JP7396105B2 - Manufacturing method for aluminum alloy forgings - Google Patents

Manufacturing method for aluminum alloy forgings Download PDF

Info

Publication number
JP7396105B2
JP7396105B2 JP2020026348A JP2020026348A JP7396105B2 JP 7396105 B2 JP7396105 B2 JP 7396105B2 JP 2020026348 A JP2020026348 A JP 2020026348A JP 2020026348 A JP2020026348 A JP 2020026348A JP 7396105 B2 JP7396105 B2 JP 7396105B2
Authority
JP
Japan
Prior art keywords
aluminum alloy
quenching
mass
forged
sec
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020026348A
Other languages
Japanese (ja)
Other versions
JP2021130843A (en
Inventor
匠 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Resonac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd, Resonac Corp filed Critical Hitachi Chemical Co Ltd
Priority to JP2020026348A priority Critical patent/JP7396105B2/en
Publication of JP2021130843A publication Critical patent/JP2021130843A/en
Application granted granted Critical
Publication of JP7396105B2 publication Critical patent/JP7396105B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、例えば、4輪自動車に代表される輸送機の車体を支持する足回り部材として好適なアルミニウム6000系合金鍛造材に関する。 The present invention relates to an aluminum 6000 series alloy forged material suitable for use as an undercarriage member for supporting the body of a transportation machine, such as a four-wheeled vehicle.

近年、自動車業界における燃費向上の要求から、自動車に使用される各種部材、例えば車体を支持する足回り部材、特にサスペンションアーム、アッパーアーム、ロアーアーム、タイロッドエンドなどに用いる自動車用足回り部材として、高強度かつ高靭性かつ耐食性に優れたアルミニウム6000系合金(Al-Mg-Si系)が使用されており、その中で、より一層の自動車の軽量化が要求されている。 In recent years, due to the demand for improved fuel efficiency in the automobile industry, various parts used in automobiles, such as suspension parts that support the car body, especially suspension arms, upper arms, lower arms, tie rod ends, etc., have been increasing. Aluminum 6000 series alloys (Al-Mg-Si series), which have excellent strength, high toughness, and corrosion resistance, are used, and there is a demand for further weight reduction of automobiles.

この要求を満足させるためにJIS規格6000系合金から強度をより向上させる必要が出てきた。つまりは高強度化することで、部材の薄肉化をする必要がある。加えて足回り部材として強度以外に、応力腐食割れ等の耐食性においても更なる品質向上が求められている。 In order to satisfy this requirement, it has become necessary to further improve the strength of JIS standard 6000 series alloys. In other words, it is necessary to make the members thinner by increasing their strength. In addition, in addition to strength, there is a need for further quality improvements in undercarriage components in terms of corrosion resistance such as stress corrosion cracking.

このような要求に応えるため、自動車足回り部材用の高強度アルミニウム6000系合金として、その組成および製造プロセスを制御することで所要の金属組織を得て課題解決を図る提案がされてきた。(下記特許文献1参照) In order to meet these demands, proposals have been made to solve the problem by controlling the composition and manufacturing process to obtain the desired metal structure as a high-strength aluminum 6000 series alloy for automobile suspension parts. (See Patent Document 1 below)

特開2017-179413号公報JP 2017-179413 Publication

しかしながら、その製造プロセスにおいて、焼き入れ時の製品の角速度に関しては議論されてきていない。この角速度が適切でないと、焼き入れ時に空気を巻き込み、要望の焼入れ速度が得られないため、自動車用足回り部材として必要特性である機械的特性、すなわち硬度が十分に得られないという問題があった。 However, in the manufacturing process, there has been no discussion regarding the angular velocity of the product during quenching. If this angular velocity is not appropriate, air will be drawn in during hardening and the desired hardening speed will not be obtained, resulting in the problem of insufficient mechanical properties, that is, hardness, which are required for automobile suspension parts. Ta.

本発明は、かかる技術的背景に鑑みてなされたものであって、焼き入れ時の製品の角速度を制御することで、十分な焼入れ速度を与えることができ、優れた機械的特性を有するアルミニウム合金鍛造材の製造方法を提供することを目的とする。 The present invention has been made in view of this technical background, and is an aluminum alloy that can provide a sufficient hardening rate by controlling the angular velocity of the product during hardening, and has excellent mechanical properties. The purpose of the present invention is to provide a method for manufacturing forged materials.

前記目的を達成するために、本発明は以下の手段を提供する。 In order to achieve the above object, the present invention provides the following means.

[1]熱処理工程として焼入れ処理工程を含むアルミニウム合金鍛造材の製造方法であって、
前記焼入れ処理工程は、前記鍛造材を回転させながら焼入れ水に接触させるとともに、接触時の角速度が10°/sec以上180°/sec以下であることを特徴とするアルミニウム合金鍛造材の製造方法。
[1] A method for producing an aluminum alloy forged material including a quenching process as a heat treatment process,
A method for producing an aluminum alloy forged material, wherein in the quenching process, the forged material is brought into contact with quenching water while being rotated, and the angular velocity at the time of contact is 10°/sec or more and 180°/sec or less.

[2]アルミニウム合金がAl-Mg-Si系合金である前項1に記載のアルミニウム合金鍛造材の製造方法。 [2] The method for producing an aluminum alloy forged material according to item 1 above, wherein the aluminum alloy is an Al-Mg-Si alloy.

[3]溶体化処理工程が熱間鍛造工程での昇温を併用したものである前項1または2に記載のアルミニウム合金鍛造材の製造方法。 [3] The method for producing an aluminum alloy forged material according to the above item 1 or 2, wherein the solution treatment step includes temperature raising in a hot forging step.

[4]前記焼入れ処理工程における水の温度が40℃~90℃である前項1~3のいずれか1項に記載のアルミニウム合金鍛造材の製造方法。 [4] The method for producing an aluminum alloy forged material according to any one of items 1 to 3 above, wherein the temperature of the water in the quenching step is 40° C. to 90° C.

[1]の発明によれば、焼入れ処理工程は、アルミニウム合金鍛造材を回転させながら焼入れ水に接触させるとともに、接触時の角速度が10°/sec以上180°/sec以下であることで、焼き入れ時に空気の巻き込みを抑制することができるので、焼入れ水と十分に接触させて焼入れを施すことができるため、アルミニウム合金鍛造材に十分な焼入れ速度を与えることができ、優れた機械的特性を得ることができる。このため、自動車用足回り部材等として好適な高強度アルミニウム合金鍛造材を提供することができる。 According to the invention [1], the quenching process is performed by bringing the aluminum alloy forged material into contact with quenching water while rotating, and at the time of contact, the angular velocity is 10°/sec or more and 180°/sec or less. Since air entrainment can be suppressed during hardening, quenching can be performed with sufficient contact with quenching water, which can give sufficient quenching speed to aluminum alloy forgings and provide excellent mechanical properties. Obtainable. Therefore, it is possible to provide a high-strength aluminum alloy forged material suitable for automobile suspension members and the like.

[2]の発明によれば、アルミニウム合金としてAl-Mg-Si系合金を用いることで、自動車用足回り部材等として好適な高強度Al-Mg-Si系合金鍛造材を提供することができる。 According to the invention [2], by using an Al-Mg-Si alloy as the aluminum alloy, it is possible to provide a high-strength Al-Mg-Si alloy forged material suitable for automobile suspension parts, etc. .

[3]の発明によれば、溶体化処理工程が熱間鍛造工程での昇温を併用するため、自動車用足回り部材等として好適な高強度アルミニウム合金鍛造材を安価で提供することができる。 According to the invention [3], since the solution treatment process uses temperature raising in the hot forging process, it is possible to provide a high-strength aluminum alloy forged material suitable for automobile suspension parts etc. at a low cost. .

[4]の発明によれば、焼入れ処理工程における水の温度を40℃~90℃とすることで、より高品質かつ高強度な自動車用足回り部材等として好適なアルミニウム合金鍛造材を提供することができる。 According to the invention [4], by setting the water temperature in the quenching process to 40°C to 90°C, an aluminum alloy forged material suitable for use as a higher quality and stronger automobile suspension member, etc. is provided. be able to.

図1は本実施形態で製造されるアルミニウム合金鍛造材の一例であるL型アームを示す平面図である。FIG. 1 is a plan view showing an L-shaped arm, which is an example of the aluminum alloy forged material manufactured in this embodiment. 図2は本実施形態で製造されるアルミニウム合金鍛造材の一例であるA型アームを示す平面図である。FIG. 2 is a plan view showing an A-type arm, which is an example of the aluminum alloy forged material manufactured in this embodiment. 図3は本実施形態で製造されるアルミニウム合金鍛造材の一例である直線アームを示す平面図である。FIG. 3 is a plan view showing a straight arm which is an example of the aluminum alloy forged material manufactured in this embodiment. 図4は図1のL型アームにおけるビッカース硬度の測定箇所を示す説明図である。FIG. 4 is an explanatory diagram showing the locations where Vickers hardness is measured in the L-shaped arm of FIG. 1.

本発明のアルミニウム合金鍛造材の製造方法について説明する。 A method for manufacturing an aluminum alloy forged material of the present invention will be explained.

なお、以下に示す実施形態は例示に過ぎず、本発明はこれらの例示した実施形態に限定されるものではなく、本発明の技術的思想を逸脱しない範囲において適宜変更することができる。 Note that the embodiments shown below are merely illustrative, and the present invention is not limited to these illustrated embodiments, and can be modified as appropriate without departing from the technical idea of the present invention.

本実施形態は溶湯形成工程、鋳造工程、均質化熱処理工程、熱間鍛造工程、溶体化処理工程、焼入れ処理工程および人工時効硬化処理工程をこの順に行うことで、アルミニウム合金鍛造品を製造するものである。以下、これらの各工程について説明する。 In this embodiment, an aluminum alloy forged product is manufactured by performing a molten metal forming process, a casting process, a homogenizing heat treatment process, a hot forging process, a solution treatment process, a quenching process, and an artificial age hardening process in this order. It is. Each of these steps will be explained below.

(溶湯形成工程)
溶湯形成工程は、原料を溶解して組成を調製したアルミニウム合金溶湯を得る工程である。
(Molten metal formation process)
The molten metal forming step is a step in which raw materials are melted to obtain a molten aluminum alloy whose composition has been adjusted.

本実施形態では、Si:0.80質量%~1.40質量%、Fe:0.15質量%~0.50質量%、Cu:0.20質量%~0.60質量%、Mn:0.30質量%~0.60質量%、Mg:0.50質量%~1.20質量%、Cr:0.05質量%~0.25質量%、残部がAl及び不可避不純物からなる組成に溶解調製したAl-Mg-Si系合金溶湯を得る。 In this embodiment, Si: 0.80 mass% to 1.40 mass%, Fe: 0.15 mass% to 0.50 mass%, Cu: 0.20 mass% to 0.60 mass%, Mn: 0 .30 mass% to 0.60 mass%, Mg: 0.50 mass% to 1.20 mass%, Cr: 0.05 mass% to 0.25 mass%, the balance being dissolved in a composition consisting of Al and inevitable impurities. The prepared Al-Mg-Si alloy molten metal is obtained.

(鋳造工程)
鋳造工程は、溶湯形成工程で得られたアルミニウム合金溶湯を鋳造加工することによって鋳造材(鍛造用ビレット)を得る工程である。
(Casting process)
The casting process is a process of obtaining a cast material (forging billet) by casting the molten aluminum alloy obtained in the molten metal forming process.

鋳造加工する方法としては、特に限定されるものではなく、従来公知の方法が用いられ、例えば、連続鋳造圧延法あるいは半連続鋳造法(DC鋳造法)等が挙げられる。 The casting method is not particularly limited, and conventionally known methods may be used, such as continuous casting and rolling, semi-continuous casting (DC casting), and the like.

また、鋳造材の直径は、特に限定されるものではないが、例えば、直径30mm~80mmに設定される。さらに、鋳造材を押出機で押出して鍛造用ビレットを得てもよく、この場合も、例えば、直径30mm~80mmに設定される。 Further, the diameter of the cast material is not particularly limited, but is set to, for example, a diameter of 30 mm to 80 mm. Furthermore, the cast material may be extruded with an extruder to obtain a billet for forging, and in this case as well, the diameter is set to, for example, 30 mm to 80 mm.

また、鋳造加工では鋳造材の冷却速度を10℃/分~50℃/分に設定することが好ましい。このようにすることで、室温における引張強さが十分に大きいアルミニウム合金製品を製造できるからである。特に鋳造材の冷却速度は15℃/分~30℃/分に設定することが好ましい。 Further, in the casting process, it is preferable to set the cooling rate of the cast material to 10°C/min to 50°C/min. This is because by doing so, it is possible to manufacture an aluminum alloy product with sufficiently high tensile strength at room temperature. In particular, the cooling rate of the cast material is preferably set to 15°C/min to 30°C/min.

(均質化熱処理工程)
均質化熱処理工程は、鋳造工程で得られた鋳造材に対して均質化熱処理を行うことによって、凝固によって生じたミクロ偏析の均質化、過飽和固溶元素の析出および準安定相の平衡相への変化を行う工程である。
(Homogenization heat treatment process)
In the homogenization heat treatment process, the cast material obtained in the casting process is subjected to homogenization heat treatment to homogenize the micro-segregation caused by solidification, to precipitate supersaturated solid solution elements, and to transform the metastable phase into an equilibrium phase. It is a process of making changes.

この均質化熱処理を行うことにより、金属間化合物を小さくすることができ、金属間化合物を起点とする破壊が抑制され、引張強さをさらに向上させることができる。 By performing this homogenization heat treatment, the size of the intermetallic compound can be reduced, fracture originating from the intermetallic compound can be suppressed, and the tensile strength can be further improved.

また、均質化熱処理を行うことにより、金属間化合物中に含有される各元素が母材中へ均一に拡散され、固溶強化及び析出化による更なる引張強さの向上が可能となる。 Furthermore, by performing the homogenization heat treatment, each element contained in the intermetallic compound is uniformly diffused into the base material, making it possible to further improve the tensile strength through solid solution strengthening and precipitation.

また、均質化熱処理における処理温度は450℃~570℃の範囲に設定することが好ましい。450℃以上の温度で熱処理することで鋳造材の晶出物等の金属間化合物が固溶し十分に均質化を行うことができ、570℃以下の温度で熱処理することでバーニングを防止できるからである。 Further, the treatment temperature in the homogenization heat treatment is preferably set in the range of 450°C to 570°C. By heat-treating at a temperature of 450°C or higher, intermetallic compounds such as crystallized substances in the cast material dissolve into solid solution and can be sufficiently homogenized, and by heat-treating at a temperature of 570°C or lower, burning can be prevented. It is.

このような均質化熱処理工程を施した後、鋳造材を所定の長さに切断することで、鍛造用ビレットが得られる。 After performing such a homogenization heat treatment step, the cast material is cut into predetermined lengths to obtain a billet for forging.

(熱間鍛造工程)
熱間鍛造工程は、均質化熱処理工程後に得られた鍛造用ビレットを加熱し、プレス機で圧力をかけて金型成型する工程である。
(hot forging process)
The hot forging process is a process in which the forging billet obtained after the homogenization heat treatment process is heated and molded into a mold by applying pressure with a press machine.

熱間鍛造工程の温度条件は、アルミニウム合金の特性をより再現性良く発現させる点で関係性を有している。すなわち、後述する溶体化処理工程後のアルミニウム合金のミクロ組織を等軸結晶粒とすることが可能となる。特に、熱間鍛造工程は、金型温度を100℃~250℃に設定し、素材温度を400℃~550℃に設定して行うことが好ましい。このような条件で熱間鍛造を行うことによって、アルミニウム合金鍛造材の引張強さをより向上させることができるためである。 The temperature conditions of the hot forging process are relevant in that they allow the characteristics of the aluminum alloy to be expressed with better reproducibility. That is, it becomes possible to make the microstructure of the aluminum alloy after the solution treatment step described below into equiaxed crystal grains. In particular, it is preferable that the hot forging process be performed with the mold temperature set at 100°C to 250°C and the material temperature set at 400°C to 550°C. This is because by performing hot forging under such conditions, the tensile strength of the aluminum alloy forged material can be further improved.

本実施形態の熱間鍛造工程では、L型アーム(図1)、A型アーム(図2)または直線アーム(図3)のいずれかのアルミニウム合金鍛造材が得られる。 In the hot forging process of this embodiment, an aluminum alloy forged material having an L-shaped arm (FIG. 1), an A-shaped arm (FIG. 2), or a straight arm (FIG. 3) is obtained.

次に溶体化処理工程、焼入れ処理工程および人工時効硬化処理工程について説明する。 Next, a solution treatment process, a quenching treatment process, and an artificial age hardening treatment process will be explained.

(溶体化処理工程)
溶体化処理工程は、熱間鍛造工程で得られたアルミニウム合金鍛造材を高温で保持した後に急冷し、過飽和固溶体を形成する熱処理である。
(Solution treatment process)
The solution treatment process is a heat treatment in which the aluminum alloy forged material obtained in the hot forging process is held at a high temperature and then rapidly cooled to form a supersaturated solid solution.

溶体化処理工程では、加熱温度を500℃~560℃、保持時間を0.5時間~6時間に設定して行うことが好ましく、このような条件とすることでコストと特性とのバランスをより良好にすることができるからである。 In the solution treatment process, it is preferable to set the heating temperature to 500°C to 560°C and the holding time to 0.5 to 6 hours. By setting such conditions, the balance between cost and properties can be better achieved. This is because it can improve the quality.

また、溶体化処理工程は熱間鍛造工程での昇温を併用した工程としてもよい。すなわち、熱間鍛造工程が溶体化処理を兼ねた工程とすることで、熱間鍛造工程直後の高温に保持されたアルミニウム合金鍛造材に、そのまま後述する焼入れ処理工程を施すことで、急冷し過飽和固溶体を形成してもよい。 Further, the solution treatment step may be a step in which heating in a hot forging step is also used. In other words, by making the hot forging process double as a solution treatment process, the aluminum alloy forged material kept at a high temperature immediately after the hot forging process is subjected to the quenching process described later, thereby rapidly cooling it and achieving supersaturation. A solid solution may also be formed.

熱間鍛造工程における昇温を併用した工程では、熱間鍛造工程直後の温度を500℃~560℃、熱間鍛造工程直後から焼入れまでの時間を1秒~30秒に設定することが好ましい。このような条件とすることで、溶体化処理工程と同様に、この昇温を併用した工程においても、コストと特性とのバランスをより良好にすることができるからである。 In the hot forging step that uses temperature elevation, it is preferable to set the temperature immediately after the hot forging step to 500° C. to 560° C., and set the time from immediately after the hot forging step to quenching to 1 second to 30 seconds. This is because, by setting such conditions, it is possible to achieve a better balance between cost and characteristics even in this step in which temperature elevation is used in conjunction with the solution treatment step, as well as in the solution treatment step.

このように熱間鍛造工程における昇温を併用することで、従来の熱間鍛造工程後に一度徐冷し、連続加熱炉ないし単体炉で再度加熱し溶体化処理工程を施す場合と比較して、同一品質のアルミニウム合金が得られ、さらに再加熱に要するエネルギーを節約できるだけでなく、製造時間を大幅に改善することも可能となる。 By using temperature elevation in the hot forging process in this way, compared to the conventional case where the product is slowly cooled once after the hot forging process, then heated again in a continuous heating furnace or a single furnace and subjected to a solution treatment process, An aluminum alloy of the same quality is obtained, which not only saves the energy required for reheating, but also significantly improves the production time.

さらに、自動車用足回り部材等として好適な高強度アルミニウム合金鍛造材を安価で提供することができる。 Furthermore, it is possible to provide a high-strength aluminum alloy forged material suitable for automobile suspension members and the like at a low cost.

(焼入れ処理工程)
次に、本発明の特徴である焼入れ処理工程は溶体化処理工程によって得られた固溶状態を急速に冷却せしめて過飽和固溶体を形成する熱処理である。
(Quenching treatment process)
Next, the quenching treatment step, which is a feature of the present invention, is a heat treatment in which the solid solution state obtained by the solution treatment step is rapidly cooled to form a supersaturated solid solution.

本発明の焼入れ処理工程は溶体化処理工程後あるいは溶体化処理を兼ねた熱間鍛造工程後に、アルミニウム合金鍛造材を回転させながら焼入れ水に接触させるとともに、接触時の角速度が10°/sec以上180°/sec以下となるように焼入れを行うものである。 In the quenching process of the present invention, after the solution treatment process or the hot forging process that also serves as solution treatment, the aluminum alloy forged material is brought into contact with quenching water while rotating, and the angular velocity at the time of contact is 10°/sec or more. Hardening is performed so that the temperature becomes 180°/sec or less.

アルミニウム合金鍛造材を回転させながら焼入れ水に接触させることで、アルミニウム合金鍛造材の全表面をアルミニウム合金鍛造材により温められていない焼入れ水に接触させることができる。 By bringing the aluminum alloy forging into contact with the quenching water while rotating, the entire surface of the aluminum alloy forging can be brought into contact with the quenching water that has not been warmed by the aluminum alloy forging.

また、アルミニウム合金鍛造材の回転方向については、特に限定されるものではなく、縦回転(回転軸が水平方向)であっても横回転(回転軸が垂直方向)であってもよいが、縦回転であることがより好ましい。縦回転の方が、アルミニウム合金鍛造材の表面と水との界面の速度が大きくなるからである。 Furthermore, the direction of rotation of the aluminum alloy forged material is not particularly limited, and may be vertical rotation (rotation axis is horizontal) or horizontal rotation (rotation axis is vertical); Rotation is more preferable. This is because vertical rotation increases the speed at the interface between the surface of the aluminum alloy forged material and water.

角速度が10°/sec未満であると、水没した際にアルミニウム合金鍛造材の冷却速度に部位差が生じ、アルミニウム合金鍛造材の部位により機械的特性に差異が生じる。 If the angular velocity is less than 10°/sec, there will be differences in the cooling rate of the aluminum alloy forging at different locations when submerged in water, and mechanical properties will vary depending on the location of the aluminum alloy forging.

角速度が180°/secより大きいと、水没する際に空気(気泡)が巻き込まれて、この気泡がアルミニウム合金鍛造材の表面に存在することで、アルミニウム合金鍛造材の表面と焼入れ水との接触面積が小さくなり冷却速度が低下する。 If the angular velocity is greater than 180°/sec, air (bubbles) will be drawn in when submerged in water, and the presence of these bubbles on the surface of the aluminum alloy forged material will cause contact between the surface of the aluminum alloy forged material and the quenching water. The area becomes smaller and the cooling rate decreases.

本実施形態では、アルミニウム合金鍛造材をロボットで掴み、焼入れ水との接触時に角速度が10°/sec以上180°/sec以下となるように回転を与えて自由落下させ、焼入れ水に水没させることで焼入れを行っている。 In this embodiment, the aluminum alloy forged material is grasped by a robot, rotated so that the angular velocity is 10°/sec or more and 180°/sec or less upon contact with the quenching water, and allowed to fall freely, and submerged in the quenching water. Quenching is performed in

また、ロボットを用いる方法に限らず、アルミニウム合金鍛造材をベルトコンベアーに載せて移動させ、その端で回転落下させることで角速度を与え、焼入れ水に水没させることで焼入れを行ってもよい。 In addition, the method is not limited to the method using a robot, and quenching may be performed by placing the aluminum alloy forged material on a belt conveyor, moving it, rotating and dropping it at the end to give an angular velocity, and submerging it in quenching water.

また、本実施形態の焼入れ処理工程では、40℃~90℃の水で急冷(水焼入れ処理)することが好ましい。 Further, in the quenching treatment step of this embodiment, it is preferable to perform rapid cooling with water at 40° C. to 90° C. (water quenching treatment).

このように、40℃~90℃の水で急冷することで、より高品質かつ高強度な自動車用足回り部材等として好適なアルミニウム合金鍛造材を提供することができるためである。 This is because by quenching with water at 40° C. to 90° C. in this way, it is possible to provide an aluminum alloy forged material of higher quality and higher strength suitable for use as an automobile suspension member, etc.

このように、本発明の焼入れ処理工程はアルミニウム合金鍛造材を回転させながら焼入れ水に接触させるとともに、接触時の角速度が10°/sec以上180°/sec以下であることで、焼き入れ時に空気の巻き込みを抑制することができるので、焼入れ水と十分に接触させて焼入れを施すことができるため、アルミニウム合金鍛造材に十分な焼入れ速度を与えることができ、優れた機械的特性を得ることができる。このため、自動車用足回り部材等として好適な高強度アルミニウム合金鍛造材を提供することができる。 As described above, in the quenching treatment process of the present invention, the aluminum alloy forged material is brought into contact with quenching water while rotating, and the angular velocity at the time of contact is 10°/sec to 180°/sec, so that no air is generated during quenching. Since it is possible to suppress the entrainment of aluminum alloy, it is possible to perform quenching with sufficient contact with quenching water, so it is possible to give sufficient quenching speed to aluminum alloy forgings and obtain excellent mechanical properties. can. Therefore, it is possible to provide a high-strength aluminum alloy forged material suitable for automobile suspension members and the like.

(人工時効硬化処理工程)
人工時効硬化処理工程は、アルミニウム合金鍛造品を比較的低温で加熱保持し過飽和に固溶した元素を析出させて、適度な硬さを付与するための熱処理である。
(Artificial aging hardening process)
The artificial age hardening process is a heat treatment for imparting appropriate hardness to an aluminum alloy forged product by heating and holding it at a relatively low temperature to precipitate supersaturated solid solution elements.

本実施形態では、加熱温度を160℃~250℃、保持時間を10分間~8時間に設定して行うことが好ましい。このような条件とすることで、コストと特性とのバランスがより良好になるからである。 In this embodiment, it is preferable to set the heating temperature to 160° C. to 250° C. and the holding time to 10 minutes to 8 hours. This is because such conditions provide a better balance between cost and characteristics.

本実施形態では、上記熱処理(溶体化処理工程、焼入れ処理工程および人工時効硬化処理工程)を行うことによって、微細な析出物が均一に分散し、強度、延性および靱性が高度にバランスしたアルミニウム合金鍛造材を得ることができる。 In this embodiment, by performing the above heat treatment (solution treatment process, quenching treatment process, and artificial age hardening treatment process), fine precipitates are uniformly dispersed, and the aluminum alloy has a highly balanced strength, ductility, and toughness. Forged materials can be obtained.

このようにして製造されたアルミニウム合金製品(鋳造品および鍛造品等)は、常温における機械的特性に優れた特徴を有しているため、例えば、自動車用足回り部品(サスペンションアーム、アッパーアーム、ロアーアーム、タイロッドエンド等)の材料として好適に用いられる。 Aluminum alloy products manufactured in this way (castings, forgings, etc.) have excellent mechanical properties at room temperature, so they can be used for example in automobile suspension parts (suspension arms, upper arms, etc.). It is suitably used as a material for lower arms, tie rod ends, etc.).

次に、本発明の具体的実施例について説明するが、本発明はこれら実施例のものに特に限定されるものではない。 Next, specific examples of the present invention will be described, but the present invention is not particularly limited to these examples.

<実施例1>
Si:1.10質量%、Fe:0.25質量%、Cu:0.40質量%、Mn:0.50質量%、Mg:0.85質量%、Cr:0.15質量%を含有し、残部がAl及び不可避不純物からなるアルミニウム合金を加熱してアルミニウム合金溶湯を得た後、該アルミニウム合金溶湯を用いて連続鋳造を行うことによって連続鋳造材を得た。得られた連続鋳造材に対して均質化加熱処理を行った後、空冷した。
<Example 1>
Contains Si: 1.10% by mass, Fe: 0.25% by mass, Cu: 0.40% by mass, Mn: 0.50% by mass, Mg: 0.85% by mass, and Cr: 0.15% by mass. A molten aluminum alloy was obtained by heating an aluminum alloy, the remainder of which consisted of Al and unavoidable impurities, and then continuous casting was performed using the molten aluminum alloy to obtain a continuously cast material. The obtained continuous cast material was subjected to homogenization heat treatment and then air cooled.

次いで、空冷後の連続鋳造材を、材料温度530℃、金型温度180℃で熱間鍛造を行った。得られた鍛造材を530℃で溶体化処理を施し、50℃の水中に入れて水焼き入れを行った後、180℃で6時間加熱して人工時効硬化処理を施し、鍛造品1を得た。 Next, the continuously cast material after air cooling was hot forged at a material temperature of 530°C and a mold temperature of 180°C. The obtained forged material was subjected to solution treatment at 530 ° C., water quenched by placing it in water at 50 ° C., and then heated at 180 ° C. for 6 hours to perform artificial age hardening treatment to obtain forged product 1. Ta.

この水焼き入れを行う際、ロボットを用いて15°/secの角速度を与え、焼き入れを行った。 When performing this water quenching, an angular velocity of 15°/sec was applied using a robot to perform the quenching.

<実施例2>
Si:1.10質量%、Fe:0.25質量%、Cu:0.40質量%、Mn:0.50質量%、Mg:0.85質量%、Cr:0.15質量%を含有し、残部がAl及び不可避不純物からなるアルミニウム合金を加熱してアルミニウム合金溶湯を得た後、該アルミニウム合金溶湯を用いて連続鋳造を行うことによって連続鋳造材を得た。得られた連続鋳造材に対して均質化加熱処理を行った後、空冷した。
<Example 2>
Contains Si: 1.10% by mass, Fe: 0.25% by mass, Cu: 0.40% by mass, Mn: 0.50% by mass, Mg: 0.85% by mass, and Cr: 0.15% by mass. A molten aluminum alloy was obtained by heating an aluminum alloy, the remainder of which consisted of Al and unavoidable impurities, and then continuous casting was performed using the molten aluminum alloy to obtain a continuously cast material. The obtained continuous cast material was subjected to homogenization heat treatment and then air cooled.

次いで、空冷後の連続鋳造材を、材料温度530℃、金型温度180℃で熱間鍛造を行い、鍛造直後に50℃の水中に入れて水焼き入れを行った後、180℃で6時間加熱して人工時効硬化処理を施し、鍛造品1を得た。 Next, the continuously cast material after air cooling was hot forged at a material temperature of 530°C and a mold temperature of 180°C, and immediately after forging, it was placed in water at 50°C for water quenching, and then at 180°C for 6 hours. A forged product 1 was obtained by heating and performing artificial age hardening treatment.

この水焼き入れを行う際、ロボットを用いて15°/secの角速度を与え、焼き入れを行った。 When performing this water quenching, an angular velocity of 15°/sec was applied using a robot to perform the quenching.

<実施例3>
角速度を50°/secとした以外は実施例1と同様にして鍛造品1を得た。
<Example 3>
Forged product 1 was obtained in the same manner as in Example 1 except that the angular velocity was 50°/sec.

<実施例4>
角速度を50°/secとした以外は実施例2と同様にして鍛造品1を得た。
<Example 4>
Forged product 1 was obtained in the same manner as in Example 2 except that the angular velocity was 50°/sec.

<実施例5>
角速度を100°/secとした以外は実施例1と同様にして鍛造品1を得た。
<Example 5>
Forged product 1 was obtained in the same manner as in Example 1 except that the angular velocity was 100°/sec.

<実施例6>
角速度を100°/secとした以外は実施例2と同様にして鍛造品1を得た。
<Example 6>
Forged product 1 was obtained in the same manner as in Example 2 except that the angular velocity was 100°/sec.

<実施例7>
角速度を150°/secとした以外は実施例1と同様にして鍛造品1を得た。
<Example 7>
Forged product 1 was obtained in the same manner as in Example 1 except that the angular velocity was 150°/sec.

<実施例8>
角速度を150°/secとした以外は実施例2と同様にして鍛造品1を得た。
<Example 8>
Forged product 1 was obtained in the same manner as in Example 2 except that the angular velocity was 150°/sec.

<比較例1>
Si:1.10質量%、Fe:0.25質量%、Cu:0.40質量%、Mn:0.50質量%、Mg:0.85質量%、Cr:0.15質量%を含有し、残部がAl及び不可避不純物からなるアルミニウム合金を加熱してアルミニウム合金溶湯を得た後、該アルミニウム合金溶湯を用いて連続鋳造を行うことによって連続鋳造材を得た。得られた連続鋳造材に対して均質化加熱処理を行った後、空冷した。
<Comparative example 1>
Contains Si: 1.10% by mass, Fe: 0.25% by mass, Cu: 0.40% by mass, Mn: 0.50% by mass, Mg: 0.85% by mass, and Cr: 0.15% by mass. A molten aluminum alloy was obtained by heating an aluminum alloy, the remainder of which consisted of Al and unavoidable impurities, and then continuous casting was performed using the molten aluminum alloy to obtain a continuously cast material. The obtained continuous cast material was subjected to homogenization heat treatment and then air cooled.

次いで、空冷後の連続鋳造材を、材料温度530℃、金型温度180℃で熱間鍛造を行った。得られた鍛造材を530℃で溶体化処理を施し、50℃の水中に入れて水焼き入れを行った後、180℃で6時間加熱して人工時効硬化処理を施し、鍛造品を得た。 Next, the continuously cast material after air cooling was hot forged at a material temperature of 530°C and a mold temperature of 180°C. The obtained forged material was subjected to solution treatment at 530°C, water quenched by placing it in water at 50°C, and then heated at 180°C for 6 hours to perform artificial age hardening treatment to obtain a forged product. .

この水焼き入れを行う際、ロボットを用いて0°/secの角速度を与え、焼き入れを行った。 When performing this water quenching, an angular velocity of 0°/sec was applied using a robot to perform the quenching.

<比較例2>
角速度を5°/secとした以外は比較例1と同様にして鍛造品を得た。
<Comparative example 2>
A forged product was obtained in the same manner as Comparative Example 1 except that the angular velocity was 5°/sec.

<比較例3>
角速度を190°/secとした以外は比較例1と同様にして鍛造品を得た。
<Comparative example 3>
A forged product was obtained in the same manner as Comparative Example 1 except that the angular velocity was 190°/sec.

<比較例4>
角速度を200°/secとした以外は比較例1と同様にして鍛造品を得た。
<Comparative example 4>
A forged product was obtained in the same manner as Comparative Example 1 except that the angular velocity was 200°/sec.

<比較例5>
Si:1.10質量%、Fe:0.25質量%、Cu:0.40質量%、Mn:0.50質量%、Mg:0.85質量%、Cr:0.15質量%を含有し、残部がAl及び不可避不純物からなるアルミニウム合金を加熱してアルミニウム合金溶湯を得た後、該アルミニウム合金溶湯を用いて連続鋳造を行うことによって連続鋳造材を得た。得られた連続鋳造材に対して均質化加熱処理を行った後、空冷した。
<Comparative example 5>
Contains Si: 1.10% by mass, Fe: 0.25% by mass, Cu: 0.40% by mass, Mn: 0.50% by mass, Mg: 0.85% by mass, and Cr: 0.15% by mass. A molten aluminum alloy was obtained by heating an aluminum alloy, the remainder of which consisted of Al and unavoidable impurities, and then continuous casting was performed using the molten aluminum alloy to obtain a continuously cast material. The obtained continuous cast material was subjected to homogenization heat treatment and then air cooled.

次いで、空冷後の連続鋳造材を、材料温度530℃、金型温度180℃で熱間鍛造を行い、鍛造直後に50℃の水中に入れて水焼き入れを行った後、180℃で6時間加熱して人工時効硬化処理を施し、鍛造品を得た。 Next, the continuously cast material after air cooling was hot forged at a material temperature of 530°C and a mold temperature of 180°C, and immediately after forging, it was placed in water at 50°C for water quenching, and then at 180°C for 6 hours. A forged product was obtained by heating and undergoing artificial age hardening treatment.

この水焼き入れを行う際、ロボットを用いて0°/secの角速度を与え、焼き入れを行った。 When performing this water quenching, an angular velocity of 0°/sec was applied using a robot to perform the quenching.

<比較例6>
角速度を5°/secとした以外は比較例5と同様にして鍛造品を得た。
<Comparative example 6>
A forged product was obtained in the same manner as Comparative Example 5 except that the angular velocity was 5°/sec.

<比較例7>
角速度を190°/secとした以外は比較例5と同様にして鍛造品を得た。
<Comparative example 7>
A forged product was obtained in the same manner as in Comparative Example 5 except that the angular velocity was 190°/sec.

<比較例8>
角速度を200°/secとした以外は比較例5と同様にして鍛造品を得た。
<Comparative example 8>
A forged product was obtained in the same manner as Comparative Example 5 except that the angular velocity was 200°/sec.

Figure 0007396105000001
Figure 0007396105000001

上記のようにして得られた各鍛造品について下記評価法に基づいて各種評価を行った。 Various evaluations were performed on each of the forged products obtained as described above based on the following evaluation methods.

<角速度の測定>
角速度の測定はジャイロセンサを用いて行った。具体的には、鍛造材をロボットで掴み回転を与えて落下させた際の角速度をジャイロセンサにより測定した。
<Measurement of angular velocity>
Angular velocity was measured using a gyro sensor. Specifically, a gyro sensor measured the angular velocity when a forged material was grabbed by a robot, rotated, and dropped.

<硬度測定>
実施例1~8および比較例1~8の各鍛造品において硬度測定を行った。具体的には、鍛造品を10mm角に切り出し樹脂埋めを行い、対象面をエメリー紙で#2000まで研磨を行ったのち、ビッカース硬度計を用いてビッカース硬度を測定した。ビッカース硬度測定の際の荷重は10gで1試料に対し10点測定し平均のビッカース硬度を算出した。
<Hardness measurement>
Hardness measurements were performed on each of the forged products of Examples 1 to 8 and Comparative Examples 1 to 8. Specifically, the forged product was cut into 10 mm squares, filled with resin, and the target surface was polished to #2000 with emery paper, and then the Vickers hardness was measured using a Vickers hardness meter. The Vickers hardness was measured at 10 points with a load of 10 g, and the average Vickers hardness was calculated.

また、ビッカース硬度の測定ではL型アームを用い、図4に示す測定箇所P1~P5で実施した。ビッカース硬度の測定結果を表1に示す。表1における判定基準は5カ所の測定結果の誤差(硬度差)が4HV以下の場合を〇、5HV以上の場合を×とした。 Furthermore, Vickers hardness was measured using an L-shaped arm at measurement points P1 to P5 shown in FIG. Table 1 shows the measurement results of Vickers hardness. The judgment criteria in Table 1 are: ○ when the error (hardness difference) in the measurement results at 5 locations is 4 HV or less, and × when it is 5 HV or more.

表1より、実施例1~8では誤差(硬度差)が3HVまたは4HV以下であり、十分な機械的特性が得られていることが分かる。 From Table 1, it can be seen that in Examples 1 to 8, the error (difference in hardness) was 3HV or 4HV or less, and sufficient mechanical properties were obtained.

一方、比較例1~8では誤差(硬度差)が5HV以上であり、十分な機械的特性が得られていないことが分かる。 On the other hand, in Comparative Examples 1 to 8, the error (difference in hardness) was 5HV or more, indicating that sufficient mechanical properties were not obtained.

本発明の製造方法で得られた足回り用鍛造品は高強度であるため、例えば、自動車用足回りのサスペンションアーム、アッパーアーム、ロアーアーム、タイロッドエンド等の材料として好適に用いられるが、特にこのような用途に限定されるものではない。 The forged products for suspension parts obtained by the manufacturing method of the present invention have high strength and are therefore suitable for use as materials for suspension arms, upper arms, lower arms, tie rod ends, etc. of automobile suspension parts, but in particular, this forged product has high strength. It is not limited to such uses.

1:アルミニウム合金鍛造材 1: Aluminum alloy forged material

Claims (4)

熱処理工程として焼入れ処理工程を含むアルミニウム合金鍛造材の製造方法であって、
前記焼入れ処理工程は、前記鍛造材を回転させながら焼入れ水に接触させるとともに、接触時の角速度が10°/sec以上180°/sec以下であることを特徴とするアルミニウム合金鍛造材の製造方法。
A method for producing an aluminum alloy forged material including a quenching process as a heat treatment process,
A method for producing an aluminum alloy forged material, wherein in the quenching process, the forged material is brought into contact with quenching water while being rotated, and the angular velocity at the time of contact is 10°/sec or more and 180°/sec or less.
アルミニウム合金がAl-Mg-Si系合金である請求項1に記載のアルミニウム合金鍛造材の製造方法。 The method for producing an aluminum alloy forged material according to claim 1, wherein the aluminum alloy is an Al-Mg-Si alloy. 溶体化処理工程が熱間鍛造工程での昇温を併用したものである請求項1または2に記載のアルミニウム合金鍛造材の製造方法。 3. The method for producing an aluminum alloy forged material according to claim 1, wherein the solution treatment step includes temperature raising in a hot forging step. 前記焼入れ処理工程における水の温度が40℃~90℃である請求項1~3のいずれか1項に記載のアルミニウム合金鍛造材の製造方法。

The method for producing an aluminum alloy forged material according to any one of claims 1 to 3, wherein the temperature of the water in the quenching treatment step is 40°C to 90°C.

JP2020026348A 2020-02-19 2020-02-19 Manufacturing method for aluminum alloy forgings Active JP7396105B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020026348A JP7396105B2 (en) 2020-02-19 2020-02-19 Manufacturing method for aluminum alloy forgings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020026348A JP7396105B2 (en) 2020-02-19 2020-02-19 Manufacturing method for aluminum alloy forgings

Publications (2)

Publication Number Publication Date
JP2021130843A JP2021130843A (en) 2021-09-09
JP7396105B2 true JP7396105B2 (en) 2023-12-12

Family

ID=77550551

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020026348A Active JP7396105B2 (en) 2020-02-19 2020-02-19 Manufacturing method for aluminum alloy forgings

Country Status (1)

Country Link
JP (1) JP7396105B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010196152A (en) 2009-02-27 2010-09-09 Daihatsu Motor Co Ltd Heat treating method
JP2012001756A (en) 2010-06-16 2012-01-05 Sumitomo Light Metal Ind Ltd HIGH-TOUGHNESS Al ALLOY FORGING MATERIAL, AND METHOD FOR PRODUCING THE SAME
JP2017179413A (en) 2016-03-28 2017-10-05 株式会社神戸製鋼所 Method for producing automobile aluminum alloy forged material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010196152A (en) 2009-02-27 2010-09-09 Daihatsu Motor Co Ltd Heat treating method
JP2012001756A (en) 2010-06-16 2012-01-05 Sumitomo Light Metal Ind Ltd HIGH-TOUGHNESS Al ALLOY FORGING MATERIAL, AND METHOD FOR PRODUCING THE SAME
JP2017179413A (en) 2016-03-28 2017-10-05 株式会社神戸製鋼所 Method for producing automobile aluminum alloy forged material

Also Published As

Publication number Publication date
JP2021130843A (en) 2021-09-09

Similar Documents

Publication Publication Date Title
JP2676466B2 (en) Magnesium alloy member and manufacturing method thereof
TWI507532B (en) High strength aluminum magnesium silicon alloy and its manufacturing process
WO2014077391A1 (en) Aluminum alloy material for high-pressure hydrogen gas containers and method for producing same
WO2013114928A1 (en) Forged aluminum alloy material and method for producing same
CN1136329C (en) Damage tolerant aluminium alloy product and method of its manufacture
JP3684313B2 (en) High-strength, high-toughness aluminum alloy forgings for automotive suspension parts
JP2013525608A (en) Damage-resistant aluminum material with hierarchical microstructure
JP2013525608A5 (en)
JP2016079454A (en) Aluminum alloy forging material and manufacturing method therefor
JP3525486B2 (en) Magnesium alloy casting material for plastic working, magnesium alloy member using the same, and methods for producing them
JPS63235454A (en) Prodution of flat rolled product of aluminum base alloy
WO2003027345A1 (en) Process of producing 5xxx series aluminum alloys with high mechanical properties through twin-roll casting
JPS63282232A (en) High-strength magnesium alloy for plastic working and its production
JP2021143371A (en) Aluminum alloy forged article and method for producing aluminum alloy forged article
JP7396105B2 (en) Manufacturing method for aluminum alloy forgings
JP2021143370A (en) Aluminum alloy forged article and method for producing aluminum alloy forged article
JP2021143372A (en) Aluminum alloy forged article and method for producing aluminum alloy forged article
JP2021143369A (en) Aluminum alloy forged article and method for producing aluminum alloy forged article
JP2021143374A (en) Aluminum alloy forged article and method for producing aluminum alloy forged article
JP4088546B2 (en) Manufacturing method of aluminum alloy forging with excellent high temperature characteristics
JP7459496B2 (en) Manufacturing method for aluminum alloy forgings
KR101252784B1 (en) Magnesium alloy sheet having high strength and high formability and method for manufacturing the same
JP5575028B2 (en) High strength aluminum alloy, high strength aluminum alloy casting manufacturing method and high strength aluminum alloy member manufacturing method
JP7423981B2 (en) Manufacturing method for aluminum alloy forgings
JP2021143375A (en) Aluminum alloy forged article and method for producing aluminum alloy forged article

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221117

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20230131

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20230201

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20230307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231113

R151 Written notification of patent or utility model registration

Ref document number: 7396105

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151