JP7398011B2 - gap pin - Google Patents

gap pin Download PDF

Info

Publication number
JP7398011B2
JP7398011B2 JP2022559120A JP2022559120A JP7398011B2 JP 7398011 B2 JP7398011 B2 JP 7398011B2 JP 2022559120 A JP2022559120 A JP 2022559120A JP 2022559120 A JP2022559120 A JP 2022559120A JP 7398011 B2 JP7398011 B2 JP 7398011B2
Authority
JP
Japan
Prior art keywords
gap pin
gap
pin according
base
dlc film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022559120A
Other languages
Japanese (ja)
Other versions
JPWO2022092022A1 (en
Inventor
浩 浜島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Publication of JPWO2022092022A1 publication Critical patent/JPWO2022092022A1/ja
Application granted granted Critical
Publication of JP7398011B2 publication Critical patent/JP7398011B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/6875Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a plurality of individual support members, e.g. support posts or protrusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32623Mechanical discharge control means
    • H01J37/32642Focus rings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32715Workpiece holder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6831Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using electrostatic chucks
    • H01L21/6833Details of electrostatic chucks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68735Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by edge profile or support profile

Description

本発明は、ギャップピンに関する。 TECHNICAL FIELD The present invention relates to gap pins.

従来、半導体ウェハ、LCD基板などの被処理体を載置台で熱処理するための熱処理装置が使用されている。このような熱処理装置として、特許文献1には、熱源を有する載置台と;被処理体を載置台上に隙間を持たせて支持するギャップピンと;載置台を貫通し、被処理体をギャップピン上に載置して、ギャップピン上方に移動する昇降可能な支持ピンとを備える熱処理装置が記載されている。特許文献1に記載の熱処理装置は、熱源から発せられる熱量を載置台表面から輻射して、被処理体に熱処理を施す。 2. Description of the Related Art Conventionally, heat treatment apparatuses have been used to heat-treat objects to be processed, such as semiconductor wafers and LCD substrates, on a mounting table. As such a heat treatment apparatus, Patent Document 1 describes a mounting table having a heat source; a gap pin that supports the object to be processed on the mounting table with a gap; and a gap pin that penetrates the mounting table and supports the object to be processed. A heat treatment apparatus is described that includes a liftable support pin placed above the gap pin and movable above the gap pin. The heat treatment apparatus described in Patent Document 1 radiates heat generated from a heat source from the surface of a mounting table to perform heat treatment on an object to be treated.

特開2003-22947号公報Japanese Patent Application Publication No. 2003-22947

本開示に係るギャップピンは、第1面と該第1面の反対に位置する第2面とを有する基部と、前記第1面上に位置し、前記第1面に対向する第3面と該第3面の反対に位置して被支持体との接触部を含む第4面とを有する支持部とを含む。接触部は、粗さ曲線における25%の負荷長さ率での切断レベルと、粗さ曲線における75%の負荷長さ率での切断レベルとの差を表す切断レベル差(Rδc)の平均値が、第2面よりも小さい。 A gap pin according to the present disclosure includes a base having a first surface and a second surface located opposite to the first surface, and a third surface located on the first surface and opposite to the first surface. and a fourth surface that is located opposite to the third surface and includes a contact portion with the supported body. The contact area has an average value of the cut level difference (Rδc) representing the difference between the cut level at a load length rate of 25% in the roughness curve and the cut level at a load length rate of 75% in the roughness curve. is smaller than the second side.

本開示に係る他のギャップピンは、第1面と該第1面の反対に位置する第2面とを有する基部と、前記第1面上に位置し、前記第1面に対向する第3面と該第3面の反対に位置して被支持体との接触部を含む第4面とを有する支持部とを含む。接触部は、粗さ曲線における2乗平均平方根傾斜(RΔq)の平均値が、第2面よりも小さい。 Another gap pin according to the present disclosure includes a base having a first surface and a second surface located opposite to the first surface, and a third surface located on the first surface and opposite to the first surface. and a fourth surface that is located opposite to the third surface and includes a contact portion with the supported body. The contact portion has a smaller average value of the root mean square slope (RΔq) in the roughness curve than the second surface.

本開示に係る熱処理装置は、載置台と、上記のギャップピンとを備える。被支持体が載置台上に隙間を設けて載置されるように、ギャップピンは載置台に設けられている。 A heat treatment apparatus according to the present disclosure includes a mounting table and the gap pin described above. The gap pin is provided on the mounting table so that the object to be supported is placed on the mounting table with a gap provided therebetween.

本開示に係る静電チャック装置は、載置台と、載置台の周囲に位置するフォーカスリングとを備える。フォーカスリングは、円周に沿って設けられた固定部と、固定部と同心円状に設けられ、上下方向に変位可能な可動部とを備える。ギャップピンが、固定部の上面に備えられている。 An electrostatic chuck device according to the present disclosure includes a mounting table and a focus ring located around the mounting table. The focus ring includes a fixed part provided along the circumference, and a movable part provided concentrically with the fixed part and movable in the vertical direction. A gap pin is provided on the top surface of the fixing part.

本開示の一実施形態に係るギャップピンを示す斜視図である。FIG. 2 is a perspective view showing a gap pin according to an embodiment of the present disclosure. 本開示の一実施形態に係るギャップピンを示す側面図である。FIG. 2 is a side view showing a gap pin according to an embodiment of the present disclosure. 本開示の一実施形態に係る熱処理装置を示す断面図である。FIG. 1 is a cross-sectional view showing a heat treatment apparatus according to an embodiment of the present disclosure. 図2AのA部を拡大した断面図である。FIG. 2B is an enlarged cross-sectional view of section A in FIG. 2A. 本開示の一実施形態に係る静電チャック装置を示す斜視図であり、被支持体が載置台に載置されている状態を示す。FIG. 1 is a perspective view showing an electrostatic chuck device according to an embodiment of the present disclosure, showing a state in which a supported object is placed on a mounting table. 本開示の一実施形態に係る静電チャック装置を示す斜視図であり、被支持体が載置台から持ち上げられている状態を示す。1 is a perspective view showing an electrostatic chuck device according to an embodiment of the present disclosure, showing a state in which a supported object is lifted from a mounting table.

特許文献1に記載されたギャップピンを、例えば、酸化アルミニウムなどのセラミックスで形成すると、被処理体に接触することによって、被処理体に傷を付けやすいという問題がある。そのため、被処理体に接触しても、被処理体に傷を付けるおそれを低減することができるギャップピンが求められている。 If the gap pin described in Patent Document 1 is made of ceramic such as aluminum oxide, for example, there is a problem in that the gap pin is likely to damage the object to be processed by coming into contact with the object. Therefore, there is a need for a gap pin that can reduce the risk of damaging the object to be processed even if it comes into contact with the object.

本開示に係るギャップピンは、支持部における被支持体に接する支持面の接触部の切断レベル差(Rδc)の平均値または2乗平均平方根傾斜(RΔq)の平均値が小さい。そのため、接触部から脱粒しにくくなる。したがって、本開示に係るギャップピンによれば、被支持体に接触しても、被支持体に傷を付けるおそれを低減することができる。 In the gap pin according to the present disclosure, the average value of the cutting level difference (Rδc) or the average value of the root mean square slope (RΔq) of the contact portion of the support surface in contact with the supported body in the support portion is small. Therefore, it becomes difficult for grains to fall off from the contact area. Therefore, according to the gap pin according to the present disclosure, even if it comes into contact with a supported object, it is possible to reduce the risk of damaging the supported object.

本開示の一実施形態に係るギャップピンを、図1Aおよび1Bに基づいて詳細に説明する。図1Aは、本開示の一実施形態に係るギャップピン1を示す斜視図である。図1Aに示す一実施形態に係るギャップピン1は、基部2と支持部3とを含む。 A gap pin according to an embodiment of the present disclosure will be described in detail based on FIGS. 1A and 1B. FIG. 1A is a perspective view showing a gap pin 1 according to an embodiment of the present disclosure. A gap pin 1 according to an embodiment shown in FIG. 1A includes a base portion 2 and a support portion 3.

基部2は第1面(以下では上面ともいう)と該第1面の反対に位置する第2面(以下では下面ともいう)とを有しており、例えば平板状を有する部材である。図1Aに示す基部2は、上面視した場合に円形状を有している。基部2は、後述する支持部3を固定するための部材であり、例えば、セラミックスで形成されている。セラミックスとしては限定されず、例えば、酸化アルミニウム(アルミナ)を主成分とするセラミックス、酸化ジルコニウム(ジルコニア)を主成分とするセラミックス、炭化珪素を主成分とするセラミックス、炭化硼素を主成分とするセラミックスなどが挙げられる。 The base 2 has a first surface (hereinafter also referred to as an upper surface) and a second surface (hereinafter also referred to as a lower surface) located opposite to the first surface, and is, for example, a plate-shaped member. The base 2 shown in FIG. 1A has a circular shape when viewed from above. The base portion 2 is a member for fixing a support portion 3, which will be described later, and is made of, for example, ceramics. Ceramics are not limited, and include, for example, ceramics whose main component is aluminum oxide (alumina), ceramics whose main component is zirconium oxide (zirconia), ceramics whose main component is silicon carbide, and ceramics whose main component is boron carbide. Examples include.

本明細書において「主成分」とは、セラミックスを構成している成分の合計100質量%のうち、80質量%以上を占める成分を意味する。セラミックスを構成している成分は、CuKα線を用いたX線回折装置によって同定することができる。各成分の含有量は、例えばICP(Inductively Coupled Plasma)発光分光分析装置または蛍光X線分析装置により求めることができる。 As used herein, the term "main component" refers to a component that accounts for 80% by mass or more of the total 100% by mass of the components constituting the ceramic. Components constituting ceramics can be identified using an X-ray diffraction device using CuKα rays. The content of each component can be determined using, for example, an ICP (Inductively Coupled Plasma) emission spectrometer or a fluorescent X-ray analyzer.

特に、ギャップピン1が酸化アルミニウム(アルミナ)を主成分とするセラミックスからなる場合、酸化アルミニウム(アルミナ)の含有量は99.6質量%以上であるとよい。 In particular, when the gap pin 1 is made of ceramics whose main component is aluminum oxide (alumina), the content of aluminum oxide (alumina) is preferably 99.6% by mass or more.

基部2の大きさは、例えば、ギャップピン1を備える装置の大きさなどに応じて、適宜設定される。図1Aに示すように、上面視で基部2が円形状を有している場合、基部2の直径(図1B)のD1)は、例えば、3.5mm以上6.5mm以下程度である。基部2の高さ(図1BのH1)は、例えば、0.5mm以上1.1mm以下程度である。 The size of the base 2 is appropriately set depending on, for example, the size of the device including the gap pin 1. As shown in FIG. 1A, when the base 2 has a circular shape when viewed from above, the diameter (D1) of the base 2 (FIG. 1B) is, for example, about 3.5 mm or more and 6.5 mm or less. The height of the base 2 (H1 in FIG. 1B) is, for example, about 0.5 mm or more and 1.1 mm or less.

支持部3は、基部2の第1面(上面)に対向する第3面と該第3面の反対に位置する第4面とを有しており、例えば柱状を有する部材である。図1Aに示す支持部3は円柱状を有している。支持部3は、被支持体を支持するための部材であり、例えば、セラミックスで形成されている。セラミックスとしては、上述の基部2と同様、例えば、酸化アルミニウム(アルミナ)を主成分とするセラミックス、酸化ジルコニウム(ジルコニア)を主成分とするセラミックス、炭化珪素を主成分とするセラミックス、炭化硼素を主成分とするセラミックスなどが挙げられる。 The support portion 3 has a third surface opposite to the first surface (upper surface) of the base portion 2 and a fourth surface located opposite to the third surface, and is, for example, a columnar member. The support portion 3 shown in FIG. 1A has a cylindrical shape. The support part 3 is a member for supporting a supported body, and is made of ceramics, for example. Similar to the base 2 described above, examples of ceramics include ceramics whose main component is aluminum oxide (alumina), ceramics whose main component is zirconium oxide (zirconia), ceramics whose main component is silicon carbide, and ceramics whose main component is boron carbide. Examples include ceramics as a component.

基部2の大きさは、例えば、ギャップピン1を備える装置の大きさなどに応じて、適宜設定される。図1Aに示すように、円柱状を有する支持部3の場合、支持部3の直径(図1BのD2)は、例えば、2mm以上3mm以下程度である。支持部3の高さ(図1BのH2)は、例えば、1.2mm以上1.8mm以下程度である。 The size of the base 2 is appropriately set depending on, for example, the size of the device including the gap pin 1. As shown in FIG. 1A, in the case of the support portion 3 having a cylindrical shape, the diameter of the support portion 3 (D2 in FIG. 1B) is, for example, about 2 mm or more and 3 mm or less. The height of the support portion 3 (H2 in FIG. 1B) is, for example, about 1.2 mm or more and 1.8 mm or less.

一実施形態に係るギャップピン1において、支持部3における被支持体に接する第4面(以下、「支持面」と記載する場合がある)の接触部3aは、基部2の下面(基部2において、支持部3が設けられている面(上面)と対向する面)よりも切断レベル差(Rδc)の平均値が小さい。ここで「切断レベル差(Rδc)」とは、粗さ曲線における25%の負荷長さ率での切断レベルと、粗さ曲線における75%の負荷長さ率での切断レベルとの差を表す切断レベル差(Rδc)を意味する。 In the gap pin 1 according to one embodiment, the contact portion 3a of the fourth surface of the support portion 3 that contacts the supported object (hereinafter, may be referred to as “support surface”) is located on the lower surface of the base 2 (on the base 2). , the average value of the cutting level difference (Rδc) is smaller than that of the surface on which the support portion 3 is provided (the surface facing the upper surface). Here, the "cutting level difference (Rδc)" represents the difference between the cutting level at a load length ratio of 25% on the roughness curve and the cutting level at a load length ratio of 75% on the roughness curve. It means the cutting level difference (Rδc).

切断レベル差(Rδc)は、JIS B 0601:2001に準拠し、レーザー顕微鏡((株)キーエンス製、超深度カラー3D形状測定顕微鏡(VK-X1000またはその後継機種))を用いて測定することができる。測定条件としては、照明方式を同軸照明、測定倍率を480倍、カットオフ値λsを無し、カットオフ値λcを0.08mm、終端効果の補正を有り、測定範囲を710μm×533μmとして、設定すればよい。測定範囲に、測定対象とする線を略等間隔に4本引いて、線粗さ計測を行えばよい。計測の対象とする線1本当たりの長さは、560μmである。切断レベル差(Rδc)の平均値は、各線毎に得られる切断レベル差(Rδc)の測定値を対象に算出すればよい。 The cutting level difference (Rδc) can be measured using a laser microscope (manufactured by Keyence Corporation, ultra-deep color 3D shape measuring microscope (VK-X1000 or its successor model)) in accordance with JIS B 0601:2001. can. The measurement conditions were as follows: the illumination method was coaxial lighting, the measurement magnification was 480 times, there was no cutoff value λs, the cutoff value λc was 0.08 mm, the end effect was corrected, and the measurement range was 710 μm x 533 μm. Bye. Line roughness measurement may be performed by drawing four lines to be measured at approximately equal intervals in the measurement range. The length of each line to be measured is 560 μm. The average value of the cutting level difference (Rδc) may be calculated using the measured values of the cutting level difference (Rδc) obtained for each line.

支持部3の接触部3aにおける切断レベル差(Rδc)の平均値が、基部2の下面における切断レベル差(Rδc)の平均値よりも小さい、すなわち、接触部3aにおける切断レベル差(Rδc)の平均値が比較的小さいため、支持面の接触部3aが被支持体に接触しても、接触部3aから脱粒しにくくなる。その結果、接触部3aが被支持体と接触しても、被支持体に傷を付けるおそれを低減することができる。さらに、基部2の下面における切断レベル差(Rδc)の平均値が比較的大きいため、例えば、ギャップピン1を装置などに接合する場合、十分なアンカー効果が発揮される。その結果、昇温および降温を繰り返し行っても、剥離しにくく接合信頼性を高めることができる。 The average value of the cutting level difference (Rδc) at the contact part 3a of the support part 3 is smaller than the average value of the cutting level difference (Rδc) at the lower surface of the base 2, that is, the average value of the cutting level difference (Rδc) at the contact part 3a Since the average value is relatively small, even if the contact portion 3a of the support surface contacts the supported object, grains are difficult to shed from the contact portion 3a. As a result, even if the contact portion 3a comes into contact with the supported object, the possibility of damaging the supported object can be reduced. Furthermore, since the average value of the cutting level difference (Rδc) on the lower surface of the base portion 2 is relatively large, a sufficient anchoring effect is exhibited when, for example, the gap pin 1 is joined to a device or the like. As a result, even if the temperature is repeatedly raised and lowered, it is difficult to peel off and the bonding reliability can be improved.

支持部3の接触部3aにおける切断レベル差(Rδc)の平均値と、基部2の下面における切断レベル差(Rδc)の平均値との差は、例えば0.05μm以上であるのがよい。この差が0.05μm以上であると、支持部3の接触部3aにおける切断レベル差(Rδc)の平均値が十分に小さくなる。その結果、接触部3aからより脱粒しにくくなり、被支持体に傷を付けるおそれをより低減することができる。 The difference between the average value of the cutting level difference (Rδc) at the contact portion 3a of the support portion 3 and the average value of the cutting level difference (Rδc) at the lower surface of the base portion 2 is preferably 0.05 μm or more, for example. When this difference is 0.05 μm or more, the average value of the cutting level difference (Rδc) at the contact portion 3a of the support portion 3 becomes sufficiently small. As a result, it becomes more difficult for particles to fall off from the contact portion 3a, and the possibility of damaging the supported body can be further reduced.

基部2の下面における切断レベル差(Rδc)の平均値は、0.2μm以上0.37μm以下であるのがよい。基部2の下面における切断レベル差(Rδc)の平均値がこのような範囲であると、より高いアンカー効果が発揮され、接合信頼性をより高めることができる。さらに、ギャップピン1を装置などの凹部に接合する場合、基部2の下面から生じる脱粒が不安定な状態で凹部の内底面との間に挟まれると、凹部の内底面と基部2の下面とが平行にならない。このような脱粒が生じにくくなるため、脱粒の影響がより少なくなり、凹部の内底面に対する支持部3の軸心が損なわれにくくなる。その結果、被支持体に傷を付けるおそれをより低減することができる。このような効果は、凹部に接合する場合に限定されず、例えば、凹部ではない平坦な場所に接合する場合にも、このような効果は発揮される。 The average value of the cutting level difference (Rδc) on the lower surface of the base 2 is preferably 0.2 μm or more and 0.37 μm or less. When the average value of the cutting level difference (Rδc) on the lower surface of the base portion 2 is within such a range, a higher anchoring effect is exhibited and bonding reliability can be further improved. Furthermore, when bonding the gap pin 1 to a recess of a device, etc., if the grains generated from the lower surface of the base 2 are caught between the inner bottom surface of the recess and the inner bottom surface of the recess in an unstable state, the inner bottom surface of the recess and the lower surface of the base 2 may are not parallel. Since such shedding is less likely to occur, the influence of shedding is further reduced, and the axis of the support portion 3 with respect to the inner bottom surface of the recess is less likely to be damaged. As a result, the risk of damaging the supported body can be further reduced. Such an effect is not limited to the case where it is bonded to a recessed portion, but is also exhibited when, for example, it is bonded to a flat place other than a recessed portion.

支持部3における被支持体に接する支持面は、焼成面であってもよく、研磨面であってもよい。支持面が焼成面であると、支持面に破砕層が存在せず、破砕層に起因して生じる脱粒が減少する。一方、支持面が研磨面であると、焼成面よりも算術平均粗さRaが小さくなる。そのため、被支持体に接触しても、大きな脱粒が発生しにくくなる。その結果、被支持体に傷を付けるおそれをより低減することができる。 The support surface of the support portion 3 that comes into contact with the supported object may be a fired surface or a polished surface. When the supporting surface is a fired surface, no crushed layer is present on the supporting surface, and the shedding caused by the crushed layer is reduced. On the other hand, if the support surface is a polished surface, the arithmetic mean roughness Ra will be smaller than that of the fired surface. Therefore, even if it comes into contact with a supported body, large shedding is less likely to occur. As a result, the risk of damaging the supported body can be further reduced.

ギャップピン1において、切断レベル差(Rδc)に関係なく、支持部3における被支持体に接する支持面の接触部3aは、基部2の下面よりも、粗さ曲線における2乗平均平方根傾斜(RΔq)の平均値が小さくてもよい。 In the gap pin 1, regardless of the cutting level difference (Rδc), the contact portion 3a of the support surface in contact with the supported body in the support portion 3 has a root mean square slope (RΔq ) may be small.

2乗平均平方根傾斜(RΔq)は、切断レベル差(Rδc)の測定条件と同じである。2乗平均平方根傾斜(RΔq)の平均値は、各線毎に得られる切断レベル差(Rδc)の測定値を対象に算出すればよい。 The root mean square slope (RΔq) is the same as the measurement condition for the cutting level difference (Rδc). The average value of the root mean square slope (RΔq) may be calculated using the measured values of the cutting level difference (Rδc) obtained for each line.

支持面の接触部3aにおける2乗平均平方根傾斜(RΔq)の平均値が、基部2の下面における2乗平均平方根傾斜(RΔq)の平均値よりも小さい、すなわち、接触部3aにおける2乗平均平方根傾斜(RΔq)の平均値が比較的小さいため、支持面の接触部3aが被支持体に接触しても、接触部3aから脱粒しにくくなる。その結果、接触部3aが被支持体と接触しても、被支持体に傷を付けるおそれを低減することができる。さらに、基部2の下面における2乗平均平方根傾斜(RΔq)の平均値が比較的大きいため、例えば、ギャップピン1を装置などに接合する場合、十分なアンカー効果が発揮される。その結果、昇温および降温を繰り返し行っても、剥離しにくく接合信頼性を高めることができる。 The average value of the root mean square slope (RΔq) at the contact portion 3a of the support surface is smaller than the average value of the root mean square slope (RΔq) at the lower surface of the base 2, that is, the root mean square slope at the contact portion 3a Since the average value of the inclination (RΔq) is relatively small, even if the contact portion 3a of the support surface contacts the supported object, grains are difficult to shed from the contact portion 3a. As a result, even if the contact portion 3a comes into contact with the supported object, the possibility of damaging the supported object can be reduced. Furthermore, since the average value of the root mean square slope (RΔq) on the lower surface of the base portion 2 is relatively large, a sufficient anchoring effect is exhibited when, for example, the gap pin 1 is joined to a device or the like. As a result, even if the temperature is repeatedly raised and lowered, it is difficult to peel off and the bonding reliability can be improved.

支持面の接触部3aにおける2乗平均平方根傾斜(RΔq)の平均値と、基部2の下面における2乗平均平方根傾斜(RΔq)の平均値との差は、例えば0.08以上であるのがよい。この差が0.08以上であると、支持面の接触部3aにおける2乗平均平方根傾斜(RΔq)が十分に小さくなる。その結果、接触部3aからより脱粒しにくくなり、被支持体に傷を付けるおそれをより低減することができる。 The difference between the average value of the root mean square slope (RΔq) at the contact portion 3a of the support surface and the average value of the root mean square slope (RΔq) at the lower surface of the base 2 is, for example, 0.08 or more. good. When this difference is 0.08 or more, the root mean square slope (RΔq) at the contact portion 3a of the support surface becomes sufficiently small. As a result, it becomes more difficult for particles to fall off from the contact portion 3a, and the possibility of damaging the supported body can be further reduced.

基部2の下面における2乗平均平方根傾斜(RΔq)の平均値は、0.17以上0.48以下であるのがよい。基部2の下面における2乗平均平方根傾斜(RΔq)の平均値がこのような範囲であると、より高いアンカー効果が発揮され、接合信頼性をより高めることができる。さらに、ギャップピン1を装置などの凹部に接合する場合、上述のように脱粒の影響がより少なくなるため、凹部の内底面に対する支持部3の軸心が損なわれにくくなる。その結果、被支持体に傷を付けるおそれをより低減することができる。 The average value of the root mean square slope (RΔq) on the lower surface of the base 2 is preferably 0.17 or more and 0.48 or less. When the average value of the root mean square slope (RΔq) on the lower surface of the base portion 2 is within such a range, a higher anchoring effect is exhibited, and joint reliability can be further improved. Furthermore, when the gap pin 1 is joined to a recess of a device or the like, the influence of grain shedding is reduced as described above, so that the axis of the support part 3 with respect to the inner bottom surface of the recess is less likely to be damaged. As a result, the risk of damaging the supported body can be further reduced.

支持面の接触部3aにおける2乗平均平方根傾斜(RΔq)の平均値が、基部2の下面における2乗平均平方根傾斜(RΔq)の平均値よりも小さい場合であっても、上述のように、支持部における被支持体に接する支持面は、焼成面であってもよく、研磨面であってもよい。 Even if the average value of the root mean square slope (RΔq) at the contact portion 3a of the support surface is smaller than the average value of the root mean square slope (RΔq) at the lower surface of the base 2, as described above, The support surface in contact with the supported object in the support portion may be a fired surface or a polished surface.

接触部3aは、被支持体に向かって凸状に湾曲していてもよい。湾曲した接触部3aの曲率半径Rは、例えば、以下の式(1)を用いて計算すると、3m以上8m以下である。
R=((W/2)+h)/2h・・・(1)
The contact portion 3a may be curved in a convex shape toward the supported object. The radius of curvature R of the curved contact portion 3a is, for example, 3 m or more and 8 m or less when calculated using the following equation (1).
R=((W/2) 2 +h 2 )/2h...(1)

ここで、接触部3aの幅Wは、切断レベル差(Rδc)および2乗平均平方根傾斜(RΔq)の測定範囲の横方向の長さ710μmであり、高さhは前記測定範囲内の測定断面曲線の両端を結ぶ直線に対する、測定断面曲線の最大高さである。 Here, the width W of the contact portion 3a is 710 μm, which is the length in the lateral direction of the measurement range of the cutting level difference (Rδc) and the root mean square slope (RΔq), and the height h is the measurement cross section within the measurement range. This is the maximum height of the measured cross-sectional curve with respect to the straight line connecting both ends of the curve.

接触部3aの曲率半径Rが3m以上であると、接触部3aはなだらかな凸状になるため、被支持体に接触しても、接触部3aから生じやすい大きな脱粒のおそれを低減することができる。曲率半径Rが8m以下であると、被支持体に対する接触面積を減らすことができるため、接触部3aから生じやすい脱粒の量を抑制することができる。 When the radius of curvature R of the contact portion 3a is 3 m or more, the contact portion 3a has a gentle convex shape, so even if it contacts the supported object, it is possible to reduce the risk of large grain shedding that is likely to occur from the contact portion 3a. can. When the radius of curvature R is 8 m or less, the contact area with the supported body can be reduced, so the amount of grain shedding that tends to occur from the contact portion 3a can be suppressed.

支持面はDLC膜からなるとよい。プラズマ処理空間がギャップピン1の支持面側に位置するような場合、支持面の熱伝導率が高いと、ギャップピン1の支持部3の周囲に設置された部材は、支持面の輻射熱により、膨張しやすくなる。プラズマ処理によって、プラズマ処理空間で200℃~400℃程度の熱が生じても、DLC膜の熱伝導率は低い(例えば、20℃における熱伝導率は1W/(m・K)以下)ため、支持面がDLC膜からなると、支持面の輻射熱が小さくなるので、支持部3の周囲に設置された部材の膨張を抑制することができる。 The supporting surface may be made of a DLC film. When the plasma processing space is located on the side of the support surface of the gap pin 1, if the thermal conductivity of the support surface is high, the members installed around the support part 3 of the gap pin 1 will be affected by the radiant heat of the support surface. It becomes easier to expand. Even if heat of about 200°C to 400°C is generated in the plasma processing space due to plasma processing, the thermal conductivity of the DLC film is low (for example, the thermal conductivity at 20°C is 1 W/(m K) or less). When the support surface is made of a DLC film, the radiant heat of the support surface is reduced, so that expansion of the members installed around the support section 3 can be suppressed.

支持部3の側面はDLC膜からなるとよい。上述した効果と同じ効果を得ることができる。支持面のDLC膜の厚みは、支持部3の側面のDLC膜の厚みよりも大きくてもよい。このような構成であると、支持面による遮熱効果は高くなる。ここで、支持部3が円柱状である場合、支持部3の側面は曲面となる。支持部3が角柱状である場合、支持部3の側面同士が交わる交線を有する。いずれの場合も、支持部3の側面のDLC膜は支持面のDLC膜よりも、内部応力が蓄積しやすくなる。支持部3の側面のDLC膜が支持面のDLC膜の厚みよりも小さければ、内部応力の蓄積の増加が抑制されるので、長期間に亘って用いることができる。 The side surface of the support part 3 is preferably made of a DLC film. The same effects as those described above can be obtained. The thickness of the DLC film on the support surface may be greater than the thickness of the DLC film on the side surface of the support part 3. With such a configuration, the heat shielding effect of the support surface becomes high. Here, when the support part 3 is cylindrical, the side surface of the support part 3 becomes a curved surface. When the support part 3 has a prismatic shape, the side surfaces of the support part 3 have intersection lines that intersect with each other. In either case, internal stress accumulates more easily in the DLC film on the side surface of the support portion 3 than in the DLC film on the support surface. If the thickness of the DLC film on the side surface of the support part 3 is smaller than the thickness of the DLC film on the support surface, the increase in internal stress accumulation is suppressed, so that the support part 3 can be used for a long period of time.

支持面のDLC膜の厚みは、例えば、1μm以上10μm以下である。支持面のDLC膜の厚みと、支持部3の側面のDLC膜の厚みとの差は、例えば、0.2μm以上0.8μm以下である。上述した理由と同じ理由で、基部2の上面はDLC膜からなるとよい。 The thickness of the DLC film on the support surface is, for example, 1 μm or more and 10 μm or less. The difference between the thickness of the DLC film on the support surface and the thickness of the DLC film on the side surface of the support portion 3 is, for example, 0.2 μm or more and 0.8 μm or less. For the same reason as mentioned above, the upper surface of the base 2 is preferably made of a DLC film.

基部2の側面はDLC膜からなるとよい。基部2の側面のDLC膜の厚みは、上面のDLC膜の厚みよりも小さくてもよい。このような構成であると、上面による遮熱効果は高くなる。ここで、基部2が円板状である場合、基部2の側面は曲面となる。基部2が角柱状である場合、基部2の側面同士が交わる交線を有する。いずれの場合も、基部2の側面のDLC膜は上面のDLC膜よりも、内部応力が蓄積しやすくなる。基部2の側面のDLC膜が上面のDLC膜の厚みよりも小さければ、内部応力の蓄積の増加が抑制されるので、長期間に亘って用いることができる。 The side surface of the base 2 is preferably made of a DLC film. The thickness of the DLC film on the side surface of the base 2 may be smaller than the thickness of the DLC film on the top surface. With such a configuration, the heat shielding effect of the upper surface becomes high. Here, when the base 2 is disc-shaped, the side surface of the base 2 becomes a curved surface. When the base 2 has a prismatic shape, the side surfaces of the base 2 have intersection lines that intersect with each other. In either case, internal stress accumulates more easily in the DLC film on the side surface of the base 2 than in the DLC film on the top surface. If the thickness of the DLC film on the side surface of the base 2 is smaller than the thickness of the DLC film on the top surface, the increase in internal stress accumulation is suppressed, so that it can be used for a long period of time.

上面のDLC膜の厚みは、例えば、1μm以上10μm以下である。上面のDLC膜の厚みと、基部2の側面のDLC膜の厚みとの差は、例えば、0.2μm以上0.8μm以下である。 The thickness of the DLC film on the upper surface is, for example, 1 μm or more and 10 μm or less. The difference between the thickness of the DLC film on the top surface and the thickness of the DLC film on the side surface of the base 2 is, for example, 0.2 μm or more and 0.8 μm or less.

支持部3がDLC膜を有する場合、支持部3は炭化珪素を主成分とするセラミックスからなるとよい。同様に、基部2がDLC膜を有する場合、基部2は炭化珪素を主成分とするセラミックスからなるとよい。DLC膜は、炭化珪素との密着性が良好であるため、炭化珪素を主成分とするセラミックスに対する密着強度を高くすることができる。 When the support part 3 has a DLC film, the support part 3 is preferably made of ceramics containing silicon carbide as a main component. Similarly, when base 2 has a DLC film, base 2 is preferably made of ceramics containing silicon carbide as a main component. Since the DLC film has good adhesion to silicon carbide, it can increase the adhesion strength to ceramics containing silicon carbide as a main component.

上述したDLC膜は、アルゴン、ヘリウムおよび水素の少なくともいずれかを含んでいてもよい。特に、水素を含んでいると、耐熱性と耐食性が向上したDLC膜とすることができる。DLC膜は、ラマン分光分析装置を用いて同定すればよい。 The DLC film described above may contain at least one of argon, helium, and hydrogen. In particular, when hydrogen is included, the DLC film can have improved heat resistance and corrosion resistance. The DLC film may be identified using a Raman spectrometer.

一実施形態に係るギャップピン1を製造する方法は限定されず、例えば次のような手順で製造される。ギャップピン1を形成しているセラミックスの主成分が酸化アルミニウムである場合、例えば、酸化アルミニウム(純度が99.9質量%以上)と、水酸化マグネシウム、酸化珪素、炭酸カルシウムおよび酸化クロムの各粉末と溶媒(イオン交換水)とを、粉砕用ミルに投入する。 The method for manufacturing the gap pin 1 according to one embodiment is not limited, and for example, the gap pin 1 can be manufactured using the following procedure. When the main component of the ceramic forming the gap pin 1 is aluminum oxide, for example, aluminum oxide (purity of 99.9% by mass or more) and powders of magnesium hydroxide, silicon oxide, calcium carbonate, and chromium oxide. and a solvent (ion-exchanged water) are put into a grinding mill.

次いで、粉末の平均粒径(D50)が1.5μm以下になるまで粉砕した後、有機結合剤と酸化アルミニウム粉末を分散させる分散剤とを添加し、混合してスラリーを得る。有機結合剤としては、例えば、アクリルエマルジョン、ポリビニールアルコール、ポリエチレングリコール、ポリエチレンオキサイドなどが挙げられる。 Next, after pulverizing the powder until the average particle size (D50) becomes 1.5 μm or less, an organic binder and a dispersant for dispersing the aluminum oxide powder are added and mixed to obtain a slurry. Examples of the organic binder include acrylic emulsion, polyvinyl alcohol, polyethylene glycol, and polyethylene oxide.

上記粉末の合計100質量%における水酸化マグネシウム粉末の含有量は0.3質量%以上0.42質量%以下、酸化珪素粉末の含有量は0.5質量%以上0.8質量%以下、炭酸カルシウム粉末の含有量は0.06質量%以上0.1質量%以下、残部が酸化アルミニウム粉末および不可避不純物である。不可避不純物の含有量の合計は、0.1質量%以下とする。 The content of magnesium hydroxide powder in the total 100% by mass of the above powder is 0.3% by mass or more and 0.42% by mass or less, the content of silicon oxide powder is 0.5% by mass or more and 0.8% by mass or less, carbonate The content of calcium powder is 0.06% by mass or more and 0.1% by mass or less, and the remainder is aluminum oxide powder and inevitable impurities. The total content of unavoidable impurities is 0.1% by mass or less.

スラリーを噴霧造粒して顆粒を得た後、1軸プレス成形装置あるいは冷間静水圧プレス成形装置を用いて、成形圧を78Mpa以上128MPa以下として加圧してギャップピン1の元となる成形体を得る。この成形体を、大気雰囲気中、1500℃以上1700℃以下および4時間以上6時間以下の条件で焼成することによってギャップピン1が得られる。 After spraying and granulating the slurry to obtain granules, a uniaxial press molding device or a cold isostatic press molding device is used to pressurize the molding pressure at 78 MPa or more and 128 MPa or less to form a molded product that will become the basis of the gap pin 1. get. The gap pin 1 is obtained by firing this molded body in an air atmosphere under conditions of 1500° C. or more and 1700° C. or less and 4 hours or more and 6 hours or less.

このようにして得られたギャップピン1において、支持面の接触部3aおよび基部2の下面がいずれも焼成面である場合、接触部3aにおける切断レベル差(Rδc)の平均値を求めると0.2091μmであり、基部2の下面における切断レベル差(Rδc)の平均値を求めると0.2682μmであった。さらに、支持面の接触部3aにおける2乗平均平方根傾斜(RΔq)の平均値を求めると0.2121であり、基部2の下面における2乗平均平方根傾斜(RΔq)の平均値を求めると0.3041であった。測定はいずれも上述した測定方法を用いた。 In the gap pin 1 obtained in this manner, when both the contact portion 3a of the support surface and the lower surface of the base 2 are fired surfaces, the average value of the cutting level difference (Rδc) at the contact portion 3a is 0. The average value of the cutting level difference (Rδc) on the lower surface of the base 2 was 0.2682 μm. Further, the average value of the root mean square slope (RΔq) at the contact portion 3a of the support surface is 0.2121, and the average value of the root mean square slope (RΔq) at the lower surface of the base 2 is 0.2121. It was 3041. All measurements were performed using the measurement method described above.

必要に応じて、得られたギャップピン1において、支持部3における被支持体に接する支持面を、研磨加工に供してもよい。研磨は、例えば、ブラシ研磨、バフ研磨などによって行われる。 If necessary, in the obtained gap pin 1, the support surface of the support portion 3 that contacts the supported object may be subjected to polishing. Polishing is performed, for example, by brush polishing, buffing, or the like.

支持面をブラシ研磨する場合、ギャップピン1を固定した状態で、10mm程度の長さのブラシを束ねたロールを50rpm~200rpm程度で回転させながら、30分~60分研磨する。研磨剤は、ダイヤモンド粉末を油脂類に添加して得られるペーストを用い、このペーストを予めブラシに塗布しておく。ダイヤモンド粉末の平均粒径は、例えば、0.5μm以上6μm以下である。 When polishing the supporting surface with a brush, polishing is performed for 30 to 60 minutes with the gap pin 1 fixed while rotating a roll containing a bundle of brushes each having a length of approximately 10 mm at approximately 50 rpm to 200 rpm. As the abrasive, a paste obtained by adding diamond powder to oils and fats is used, and this paste is applied to the brush in advance. The average particle size of the diamond powder is, for example, 0.5 μm or more and 6 μm or less.

支持面の接触部3aと基部2の下面との切断レベル差(Rδc)の平均値の差が、0.05μm以上であるギャップピン1を得るには、ロールの回転速度と研磨時間は、例えば上述した通りとすればよい。ダイヤモンド粉末の平均粒径は、例えば、0.5μm以上4μm以下とすればよい。 In order to obtain a gap pin 1 in which the average value of the cutting level difference (Rδc) between the contact portion 3a of the support surface and the lower surface of the base 2 is 0.05 μm or more, the rotational speed of the roll and the polishing time are, for example, It may be as described above. The average particle size of the diamond powder may be, for example, 0.5 μm or more and 4 μm or less.

支持面の接触部3aと基部の下面との2乗平均平方根傾斜(RΔq)の平均値の差が、0.08以上であるギャップピン1を得るには、ロールの回転速度と研磨時間は、例えば上述した通りとすればよい。ダイヤモンド粉末の平均粒径は、例えば、0.5μm以上3μm以下とすればよい。 In order to obtain a gap pin 1 in which the difference in the average value of the root mean square slope (RΔq) between the contact portion 3a of the support surface and the lower surface of the base is 0.08 or more, the rotational speed of the roll and the polishing time are as follows. For example, it may be as described above. The average particle size of the diamond powder may be, for example, 0.5 μm or more and 3 μm or less.

支持面をバフ研磨する場合、バフの基材は限定されず、例えば、フェルト、綿帯体、木綿帯体などが挙げられる。研磨剤としては、例えば、ダイヤモンド粉末、グリーンカーボランダム(GC)粉末などが挙げられる。これらの研磨剤を油脂類に添加し、ペースト状態で使用すればよい。 When buffing the support surface, the base material for the buff is not limited, and examples thereof include felt, cotton strips, cotton strips, and the like. Examples of the abrasive include diamond powder, green carborundum (GC) powder, and the like. These abrasives may be added to oils and fats and used in the form of a paste.

研磨剤の平均粒径は、例えば、0.5μm以上6μm以下である。基材の外径は150mmであり、その回転速度は、例えば、28m/分以上170m/分以下である。研磨時間は、例えば、0.5分以上5分以下である。 The average particle size of the abrasive is, for example, 0.5 μm or more and 6 μm or less. The outer diameter of the base material is 150 mm, and the rotation speed thereof is, for example, 28 m/min or more and 170 m/min or less. The polishing time is, for example, 0.5 minutes or more and 5 minutes or less.

支持面がブラシ研磨面、基部2の下面が焼成面である場合、接触部3aにおける切断レベル差(Rδc)の平均値を求めると0.0474μmであり、基部2の下面における切断レベル差(Rδc)の平均値を求めると0.2982μmであった。さらに、支持面の接触部3aにおける2乗平均平方根傾斜(RΔq)の平均値を求めると0.0761であり、基部2の下面における2乗平均平方根傾斜(RΔq)の平均値を求めると0.3223であった。測定はいずれも上述した測定方法を用いた。 When the support surface is a brush-polished surface and the lower surface of the base 2 is a fired surface, the average value of the cutting level difference (Rδc) at the contact portion 3a is 0.0474 μm, and the cutting level difference (Rδc) at the lower surface of the base 2 is calculated as 0.0474 μm. ) was found to be 0.2982 μm. Further, the average value of the root mean square slope (RΔq) at the contact portion 3a of the support surface is 0.0761, and the average value of the root mean square slope (RΔq) at the lower surface of the base 2 is 0.0761. It was 3223. All measurements were performed using the measurement method described above.

ギャップピンを形成しているセラミックスの主成分が炭化珪素である場合、まず、炭化珪素粉末として、粗粒状粉末および微粒状粉末を準備し、水と、必要に応じて分散剤とを、ボールミルまたはビーズミルにより40~60時間粉砕混合してスラリーとする。ここで、粉砕混合した後の微粒状粉末および粗粒状粉末のそれぞれの粒径の範囲は0.4μm以上4μm以下、11μm以上34μm以下である。次に、得られたスラリーに、炭化硼素粉末および非晶質状の炭素粉末またはフェノール樹脂からなる焼結助剤と、バインダとを添加して混合した後、噴霧乾燥することで主成分が炭化珪素からなる顆粒を得る。 When the main component of the ceramic forming the gap pin is silicon carbide, first prepare a coarse powder and a fine powder as silicon carbide powder, and add water and a dispersant if necessary to a ball mill or The mixture is ground and mixed using a bead mill for 40 to 60 hours to form a slurry. Here, the particle size range of each of the fine powder and the coarse powder after pulverization and mixing is 0.4 μm or more and 4 μm or less, and 11 μm or more and 34 μm or less. Next, a sintering aid consisting of boron carbide powder, amorphous carbon powder or phenolic resin, and a binder are added to the resulting slurry and mixed, and then spray-dried to carbonize the main components. Granules consisting of silicon are obtained.

粗粒状粉末と微粒状粉末との質量比率としては、例えば、粗粒状粉末が6質量%以上15質量%以下であり、微粒状粉末が85質量%以上94質量%以下である。 As for the mass ratio of the coarse granular powder and the fine granular powder, for example, the coarse granular powder is 6% by mass or more and 15% by mass or less, and the finely granular powder is 85% by mass or more and 94% by mass or less.

次に、顆粒を所定の成形型に充填し、49~147MPaの範囲で適宜選択される圧力で厚み方向から加圧、成形してギャップピンの前駆体である成形体を得る。そして、得られた成形体を窒素雰囲気中、温度を450~650℃、保持時間を2~10時間として脱脂して、脱脂体を得る。 Next, the granules are filled into a predetermined mold, and pressed and molded from the thickness direction at a pressure appropriately selected in the range of 49 to 147 MPa to obtain a molded body that is a gap pin precursor. Then, the obtained molded body is degreased in a nitrogen atmosphere at a temperature of 450 to 650° C. for a holding time of 2 to 10 hours to obtain a degreased body.

次に、この脱脂体を、不活性ガスの減圧雰囲気中、最高温度を1800℃以上2200℃以下、保持時間を3時間以上6時間以下として保持し、焼成することによってギャップピン1が得られる。ギャップピンが炭化珪素を主成分とする場合、上述したように、焼結助剤が炭化硼素粉末および非晶質状の炭素粉末またはフェノール樹脂であってもよく、焼結助剤は酸化アルミニウム粉末および希土類酸化物粉末であってもよい。希土類酸化物粉末は、例えば、酸化イットリウム粉末である。 Next, the gap pin 1 is obtained by holding and firing this degreased body in a reduced pressure atmosphere of inert gas at a maximum temperature of 1800° C. or more and 2200° C. or less and a holding time of 3 hours or more and 6 hours or less. When the gap pin is mainly composed of silicon carbide, the sintering aid may be boron carbide powder, amorphous carbon powder, or phenolic resin, as described above, and the sintering aid may be aluminum oxide powder. and rare earth oxide powder. The rare earth oxide powder is, for example, yttrium oxide powder.

酸化アルミニウム粉末および酸化イットリウム粉末が焼結助剤である場合、焼結すると、炭化珪素を主成分とし、アルミニウムおよびイットリウムを酸化物として含むセラミックスとなる。このセラミックスは、炭化珪素を主成分とし、アルミニウムを酸化物換算で1質量%以上10質量%以下、イットリウムを酸化物換算で1質量%以上10質量%以下含んでいるとよい。 When aluminum oxide powder and yttrium oxide powder are sintering aids, sintering results in a ceramic containing silicon carbide as a main component and aluminum and yttrium as oxides. This ceramic preferably contains silicon carbide as a main component, aluminum in an oxide equivalent of 1 to 10 mass %, and yttrium in an oxide equivalent of 1 to 10 mass %.

酸化アルミニウム粉末および酸化イットリウム粉末が焼結助剤であると、焼結は液相焼結となり、粒界相が形成される。アルミニウムおよびイットリウムを酸化物に換算した含有量が上記範囲であれば、熱伝導率を50W/(m・K)以上70W/(m・K)以下と、比較的低くすることができる。 When aluminum oxide powder and yttrium oxide powder are sintering aids, sintering becomes liquid phase sintering and a grain boundary phase is formed. If the content of aluminum and yttrium in terms of oxides is within the above range, the thermal conductivity can be made relatively low, at 50 W/(m·K) or more and 70 W/(m·K) or less.

このようにして得られたギャップピン1にDLC膜を形成する場合、例えば、プラズマイオン注入成膜法を用いればよい。プラズマイオン注入成膜法は、パルス生成用の高周波パルスとイオン注入用の負の高電圧パルスとを重畳させ、支持部の周囲にプラズマを生成させるとともに、プラズマ中のイオン種を高電圧パルスによって支持部に引き込む方式である。 When forming a DLC film on the gap pin 1 obtained in this way, for example, a plasma ion implantation film formation method may be used. In the plasma ion implantation film formation method, a high frequency pulse for pulse generation and a negative high voltage pulse for ion implantation are superimposed to generate plasma around the support part, and the ion species in the plasma are removed by the high voltage pulse. This method is to pull it into the support part.

具体的には、まず、低圧炭化水素ガス雰囲気中に配置された成膜前のギャップピンに、13.56MHzのパルス高周波放電電圧を印加することによって、炭化水素ガスプラズマ中のイオン種を発生させる。その後、アフターグロープラズマ中においてギャップピンに負の高電圧パルス放電電圧を印加して、ギャップピンにイオンの衝撃を与えることによって、DLC膜からなる支持面、支持部の側面、基部の上面、基部の側面などを得ることができる。 Specifically, first, ion species in the hydrocarbon gas plasma are generated by applying a pulsed high-frequency discharge voltage of 13.56 MHz to a gap pin before film formation that is placed in a low-pressure hydrocarbon gas atmosphere. . After that, by applying a negative high voltage pulse discharge voltage to the gap pin in afterglow plasma and bombarding the gap pin with ions, the supporting surface made of the DLC film, the side surface of the supporting part, the upper surface of the base, and the base are You can get aspects such as.

炭化水素ガスプラズマ中のイオン種を発生させる前に、アルゴン、ヘリウム、水素などのイオンを用いて、プラズマクリーニング処理を行うとよい。このプラズマクリーニング処理によって、支持部や基部に付着している不純物などを除去することができるので、支持部や基部に対して、より密着性の高いDLC膜を得ることができる。 Before generating the ion species in the hydrocarbon gas plasma, it is preferable to perform a plasma cleaning process using ions such as argon, helium, hydrogen, or the like. By this plasma cleaning treatment, impurities adhering to the support portion and the base portion can be removed, so that a DLC film with higher adhesion to the support portion and the base portion can be obtained.

一実施形態に係るギャップピン1は、種々の産業用装置の一部材として採用される。このような産業用装置としては、例えば、熱処理装置、静電チャック装置、半導体基板の検査装置、現像装置などが挙げられる。 The gap pin 1 according to one embodiment is employed as a part of various industrial devices. Examples of such industrial equipment include heat treatment equipment, electrostatic chuck equipment, semiconductor substrate inspection equipment, and development equipment.

熱処理装置は、例えば、載置台と一実施形態に係るギャップピン1とを備える。被支持体が載置台上に隙間を設けて載置されるように、一実施形態に係るギャップピン1は載置台に設けられている。熱処理装置について、図2Aおよび2Bに基づいてより具体的に説明する。図2Aは、本開示の一実施形態に係る熱処理装置を示す断面図であり、図2Bは図2AのA部を拡大した断面図である。 The heat treatment apparatus includes, for example, a mounting table and a gap pin 1 according to an embodiment. The gap pin 1 according to one embodiment is provided on the mounting table so that the supported object is placed on the mounting table with a gap provided therebetween. The heat treatment apparatus will be described in more detail based on FIGS. 2A and 2B. FIG. 2A is a sectional view showing a heat treatment apparatus according to an embodiment of the present disclosure, and FIG. 2B is an enlarged sectional view of section A in FIG. 2A.

熱処理装置10は、ウエハWを加熱処理する処理室11を有する。処理室11は、ウエハWを載置する載置台12と、載置台12上でウエハWを昇降させるリフトピン13と、外気を遮断するシャッタ14と、を有している。 The heat processing apparatus 10 has a processing chamber 11 in which a wafer W is heat-processed. The processing chamber 11 includes a mounting table 12 on which the wafer W is placed, lift pins 13 that raise and lower the wafer W on the mounting table 12, and a shutter 14 that blocks outside air.

シャッタ14は、シリンダ15の作動により上昇または下降する。シャッタ14が上昇すると、シャッタ14は、カバー16の下部に取り付けられたストッパ17に接触して、処理室11は閉じた空間となる。ストッパ17には給気口(図示しない)が設けられており、この給気口から処理室11内に流入した空気は、処理室11の上部中央に形成された排気口18から排出される。給気口から流入した空気はウエハWに直接触れることなく、ウエハWを所定の温度で加熱処理することができる。 The shutter 14 is raised or lowered by the operation of the cylinder 15. When the shutter 14 rises, the shutter 14 comes into contact with a stopper 17 attached to the lower part of the cover 16, and the processing chamber 11 becomes a closed space. The stopper 17 is provided with an air supply port (not shown), and air flowing into the processing chamber 11 from this air supply port is discharged from an exhaust port 18 formed at the center of the upper part of the processing chamber 11 . The air flowing in from the air supply port can heat-process the wafer W at a predetermined temperature without directly touching the wafer W.

載置台12は、ウエハWより大きい円板状であり、ウエハWを加熱するヒータ19が内蔵されている。ウエハWが載置台12上に隙間を設けて載置されるように、ギャップピン1が載置台12に設けられており、載置台12の載置面から発生するパーティクルのウエハWへの付着を抑制する。 The mounting table 12 has a disk shape larger than the wafer W, and has a built-in heater 19 that heats the wafer W. A gap pin 1 is provided on the mounting table 12 so that the wafer W is placed on the mounting table 12 with a gap, and prevents particles generated from the mounting surface of the mounting table 12 from adhering to the wafer W. suppress.

図2Bに示すように、ギャップピン1は、載置台12の載置面に設けられた凹部12a内に取り付けられる基部2と、この基部2の上面に設けられ、ウエハWを支持する支持部3と、を含み、ギャップピン1からウエハWに与えられる熱と載置台12の載置面からウエハWに与えられる熱との差が小さくなるようにされている。 As shown in FIG. 2B, the gap pin 1 includes a base 2 that is installed in a recess 12a provided on the mounting surface of the mounting table 12, and a support section 3 that is provided on the upper surface of the base 2 and supports the wafer W. The difference between the heat applied to the wafer W from the gap pin 1 and the heat applied to the wafer W from the mounting surface of the mounting table 12 is made small.

具体的には、凹部12a内の基部2の上方の空間Sに保持部材20を埋設し、載置台12とギャップピン1との間の熱勾配が小さくなるようにされている。保持部材20は、載置台12と同じ材料で形成するとよい。載置台12と同程度の熱伝導率を有するものであれば、他の材料を用いてもよい。載置台12とウエハWとの隙間は、例えば、0.1mm以上0.3mm以下である。 Specifically, the holding member 20 is buried in the space S above the base 2 in the recess 12a, so that the thermal gradient between the mounting table 12 and the gap pin 1 is reduced. The holding member 20 is preferably made of the same material as the mounting table 12. Other materials may be used as long as they have a thermal conductivity comparable to that of the mounting table 12. The gap between the mounting table 12 and the wafer W is, for example, 0.1 mm or more and 0.3 mm or less.

リフトピン13は、下部を連結ガイド22に固定されており、連結ガイド22はタイミングベルト23に連結されている。タイミングベルト23は、ステッピングモータ24により駆動される駆動プーリ25と、駆動プーリ25の上方に配置される従動プーリ26とに掛けられている。ステッピングモータ24の回転方向を変えることによって、リフトピン13は、載置台12の円周方向に設けられた貫通孔21内を上昇あるいは下降し、ウエハWを2点鎖線で示す位置で支持したり、ウエハWを載置台12上に載置したりすることができる。 The lower part of the lift pin 13 is fixed to a connecting guide 22, and the connecting guide 22 is connected to a timing belt 23. The timing belt 23 is placed around a drive pulley 25 driven by a stepping motor 24 and a driven pulley 26 arranged above the drive pulley 25 . By changing the rotational direction of the stepping motor 24, the lift pins 13 move up or down in the through holes 21 provided in the circumferential direction of the mounting table 12, and support the wafer W at the position shown by the two-dot chain line. The wafer W can be placed on the mounting table 12.

本開示に係る静電チャック装置は、例えば、載置台とフォーカスリングと一実施形態に係るギャップピン1とを備える。フォーカスリングは、載置台の周囲に位置している。フォーカスリングは、円周に沿って設けられた固定部と、この固定部と同心円状に設けられ、上下方向に変位可能な可動部とを備えている。この固定部の上面に一実施形態に係るギャップピン1が備えられている。本開示に係る静電チャック装置について、図3Aおよび3Bに基づいてより具体的に説明する。 The electrostatic chuck device according to the present disclosure includes, for example, a mounting table, a focus ring, and a gap pin 1 according to an embodiment. The focus ring is located around the mounting table. The focus ring includes a fixed part provided along the circumference, and a movable part provided concentrically with the fixed part and movable in the vertical direction. A gap pin 1 according to one embodiment is provided on the upper surface of this fixed portion. The electrostatic chuck device according to the present disclosure will be described in more detail based on FIGS. 3A and 3B.

図3Aは、本開示の一実施形態に係る静電チャック装置を示す斜視図であり、被支持体が載置台に載置されている状態を示す。図3Bは、本開示の一実施形態に係る静電チャック装置を示す斜視図であり、被支持体が載置台から持ち上げられている状態を示す。 FIG. 3A is a perspective view of an electrostatic chuck device according to an embodiment of the present disclosure, showing a state in which a supported object is placed on a mounting table. FIG. 3B is a perspective view of an electrostatic chuck device according to an embodiment of the present disclosure, showing a state in which a supported object is lifted from a mounting table.

図3Aおよび3Bに示す静電チャック装置30は、載置台31を搭載する保持部32を有する。載置台31はウエハWを載置する載置面31aを有する。 The electrostatic chuck device 30 shown in FIGS. 3A and 3B has a holding section 32 on which a mounting table 31 is mounted. The mounting table 31 has a mounting surface 31a on which the wafer W is mounted.

保持部32は、円板状であり、載置台31側とは反対側(静電吸着用電極(図示しない)の下方)に配置される。保持部32は、載置台31を冷却して、所望の温度に調整する。保持部32は、その内部に水を循環させる流路(図示しない)を備えている。保持部32は、例えば、アルミニウム、アルミニウム合金、銅、銅合金、ステンレス鋼(SUS)、チタンなどからなる。静電チャック装置30がプラズマ空間で用いられる場合、保持部32の少なくともプラズマに曝される面は、酸化アルミニウムなどの絶縁膜が成膜されているとよい。 The holding part 32 has a disk shape and is arranged on the side opposite to the mounting table 31 (below the electrostatic adsorption electrode (not shown)). The holding unit 32 cools the mounting table 31 and adjusts it to a desired temperature. The holding portion 32 includes a flow path (not shown) that circulates water therein. The holding portion 32 is made of, for example, aluminum, aluminum alloy, copper, copper alloy, stainless steel (SUS), titanium, or the like. When the electrostatic chuck device 30 is used in a plasma space, an insulating film such as aluminum oxide is preferably formed on at least the surface of the holding portion 32 that is exposed to plasma.

図3Aに示すように、フォーカスリング33は上側に位置する上部リング34と、上部リング34の下側に位置する下部リング35とを有する。上部リング34は、円周に沿って設けられた固定部37と、該固定部と同心円上に設けられ、上下方向に変位可能な可動部36とを備えている。 As shown in FIG. 3A, the focus ring 33 includes an upper ring 34 located above and a lower ring 35 located below the upper ring 34. The upper ring 34 includes a fixed part 37 provided along the circumference, and a movable part 36 provided concentrically with the fixed part and movable in the vertical direction.

図3Bに示すように、リフトピン38が上昇すると、可動部36は上昇してウエハWを持ち上げる。可動部36の下面には、下部リング35の上面に設けられたギャップピン1に嵌合する位置決め孔(図示しない)が設けられている。ギャップピン1および位置決め孔が設けられることにより、リフトピン38とともに可動部36が下降すると、可動部36は下部リング35に位置決めされる。一方、固定部37は、下部リング35に固定されている。 As shown in FIG. 3B, when the lift pins 38 rise, the movable part 36 rises and lifts the wafer W. A positioning hole (not shown) that fits into the gap pin 1 provided on the upper surface of the lower ring 35 is provided on the lower surface of the movable portion 36 . By providing the gap pin 1 and the positioning hole, when the movable part 36 descends together with the lift pin 38, the movable part 36 is positioned on the lower ring 35. On the other hand, the fixed part 37 is fixed to the lower ring 35.

可動部36は、その両端で開口する開口部36bを有し、平面視してC字状である。固定部37は、可動部36が移動しないとき、平面視して、開口部36b内に位置する。図3Aに示す静電チャック装置30は、可動部36が周方向の両端部で固定部37に接している。図3Bに示す静電チャック装置30は、可動部36の開口部36bが開放している。図3Bに示す状態では、ウェハWを搬送する搬送アームなどの搬送機構(図示しない)を、径方向の外側から開口部36bに挿入することができる。可動部36は、周方向の両端部に、いずれも下側を向いて傾斜する第5面36aを有する。 The movable part 36 has openings 36b that are open at both ends thereof, and has a C-shape in plan view. When the movable part 36 does not move, the fixed part 37 is located within the opening 36b in plan view. In the electrostatic chuck device 30 shown in FIG. 3A, the movable part 36 is in contact with the fixed part 37 at both ends in the circumferential direction. In the electrostatic chuck device 30 shown in FIG. 3B, the opening 36b of the movable part 36 is open. In the state shown in FIG. 3B, a transport mechanism (not shown) such as a transport arm that transports the wafer W can be inserted into the opening 36b from the outside in the radial direction. The movable portion 36 has fifth surfaces 36a, both of which are inclined downward, at both end portions in the circumferential direction.

固定部37は、周方向の両端部に、いずれも上側を向いて傾斜する第6面37aを有する。定常状態において、第5面36aと第6面37aとは、互いの傾斜面によって上下方向に互いに重なる。第5面36aと第6面37aとがこのように重なると、可動部36と固定部37との接触部は、斜めに向かって延びた状態となる。接触部が斜めに向かって延びると、プラズマが侵入する経路が長くなるため、可動部36と固定部37との隙間へのプラズマの侵入が抑制される。 The fixing portion 37 has sixth surfaces 37a, both of which are inclined upward, at both ends in the circumferential direction. In a steady state, the fifth surface 36a and the sixth surface 37a overlap each other in the vertical direction due to their mutual slopes. When the fifth surface 36a and the sixth surface 37a overlap in this way, the contact portion between the movable portion 36 and the fixed portion 37 extends diagonally. When the contact portion extends diagonally, the path through which plasma enters becomes longer, and therefore the invasion of plasma into the gap between the movable portion 36 and the fixed portion 37 is suppressed.

したがって、プラズマの侵食による可動部36と固定部37との隙間の広がりを抑制でき、長期間に亘って静電チャック装置1を用いることができる。水平方向に対する第5面36aおよび第6面37aの傾斜角は、45°以下とすることが好ましい。第5面36aおよび第6面37aの傾斜角をこの範囲にすることにより、可動部36と固定部37との隙間に、プラズマはさらに侵入しにくくなる。 Therefore, widening of the gap between the movable part 36 and the fixed part 37 due to plasma erosion can be suppressed, and the electrostatic chuck device 1 can be used for a long period of time. The angle of inclination of the fifth surface 36a and the sixth surface 37a with respect to the horizontal direction is preferably 45° or less. By setting the inclination angles of the fifth surface 36a and the sixth surface 37a within this range, it becomes more difficult for plasma to enter the gap between the movable part 36 and the fixed part 37.

本開示に係るギャップピンは、上述の一実施形態に限定されない。例えば、上述のギャップピン1において、上面視した場合に、基部2は円形状を有している。しかし、基部2は円形状に限定されない。例えば、所望の用途などに応じて、基部2は、上面視した場合に楕円形状であってもよく、三角形状、四角形状、五角形状、六角形状などの多角形状を有していてもよい。支持部3についても、円柱状に限定されない。例えば、所望の用途などに応じて、支持部3は、楕円柱状であってもよく、三角柱状、四角柱状、五角柱状、六角柱状などの角柱状を有していてもよい。 The gap pin according to the present disclosure is not limited to the above-described embodiment. For example, in the gap pin 1 described above, the base 2 has a circular shape when viewed from above. However, the base 2 is not limited to a circular shape. For example, depending on the desired use, the base 2 may have an elliptical shape when viewed from above, or may have a polygonal shape such as a triangular, quadrangular, pentagonal, or hexagonal shape. The support portion 3 is also not limited to a cylindrical shape. For example, depending on the desired use, the support portion 3 may have an elliptical column shape, or a prismatic shape such as a triangular column, a quadrangular column, a pentagonal column, or a hexagonal column.

さらに、上述のギャップピン1の製造方法は、基部2と支持部3とを一体成形する方法を説明している。しかし、本開示に係るギャップピンは、基部2と支持部3とを別々に成形し、焼成した後、基部2と支持部3とを接合して製造してもよい。接合方法は限定されず、例えば、拡散接合などが挙げられる。 Furthermore, the method for manufacturing the gap pin 1 described above describes a method of integrally molding the base portion 2 and the support portion 3. However, the gap pin according to the present disclosure may be manufactured by molding the base 2 and the support part 3 separately, firing them, and then joining the base part 2 and the support part 3 together. The bonding method is not limited, and examples include diffusion bonding.

1 ギャップピン
2 基部
3 支持部
3a 接触部
10 熱処理装置
11 処理室
12 載置台
12a 凹部
13 リフトピン
14 シャッタ
15 シリンダ
16 カバー
17 ストッパ
18 排気口
19 ヒータ
20 保持部材
21 貫通孔
22 連結ガイド
23 タイミングベルト
24 ステッピングモータ
25 駆動プーリ
26 従動プーリ
30 静電チャック装置
31 載置台
32 保持部
33 フォーカスリング
34 上部リング
35 下部リング
36 可動部
36a 第5面
36b 開口部
37 固定部
37a 第6面
38 リフトピン
1 Gap pin 2 Base 3 Support part 3a Contact part 10 Heat treatment device 11 Processing chamber 12 Mounting table 12a Recess 13 Lift pin 14 Shutter 15 Cylinder 16 Cover 17 Stopper 18 Exhaust port 19 Heater 20 Holding member 21 Through hole 22 Connection guide 23 Timing belt 24 Stepping motor 25 Drive pulley 26 Driven pulley 30 Electrostatic chuck device 31 Mounting table 32 Holding section 33 Focus ring 34 Upper ring 35 Lower ring 36 Movable section 36a Fifth surface 36b Opening 37 Fixed section 37a Sixth surface 38 Lift pin

Claims (15)

第1面と該第1面の反対に位置する第2面とを有する基部と、
前記第1面上に位置し、前記第1面に対向する第3面と該第3面の反対に位置して被支持体との接触部を含む第4面とを有する支持部と、
を含み、
前記接触部は、粗さ曲線における25%の負荷長さ率での切断レベルと、前記粗さ曲線における75%の負荷長さ率での切断レベルとの差を表す切断レベル差(Rδc)の平均値が、前記第2面よりも小さい、
ギャップピン。
a base having a first surface and a second surface located opposite the first surface;
a support portion located on the first surface and having a third surface opposite to the first surface and a fourth surface located opposite to the third surface and including a contact portion with the supported body;
including;
The contact portion has a cut level difference (Rδc) representing the difference between the cut level at a load length rate of 25% in the roughness curve and the cut level at a load length rate of 75% in the roughness curve. the average value is smaller than the second surface;
gap pin.
前記第2面の前記切断レベル差(Rδc)の平均値が、0.2μm以上0.37μm以下である、請求項1に記載のギャップピン。 The gap pin according to claim 1, wherein the average value of the cutting level difference (Rδc) on the second surface is 0.2 μm or more and 0.37 μm or less. 前記接触部と、前記第2面との切断レベル差(Rδc)の平均値の差が、0.05μm以上である、請求項1または2に記載のギャップピン。 The gap pin according to claim 1 or 2, wherein an average difference in cutting level difference (Rδc) between the contact portion and the second surface is 0.05 μm or more. 第1面と該第1面の反対に位置する第2面とを有する基部と、
前記第1面上に位置し、前記第1面に対向する第3面と該第3面の反対に位置して被支持体との接触部を含む第4面とを有する支持部と、
を含み、
前記接触部は、粗さ曲線における2乗平均平方根傾斜(RΔq)の平均値が、前記第2面よりも小さい、
ギャップピン。
a base having a first surface and a second surface located opposite the first surface;
a support portion located on the first surface and having a third surface opposite to the first surface and a fourth surface located opposite to the third surface and including a contact portion with the supported body;
including;
The contact portion has an average value of a root mean square slope (RΔq) in the roughness curve that is smaller than that of the second surface.
gap pin.
前記第2面の2乗平均平方根傾斜(RΔq)の平均値が、0.17以上0.48以下である、請求項4に記載のギャップピン。 The gap pin according to claim 4, wherein the average value of the root mean square slope (RΔq) of the second surface is 0.17 or more and 0.48 or less. 前記接触部と、前記第2面との2乗平均平方根傾斜(RΔq)の平均値の差が、0.08以上である、請求項4または5に記載のギャップピン。 The gap pin according to claim 4 or 5, wherein a difference in average value of root mean square slope (RΔq) between the contact portion and the second surface is 0.08 or more. 前記第4面が研磨面である、請求項1~6のいずれかに記載のギャップピン。 The gap pin according to any one of claims 1 to 6, wherein the fourth surface is a polished surface. 前記第4面が焼成面である、請求項1~6のいずれかに記載のギャップピン。 The gap pin according to any one of claims 1 to 6, wherein the fourth surface is a fired surface. 前記第4面はDLC膜からなる、請求項1~6のいずれかに記載のギャップピン。 The gap pin according to claim 1, wherein the fourth surface is made of a DLC film. 前記支持部の側面はDLC膜からなり、前記第4面のDLC膜の厚みは、前記支持部の側面のDLC膜の厚みよりも大きい、請求項9に記載のギャップピン。 The gap pin according to claim 9, wherein the side surface of the support portion is made of a DLC film, and the thickness of the DLC film on the fourth surface is greater than the thickness of the DLC film on the side surface of the support portion. 前記第1面はDLC膜からなる、請求項1~10のいずれかに記載のギャップピン。 The gap pin according to claim 1, wherein the first surface is made of a DLC film. 前記基部の側面はDLC膜からなり、前記第1面のDLC膜の厚みは、前記基部の側面のDLC膜の厚みよりも大きい、請求項11に記載のギャップピン。 The gap pin according to claim 11, wherein the side surface of the base is made of a DLC film, and the thickness of the DLC film on the first surface is greater than the thickness of the DLC film on the side surface of the base. 前記支持部および前記基部の少なくともいずれかは、炭化珪素を主成分とするセラミックスからなる、請求項1~12のいずれかに記載のギャップピン。 The gap pin according to any one of claims 1 to 12, wherein at least one of the support portion and the base portion is made of ceramics containing silicon carbide as a main component. 載置台と、請求項1~13のいずれかに記載のギャップピンとを備え、
被支持体が前記載置台上に隙間を設けて載置されるように、前記ギャップピンが前記載置台に設けられている、
熱処理装置。
comprising a mounting table and a gap pin according to any one of claims 1 to 13,
The gap pin is provided on the mounting table so that the supported object is placed on the mounting table with a gap provided therebetween.
Heat treatment equipment.
載置台と、該載置台の周囲に位置するフォーカスリングとを備え、
該フォーカスリングが、円周に沿って設けられた固定部と、該固定部と同心円上に設けられ、上下方向に変位可能な可動部とを備えた上部リングと、該上部リングの下側に位置する下部リングとを有し、
請求項1~14のいずれかに記載のギャップピンが、前記下部リングの上面に備えられている、静電チャック装置。
comprising a mounting table and a focus ring located around the mounting table,
The focus ring includes an upper ring including a fixed part provided along the circumference, a movable part provided concentrically with the fixed part and movable in the vertical direction, and a lower part of the upper ring. and a lower ring located in the
An electrostatic chuck device, wherein the gap pin according to any one of claims 1 to 14 is provided on the upper surface of the lower ring.
JP2022559120A 2020-10-28 2021-10-25 gap pin Active JP7398011B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2020180388 2020-10-28
JP2020180388 2020-10-28
PCT/JP2021/039287 WO2022092022A1 (en) 2020-10-28 2021-10-25 Gap pin

Publications (2)

Publication Number Publication Date
JPWO2022092022A1 JPWO2022092022A1 (en) 2022-05-05
JP7398011B2 true JP7398011B2 (en) 2023-12-13

Family

ID=81382537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022559120A Active JP7398011B2 (en) 2020-10-28 2021-10-25 gap pin

Country Status (5)

Country Link
JP (1) JP7398011B2 (en)
KR (1) KR20230061543A (en)
CN (1) CN116325091A (en)
TW (1) TWI798896B (en)
WO (1) WO2022092022A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003022947A (en) 2001-07-05 2003-01-24 Tokyo Electron Ltd Heat treatment system
JP2003224180A (en) 2002-01-28 2003-08-08 Kyocera Corp Wafer support member
JP2006093495A (en) 2004-09-27 2006-04-06 Fuji Photo Film Co Ltd Substrate heating device and method therefor
JP2012232863A (en) 2011-04-28 2012-11-29 Kyocera Corp Silicon carbide sintered body, electrostatic adsorbing member and member for semiconductor producing device constituted of the silicon carbide sintered body
WO2017109975A1 (en) 2015-12-24 2017-06-29 Toto株式会社 Plasma-resistant member
JP2017178665A (en) 2016-03-30 2017-10-05 京セラ株式会社 Porous ceramic, gas dispersion sheet and member for absorption
JP2018019017A (en) 2016-07-29 2018-02-01 京セラ株式会社 Member for placement

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5465449B2 (en) * 2009-03-19 2014-04-09 大日本スクリーン製造株式会社 Heat treatment susceptor and heat treatment apparatus
JP6085558B2 (en) * 2013-04-19 2017-02-22 テクノクオーツ株式会社 Wafer support pin
TWM516219U (en) * 2015-10-06 2016-01-21 聯華電子股份有限公司 A wafer supporting structure used in a thermal treating chamber and an apparatus thereof
JP6814572B2 (en) * 2016-08-25 2021-01-20 株式会社Screenホールディングス Heat treatment equipment

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003022947A (en) 2001-07-05 2003-01-24 Tokyo Electron Ltd Heat treatment system
JP2003224180A (en) 2002-01-28 2003-08-08 Kyocera Corp Wafer support member
JP2006093495A (en) 2004-09-27 2006-04-06 Fuji Photo Film Co Ltd Substrate heating device and method therefor
JP2012232863A (en) 2011-04-28 2012-11-29 Kyocera Corp Silicon carbide sintered body, electrostatic adsorbing member and member for semiconductor producing device constituted of the silicon carbide sintered body
WO2017109975A1 (en) 2015-12-24 2017-06-29 Toto株式会社 Plasma-resistant member
JP2017178665A (en) 2016-03-30 2017-10-05 京セラ株式会社 Porous ceramic, gas dispersion sheet and member for absorption
JP2018019017A (en) 2016-07-29 2018-02-01 京セラ株式会社 Member for placement

Also Published As

Publication number Publication date
JPWO2022092022A1 (en) 2022-05-05
WO2022092022A1 (en) 2022-05-05
TW202226426A (en) 2022-07-01
CN116325091A (en) 2023-06-23
KR20230061543A (en) 2023-05-08
TWI798896B (en) 2023-04-11

Similar Documents

Publication Publication Date Title
JP6432649B2 (en) Ceramic materials, electrostatic chuck device
US7586734B2 (en) Electrostatic chuck
US10068790B2 (en) Electrostatic chuck device
US11107719B2 (en) Electrostatic chuck device and method for manufacturing electrostatic chuck device
JP5957812B2 (en) Electrostatic chuck device
JP2008085129A (en) Substrate mounting apparatus
JP6988999B2 (en) Ceramic substrate and susceptor
JP4962960B2 (en) Semiconductor wafer peripheral processing equipment
JP7398011B2 (en) gap pin
JP6531693B2 (en) Electrostatic chuck device, method of manufacturing electrostatic chuck device
JP6503689B2 (en) Electrostatic chuck device and method of manufacturing the same
WO2023100821A1 (en) Height adjustment member, heat treatment apparatus and electrostatic chuck device
JP2019179780A (en) Manufacturing method of electrostatic chuck device
WO2023171651A1 (en) Alumina ceramic member, alumina ceramic member production method, component for semiconductor production device, and substrate processing device
KR20210063398A (en) Frame member for electron beam drawing apparatus and electron beam drawing apparatus
JP2023034099A (en) Method for manufacturing holding device
JP2022155474A (en) Electrode embedded member, substrate holding member, ceramic heater, and electrostatic chuck
JP2010221344A (en) Conditioner for semiconductor polishing cloth, method for manufacturing the same, and semiconductor polishing apparatus
JP2020055715A (en) Dielectric material, method for producing the same, and electrostatic chuck device
JP2006147724A (en) Electrostatic chuck and manufacturing method thereof
JP2016154178A (en) Electrostatic chuck member and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231201

R150 Certificate of patent or registration of utility model

Ref document number: 7398011

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150