize the NOx emissions.
 図9は、一実施形態に係るボイラ運転システム1の具体的な構成である。ボイラ運転システム1は、既述のボイラ2、供給システム15、及び計測システム9に加えて、ボイラ2の運転を制御するための制御装置5を備える。
 一実施形態の制御装置5は、プロセッサ91、ROM92、RAM93、及びメモリ94を含む。
 プロセッサ91は、ROM92に記憶されるボイラ運転プログラムを読み出してRAM93にロードし、ボイラ運転プログラムに含まれる命令を実行するように構成される。プロセッサ91は、CPU、GPU、MPU、DSP、これら以外の各種演算装置、又はこれらの組み合わせである。プロセッサ91は、PLD、ASIC、FPGA、及びMCU等の集積回路により実現されてもよい。メモリ94は、ボイラ運転プログラムの実行に伴い各種データが記憶される。メモリ94は一例としてフラッシュメモリである。プロセッサ91は、供給システム15と計測システム9とに電気的に接続されている。
 一実施形態のプロセッサ91は、アンモニア燃料以外の他の燃料を火炉20内で燃焼させるための他燃料燃焼指令と、アンモニア燃料の供給を供給システム15に開始させるためのアンモニア供給開始指令と、アンモニアの専焼を火炉20内で開始させるためのアンモニア専焼開始指令とを生成するように構成される。一実施形態では、これらの制御指令は供給システム15に送られる。
 一実施形態のプロセッサ91は、アンモニア混焼を開始するためのアンモニア混焼条件が満たされると計測システム9の計測結果に基づき判定した場合、アンモニア供給開始指令を生成する。また、一実施形態のプロセッサ91は、アンモニア専焼を開始するためのアンモニア専焼条件が満たされると判定した場合、アンモニア専焼指令を開始する。アンモニア専焼条件は、例えば、火炉20内の代表温度が規定の温度に到達したこと、アンモニア混焼が開始されてから規定時間が経過したこと、オペレータから規定の入力操作があったのち所定の設定値に到達したこと、またはこれらの組み合わせなどである。
FIG. 9 shows a specific configuration of the boiler operating system 1 according to one embodiment. The boiler operation system 1 includes a controller 5 for controlling the operation of the boiler 2 in addition to the boiler 2 , supply system 15 and measurement system 9 already described.
The controller 5 of one embodiment includes a processor 91 , ROM 92 , RAM 93 and memory 94 .
The processor 91 is configured to read the boiler operating program stored in the ROM 92, load it into the RAM 93, and execute the instructions contained in the boiler operating program. The processor 91 is a CPU, GPU, MPU, DSP, various arithmetic devices other than these, or a combination thereof. Processor 91 may be implemented by an integrated circuit such as PLD, ASIC, FPGA, and MCU. The memory 94 stores various data as the boiler operation program is executed. The memory 94 is flash memory as an example. Processor 91 is electrically connected to supply system 15 and measurement system 9 .
The processor 91 of one embodiment includes a different fuel combustion command for burning a fuel other than ammonia fuel in the furnace 20, an ammonia supply start command for causing the supply system 15 to start supplying the ammonia fuel, and an ammonia is configured to generate an ammonia mono-firing start command for starting mono-firing of the ammonia in the furnace 20. In one embodiment, these control commands are sent to delivery system 15 .
The processor 91 of one embodiment generates an ammonia supply start command when determining based on the measurement result of the measurement system 9 that the ammonia co-firing conditions for starting the ammonia co-firing are satisfied. In addition, when the processor 91 of one embodiment determines that the ammonia mono-firing condition for starting ammonia mono-firing is satisfied, the processor 91 initiates an ammonia mono-firing command. The ammonia single-firing conditions are, for example, that the representative temperature in the furnace 20 has reached a specified temperature, that a specified time has elapsed since the start of ammonia co-combustion, and that a specified set value has been set after a specified input operation has been performed by the operator. or a combination of these.
 供給システム15は、1次空気を供給するための1次空気供給システム110、追加空気を供給するための追加空気供給システム120、液体アンモニアを供給するためのアンモニア供給システム100、油を供給するための油供給システム80、及び、微粉炭を供給するための微粉炭供給システム70を備える。油供給システム80と微粉炭供給システム70は各々、炭素含有燃料を供給するためのシステムの一例である。
 1次空気、液体アンモニア、微粉炭、及び油はバーナユニット30に供給され、追加空気は火炉壁19に設けられた追加空気供給部4に供給される。上記供給システム15は、制御装置5によって制御されるように構成される。
The supply system 15 includes a primary air supply system 110 for supplying primary air, an additional air supply system 120 for supplying additional air, an ammonia supply system 100 for supplying liquid ammonia, and an oil supply system. and a pulverized coal supply system 70 for supplying pulverized coal. Oil supply system 80 and pulverized coal supply system 70 are each an example of a system for supplying carbon-containing fuel.
Primary air, liquid ammonia, pulverized coal and oil are supplied to the burner unit 30 and additional air is supplied to the additional air supply 4 provided in the furnace wall 19 . The supply system 15 is arranged to be controlled by the controller 5 .
 1次空気供給システム110の空気供給ライン112は全てのバーナユニット30に接続される。空気供給ライン112には、1次空気の流量を調整するための流量調整弁116、及び空気供給ライン112の連通状態を切り替えるための切替弁118が設けられる。
 追加空気供給システム120の空気供給ライン122は追加空気供給部4に接続される。空気供給ライン122には、追加空気の流量を調整するための流量調整弁126、及び空気供給ライン122の連通状態を切り替えるための切替弁128が設けられる。
 流量調整弁116、126と切替弁118、128は、制御装置5から送られる制御指令に応じて作動するように構成される。
An air supply line 112 of the primary air supply system 110 is connected to all burner units 30 . The air supply line 112 is provided with a flow control valve 116 for adjusting the flow rate of the primary air and a switching valve 118 for switching the communication state of the air supply line 112 .
An air supply line 122 of the additional air supply system 120 is connected to the additional air supply 4 . The air supply line 122 is provided with a flow control valve 126 for adjusting the flow rate of the additional air and a switching valve 128 for switching the communication state of the air supply line 122 .
The flow control valves 116 , 126 and switching valves 118 , 128 are configured to operate according to control commands sent from the control device 5 .
 アンモニア供給システム100は、既述のアンモニアバーナ306と、液体アンモニアが貯留されるアンモニアタンク101と、アンモニアタンク101とアンモニアバーナ306とをつなぐアンモニア供給ライン102と、アンモニア供給ライン102に設けられたポンプ103と、アンモニア供給ライン102の圧力を調整するための圧力調整弁105と、アンモニア供給ライン102に設けられると共にアンモニアタンク101とアンモニアバーナ306との連通状態を切り替えるための切替弁107と、アンモニア供給ライン102を流れる液体アンモニアの流量を調整するための流量調整弁108と、を備える。
 圧力調整弁105、切替弁107、及び流量調整弁108はプロセッサ91からの制御指令に応じて作動するように構成される。これにより、アンモニア供給システム100は、いずれのアンモニアバーナ306も液体アンモニアを供給しない供給停止状態と、全てのアンモニアバーナ306に液体アンモニアを供給する供給状態との間で変化できる。後述のように、アンモニア供給システム100が供給停止状態のとき、第2バーナユニット32と第3バーナユニット33のアンモニアバーナ306には、油供給システム80から油が供給される。
The ammonia supply system 100 includes the above-described ammonia burner 306, an ammonia tank 101 in which liquid ammonia is stored, an ammonia supply line 102 connecting the ammonia tank 101 and the ammonia burner 306, and a pump provided in the ammonia supply line 102. 103, a pressure regulating valve 105 for regulating the pressure of the ammonia supply line 102, a switching valve 107 provided in the ammonia supply line 102 for switching the state of communication between the ammonia tank 101 and the ammonia burner 306, and ammonia supply. and a flow control valve 108 for regulating the flow rate of liquid ammonia flowing through the line 102 .
The pressure control valve 105 , switching valve 107 and flow control valve 108 are configured to operate according to control instructions from the processor 91 . Thereby, the ammonia supply system 100 can change between a supply stop state in which none of the ammonia burners 306 supply liquid ammonia and a supply state in which all the ammonia burners 306 are supplied with liquid ammonia. As will be described later, when the ammonia supply system 100 is in a supply stop state, oil is supplied from the oil supply system 80 to the ammonia burners 306 of the second burner unit 32 and the third burner unit 33 .
 一実施形態の油供給システム80は、油供給装置81、油供給装置81とアンモニアバーナ306とをつなぐ油供給ライン82、油供給ライン82を流れる油の流量を調整するための油流量調整弁86、及び、油供給ライン82の連通状態を切り替えるための切替弁88を備える。本例の油供給ライン82は、第2バーナユニット32と第3バーナユニット33の各々のアンモニアバーナ306に接続される。
 一実施形態では、油供給装置81、油流量調整弁86、及び切替弁88は、制御装置5からの制御指令に応じて作動するように構成される。これにより、油供給システム80は、油供給ライン82に接続されたアンモニアバーナ306に油を供給する供給状態と、油の供給を停止する供給停止状態との間で変化できる。
 なお、他の実施形態では、油供給ライン82は、油を噴射するための起動用燃料バーナ37と接続されてもよい。また、油供給ライン82は、アトマイズ蒸気が流入するように構成されてもよい。この場合、油とアトマイズ蒸気がバーナユニット30に供給される。
The oil supply system 80 of one embodiment includes an oil supply device 81, an oil supply line 82 connecting the oil supply device 81 and the ammonia burner 306, and an oil flow control valve 86 for adjusting the flow rate of the oil flowing through the oil supply line 82. , and a switching valve 88 for switching the communication state of the oil supply line 82 . The oil supply line 82 of this example is connected to the ammonia burner 306 of each of the second burner unit 32 and the third burner unit 33 .
In one embodiment, the oil supply device 81 , the oil flow control valve 86 and the switching valve 88 are configured to operate according to control commands from the control device 5 . Thereby, the oil supply system 80 can change between a supply state in which oil is supplied to the ammonia burner 306 connected to the oil supply line 82 and a supply stop state in which the oil supply is stopped.
Note that in another embodiment, the oil supply line 82 may be connected to the starting fuel burner 37 for injecting oil. Also, the oil supply line 82 may be configured to receive atomized vapor. In this case oil and atomized steam are supplied to the burner unit 30 .
 一実施形態の微粉炭供給システム70は、搬送ガスを用いて微粉炭を供給するための微粉炭供給装置71、微粉炭供給装置71とバーナユニット30とをつなぐ微粉炭供給ライン72、微粉炭供給ライン72を流れる微粉炭の流量を調整するための微粉炭流量調整弁76、及び、微粉炭供給ライン72の連通状態を切り替えるための切替弁78を備える。本例の微粉炭供給ライン72は、第1バーナユニット31、第2バーナユニット32、及び第3バーナユニット33に接続される。
 微粉炭供給装置71、微粉炭流量調整弁76、及び切替弁78は、制御装置5からの制御指令に応じて作動するように構成される。これにより、微粉炭供給システム70は、微粉炭の供給を停止する供給停止状態と、微粉炭をバーナユニット30に供給する供給状態との間で変化できる。微粉炭供給システム70が供給状態のとき、既述の微粉炭バーナ302、304に微粉炭が供給される。
A pulverized coal supply system 70 of one embodiment includes a pulverized coal supply device 71 for supplying pulverized coal using a carrier gas, a pulverized coal supply line 72 connecting the pulverized coal supply device 71 and the burner unit 30, and pulverized coal supply. A pulverized coal flow control valve 76 for adjusting the flow rate of pulverized coal flowing through the line 72 and a switching valve 78 for switching the communication state of the pulverized coal supply line 72 are provided. The pulverized coal supply line 72 of this example is connected to the first burner unit 31 , the second burner unit 32 and the third burner unit 33 .
The pulverized coal supply device 71 , the pulverized coal flow rate adjustment valve 76 and the switching valve 78 are configured to operate according to control commands from the control device 5 . Thereby, the pulverized coal supply system 70 can change between a supply stop state in which the pulverized coal supply is stopped and a supply state in which the pulverized coal is supplied to the burner unit 30 . When the pulverized coal supply system 70 is in the supply state, pulverized coal is supplied to the pulverized coal burners 302 and 304 described above.
 計測システム9は、1次空気供給システム110によって供給される1次空気の流量を計測するための空気流量計114、追加空気供給システム120によって供給される追加空気の流量を計測するための空気流量計124、アンモニア供給システム100によって供給されるアンモニア燃料の流用を計測するためのアンモニア流量計109、油供給システム80によって供給される油の流量を計測するための油流量計84、微粉炭供給システム70によって供給される微粉炭の流量を計測するための微粉炭流量計74、及び既述の火炉温度計6を含む。
 これらの流量計は計測結果をプロセッサ91に送るように構成される。
The measurement system 9 includes an air flow meter 114 for measuring the flow rate of primary air supplied by the primary air supply system 110, and an air flow rate meter 114 for measuring the flow rate of additional air supplied by the additional air supply system 120. meter 124, an ammonia flow meter 109 for measuring the diversion of ammonia fuel supplied by the ammonia supply system 100, an oil flow meter 84 for measuring the flow rate of oil supplied by the oil supply system 80, and a pulverized coal supply system. It includes a pulverized coal flow meter 74 for measuring the flow rate of pulverized coal supplied by 70 and the furnace thermometer 6 already mentioned.
These flow meters are configured to send measurement results to processor 91 .
 ボイラ運転システム1は、プロセッサ91から送られる制御指令によって、例えば、図10Aで示すフローチャートのように作動する。
 はじめに、プロセッサ91から供給システム15に他燃料燃焼指令が送られる(S51)。これにより、1次空気供給システム110と追加空気供給システム120が各々、空気を供給する。このとき、アンモニア供給システム100は供給停止状態であり、油供給システム80と微粉炭供給システム70はいずれも供給状態である。従って、バーナユニット30には油と微粉炭が供給される。このとき、第1バーナユニット31のアンモニアバーナ306は停止しており、第2バーナユニット32と第3バーナユニット33のアンモニアバーナ306は油を噴射する。火炉12の内部では、油と微粉炭が燃焼する。
 その後、アンモニア混焼条件が満たされたことに応じて(S53:YES)、プロセッサ91から供給システム15にアンモニア供給開始指令が送られる(S55)。油供給システム80は供給停止状態に変化し、アンモニア供給システム100は供給状態に変化する。これにより、第1バーナユニット31は液体アンモニアを噴射し、第2バーナユニット32と第3バーナユニット33から噴射される燃料は油から液体アンモニアに切り替わる。微粉炭供給システム70は供給状態を維持する。結果、ボイラ2ではアンモニアと微粉炭との混焼が行われる。
 その後、アンモニア専焼条件が満たされたことに応じて(S57:YES)、制御装置5は供給システム15にアンモニア専焼指令を送る(S59)。微粉炭供給システム70は供給停止状態に変化し、石炭バーナとして機能していたバーナは停止する。また、アンモニア供給システム100は液体アンモニアの供給量を増やす。結果、ボイラ2ではアンモニアの専焼が行われる。
 なお、他の実施形態では、プロセッサ91から他燃料燃焼指令を受信した供給システム15は、はじめに油をバーナユニット30に供給してから、油及び微粉炭をバーナユニット30に供給してもよい。また、アンモニア供給開始指令が供給システム15に送られた後、アンモニア燃料と油との混焼が行われてもよいし、アンモニア燃料、微粉炭、及び油の混焼が行われてもよい。
The boiler operating system 1 operates according to control commands sent from the processor 91, for example, as shown in the flowchart of FIG. 10A.
First, the processor 91 sends another fuel combustion command to the supply system 15 (S51). Thereby, the primary air supply system 110 and the additional air supply system 120 each supply air. At this time, the ammonia supply system 100 is in a supply stop state, and both the oil supply system 80 and the pulverized coal supply system 70 are in a supply state. Therefore, the burner unit 30 is supplied with oil and pulverized coal. At this time, the ammonia burner 306 of the first burner unit 31 is stopped, and the ammonia burners 306 of the second burner unit 32 and the third burner unit 33 inject oil. Inside the furnace 12, oil and pulverized coal are burned.
Thereafter, when the ammonia co-firing condition is satisfied (S53: YES), the processor 91 sends an ammonia supply start command to the supply system 15 (S55). The oil supply system 80 changes to the supply stop state, and the ammonia supply system 100 changes to the supply state. As a result, the first burner unit 31 injects liquid ammonia, and the fuel injected from the second burner unit 32 and the third burner unit 33 is switched from oil to liquid ammonia. The pulverized coal supply system 70 maintains the supply state. As a result, the boiler 2 co-fires ammonia and pulverized coal.
After that, when the ammonia mono-firing condition is satisfied (S57: YES), the control device 5 sends an ammonia mono-firing command to the supply system 15 (S59). The pulverized coal supply system 70 changes to the supply stop state, and the burners functioning as coal burners are stopped. Also, the ammonia supply system 100 increases the amount of liquid ammonia supplied. As a result, in the boiler 2, mono-firing of ammonia is performed.
Note that, in another embodiment, the supply system 15 that receives the other fuel combustion command from the processor 91 may first supply oil to the burner unit 30 and then supply oil and pulverized coal to the burner unit 30 . Further, after the ammonia supply start command is sent to the supply system 15, co-firing of ammonia fuel and oil may be performed, or co-firing of ammonia fuel, pulverized coal, and oil may be performed.
 図10Bは、一実施形態に係るNOx制御処理を示すフローチャートである。NOx制御処理は、アンモニア燃料と他の燃料(本例では微粉炭)を混焼させる場合にNOx発生量を抑制する制御方法である。
 NOx制御処理ではまず、プロセッサ91が、ボイラ負荷と、アンモニア混焼率(より具体的な一例としてアンモニアと微粉炭との混焼率)とを読込む(S61)。読込みは、プロセッサ91がデマンドを受け付けることで実行される。
 プロセッサ91は、アンモニア燃料を燃焼させるために必要な空気量に対してアンモニア燃料に供給されるアンモニア燃焼用空気量の比であるアンモニア空気比を算定する第一算定を実行する(S10-1)。アンモニア空気比の算定方法は上述した通りである。
 次いでプロセッサ91は、微粉炭を燃焼させるために必要な理論空気量に対して、微粉炭に供給される微粉炭燃焼用空気量の比である微粉炭空気比を算定する第二算定を実行する(S10-2)。炭素含有燃料の空気比の一例である微粉炭空気比(λcar)の算定方法は、上述した通りである。
 次いでプロセッサ91は、S10-1で算定されるアンモニア空気比が第一基準範囲を満たすように、かつS10―2で算定される微粉炭空気比が第二基準範囲を満たすように、アンモニア燃料、微粉炭、および燃焼用空気のそれぞれの供給量を制御する(S10-3)。より詳細には一例として、プロセッサ91は、液体アンモニアの流量調整弁108、微粉炭流量調整弁76、および1次空気の流量調整弁116をそれぞれ制御する。
 プロセッサ91は、アンモニア混焼が終了したか否かを判定する(S63)。アンモニア混焼が実行されている間(S63:NO)、プロセッサ91は、S10―1、S10-2、及びS10-3を順に繰り返す。アンモニア混焼が終了したと判定された場合(S63:YES)、プロセッサ91は、NOx制御処理を終了する。
FIG. 10B is a flowchart showing NOx control processing according to one embodiment. The NOx control process is a control method for suppressing the NOx generation amount when co-firing ammonia fuel and another fuel (pulverized coal in this example).
In the NOx control process, the processor 91 first reads the boiler load and the ammonia co-firing rate (a more specific example of the co-firing rate of ammonia and pulverized coal) (S61). Reading is executed when the processor 91 receives a demand.
The processor 91 performs a first calculation to calculate the ammonia air ratio, which is the ratio of the amount of air for combustion of ammonia supplied to the ammonia fuel to the amount of air required to burn the ammonia fuel (S10-1). . The method for calculating the ammonia air ratio is as described above.
The processor 91 then performs a second calculation to calculate the pulverized coal air ratio, which is the ratio of the amount of pulverized coal combustion air supplied to the pulverized coal to the theoretical amount of air required to burn the pulverized coal. (S10-2). The method of calculating the pulverized coal air ratio (λ car ), which is an example of the air ratio of the carbon-containing fuel, is as described above.
Next, the processor 91 controls ammonia fuel, The supply amounts of pulverized coal and combustion air are controlled (S10-3). More specifically, as an example, processor 91 controls liquid ammonia flow control valve 108, pulverized coal flow control valve 76, and primary air flow control valve 116, respectively.
The processor 91 determines whether or not the ammonia co-firing has ended (S63). While ammonia co-firing is being performed (S63: NO), the processor 91 repeats S10-1, S10-2, and S10-3 in order. If it is determined that the ammonia co-firing has ended (S63: YES), the processor 91 ends the NOx control process.
 図10Cは石炭とアンモニアの空気量の制御ロジックを示す。制御装置5は、石炭バーナ302(微粉炭バーナ302)の微粉炭流量計74の計測値に、石炭バーナ空気比(指示値)と石炭理論空気量とをかけることで、石炭バーナ302の燃焼用空気量(QAir_car)を算出する。算出された石炭バーナ302の燃焼用空気量と、石炭バーナ302の燃焼用空気量(計測値)との差分をとって、制御装置5で石炭バーナ302の燃焼空気量制御指令値を求める。同様に、アンモニア流量計109の計測値に、アンモニアバーナ空気比と、アンモニア理論空気量とをかけることで、アンモニアバーナ306の燃焼用空気量(QAir_NH3)を算出する。算出されたアンモニアバーナ306の燃焼用空気量と、アンモニアバーナ306の燃焼用空気量(計測値)との差分をとって、制御装置5でアンモニアバーナ燃焼空気量指令値を求める。 FIG. 10C shows the coal and ammonia air content control logic. The control device 5 multiplies the measured value of the pulverized coal flow meter 74 of the coal burner 302 (pulverized coal burner 302) by the coal burner air ratio (indicated value) and the theoretical coal air amount, thereby controlling the combustion of the coal burner 302. Calculate the amount of air (Q Air — car ). The difference between the calculated combustion air amount of the coal burner 302 and the combustion air amount (measured value) of the coal burner 302 is obtained, and the control device 5 obtains the combustion air amount control command value of the coal burner 302 . Similarly, the combustion air amount (Q Air — NH3 ) of the ammonia burner 306 is calculated by multiplying the measured value of the ammonia flow meter 109 by the ammonia burner air ratio and the ammonia theoretical air amount. The difference between the calculated combustion air amount of the ammonia burner 306 and the combustion air amount (measured value) of the ammonia burner 306 is taken, and the control device 5 obtains the ammonia burner combustion air amount command value.
 対向燃焼バーナの場合のアンモニアバーナの配置を図11A~図11Eに示す。対向燃焼では、一台の石炭粉砕機から水平方向に各壁面に設置されたバーナに微粉炭を供給しているため、アンモニア混焼をする場合、水平配置されたバーナをすべてアンモニア燃焼バーナに交換することになる。図11Aには前後壁に3段ずつ6段のバーナが配置されている例を示す。1段のバーナは水平方向に設置された複数のバーナで構成されている。
 図11Aの(a)に改造前の石炭専焼可能なボイラ2のバーナ配置を模式的に示す。6段のバーナの内1段は予備バーナとして使用するために通常運転時には休止させている。(a)では符号1104が休止バーナであることを示している。起動時には油で炉内を加熱するために石炭バーナ段1101、1102、1105は油バーナを備えた石炭バーナとなっている。
 図11Aの(b)と(c)は、(a)のボイラ2をアンモニア燃料を用いるボイラ2にするための改造例(バーナ配置例)を示す。(b)では石炭バーナ1103、1106と休止バーナ1104をアンモニアバーナ1108に改造する場合を示す。この場合には石炭バーナ1103、1106をアンモニア専焼バーナ1107、1109に改造する。(c)では石炭バーナと油バーナを備えたバーナ1101、1102、1105をアンモニアと油両用のバーナ1120,1121,1123に改造する例を示している。この時には休止バーナ1104は石炭バーナ1104として運用する。
 図11B、図11Dは、図11Aの(b)のA-A断面におけるバーナ配置例とアンモニアバーナ側面図とをそれぞれ示す。図11C、図11Eは、図11Aの(c)のB-B断面におけるバーナ配置例と油+アンモニアバーナ側面図とをそれぞれ示す。対向燃焼バーナでは、中央からアンモニア(もしくは起動時のみ油)が噴射され、その周囲にアンモニア燃焼用空気として1次、2次、3次空気の流路が設けられている。
 対向燃焼バーナ単位でのアンモニア空気比を算定するにあたり、アンモニア燃焼用空気としてアンモニアバーナに供給される空気(前述の1次~3次空気)のみを考慮する。対向燃焼においては、旋回燃焼のような補助空気ノズルは存在しない。
 図12にアンモニア混焼の場合に炉内の状態を模式的にしめす。追加空気(アディショナルエア)を供給する火炉内空間である燃焼完結域よりも上流では微粉炭燃焼で空気不足(空気比が1以下)の還元脱硝雰囲気が形成されているので、ここにアンモニアバーナで空気比を1以下として投入することで、石炭バーナで形成された高温で(通常1400℃以上)還元雰囲気にアンモニアを投入することができ、アンモニアの熱分解と還元を生じさせることが、対向燃焼でもできる。
 図12ではアンモニアバーナは石炭で形成された高温還元雰囲気にアンモニアバーナ空気比0.8以下で投入されるために石炭の還元雰囲気を損なうことなく、かつ高温の石炭火炎と混合して熱分解と還元を生じさせることができる。独立した各バーナの空気比を個別に制御することで、互いの干渉を避けてNOx発生量を制御することができる。
The arrangement of the ammonia burners in the case of opposed combustion burners is shown in FIGS. 11A-11E. In facing combustion, pulverized coal is supplied from a single coal grinder to burners installed horizontally on each wall, so when co-firing with ammonia, all horizontally arranged burners are replaced with ammonia combustion burners. It will be. FIG. 11A shows an example in which burners are arranged in six stages, each in three stages, on the front and rear walls. A single-stage burner consists of a plurality of horizontally installed burners.
FIG. 11A (a) schematically shows the burner arrangement of the boiler 2 capable of firing only coal before modification. One stage of the six-stage burners is used as a spare burner and is inactive during normal operation. In (a), reference numeral 1104 indicates a rest burner. Coal burner stages 1101, 1102, 1105 are coal burners with oil burners in order to heat the furnace with oil at start-up.
(b) and (c) of FIG. 11A show a modified example (burner arrangement example) for changing the boiler 2 of (a) to a boiler 2 using ammonia fuel. (b) shows a case where the coal burners 1103 and 1106 and the idle burner 1104 are remodeled into an ammonia burner 1108. FIG. In this case, the coal burners 1103 and 1106 are modified into ammonia-only burners 1107 and 1109 . (c) shows an example in which burners 1101, 1102 and 1105 equipped with a coal burner and an oil burner are modified into burners 1120, 1121 and 1123 for both ammonia and oil. At this time, the idle burner 1104 operates as a coal burner 1104 .
FIGS. 11B and 11D respectively show a burner arrangement example and a side view of the ammonia burner in the AA cross section of (b) of FIG. 11A. FIGS. 11C and 11E respectively show an example of burner arrangement and a side view of the oil+ammonia burner in the BB cross section of (c) of FIG. 11A. In the opposed combustion burner, ammonia (or oil only at startup) is injected from the center, and primary, secondary, and tertiary air passages are provided around it as ammonia combustion air.
In calculating the ammonia-air ratio for each opposing combustion burner, only the air supplied to the ammonia burner as ammonia combustion air (primary to tertiary air described above) is considered. In opposed combustion there is no auxiliary air nozzle as in swirl combustion.
FIG. 12 schematically shows the state inside the furnace in the case of co-firing with ammonia. In the upstream of the combustion completion zone, which is the space in the furnace that supplies additional air (additional air), a reducing and denitrifying atmosphere with insufficient air (air ratio is 1 or less) is formed by pulverized coal combustion. By injecting the air ratio at 1 or less, ammonia can be injected into the reducing atmosphere at a high temperature (usually 1400 ° C. or higher) formed by the coal burner, and thermal decomposition and reduction of ammonia can occur. But I can.
In FIG. 12, the ammonia burner is introduced into the high-temperature reducing atmosphere formed by coal at an ammonia burner air ratio of 0.8 or less, so that the reducing atmosphere of the coal is not damaged, and thermal decomposition occurs by mixing with the high-temperature coal flame. Reduction can occur. By controlling the air ratio of each independent burner individually, mutual interference can be avoided and the amount of NOx generated can be controlled.
(実施例)
 図5A~図5Cを参照して、石炭とアンモニアを混焼した際の、アンモニアバーナ空気比とNOxの排出量との関係を燃焼試験により特定した結果を説明する。図5A、図5Bは、アンモニア混焼率が所定の値である場合のバーナ部空気比とNOxの排出量との関係を示すグラフである(図5Bでは、バーナ形式ごとの関係が示される)。
 本燃焼試験では、水平円筒型の燃焼炉で実施され、アンモニアと微粉炭の混焼率は熱量換算で25%である。石炭バーナとアンモニアバーナは垂直方向に別置きで設置され、上部に石炭バーナを下部にアンモニアバーナを、それぞれのバーナには上下に補助空気ノズルを設置した。アンモニアバーナには予混合型のバーナであるスパッドバーナ、拡散型のバーナで保炎器の構造が異なるディフューザ型とスワラー型の3つバーナを用いた。
 なお、本試験での火炉出口酸素濃度は約4%に設定し、NOxは火炉出口酸素濃度の差を補正するために6%濃度換算を下記の(式9)に従って行って比較した。
 NOx(6%換算値)=NOx実測値×(21%-6%)÷(21%-実測火炉出口酸素濃度)・・・・・・(式9)
(Example)
With reference to FIGS. 5A to 5C, the result of specifying the relationship between the ammonia burner air ratio and the amount of NOx emissions when co-firing coal and ammonia by a combustion test will be described. 5A and 5B are graphs showing the relationship between the burner air ratio and the NOx emission amount when the ammonia co-firing ratio is a predetermined value (FIG. 5B shows the relationship for each burner type).
This combustion test was carried out in a horizontal cylindrical combustion furnace, and the co-firing rate of ammonia and pulverized coal was 25% in terms of calorific value. The coal burner and the ammonia burner were installed separately in the vertical direction, with the coal burner at the top, the ammonia burner at the bottom, and auxiliary air nozzles above and below each burner. Three types of ammonia burners were used: a spud burner, which is a premixed burner, and a diffuser type burner and a swirler type, which are diffusion type burners with different structures of flame stabilizers.
In this test, the oxygen concentration at the furnace outlet was set to about 4%, and NOx was compared by converting to 6% concentration according to the following (Equation 9) in order to correct the difference in the oxygen concentration at the furnace outlet.
NOx (6% conversion value) = NOx measured value × (21% - 6%) ÷ (21% - measured furnace outlet oxygen concentration) (Formula 9)
 はじめに、アンモニアバーナがスパッド型で混焼率が33%の場合のアンモニアバーナの空気比とNOx排出量との関係について検討する。図5Cは、アンモニア混焼率を変更した場合のバーナ部空気比とNOxの排出量との関係を示すグラフである。図5Cで示される通り、アンモニアバーナ空気比が0.6で最もNOxが低下し、これより空気比が高くても、低くてもNOxが増加する。アンモニアバーナ空気比が0.8では0.6のNOx値の1.5倍程度である。一般に石炭焚きの場合のNOx値は150から200ppm程度であるのでアンモニアバーナ空気比が0.8以下であれば石炭焚きと大きな差はない。また、アンモニアバーナ空気比が高い方がNOxの増加が大きい。アンモニアバーナ空気比がゼロ、すなわちアンモニアバーナからアンモニアだけを噴射してもNOxは増加するものの、石炭と混焼させることは可能であった。アンモニアバーナ空気比を0.6より下げるとNOxは増加に転じるので、0.6まで下げてもNOxが下がらなかった場合、アディショナル空気投入部後流の酸化域(燃焼完結域)まで未燃アンモニアが到達し、NOxに転換している可能性がある。よって、アンモニアバーナ空気比を0.6に保ったまま、アディショナルエア投入率を低減して石炭バーナ部空気比を増加し、アディショナルエア投入部後流に到達する未燃アンモニア量を減らすことにより、燃焼完結域にて発生するNOxを低減する必要がある。
 スパッド型バーナでアンモニア混焼率を25%、22%、11%まで減らした場合ではアンモニアバーナの空気比によるNOx発生の最低点は確認できていないが、傾向としてNOxが最小となる空気比が更に低くなる傾向がある。また、NOx値はアンモニア混焼率を25%以下にさげると高くなる傾向にある。これは隣接する石炭バーナの補助空気が増加しているためにアンモニアバーナ側に一部が混合してアンモニアバーナの空気比が実質的に増加していると考えられる。このような場合にはアンモニアバーナの空気比を0.6から更に下げていくことでNOx値を制御することができる。
 このように、アンモニア混焼率を11%から33%まで変化させた場合にもNOxの値はアンモニアバーナの空気比を適正に制御することでNOx発生量を抑制できており、石炭バーナの一次空気比(石炭の理論空気比と一次空気量の比)が混焼率の増加で増えても石炭バーナ、アンモニアバーナの空気比を個別に制御することでNOx値を一定の値以下に制御できていることを示している。
First, the relationship between the air ratio of the ammonia burner and the amount of NOx emissions when the ammonia burner is a spud type and the co-firing rate is 33% will be examined. FIG. 5C is a graph showing the relationship between the burner air ratio and the amount of NOx emissions when the ammonia co-firing ratio is changed. As shown in FIG. 5C, NOx drops most when the ammonia burner air ratio is 0.6, and NOx increases at both higher and lower air ratios. At an ammonia burner air ratio of 0.8, the NOx value is about 1.5 times the NOx value at 0.6. Generally, the NOx value in the case of coal firing is about 150 to 200 ppm, so if the ammonia burner air ratio is 0.8 or less, there is no big difference from coal firing. Also, the higher the ammonia burner air ratio, the greater the increase in NOx. Even if the ammonia burner air ratio is zero, that is, if only ammonia is injected from the ammonia burner, NOx will increase, but co-firing with coal was possible. If the ammonia burner air ratio is lowered below 0.6, NOx will start to increase. may have reached and converted to NOx. Therefore, while maintaining the ammonia burner air ratio at 0.6, by reducing the additional air injection rate to increase the coal burner air ratio and reduce the amount of unburned ammonia that reaches the downstream of the additional air injection unit, It is necessary to reduce NOx generated in the complete combustion zone.
When the ammonia co-firing rate was reduced to 25%, 22%, and 11% with the spud type burner, the lowest point of NOx generation due to the air ratio of the ammonia burner could not be confirmed, but the tendency is that the air ratio that minimizes NOx further increases. tends to be lower. Also, the NOx value tends to increase when the ammonia co-firing rate is lowered to 25% or less. It is considered that this is because the auxiliary air of the adjacent coal burner is increased, so that a part of the air is mixed in the ammonia burner side, and the air ratio of the ammonia burner is substantially increased. In such a case, the NOx value can be controlled by further lowering the air ratio of the ammonia burner from 0.6.
In this way, even when the ammonia co-firing rate was changed from 11% to 33%, the NOx value was able to suppress the amount of NOx generation by appropriately controlling the air ratio of the ammonia burner. Even if the ratio (ratio between the theoretical air ratio of coal and the amount of primary air) increases with an increase in the co-firing ratio, the NOx value can be controlled below a certain value by controlling the air ratios of the coal burner and the ammonia burner individually. It is shown that.
 次に、図5Bに示す通り、拡散型のバーナで保炎器がディフューザ型とスワラー型の場合には、ディフューザ型の方がスワラー型よりNOx発生量が低い傾向にある。ディフューザ型はバーナ先端に円盤上のディフューザを設置しており、これに空気が回り込んで保炎するために着火点がバーナ直近となる。一方、スワラー型はバーナを中心とした旋回流をスワラーにより発生させその循環流によって保炎するためにバーナ先端より後流側に着火点が形成される。
 アンモニアバーナで形成される還元雰囲気は着火点からアディショナル空気投入点までの間となるので、着火点がバーナ先端に近いほど還元雰囲気の距離が長くなり還元雰囲気の滞留時間も長くなり、NOxの還元が進むと考えらえる。
 拡散型バーナでもNOxが最小になるアンモニアバーナの空気比は求められていないが、スパッド型よりは低い値になる傾向となっており、それぞれのバーナ形式で最もNOxが低下するアンモニアバーナ空気比に制御できると言える。
Next, as shown in FIG. 5B, when the flame stabilizer is a diffuser type and a swirler type in a diffusion type burner, the amount of NOx generated tends to be lower in the diffuser type than in the swirler type. In the diffuser type, a disc-shaped diffuser is installed at the tip of the burner, and air flows around it to stabilize the flame, so the ignition point is close to the burner. On the other hand, in the swirler type, a swirl flow centered on the burner is generated by the swirler, and the circulating flow stabilizes the flame, so that the ignition point is formed downstream from the tip of the burner.
Since the reducing atmosphere formed by the ammonia burner is between the ignition point and the additional air input point, the closer the ignition point is to the tip of the burner, the longer the distance of the reducing atmosphere and the longer the residence time of the reducing atmosphere, and the more NOx is reduced. That's what I think.
The air ratio for the ammonia burner that minimizes NOx even for the diffusion type burner has not been determined, but it tends to be lower than that of the spud type burner. It can be said that it can be controlled.
 以上、本発明の実施形態について説明したが、本発明は上述した実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and includes modifications of the above-described embodiments and modes in which these modes are combined as appropriate.
 本明細書において、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
 例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
 また、本明細書において、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
 また、本明細書において、一の構成要素を「備える」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
As used herein, expressions such as "in a certain direction", "along a certain direction", "parallel", "perpendicular", "center", "concentric" or "coaxial", etc. express relative or absolute arrangements. represents not only such arrangement strictly, but also the state of being relatively displaced with a tolerance or an angle or distance to the extent that the same function can be obtained.
For example, expressions such as "identical", "equal", and "homogeneous", which express that things are in the same state, not only express the state of being strictly equal, but also have tolerances or differences to the extent that the same function can be obtained. It shall also represent the existing state.
Further, in this specification, expressions representing shapes such as a quadrilateral shape and a cylindrical shape not only represent shapes such as a quadrilateral shape and a cylindrical shape in a geometrically strict sense, but also within the range in which the same effect can be obtained. , a shape including an uneven portion, a chamfered portion, and the like.
Moreover, in this specification, the expressions “comprising”, “including”, or “having” one component are not exclusive expressions excluding the presence of other components.
<その他>
 上述した幾つかの実施形態に記載の内容は、例えば以下のように把握される。
<Others>
The contents described in the several embodiments described above can be understood, for example, as follows.
1)本開示の少なくとも一実施形態に係るボイラ(2)は、
 火炉壁(19)を含む火炉(2)と、
 前記火炉壁(19)に設けられ、アンモニア燃料を燃焼させるアンモニアバーナ(50)と、
 前記火炉壁(19)の前記アンモニアバーナ(50)とは異なる位置に設けられ、微粉炭を燃焼させる微粉炭バーナ(302、304)と、
 を含む。
1) A boiler (2) according to at least one embodiment of the present disclosure,
a furnace (2) comprising a furnace wall (19);
an ammonia burner (50) provided on the furnace wall (19) for burning ammonia fuel;
Pulverized coal burners (302, 304) for burning pulverized coal, provided at positions different from the ammonia burner (50) on the furnace wall (19);
including.
2)幾つかの実施形態では、上記1)に記載のボイラ(2)であって、
 前記アンモニア燃料、前記微粉炭、および燃焼用空気の供給量を制御する制御装置(5)を備え、
 当該制御装置(5)は、
 前記アンモニア燃料を燃焼させるために必要な理論空気量に対して、前記アンモニア燃料に供給されるアンモニア燃焼用空気量の比であるアンモニア空気比を算定する第一算定部と、
 前記微粉炭を燃焼させるために必要な理論空気量に対して、前記微粉炭に供給される微粉炭燃焼用空気量の比である微粉炭空気比を算定する第二算定部と、
 前記アンモニア空気比が第一基準範囲を満たすように、かつ前記微粉炭空気比が第二基準範囲を満たすように前記供給量を制御する制御部と、
を有する。
2) In some embodiments, the boiler (2) of 1) above, wherein
A control device (5) for controlling the amount of supply of the ammonia fuel, the pulverized coal, and the combustion air,
The control device (5) is
a first calculation unit that calculates an ammonia air ratio, which is a ratio of the amount of ammonia combustion air supplied to the ammonia fuel to the theoretical amount of air required to burn the ammonia fuel;
a second calculation unit that calculates a pulverized coal air ratio, which is a ratio of the amount of pulverized coal combustion air supplied to the pulverized coal to the theoretical amount of air required to burn the pulverized coal;
a control unit that controls the supply amount such that the ammonia air ratio satisfies a first reference range and the pulverized coal air ratio satisfies a second reference range;
have
3)幾つかの実施形態では、上記2)に記載のボイラ(2)であって、
 前記第一算定部は、複数の前記アンモニアバーナ(50)の各々について、前記アンモニア空気比を算定し、
 前記制御部は、各々の前記アンモニア空気比が前記第一基準範囲を満たすように前記供給量を制御する。
3) In some embodiments, the boiler (2) of 2) above, wherein
The first calculation unit calculates the ammonia air ratio for each of the plurality of ammonia burners (50),
The control unit controls the supply amount so that each ammonia-air ratio satisfies the first reference range.
4)幾つかの実施形態では、上記2)または3)に記載のボイラ(2)であって、
 前記火炉壁(19)に前記アンモニアバーナ(50)と隣接するように設けられる空気ノズル(303)を備え、
 前記第一算定部は、前記空気ノズル(303)から噴射される空気量のうち前記アンモニア燃料に供給される空気量が含まれる前記アンモニア燃焼用空気量を用いて前記アンモニア空気比を算定する。
4) In some embodiments, the boiler (2) of 2) or 3) above,
An air nozzle (303) provided adjacent to the ammonia burner (50) on the furnace wall (19),
The first calculation unit calculates the ammonia air ratio using the ammonia combustion air amount including the air amount supplied to the ammonia fuel in the air amount injected from the air nozzle (303).
5)幾つかの実施形態では、上記2)から4)のいずれかに記載のボイラ(2)であって、
 前記第一基準範囲の上限値は、前記第二基準範囲の上限値よりも低い。
5) In some embodiments, the boiler (2) of any one of 2) to 4) above,
The upper limit of the first reference range is lower than the upper limit of the second reference range.
6)幾つかの実施形態では、上記2)から5)のいずれかに記載のボイラ(2)であって、
 前記第一基準範囲は、0.8以下である。
6) In some embodiments, the boiler (2) of any one of 2) to 5) above,
The first reference range is 0.8 or less.
7)幾つかの実施形態では、上記2)から5)のいずれかに記載のボイラ(2)であって、
 前記第一基準範囲は、0.7以下である。
7) In some embodiments, the boiler (2) of any one of 2) to 5) above,
The first reference range is 0.7 or less.
8)幾つかの実施形態では、上記2)から7)のいずれかに記載のボイラ(2)であって、
 前記第一基準範囲は、前記火炉(2)から排出される燃焼ガス中の窒素酸化物の値に基づいて設定される。
8) In some embodiments, the boiler (2) of any one of 2) to 7) above,
The first reference range is set based on the value of nitrogen oxides in the combustion gas discharged from the furnace (2).
9)幾つかの実施形態では、上記1)から8)のいずれかに記載のボイラ(2)であって、
 前記アンモニアバーナ(50)に隣接し、補助空気を供給する補助空気ノズル(303)を備え、
 前記補助空気ノズル(303)は、前記アンモニアバーナ(50)の方向に供給できる補助空気の量を調整できるダンパーを備える。
9) In some embodiments, the boiler (2) of any one of 1) to 8) above,
Adjacent to the ammonia burner (50), an auxiliary air nozzle (303) for supplying auxiliary air,
Said auxiliary air nozzle (303) is provided with a damper which can regulate the amount of auxiliary air which can be supplied in the direction of said ammonia burner (50).
10)幾つかの実施形態では、上記1)から9)のいずれかに記載のボイラ(2)であって、
 前記アンモニアバーナ(50)は、
  前記アンモニア燃料を噴射するアンモニアノズル(142、152)と、
  起動用燃料を噴射する起動用燃料ノズル(アンモニアノズル306A)と
を含む。
10) In some embodiments, the boiler (2) of any one of 1) to 9) above, wherein
The ammonia burner (50) is
an ammonia nozzle (142, 152) for injecting the ammonia fuel;
and a starting fuel nozzle (ammonia nozzle 306A) for injecting starting fuel.
11)幾つかの実施形態では、上記1)から10)のいずれかに記載のボイラ(2)であって、
 前記アンモニアバーナ(50)は、前記微粉炭バーナ(302、304)と隣接して設けられる。
11) In some embodiments, the boiler (2) of any one of 1) to 10) above, wherein
The ammonia burner (50) is provided adjacent to the pulverized coal burner (302, 304).
12)幾つかの実施形態では、上記8)に記載のボイラ(2)であって、
 前記火炉壁(19)は、
  前記アンモニアバーナ(50)と前記微粉炭バーナ(302、304)が設けられるバーナ配置領域と、
  前記バーナ配置領域よりも下流で追加空気を供給する追加空気供給部が設けられる追加空気供給領域と、を含み、
 前記アンモニアバーナ(50)は、前記バーナ配置領域の最上段に位置する。
12) In some embodiments, the boiler (2) of 8) above, wherein
The furnace wall (19) comprises:
a burner arrangement area where the ammonia burner (50) and the pulverized coal burner (302, 304) are provided;
an additional air supply area provided with an additional air supply section that supplies additional air downstream of the burner arrangement area,
The ammonia burner (50) is positioned at the top of the burner arrangement area.
13)幾つかの実施形態では、上記1)から12)のいずれかに記載のボイラ(2)であって、
 前記アンモニアバーナ(50)は、拡散型バーナまたは部分予混合型バーナである。
13) In some embodiments, the boiler (2) of any one of 1) to 12) above, wherein
Said ammonia burner (50) is a diffusion burner or a partially premixed burner.
14)幾つかの実施形態では、上記13)に記載のボイラ(2)であって、
 前記拡散型バーナまたは前記部分予混合型バーナは、部分予混合型のスパッド型、拡散型で保炎器の構造が異なるスワラー型、またはディフューザ型のいずれかのバーナである。
14) In some embodiments, the boiler (2) of 13) above,
The diffusion burner or the partially premixed burner is a partially premixed spud type burner, a diffusion type swirler type burner having a different flame stabilizer structure, or a diffuser type burner.
15)本開示の少なくとも一実施形態に係るボイラ制御方法は、
 火炉壁(19)を含む火炉(2)と、
前記火炉壁(19)に設けられ、アンモニア燃料を燃焼させるアンモニアバーナ(50)と、
前記火炉壁(19)の前記アンモニアバーナ(50)とは異なる位置に設けられ、微粉炭を燃焼させる微粉炭バーナ(302、304)と、
 を含むボイラにおいて、前記アンモニア燃料、前記微粉炭および燃焼用空気の供給量を制御するボイラ制御方法であって、
 前記アンモニア燃料を燃焼させるために必要な理論空気量に対して、前記アンモニア燃料に供給されるアンモニア燃焼用空気量の比であるアンモニア空気比を算定する第一算定ステップ(S10-1)と、
 前記微粉炭を燃焼させるために必要な理論空気量に対して、前記微粉炭に供給される微粉炭燃焼用空気量の比である微粉炭空気比を算定する第二算定ステップ(S10-2)と、
 前記アンモニア空気比が第一基準範囲を満たすように、かつ前記微粉炭空気比が第二基準範囲を満たすように前記供給量を制御する制御ステップ(S10-3)と、
を有する。
15) A boiler control method according to at least one embodiment of the present disclosure,
a furnace (2) comprising a furnace wall (19);
an ammonia burner (50) provided on the furnace wall (19) for burning ammonia fuel;
Pulverized coal burners (302, 304) for burning pulverized coal, provided at positions different from the ammonia burner (50) on the furnace wall (19);
A boiler control method for controlling the supply amount of the ammonia fuel, the pulverized coal and the combustion air in a boiler comprising
a first calculation step (S10-1) of calculating an ammonia air ratio, which is the ratio of the amount of ammonia combustion air supplied to the ammonia fuel to the theoretical amount of air required to burn the ammonia fuel;
A second calculation step (S10-2) of calculating a pulverized coal air ratio, which is a ratio of the amount of pulverized coal combustion air supplied to the pulverized coal to the theoretical amount of air required to burn the pulverized coal. and,
a control step (S10-3) of controlling the supply amount such that the ammonia air ratio satisfies a first reference range and the pulverized coal air ratio satisfies a second reference range;
have
16)本開示の少なくとも一実施形態に係るボイラ改造方法は、
 火炉壁(19)を含む火炉(2)と、
 前記火炉壁(19)に設けられ、微粉炭を燃焼させる微粉炭バーナ(302、304)と、
 前記火炉壁(19)において前記微粉炭バーナ(302、304)とは異なる位置に設けられ、微粉炭、起動用燃料、または補助空気を噴射する複数の噴射部と、
 制御装置(5)と、
を備えるボイラのボイラ改造方法であって、
 前記複数の噴射部の少なくとも1つを、アンモニア燃料を燃焼させるアンモニアバーナ(50)に置換する置換ステップを備え、
 前記アンモニア燃料、前記微粉炭、および燃焼用空気の供給量を制御する前記制御装置(5)は、
 前記アンモニア燃料を燃焼させるために必要な理論空気量に対して、前記アンモニア燃料に供給されるアンモニア燃焼用空気量の比であるアンモニア空気比を算定する第一算定部と、
 前記微粉炭を燃焼させるために必要な理論空気量に対して、前記微粉炭に供給される微粉炭燃焼用空気量の比である微粉炭空気比を算定する第二算定部と、
 前記アンモニア空気比が第一基準範囲を満たすように、かつ前記微粉炭空気比が第二基準範囲を満たすように前記供給量を制御する制御部と
を有する。
16) A boiler modification method according to at least one embodiment of the present disclosure,
a furnace (2) comprising a furnace wall (19);
Pulverized coal burners (302, 304) provided on the furnace wall (19) for burning pulverized coal;
a plurality of injection parts provided at positions different from the pulverized coal burners (302, 304) on the furnace wall (19) for injecting pulverized coal, starting fuel, or auxiliary air;
a controller (5);
A boiler modification method for a boiler comprising
A replacement step of replacing at least one of the plurality of injection units with an ammonia burner (50) that burns ammonia fuel;
The control device (5) for controlling the supply amounts of the ammonia fuel, the pulverized coal, and the combustion air,
a first calculation unit that calculates an ammonia air ratio, which is a ratio of the amount of ammonia combustion air supplied to the ammonia fuel to the theoretical amount of air required to burn the ammonia fuel;
a second calculation unit that calculates a pulverized coal air ratio, which is a ratio of the amount of pulverized coal combustion air supplied to the pulverized coal to the theoretical amount of air required to burn the pulverized coal;
and a control unit for controlling the supply amount such that the ammonia air ratio satisfies a first reference range and the pulverized coal air ratio satisfies a second reference range.
2   :ボイラ
4    :追加空気供給部
5   :制御装置
8   :後部煙道
9   :計測システム
11  :ノーズ
12   :火炉
15  :供給システム
19  :火炉壁
20  :火炉
21   :バーナ配置領域
22   :追加空気供給領域
30  :バーナユニット
31  :第1バーナユニット
32  :第2バーナユニット
33  :第3バーナユニット
37  :起動用燃料バーナ
50  :アンモニアバーナ
70  :微粉炭供給システム
71  :微粉炭供給装置
72  :微粉炭供給ライン
74  :石炭流量計
76  :微粉炭流量調整弁
78  :切替弁
80  :油供給システム
81  :油供給装置
82  :油供給ライン
84  :油流量計
86  :油流量調整弁
88  :切替弁
91  :プロセッサ
92  :ROM
93  :RAM
94  :メモリ
100  :アンモニア供給システム
101  :アンモニアタンク
102  :アンモニア供給ライン
103  :ポンプ
105  :圧力調整弁
107  :切替弁
108  :流量調整弁
109  :アンモニア流量計
110  :1次空気供給システム
114  :1次空気流量計
116  :1次空気流量調節弁
118  :切替弁
120  :追加空気供給システム
124  :追加空気流量計
126  :追加空気流量調節弁
128  :切替弁
131  :風箱
132  :アンモニア供給ノズル
133  :外筒
141  :風箱
142  :アンモニア供給ノズル
143  :保炎器(ディフューザ)
151  :風箱
152  :アンモニアノズル
153  :保炎器(スワラー)
301  :補助空気ノズル
302  :微粉炭バーナ
303  :補助空気ノズル
303  :空気ノズル
304  :微粉炭バーナ
305  :補助空気ノズル
306  :アンモニアバーナ
306A :アンモニアノズル
1101 :起動用油バーナ付き石炭バーナ
1102 :起動用油バーナ付き石炭バーナ
1103 :石炭バーナ
1104 :石炭バーナ
1105 :起動用油バーナ付き石炭バーナ
1106 :石炭バーナ
1107 :アンモニアバーナ
1108 :アンモニアバーナ
1109 :アンモニアバーナ
1120 :起動用油バーナ/アンモニア両用バーナ
1121 :起動用油バーナ/アンモニア両用バーナ
1123 :起動用油バーナ/アンモニア両用バーナ
2: Boiler 4: Additional air supply unit 5: Control device 8: Rear flue 9: Measurement system 11: Nose 12: Furnace 15: Supply system 19: Furnace wall 20: Furnace 21: Burner arrangement area 22: Additional air supply area 30 : Burner unit 31 : First burner unit 32 : Second burner unit 33 : Third burner unit 37 : Starting fuel burner 50 : Ammonia burner 70 : Pulverized coal supply system 71 : Pulverized coal supply device 72 : Pulverized coal supply line 74 : Coal flow meter 76 : Pulverized coal flow control valve 78 : Switching valve 80 : Oil supply system 81 : Oil supply device 82 : Oil supply line 84 : Oil flow meter 86 : Oil flow control valve 88 : Switching valve 91 : Processor 92 : ROM
93: RAM
94: Memory 100: Ammonia supply system 101: Ammonia tank 102: Ammonia supply line 103: Pump 105: Pressure adjustment valve 107: Switching valve 108: Flow adjustment valve 109: Ammonia flow meter 110: Primary air supply system 114: Primary Air flow meter 116 : Primary air flow control valve 118 : Switching valve 120 : Additional air supply system 124 : Additional air flow meter 126 : Additional air flow control valve 128 : Switching valve 131 : Wind box 132 : Ammonia supply nozzle 133 : Outside Cylinder 141: wind box 142: ammonia supply nozzle 143: flame stabilizer (diffuser)
151: wind box 152: ammonia nozzle 153: flame stabilizer (swirler)
301: Auxiliary air nozzle 302: Pulverized coal burner 303: Auxiliary air nozzle 303: Air nozzle 304: Pulverized coal burner 305: Auxiliary air nozzle 306: Ammonia burner 306A: Ammonia nozzle 1101: Coal burner with starting oil burner 1102: For starting Coal burner with oil burner 1103: Coal burner 1104: Coal burner 1105: Coal burner with starting oil burner 1106: Coal burner 1107: Ammonia burner 1108: Ammonia burner 1109: Ammonia burner 1120: Starting oil burner/ammonia burner 1121: Start oil burner/ammonia dual use burner 1123: Start oil burner/ammonia dual use burner

Claims (16)

  1.  火炉壁を含む火炉と、
     前記火炉壁に設けられ、アンモニア燃料を燃焼させるアンモニアバーナと、
     前記火炉壁の前記アンモニアバーナとは異なる位置に設けられ、微粉炭を燃焼させる微粉炭バーナと、
     を含むボイラ。
    a furnace including a furnace wall;
    an ammonia burner provided on the furnace wall for burning ammonia fuel;
    a pulverized coal burner provided at a position different from the ammonia burner on the furnace wall for burning pulverized coal;
    including boiler.
  2.  前記アンモニア燃料、前記微粉炭、および燃焼用空気の供給量を制御する制御装置を備え、
     当該制御装置は、
     前記アンモニア燃料を燃焼させるために必要な理論空気量に対して、前記アンモニア燃料に供給されるアンモニア燃焼用空気量の比であるアンモニア空気比を算定する第一算定部と、
     前記微粉炭を燃焼させるために必要な理論空気量に対して、前記微粉炭に供給される微粉炭燃焼用空気量の比である微粉炭空気比を算定する第二算定部と、
     前記アンモニア空気比が第一基準範囲を満たすように、かつ前記微粉炭空気比が第二基準範囲を満たすように前記供給量を制御する制御部と、
    を有することを特徴とする請求項1に記載のボイラ。
    A control device for controlling the supply amount of the ammonia fuel, the pulverized coal, and the combustion air,
    The controller is
    a first calculation unit that calculates an ammonia air ratio, which is a ratio of the amount of ammonia combustion air supplied to the ammonia fuel to the theoretical amount of air required to burn the ammonia fuel;
    a second calculation unit that calculates a pulverized coal air ratio, which is a ratio of the amount of pulverized coal combustion air supplied to the pulverized coal to the theoretical amount of air required to burn the pulverized coal;
    a control unit that controls the supply amount such that the ammonia air ratio satisfies a first reference range and the pulverized coal air ratio satisfies a second reference range;
    2. The boiler of claim 1, comprising:
  3.  前記第一算定部は、複数の前記アンモニアバーナの各々について、前記アンモニア空気比を算定し、
     前記制御部は、各々の前記アンモニア空気比が前記第一基準範囲を満たすように前記供給量を制御することを特徴とする請求項2に記載のボイラ。
    The first calculation unit calculates the ammonia air ratio for each of the plurality of ammonia burners,
    3. The boiler according to claim 2, wherein the controller controls the supply amount so that each of the ammonia air ratios satisfies the first reference range.
  4.  前記火炉壁に前記アンモニアバーナと隣接するように設けられる空気ノズルを備え、
     前記第一算定部は、前記空気ノズルから噴射される空気量のうち前記アンモニア燃料に供給される空気量が含まれる前記アンモニア燃焼用空気量を用いて前記アンモニア空気比を算定することを特徴とする請求項2または3に記載のボイラ。
    An air nozzle provided adjacent to the ammonia burner on the furnace wall,
    The first calculation unit calculates the ammonia air ratio using the amount of air for ammonia combustion that includes the amount of air supplied to the ammonia fuel in the amount of air injected from the air nozzle. The boiler according to claim 2 or 3.
  5.  前記第一基準範囲の上限値は、前記第二基準範囲の上限値よりも低いことを特徴とする請求項2または3に記載のボイラ。 The boiler according to claim 2 or 3, wherein the upper limit of the first reference range is lower than the upper limit of the second reference range.
  6.  前記第一基準範囲は、0.8以下であることを特徴とする請求項2または3に記載のボイラ。 The boiler according to claim 2 or 3, wherein the first reference range is 0.8 or less.
  7.  前記第一基準範囲は、0.7以下であることを特徴とする請求項2または3に記載のボイラ。 The boiler according to claim 2 or 3, wherein the first reference range is 0.7 or less.
  8.  前記第一基準範囲は、前記火炉から排出される燃焼ガス中の窒素酸化物の値に基づいて設定されることを特徴とする請求項2または3に記載のボイラ。 The boiler according to claim 2 or 3, wherein the first reference range is set based on the value of nitrogen oxides in the combustion gas discharged from the furnace.
  9.  前記アンモニアバーナに隣接し、補助空気を供給する補助空気ノズルを備え、
     前記補助空気ノズルは、前記アンモニアバーナの方向に供給できる補助空気の量を調整できるダンパーを備える、
     ことを特徴とする請求項1~3のいずれかに記載のボイラ。
    Adjacent to the ammonia burner, comprising an auxiliary air nozzle for supplying auxiliary air,
    The auxiliary air nozzle comprises a damper that can adjust the amount of auxiliary air that can be supplied in the direction of the ammonia burner.
    The boiler according to any one of claims 1 to 3, characterized in that:
  10.  前記アンモニアバーナは、
      前記アンモニア燃料を噴射するアンモニアノズルと、
      起動用燃料を噴射する起動用燃料ノズルと
    を含むことを特徴とする請求項1~3のいずれかに記載のボイラ。
    The ammonia burner is
    an ammonia nozzle for injecting the ammonia fuel;
    4. The boiler according to any one of claims 1 to 3, further comprising a starting fuel nozzle for injecting starting fuel.
  11.  前記アンモニアバーナは、前記微粉炭バーナと隣接して設けられることを特徴とする請求項1~3のいずれかに記載のボイラ。 The boiler according to any one of claims 1 to 3, wherein the ammonia burner is provided adjacent to the pulverized coal burner.
  12.  前記火炉壁は、
      前記アンモニアバーナと前記微粉炭バーナが設けられるバーナ配置領域と、
      前記バーナ配置領域よりも下流で追加空気を供給する追加空気供給部が設けられる追加空気供給領域と、を含み、
     前記アンモニアバーナは、前記バーナ配置領域の最上段に位置する
     ことを特徴とする請求項8に記載のボイラ。
    The furnace wall is
    a burner arrangement area in which the ammonia burner and the pulverized coal burner are provided;
    an additional air supply area provided with an additional air supply section that supplies additional air downstream of the burner arrangement area,
    The boiler according to claim 8, wherein the ammonia burner is positioned at the uppermost stage of the burner arrangement area.
  13.  前記アンモニアバーナは、拡散型バーナまたは部分予混合型バーナであることを特徴とする請求項1~3のいずれかに記載のボイラ。 The boiler according to any one of claims 1 to 3, wherein the ammonia burner is a diffusion burner or a partially premixed burner.
  14.  前記拡散型バーナまたは前記部分予混合型バーナは、部分予混合型のスパッド型、拡散型で保炎器の構造が異なるスワラー型、またはディフューザ型のいずれかのバーナであることを特徴とする請求項13に記載のボイラ。 The diffusion type burner or the partially premixed burner is a partially premixed spud type burner, a diffusion type swirler type burner having a different flame stabilizer structure, or a diffuser type burner. 14. A boiler according to Item 13.
  15.  火炉壁を含む火炉と、
    前記火炉壁に設けられ、アンモニア燃料を燃焼させるアンモニアバーナと、
    前記火炉壁の前記アンモニアバーナとは異なる位置に設けられ、微粉炭を燃焼させる微粉炭バーナと、
     を含むボイラにおいて、前記アンモニア燃料、前記微粉炭および燃焼用空気の供給量を制御するボイラ制御方法であって、
     前記アンモニア燃料を燃焼させるために必要な理論空気量に対して、前記アンモニア燃料に供給されるアンモニア燃焼用空気量の比であるアンモニア空気比を算定する第一算定ステップと、
     前記微粉炭を燃焼させるために必要な理論空気量に対して、前記微粉炭に供給される微粉炭燃焼用空気量の比である微粉炭空気比を算定する第二算定ステップと、
     前記アンモニア空気比が第一基準範囲を満たすように、かつ前記微粉炭空気比が第二基準範囲を満たすように前記供給量を制御する制御ステップと、
    を有することを特徴とするボイラ制御方法。
    a furnace including a furnace wall;
    an ammonia burner provided on the furnace wall for burning ammonia fuel;
    a pulverized coal burner provided at a position different from the ammonia burner on the furnace wall for burning pulverized coal;
    A boiler control method for controlling the supply amount of the ammonia fuel, the pulverized coal and the combustion air in a boiler comprising
    a first calculation step of calculating an ammonia air ratio, which is the ratio of the amount of ammonia combustion air supplied to the ammonia fuel to the theoretical amount of air required to burn the ammonia fuel;
    a second calculating step of calculating a pulverized coal air ratio, which is a ratio of the amount of pulverized coal combustion air supplied to the pulverized coal to the theoretical amount of air required to burn the pulverized coal;
    a control step of controlling the supply amount such that the ammonia air ratio satisfies a first reference range and the pulverized coal air ratio satisfies a second reference range;
    A boiler control method comprising:
  16.  火炉壁を含む火炉と、
     前記火炉壁に設けられ、微粉炭を燃焼させる微粉炭バーナと、
     前記火炉壁において前記微粉炭バーナとは異なる位置に設けられ、微粉炭、起動用燃料、または補助空気を噴射する複数の噴射部と、
     制御装置と、
    を備えるボイラのボイラ改造方法であって、
     前記複数の噴射部の少なくとも1つを、アンモニア燃料を燃焼させるアンモニアバーナに置換する置換ステップを備え、
     前記アンモニア燃料、前記微粉炭、および燃焼用空気の供給量を制御する前記制御装置は、
     前記アンモニア燃料を燃焼させるために必要な理論空気量に対して、前記アンモニア燃料に供給されるアンモニア燃焼用空気量の比であるアンモニア空気比を算定する第一算定部と、
     前記微粉炭を燃焼させるために必要な理論空気量に対して、前記微粉炭に供給される微粉炭燃焼用空気量の比である微粉炭空気比を算定する第二算定部と、
     前記アンモニア空気比が第一基準範囲を満たすように、かつ前記微粉炭空気比が第二基準範囲を満たすように前記供給量を制御する制御部と
    を有する
    ボイラ改造方法。
    a furnace including a furnace wall;
    a pulverized coal burner provided on the furnace wall for burning pulverized coal;
    a plurality of injection units provided at positions different from the pulverized coal burner on the furnace wall and injecting pulverized coal, starting fuel, or auxiliary air;
    a controller;
    A boiler modification method for a boiler comprising
    A replacement step of replacing at least one of the plurality of injection units with an ammonia burner that burns ammonia fuel;
    The control device for controlling the supply amounts of the ammonia fuel, the pulverized coal, and the combustion air,
    a first calculation unit that calculates an ammonia air ratio, which is a ratio of the amount of ammonia combustion air supplied to the ammonia fuel to the theoretical amount of air required to burn the ammonia fuel;
    a second calculation unit that calculates a pulverized coal air ratio, which is a ratio of the amount of pulverized coal combustion air supplied to the pulverized coal to the theoretical amount of air required to burn the pulverized coal;
    and a control unit for controlling the supply amount such that the ammonia-air ratio satisfies a first reference range and the pulverized coal-air ratio satisfies a second reference range.
PCT/JP2022/031671 2021-09-09 2022-08-23 Boiler, boiler control method, and boiler modification method WO2023037867A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020247006397A KR20240041970A (en) 2021-09-09 2022-08-23 Boilers, boiler control methods, and boiler modification methods

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-146609 2021-09-09
JP2021146609 2021-09-09
JP2021200928A JP2023039881A (en) 2021-09-09 2021-12-10 Boiler, method for controlling boiler and method for modifying boiler
JP2021-200928 2021-12-10

Publications (1)

Publication Number Publication Date
WO2023037867A1 true WO2023037867A1 (en) 2023-03-16

Family

ID=85506604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/031671 WO2023037867A1 (en) 2021-09-09 2022-08-23 Boiler, boiler control method, and boiler modification method

Country Status (3)

Country Link
KR (1) KR20240041970A (en)
TW (1) TWI838836B (en)
WO (1) WO2023037867A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024057819A1 (en) * 2022-09-16 2024-03-21 三菱重工業株式会社 Coal-ammonia multi-fuel fired boiler control device, coal-ammonia multi-fuel fired boiler control method, and coal-ammonia multi-fuel fired boiler control program
JP7494358B1 (en) 2023-05-19 2024-06-03 株式会社Ihi汎用ボイラ Dual-fuel burners and boilers

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004060623A (en) * 2002-07-31 2004-02-26 Central Res Inst Of Electric Power Ind Gas turbine combustor for gasification power generation plant
JP2007107832A (en) * 2005-10-14 2007-04-26 Babcock Hitachi Kk Boiler device
JP2012093013A (en) * 2010-10-26 2012-05-17 Babcock Hitachi Kk Boiler
JP2018200144A (en) * 2017-05-29 2018-12-20 株式会社Ihi Combustion furnace and boiler
JP2019178823A (en) * 2018-03-30 2019-10-17 三菱日立パワーシステムズ株式会社 Thermal power generation plant, multi-fuel fired boiler, and method for modifying boiler

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7485500B2 (en) 2018-09-11 2024-05-16 株式会社Ihi Combustion equipment and boilers

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004060623A (en) * 2002-07-31 2004-02-26 Central Res Inst Of Electric Power Ind Gas turbine combustor for gasification power generation plant
JP2007107832A (en) * 2005-10-14 2007-04-26 Babcock Hitachi Kk Boiler device
JP2012093013A (en) * 2010-10-26 2012-05-17 Babcock Hitachi Kk Boiler
JP2018200144A (en) * 2017-05-29 2018-12-20 株式会社Ihi Combustion furnace and boiler
JP2019178823A (en) * 2018-03-30 2019-10-17 三菱日立パワーシステムズ株式会社 Thermal power generation plant, multi-fuel fired boiler, and method for modifying boiler

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024057819A1 (en) * 2022-09-16 2024-03-21 三菱重工業株式会社 Coal-ammonia multi-fuel fired boiler control device, coal-ammonia multi-fuel fired boiler control method, and coal-ammonia multi-fuel fired boiler control program
JP7494358B1 (en) 2023-05-19 2024-06-03 株式会社Ihi汎用ボイラ Dual-fuel burners and boilers

Also Published As

Publication number Publication date
TW202328593A (en) 2023-07-16
TWI838836B (en) 2024-04-11
KR20240041970A (en) 2024-04-01

Similar Documents

Publication Publication Date Title
WO2023037867A1 (en) Boiler, boiler control method, and boiler modification method
US20210140634A1 (en) Combustion device and boiler
US9869469B2 (en) Combustion burner and boiler including the same
US20150275755A1 (en) Multi-fuel-capable gas turbine combustor
JP5736583B2 (en) Burner equipment
JP2015534632A (en) Combustor with radially stepped premixed pilot for improved maneuverability
JP7498654B2 (en) Burner, its control method, and combustion furnace
JP2006337016A (en) Furnace combustion system and fuel combustion method
JP2023039881A (en) Boiler, method for controlling boiler and method for modifying boiler
JP2013224822A (en) Fuel burner and turning combustion boiler
JP5939942B2 (en) Gas turbine combustor and fuel control method for gas turbine combustor
JP2755603B2 (en) Gas turbine combustor
JP7307441B2 (en) combustor
KR20240064585A (en) Ammonia fuel combustion device
JP4386195B2 (en) Low NOx combustor for two-fluid cycle and operation method thereof
TWI834142B (en) Boiler operation methods and boiler control devices
CN110582671B (en) Premixing method, combustion method, premixing device, burner head and burner
JP7210119B2 (en) industrial furnace
WO2023120397A1 (en) Ammonia fuel boiler system
WO2023120393A1 (en) Ammonia combustion burner, boiler, and boiler operation method
JP7150102B1 (en) Two-stage combustion device
WO2022176353A1 (en) Combustion device and boiler
JP4482858B2 (en) Lean pre-evaporation premix combustor
JP2019039612A (en) Gas burner
KR20010037288A (en) Pulverized coal burner for reducing NOx

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22867189

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202417005837

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 1020247006397

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22867189

Country of ref document: EP

Kind code of ref document: A1