JP7395949B2 - Laminated filter media - Google Patents

Laminated filter media Download PDF

Info

Publication number
JP7395949B2
JP7395949B2 JP2019191889A JP2019191889A JP7395949B2 JP 7395949 B2 JP7395949 B2 JP 7395949B2 JP 2019191889 A JP2019191889 A JP 2019191889A JP 2019191889 A JP2019191889 A JP 2019191889A JP 7395949 B2 JP7395949 B2 JP 7395949B2
Authority
JP
Japan
Prior art keywords
nonwoven fabric
laminated
fiber diameter
filter medium
average fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019191889A
Other languages
Japanese (ja)
Other versions
JP2021065824A (en
Inventor
恵子 坂口
忠雄 増森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo MC Corp
Original Assignee
Toyobo MC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo MC Corp filed Critical Toyobo MC Corp
Priority to JP2019191889A priority Critical patent/JP7395949B2/en
Publication of JP2021065824A publication Critical patent/JP2021065824A/en
Application granted granted Critical
Publication of JP7395949B2 publication Critical patent/JP7395949B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Filtering Materials (AREA)
  • Nonwoven Fabrics (AREA)

Description

本発明は、粉塵の捕集性能に優れ、さらには耐酸化性に優れた積層濾材に関するものである。 TECHNICAL FIELD The present invention relates to a laminated filter medium that has excellent dust collection performance and further has excellent oxidation resistance.

従来、粉塵を除去するためのエアフィルター、あるいは液体フィルターの材料として種々の不織布が提案されている。特に近年では、剛性に優れる熱圧着タイプの長繊維不織布がプリーツ形状のフィルターとして好適に使用されている。プリーツ形状のフィルター材を使用すると濾過面積を広く取れるため濾過風速を低減することが可能であり、粉塵の捕集能力の向上や機械圧損の低減を図れるという利点がある。 Conventionally, various nonwoven fabrics have been proposed as materials for air filters or liquid filters for removing dust. Particularly in recent years, thermocompression-bonded long fiber nonwoven fabrics with excellent rigidity have been suitably used as pleated filters. When a pleated filter material is used, the filtration area can be widened, so the filtration air speed can be reduced, and there are advantages in that the dust collection ability can be improved and mechanical pressure loss can be reduced.

しかしながら、従来ある熱圧着タイプの長繊維不織布では構成繊維の繊維径は細くても10μm程度であり、十分な捕集能力を有するものではなかった。 However, in conventional thermocompression-bonded long fiber nonwoven fabrics, the fiber diameter of the constituent fibers is about 10 μm at the most, and it did not have sufficient collection ability.

例えば特許文献1には異形繊維からなるフィルター用複合長繊維不織布が提案されている。当該技術によれば、フィルター用不織布の機械的特性や寸法安定性の向上が可能であるが、構成繊維の繊維径は2~15デシテックス、すなわち細くても13μm程度であり、粒径数μm以下の粉塵を十分に捕集出来るものではない。 For example, Patent Document 1 proposes a composite long fiber nonwoven fabric for filters made of irregularly shaped fibers. According to this technology, it is possible to improve the mechanical properties and dimensional stability of the nonwoven fabric for filters, but the fiber diameter of the constituent fibers is 2 to 15 decitex, that is, about 13 μm at the thinnest, and the particle size is several μm or less. It is not able to sufficiently collect dust.

さらに特許文献2には複数の不織布を積層したフィルター用の不織布が提案されている。当該技術によれば目付の高いフィルター用不織布の製造も容易であり、通気性にも優れたフィルター用不織布を得ることができる。しかしながら、当該技術で提案された不織布は、繊維径が7~20μmの不織布と繊維径20~50μmの不織布等を積層一体化させたものであり、特許文献1のものと同様、粒径数μm以下の粉塵を十分に捕集出来るものではない。 Further, Patent Document 2 proposes a nonwoven fabric for filters in which a plurality of nonwoven fabrics are laminated. According to this technique, it is easy to manufacture a nonwoven fabric for filters with a high basis weight, and it is possible to obtain a nonwoven fabric for filters that has excellent air permeability. However, the nonwoven fabric proposed in this technology is one in which a nonwoven fabric with a fiber diameter of 7 to 20 μm and a nonwoven fabric with a fiber diameter of 20 to 50 μm are laminated and integrated, and like the one in Patent Document 1, the particle size is several μm. It cannot sufficiently collect the following dust particles.

また、使用環境によっては不織布が酸化によって脆化する現象が稀に発生することがある。脆化した不織布は強度が低下して物理的に破壊され、下流側にダストとして流れ込む可能性があり、製品安全上問題がある。 Furthermore, depending on the usage environment, a phenomenon in which the nonwoven fabric becomes brittle due to oxidation may occur in rare cases. The embrittled nonwoven fabric has a reduced strength and may be physically destroyed and may flow downstream as dust, which poses a product safety problem.

特開2001-276529号公報Japanese Patent Application Publication No. 2001-276529 特開2004-124317号公報Japanese Patent Application Publication No. 2004-124317

本発明は、上記課題に鑑みなされ、耐酸化性に優れ、かつ粉塵の捕集性能に優れた積層濾材を提供することを目的とする。 The present invention was made in view of the above problems, and an object of the present invention is to provide a laminated filter medium that has excellent oxidation resistance and excellent dust collection performance.

本発明の積層濾材は、ポリエチレンテレフタレートを含む平均繊維径が10~40μmの繊維からなるスパンボンド不織布と、平均繊維径が1~8μmの繊維からなるメルトブロー不織布と、平均繊維径が20~50μmの繊維からなる支持層と、の少なくとも3層が記載順で積層一体化されてなる。
前記支持層は、ポリエチレンテレフタレートのみから構成されていてもよい。
また、積層濾材を用いたフィルターも本発明の範疇である。
The laminated filter medium of the present invention comprises a spunbond nonwoven fabric made of fibers containing polyethylene terephthalate and having an average fiber diameter of 10 to 40 μm, a meltblown nonwoven fabric made of fibers having an average fiber diameter of 1 to 8 μm, and a melt-blown nonwoven fabric made of fibers having an average fiber diameter of 20 to 50 μm. At least three layers, including a support layer made of fibers, are laminated and integrated in the listed order.
The support layer may be composed only of polyethylene terephthalate.
Moreover, a filter using a laminated filter medium is also within the scope of the present invention.

本発明の上記構成によれば、耐酸化性に優れ、かつ粉塵の捕集性能に優れた積層濾材を提供することができる。 According to the above configuration of the present invention, it is possible to provide a laminated filter medium that has excellent oxidation resistance and excellent dust collection performance.

本発明の積層濾材は、ポリエチレンテレフタレートを含む平均繊維径が10~40μmの繊維からなるスパンボンド不織布と、平均繊維径が1~8μmの繊維からなるメルトブロー不織布と、平均繊維径が20~50μmの繊維からなる支持層と、の少なくとも3層が記載順に積層されてなる。 The laminated filter medium of the present invention comprises a spunbond nonwoven fabric made of fibers containing polyethylene terephthalate and having an average fiber diameter of 10 to 40 μm, a melt-blown nonwoven fabric made of fibers having an average fiber diameter of 1 to 8 μm, and a melt-blown nonwoven fabric made of fibers having an average fiber diameter of 20 to 50 μm. A support layer made of fibers and at least three layers are laminated in the listed order.

本発明のフィルターは本発明の積層濾材を用いて成り、例えば、積層濾材をプリーツ形状に加工し、除塵用フィルターとして使用することが可能である。本発明の積層濾材は、通風に対して、メルトブロー不織布の下流側にポリエチレンテレフタレートのスパンボンド不織布を配置されており、酸化が進んだ場合もプリーツ形状を保持し、除塵効率が低下せず、耐酸化性に優れる。 The filter of the present invention is made using the laminated filter medium of the present invention. For example, the laminated filter medium can be processed into a pleated shape and used as a dust removal filter. The laminated filter medium of the present invention has a polyethylene terephthalate spunbond nonwoven fabric placed downstream of the melt-blown nonwoven fabric against ventilation, so that it maintains its pleated shape even when oxidation progresses, does not reduce dust removal efficiency, and is acid resistant. Excellent chemical properties.

本発明において、支持層は補強を主目的とする層である上流側に配置される支持層は、ポリプロピレンやポリエステルを主原料としたサーマルボンド不織布や樹脂含浸スパンボンド不織布、レジンポンド不織布といった一般的に公知な不織布を好適に用いることが出来る。支持層としては厚みが1.0mm以下でガーレ法剛軟度で1mN以上の繊維層で圧力損失が出来るだけ小さいものを使用することが好ましい。また、抗菌、抗カビ性や難燃性を付与したい場合は、こうした機能を持つ公知の添加剤が添加された繊維を混ぜてもよい。 In the present invention, the support layer is a layer whose main purpose is reinforcement.The support layer disposed on the upstream side is a general-purpose material such as a thermal bond nonwoven fabric mainly made of polypropylene or polyester, a resin-impregnated spunbond nonwoven fabric, or a resin pound nonwoven fabric. Nonwoven fabrics known in the art can be suitably used. As the support layer, it is preferable to use a fibrous layer having a thickness of 1.0 mm or less and a Gurley bending resistance of 1 mN or more and having as small a pressure loss as possible. Furthermore, if it is desired to impart antibacterial, antifungal, or flame retardant properties, fibers containing known additives having these functions may be mixed.

本発明におけるメルトブロー不織布は、溶融したポリマーを口金より押し出し、これに加熱高速ガス流体等を吹き当てながら該溶融ポリマーを引き伸ばすことにより極細繊維化し、捕集してシートとする方法に代表される、いわゆるメルトブロー法により製造されたものである。 The melt-blown nonwoven fabric in the present invention is typically produced by extruding a molten polymer from a die, stretching the molten polymer while blowing a heated high-speed gas fluid, etc., to form ultra-fine fibers, and collecting them to form a sheet. It is manufactured by the so-called melt blow method.

前記メルトブロー不織布を構成する繊維の平均繊維径は、1~8μmであり、必要とされる除塵の捕集効率によって選定される。平均繊維径が1μmよりも小さいときは、ポリマーを引き伸ばして極細繊維化する際に、繊維が切れやすくなり、塊状のポリマーが混入する場合があり好ましくない。さらには不織布の通気性が低下する傾向もあり好ましくない。平均繊維径が8μmを超える場合は、繊維が太くなり過ぎるため、粉塵の捕集性能が低下する傾向があり好ましくない。なお、ここでいう平均繊維径は、不織布からランダムに小片サンプル10個を採取し、走査型電子顕微鏡等で500~3000倍の写真を撮影し、各サンプルから10本ずつ、計100本の繊維直径を測定し、平均値の小数点以下第一位を四捨五入し算出することで求められるものをいう。 The average fiber diameter of the fibers constituting the melt-blown nonwoven fabric is 1 to 8 μm, and is selected depending on the required dust removal efficiency. When the average fiber diameter is smaller than 1 μm, the fibers tend to break easily when the polymer is stretched to form ultrafine fibers, and lumpy polymers may be mixed in, which is not preferable. Furthermore, the air permeability of the nonwoven fabric tends to decrease, which is not preferable. If the average fiber diameter exceeds 8 μm, the fibers become too thick, which tends to reduce dust collection performance, which is not preferable. Note that the average fiber diameter here is determined by taking 10 small samples randomly from the nonwoven fabric, taking photographs with a scanning electron microscope, etc., magnifying 500 to 3000 times, and measuring 10 fibers in total, 10 from each sample. It is calculated by measuring the diameter and rounding off the average value to the first decimal place.

また、本発明におけるメルトブロー不織布は、例えば、ポリエチレン繊維、ポリプロピレン繊維、共重合ポリプロピレンなどのポリオレフィン系繊維など一般的な繊維が用いられる。 Further, the melt-blown nonwoven fabric in the present invention may be made of common fibers such as polyethylene fibers, polypropylene fibers, and polyolefin fibers such as copolymerized polypropylene.

さらに前記メルトブロー不織布の原料樹脂には、本発明の効果を損なわない範囲で、結晶核剤や艶消し剤、顔料、防カビ剤、抗菌剤、難燃剤、親水剤等を添加してもよい。また、本来の機能を損なうことがなければ、微量の共重合体成分を含むものでもよい。 Further, to the raw material resin of the melt-blown nonwoven fabric, a crystal nucleating agent, a matting agent, a pigment, a fungicide, an antibacterial agent, a flame retardant, a hydrophilic agent, etc. may be added to the extent that the effects of the present invention are not impaired. Further, it may contain a trace amount of a copolymer component as long as the original function is not impaired.

本発明におけるスパンボンド不織布は、ポリエステルテレフタレートを含むことが好ましい。ポリエステル系不織布は、融点が高いため耐熱性に優れ、さらには剛性にも優れることから好ましいものである。また、本発明の特徴でもある耐酸化性にも非常に優れており、除塵性能、形状保持の観点からも好ましい。前記ポリエステルテレフタレートを含む不織布は、ポリエチレンテレフタレートのみからなるスパンボンド不織布あるいは、芯部がポリエチレンテレフタレートを含んでなり、鞘部が芯部のポリマーより融点の低い共重合ポリエステルを含んでなる芯鞘型繊維からなるスパンボンド不織布が、不織布の強度や剛性の点から好ましい形態である。前記共重合ポリエステルは、芯部に含まれるポリエチレンテレフタレートと比較して、15℃以上融点が低いことが好ましい。また、前記共重合ポリエステルは、共重合ポリエチレンテレフタレートが好ましく、共重合成分としてはイソフタル酸、アジピン酸が好ましい。 The spunbond nonwoven fabric in the present invention preferably contains polyester terephthalate. Polyester nonwoven fabrics are preferred because they have a high melting point and excellent heat resistance, and also excellent rigidity. Furthermore, it has excellent oxidation resistance, which is a feature of the present invention, and is preferable from the viewpoint of dust removal performance and shape retention. The nonwoven fabric containing polyester terephthalate is a spunbond nonwoven fabric made only of polyethylene terephthalate, or a core-sheath type fiber whose core part contains polyethylene terephthalate and whose sheath part contains a copolymerized polyester having a lower melting point than the polymer in the core part. A spunbond nonwoven fabric consisting of is a preferred form from the viewpoint of strength and rigidity of the nonwoven fabric. The copolymerized polyester preferably has a melting point lower than that of polyethylene terephthalate contained in the core by 15° C. or more. Further, the copolymerized polyester is preferably copolymerized polyethylene terephthalate, and the copolymerized component is preferably isophthalic acid or adipic acid.

前記スパンボンド不織布を構成する繊維の平均繊維径は、10~40μmであり、好ましくは、12~35μmの範囲である。平均繊維径が10μmよりも小さい場合は、不織布の通気性が低下し、不織布の剛性も低下する傾向があり好ましくない。またスパンボンド不織布製造時に、糸切れが生じやすく生産安定性の面からも好ましくない方向である。平均繊維径が40μmよりも大きい場合は、スパンボンド不織布製造時に、糸条の冷却不良により糸切れが生じやすく生産安定性の面から好ましくない。なお、ここでいう平均繊維径は、不織布からランダムに小片サンプル10個を採取し、走査型電子顕微鏡等で500~3000倍の写真を撮影し、各サンプルから10本ずつ、計100本の繊維直径を測定し、平均値の小数点以下第一位を四捨五入し算出することで求められるものをいう。 The average fiber diameter of the fibers constituting the spunbond nonwoven fabric is in the range of 10 to 40 μm, preferably in the range of 12 to 35 μm. If the average fiber diameter is smaller than 10 μm, the air permeability of the nonwoven fabric tends to decrease, and the rigidity of the nonwoven fabric also tends to decrease, which is not preferable. Furthermore, during the production of spunbond nonwoven fabrics, thread breakage tends to occur, which is unfavorable from the viewpoint of production stability. If the average fiber diameter is larger than 40 μm, thread breakage is likely to occur due to insufficient cooling of the threads during production of the spunbond nonwoven fabric, which is undesirable from the viewpoint of production stability. The average fiber diameter referred to here is calculated by randomly taking 10 small samples from the nonwoven fabric, taking photographs with a magnification of 500 to 3000 times using a scanning electron microscope, etc., and measuring 10 fibers in total, 10 from each sample. It is calculated by measuring the diameter and rounding off the average value to the first decimal place.

さらに前記スパンボンド不織布を構成する繊維の断面形状は何ら制限されるものではないが、円形、中空丸形、楕円形、扁平型、あるいはX型、Y型等の異形型、多角型、多葉型、等が好ましい形態である。円形でない繊維の繊維径は、繊維断面に対して外接円と、内接円を取り、それぞれの直径の平均値を繊維径とすればよい。 Furthermore, the cross-sectional shape of the fibers constituting the spunbond nonwoven fabric is not limited in any way, but may be circular, hollow round, elliptical, flat, irregularly shaped such as X-shape or Y-shape, polygonal, or multilobed. type, etc. are preferred forms. The fiber diameter of non-circular fibers may be determined by taking the circumscribed circle and inscribed circle with respect to the fiber cross section, and taking the average value of the respective diameters as the fiber diameter.

また、本発明におけるスパンボンド不織布の原料樹脂には、本発明の効果を損なわない範囲で、結晶核剤や艶消し剤、顔料、防カビ剤、抗菌剤、難燃剤、親水剤等を添加してもよい。また、本来の機能を損なうことがなければ、微量の共重合体成分を含むものでもよい。 In addition, crystal nucleating agents, matting agents, pigments, antifungal agents, antibacterial agents, flame retardants, hydrophilic agents, etc. may be added to the raw material resin of the spunbond nonwoven fabric in the present invention to the extent that the effects of the present invention are not impaired. You can. Further, it may contain a trace amount of a copolymer component as long as the original function is not impaired.

本発明におけるメルトブロー不織布、スパンボンド不織布、支持層の一体化は、公知の方法で積層することで、積層濾材を製造できる。積層方法としては、例えば、ウォータージェットパンチ加工やニードルパンチ加工により機械的に絡合させた後に部分的熱圧着を行う方法や、熱エンボスロールによる熱接着、ホットメルト樹脂の吹付・塗布による接着などが挙げられる。 In the present invention, the melt-blown nonwoven fabric, the spunbond nonwoven fabric, and the support layer can be integrated by laminating them by a known method to produce a laminated filter medium. Lamination methods include, for example, partial thermocompression bonding after mechanical entanglement using water jet punching or needle punching, thermal bonding using a hot embossing roll, and bonding by spraying or coating hot melt resin. can be mentioned.

また、本発明におけるメルトブロー不織布とスパンボンド不織布の積層方法は何ら制限されるものではないが、一旦メルトブロー不織布とスパンボンド不織布をそれぞれ製作した後に積層一体化する方法、一旦製作したスパンボンド不織布の上にメルトブロー法にて糸条を噴射し積層する方法、一旦製作したメルトブロー不織布の上にスパンボンド法にて糸条を噴射し積層する方法、さらにはこれらの組み合わせにより実施することが出来る。また、メルトブローウェブとスパンボンドウェブを連続的に積層させた後に、熱圧着などにより一体化させ不織布とする方法でも実施することができる。 Further, the method of laminating the melt-blown nonwoven fabric and the spunbond nonwoven fabric in the present invention is not limited in any way, but there is a method of laminating the melt-blown nonwoven fabric and the spunbond nonwoven fabric after each has been produced, and a method of laminating the melt-blown nonwoven fabric and the spunbond nonwoven fabric once produced, This can be carried out by a method in which yarns are sprayed and laminated using a melt-blown method, a method in which yarns are sprayed and laminated by a spunbond method on a once-produced melt-blown nonwoven fabric, or a combination thereof. It can also be carried out by a method in which a meltblown web and a spunbond web are continuously laminated and then integrated by thermocompression bonding or the like to form a nonwoven fabric.

また、本発明におけるメルトブロー不織布(M)とスパンボンド不織布(S)の積層形態は何ら制限されるものではないが、SM積層、SMS積層、SMMS積層等が好ましい形態である。なお、例えばSMS積層とは、1層のメルトブロー不織布が両側からそれぞれ1層のスパンボンド不織布に挟まれた状態で積層された積層体を指す。メルトブロー不織布やスパンボンド不織布を複数積層する場合、それぞれの構成繊維の平均繊維径や繊維形状が異なっていても、前述の平均繊維径や繊維形状の範囲内であれば何ら問題ない。 Further, the lamination form of the melt-blown nonwoven fabric (M) and the spunbond nonwoven fabric (S) in the present invention is not limited at all, but preferred forms include SM lamination, SMS lamination, and SMMS lamination. Note that, for example, SMS lamination refers to a laminate in which one layer of melt-blown nonwoven fabric is laminated with one layer of spunbond nonwoven fabric sandwiched from both sides. When laminating a plurality of melt-blown nonwoven fabrics or spunbond nonwoven fabrics, there is no problem even if the average fiber diameter and fiber shape of the constituent fibers are different as long as the average fiber diameter and fiber shape are within the above-mentioned ranges.

本発明の積層濾材には、本発明の効果を損なわない範囲で、防カビ剤や抗菌剤、難燃剤、親水剤、顔料、染料等が部分的あるいは全体に付与されていてもよい。 The laminated filter medium of the present invention may be partially or entirely provided with an antifungal agent, an antibacterial agent, a flame retardant, a hydrophilic agent, a pigment, a dye, etc., as long as the effects of the present invention are not impaired.

本発明の積層濾材は剛性に優れているため、プリーツ形状の加工も容易であり、またプリーツ形態の保持性にも優れている。従って、プリーツ状のフィルターとして使用するのが好ましい形態である。 Since the laminated filter medium of the present invention has excellent rigidity, it can be easily processed into a pleated shape and also has excellent retention of the pleated shape. Therefore, it is preferable to use it as a pleated filter.

以下、実施例を挙げて本発明を具体的に説明する。しかし本発明は、下記の実施例に限定されるものではなく、前・後記の趣旨に適合しうる範囲で適宜変更することも可能である。そして、それら適宜変更したものも本発明の技術的範囲に含まれる。 The present invention will be specifically described below with reference to Examples. However, the present invention is not limited to the following examples, and can be modified as appropriate within the scope of the spirit described above and below. Appropriate modifications thereof are also included within the technical scope of the present invention.

まず、実施例および比較例中で測定した特性値およびその測定方法を以下に示す。
[測定方法]
First, the characteristic values and measurement methods measured in Examples and Comparative Examples are shown below.
[Measuring method]

(1)平均繊維径(μm)
不織布からランダムに小片サンプル10個を採取し、走査型電子顕微鏡で500~3000倍の写真を撮影し、各サンプルから10本ずつ、計100本の繊維直径を測定し、平均値の小数点以下第一位を四捨五入し算出する。
(1) Average fiber diameter (μm)
Take 10 small samples randomly from the nonwoven fabric, take photos with a scanning electron microscope at 500 to 3000 times magnification, measure the diameter of 100 fibers (10 from each sample), and calculate the average value to the decimal place. Calculate by rounding off the first place.

(2)目付(g/m
不織布を200mm角の寸法で切り出し、試料の重量をそれぞれ測定し、単位面積当たりに換算、小数点以下第一位を四捨五入する。
(2) Area weight (g/m 2 )
A 200 mm square piece of nonwoven fabric is cut out, and the weight of each sample is measured, converted to per unit area, and rounded to the first decimal place.

(3)捕集効率(%)
60mm角のアクリルカラムにサンプルをセットし、線束5cm/sに設定した空気を流して、積層濾材の上流側と下流側の空気をサンプリングし、パーティクルカウンター(RION社製:KC-01)を用いて1.0~5.0μの粒子の粒子数をカウントする。捕集効率の計算式は下式を用いて求める。
捕集効率(%)=〔1-(D1/D2)〕×100 ここで、D1:下流の粒子数(2回の合計)、D2:上流の粒子数(2回の合計)である。
(3) Collection efficiency (%)
A sample was set in a 60 mm square acrylic column, air was set at a flux of 5 cm/s, and the air on the upstream and downstream sides of the laminated filter medium was sampled using a particle counter (KC-01 manufactured by RION). and count the number of particles of 1.0 to 5.0μ. The calculation formula for collection efficiency is determined using the following formula.
Collection efficiency (%) = [1-(D1/D2)] x 100 where D1: number of downstream particles (total of two times), D2: number of particles upstream (total of two times).

(4)酸化比率(耐酸化性)
積層濾材について10cm角のサンプルを採取し、このサンプルのスパンボンド不織布が最下流になり支持層が上流側になるように配置させて、オゾン濃度10ppm、通過風速1m/sでオゾンを一定時間通風させ、サンプルの酸化度合を次のように測定した。オゾンの通風に対して最下流に配置させたスパンボンド不織布をFT-IRにて測定し、PPのスパンボンド不織布については1710cm-1/1460cm-1の比率、PETのスパンボンド不織布については、1610cm-1/1580cm-1の比率を算出し、オゾン負荷前を1としたときの比率を酸化比率とした。値が大きくなるほど酸化が進んでいることがわかる。
(4) Oxidation ratio (oxidation resistance)
A 10 cm square sample of the laminated filter media was taken, and the spunbond nonwoven fabric of this sample was placed on the most downstream side and the support layer was on the upstream side, and ozone was ventilated for a certain period of time at an ozone concentration of 10 ppm and a passing air velocity of 1 m/s. The degree of oxidation of the sample was measured as follows. The spunbond nonwoven fabric placed at the most downstream position relative to the ozone ventilation was measured using FT-IR, and the ratio was 1710 cm -1 /1460 cm -1 for the PP spunbond nonwoven fabric, and 1610 cm for the PET spunbond nonwoven fabric. The ratio of −1 /1580 cm −1 was calculated, and the ratio before ozone loading was taken as 1, and the ratio was taken as the oxidation ratio. It can be seen that the larger the value, the more advanced the oxidation is.

次に、積層濾材について説明する。
[実施例1]
ポリエチレンテレフタレート製スパンボンド不織布(平均繊維径30μm、目付20g/m)に合成ゴム系接着剤を霧状に2g/mで噴射し、ポリプロピレンメルトブロー不織布(平均繊維径3μm、目付30g/m)を積層し、カレンダーロールを通して積層シートを作製し、さらに作製したシートのメルトブロー側に合成ゴム系接着剤を霧状に2g/mで噴射し、ポリエチレンテレフタレート製サーマルボンド不織布(平均繊維径40μm、目付45g/m)を積層し、カレンダーロールを通して実施例1の積層濾材を作製した。実施例1の積層濾材については、通風において、PETのスパンボンド不織布が最下流、PETのサーマルボンド不織布が最上流になる。表1に実施例1の積層濾材の測定値を示す。
Next, the laminated filter medium will be explained.
[Example 1]
Synthetic rubber adhesive was sprayed in the form of a mist at 2 g/m 2 onto a polyethylene terephthalate spunbond nonwoven fabric (average fiber diameter 30 μm, basis weight 20 g/m 2 ), and a polypropylene melt-blown nonwoven fabric (average fiber diameter 3 μm, basis weight 30 g/m 2 ) was laminated and passed through a calendar roll to produce a laminated sheet, and then a synthetic rubber adhesive was sprayed in a mist at 2 g/m 2 on the melt-blown side of the produced sheet, and a thermally bonded nonwoven fabric made of polyethylene terephthalate (average fiber diameter 40 μm , fabric weight: 45 g/m 2 ) were laminated and passed through a calendar roll to produce the laminated filter medium of Example 1. Regarding the laminated filter medium of Example 1, in ventilation, the PET spunbond nonwoven fabric is the most downstream, and the PET thermal bonded nonwoven fabric is the most upstream. Table 1 shows the measured values of the laminated filter medium of Example 1.

[実施例2]
ポリエチレンテレフタレート製スパンボンド不織布(平均繊維径30μm、目付10g/m)に合成ゴム系接着剤を霧状に2g/mで噴射し、ポリプロピレンメルトブロー不織布(平均繊維径3μm、目付30g/m)を積層し、カレンダーロールを通して積層シートを作製し、さらに作製したシートのメルトブロー側に合成ゴム系接着剤を霧状に2g/mで噴射し、ポリエチレンテレフタレート製サーマルボンド不織布(平均繊維径40μm、目付45g/m)を積層し、カレンダーロールを通して実施例2の積層濾材を作製した。実施例2の積層濾材については、通風において、PETのスパンボンド不織布が最下流、PETのサーマルボンド不織布が最上流になる。表1に実施例2の積層濾材の測定値を示す。
[Example 2]
Synthetic rubber adhesive was sprayed in the form of a mist at 2 g/m 2 onto polyethylene terephthalate spunbond nonwoven fabric (average fiber diameter 30 μm, basis weight 10 g/m 2 ), and polypropylene melt-blown nonwoven fabric (average fiber diameter 3 μm, basis weight 30 g/m 2 ) was laminated and passed through a calendar roll to produce a laminated sheet, and then a synthetic rubber adhesive was sprayed in a mist at 2 g/m 2 on the melt-blown side of the produced sheet, and a thermally bonded nonwoven fabric made of polyethylene terephthalate (average fiber diameter 40 μm , fabric weight: 45 g/m 2 ) were laminated and passed through a calendar roll to produce the laminated filter medium of Example 2. Regarding the laminated filter medium of Example 2, in ventilation, the PET spunbond nonwoven fabric is the most downstream, and the PET thermal bonded nonwoven fabric is the most upstream. Table 1 shows the measured values of the laminated filter medium of Example 2.

参考例3]
まず、以下のように積層シートAを作製した。
ポリプロピレン製スパンボンド不織布(平均繊維径30μm、目付15g/m2)に合成ゴム系接着剤を霧状に2g/m2で噴射し、支持層としてポリプロピレン・ポリエステル製の不織布(平均繊維径28μm、目付30g/m2)を積層し、カレンダーロールを通して積層シートAを作製した。
次に、ポリエチレンテレフタレート製スパンボンド不織布(平均繊維径30μm、目付20g/m2)に合成ゴム系接着剤を霧状に2g/m2で噴射し、ポリプロピレンメルトブロー不織布(平均繊維径3μm、目付30g/m2)を積層し、カレンダーロールを通して積層シートを作製し、さらに作製したシートのメルトブロー側に合成ゴム系接着剤を霧状に2g/m2で噴射し、上記の積層シートAの支持層側を接着し、カレンダーロールを通して比較例3の積層濾材を作製した。比較例3の積層濾材については、通風において、PETのスパンボンド不織布が最下流、PPのスパンボンド不織布が最上流になる。表1に比較例3の積層濾材の測定値を示す。
[ Reference example 3]
First, a laminate sheet A was produced as follows.
Synthetic rubber adhesive was sprayed in the form of a mist at 2 g/m2 onto a polypropylene spunbond nonwoven fabric (average fiber diameter 30 μm, basis weight 15 g/m2), and a polypropylene/polyester nonwoven fabric (average fiber diameter 28 μm, basis weight 30 g) was used as a support layer. /m2) were laminated and passed through a calendar roll to produce a laminated sheet A.
Next, a synthetic rubber adhesive was sprayed in the form of a mist at 2 g/m2 onto a polyethylene terephthalate spunbond nonwoven fabric (average fiber diameter 30 μm, basis weight 20 g/m2), and a polypropylene melt-blown nonwoven fabric (average fiber diameter 3 μm, basis weight 30 g/m2) ) were laminated and passed through a calendar roll to produce a laminated sheet, and a synthetic rubber adhesive was sprayed in a mist at 2 g/m2 onto the melt-blown side of the produced sheet to adhere the support layer side of the laminated sheet A above. , a laminated filter medium of Comparative Example 3 was produced by passing it through a calender roll. Regarding the laminated filter medium of Comparative Example 3, in ventilation, the PET spunbond nonwoven fabric is the most downstream, and the PP spunbond nonwoven fabric is the most upstream. Table 1 shows the measured values of the laminated filter medium of Comparative Example 3.

[比較例1]
ポリプロピレン製スパンボンド不織布(平均繊維径30μm、目付15g/m)に合成ゴム系接着剤を霧状に2g/mで噴射し、ポリプロピレンメルトブロー不織布(平均繊維径3μm、目付30g/m)を積層し、カレンダーロールを通して積層シートを作製し、さらに作製したシートのメルトブロー側に合成ゴム系接着剤を霧状に2g/mで噴射し、ポリエチレンテレフタレート製サーマルボンド不織布(平均繊維径40μm、目付45g/m)を積層し、カレンダーロールを通して比較例1の積層濾材を作製した。比較例1の積層濾材については、通風において、PPのスパンボンド不織布が最下流、PETのサーマルボンド不織布が最上流になる。表1に比較例1の積層濾材の測定値を示す。
[Comparative example 1]
Synthetic rubber adhesive was sprayed in the form of a mist at 2 g/m 2 onto a polypropylene spunbond nonwoven fabric (average fiber diameter 30 μm, basis weight 15 g/m 2 ), and a polypropylene melt-blown nonwoven fabric (average fiber diameter 3 μm, basis weight 30 g/m 2 ) was produced. A laminated sheet was produced by passing through a calender roll, and a synthetic rubber adhesive was sprayed in the form of a mist at 2 g/m 2 on the melt-blown side of the produced sheet to form a thermally bonded nonwoven fabric made of polyethylene terephthalate (average fiber diameter 40 μm, A laminated filter medium of Comparative Example 1 was prepared by laminating the filter medium (with a basis weight of 45 g/m 2 ) and passing it through a calendar roll. Regarding the laminated filter medium of Comparative Example 1, in ventilation, the PP spunbond nonwoven fabric is the most downstream, and the PET thermal bonded nonwoven fabric is the most upstream. Table 1 shows the measured values of the laminated filter medium of Comparative Example 1.

[比較例2]
ポリプロピレン製スパンボンド不織布(平均繊維径30μm、目付30g/m)に合成ゴム系接着剤を霧状に2g/mで噴射し、ポリプロピレンメルトブロー不織布(平均繊維径3μm、目付30g/m)を積層し、カレンダーロールを通して積層シートを作製し、さらに作製したシートのメルトブロー側に合成ゴム系接着剤を霧状に2g/mで噴射し、積層シートAの支持層側を接着し、カレンダーロールを通して比較例2の積層濾材を作製した。比較例2の積層濾材については、通風において、PPのスパンボンド不織布が最下流、積層シートAのPPのスパンボンド不織布が最上流になる。表1に比較例2の積層濾材の測定値を示す。
[Comparative example 2]
Synthetic rubber adhesive was sprayed in the form of a mist at 2 g/m 2 onto polypropylene spunbond nonwoven fabric (average fiber diameter 30 μm, basis weight 30 g/m 2 ), and polypropylene melt-blown nonwoven fabric (average fiber diameter 3 μm, basis weight 30 g/m 2 ) was prepared. are laminated and passed through a calender roll to produce a laminated sheet, and then a synthetic rubber adhesive is sprayed in the form of a mist at 2 g/ m2 onto the melt-blown side of the sheet to adhere the support layer side of the laminated sheet A, followed by calendering. A laminated filter medium of Comparative Example 2 was produced by passing it through a roll. Regarding the laminated filter medium of Comparative Example 2, in ventilation, the PP spunbond nonwoven fabric is the most downstream, and the PP spunbond nonwoven fabric of the laminated sheet A is the most upstream. Table 1 shows the measured values of the laminated filter medium of Comparative Example 2.

[比較例3]
ポリプロピレン製スパンボンド不織布(平均繊維径40μm、目付15g/m)に合成ゴム系接着剤を霧状に2g/mで噴射し、ポリプロピレンメルトブロー不織布(平均繊維径3μm、目付30g/m)を積層し、カレンダーロールを通して積層シートを作製し、さらに作製したシートのメルトブロー側に合成ゴム系接着剤を霧状に2g/mで噴射し、積層シートAの支持層側を接着し、カレンダーロールを通して比較例3の積層濾材を作製した。比較例3の積層濾材については、通風において、PPのスパンボンド不織布が最下流、積層シートAのPPのスパンボンド不織布が最上流になる。表1に比較例3の積層濾材の測定値を示す。
[Comparative example 3]
A synthetic rubber adhesive was sprayed in the form of a mist at 2 g/m 2 onto a polypropylene spunbond nonwoven fabric (average fiber diameter 40 μm, basis weight 15 g/m 2 ), and a polypropylene melt-blown nonwoven fabric (average fiber diameter 3 μm, basis weight 30 g/m 2 ) was produced. are laminated and passed through a calender roll to produce a laminated sheet, and then a synthetic rubber adhesive is sprayed in the form of a mist at 2 g/ m2 onto the melt-blown side of the sheet to adhere the support layer side of the laminated sheet A, followed by calendering. A laminated filter medium of Comparative Example 3 was produced by passing it through a roll. Regarding the laminated filter medium of Comparative Example 3, in ventilation, the PP spunbond nonwoven fabric is the most downstream, and the PP spunbond nonwoven fabric of the laminated sheet A is the most upstream. Table 1 shows the measured values of the laminated filter medium of Comparative Example 3.

表1から、本発明の実施例の積層濾材は、比較例1~3と比較して、酸化度合いが小さく、耐酸化性に優れていることがわかる。 Table 1 shows that the laminated filter media of Examples of the present invention have a lower degree of oxidation and are superior in oxidation resistance than Comparative Examples 1 to 3.

本発明の積層濾材は耐酸化性に優れる上に、粉塵捕集性能に優れ、機械的強度も良好である。よって、例えば、工業用のエアフィルターや液体フィルターとして好適に利用することができる。 The laminated filter medium of the present invention has excellent oxidation resistance, excellent dust collection performance, and good mechanical strength. Therefore, it can be suitably used as, for example, an industrial air filter or a liquid filter.

Claims (2)

ポリエチレンテレフタレートを含む平均繊維径が10~40μmの繊維からなるスパンボンド不織布と、平均繊維径が1~8μmの繊維からなるメルトブロー不織布と、平均繊維径が20~50μmの繊維からなる支持層と、の少なくとも3層が記載順に積層されている積層濾材であり、
前記スパンボンド不織布と前記メルトブロー不織布とは接着されており、
前記支持層は、ポリエチレンテレフタレートのみから構成されるサーマルボンド不織布であることを特徴とする積層濾材。
A spunbond nonwoven fabric made of fibers with an average fiber diameter of 10 to 40 μm containing polyethylene terephthalate, a meltblown nonwoven fabric made of fibers with an average fiber diameter of 1 to 8 μm, and a support layer made of fibers with an average fiber diameter of 20 to 50 μm. A laminated filter medium in which at least three layers of are laminated in the listed order,
The spunbond nonwoven fabric and the meltblown nonwoven fabric are bonded together,
A laminated filter medium, wherein the support layer is a thermally bonded nonwoven fabric made only of polyethylene terephthalate .
請求項1に記載の積層濾材を用いたフィルター。 A filter using the laminated filter medium according to claim 1 .
JP2019191889A 2019-10-21 2019-10-21 Laminated filter media Active JP7395949B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019191889A JP7395949B2 (en) 2019-10-21 2019-10-21 Laminated filter media

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019191889A JP7395949B2 (en) 2019-10-21 2019-10-21 Laminated filter media

Publications (2)

Publication Number Publication Date
JP2021065824A JP2021065824A (en) 2021-04-30
JP7395949B2 true JP7395949B2 (en) 2023-12-12

Family

ID=75638032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019191889A Active JP7395949B2 (en) 2019-10-21 2019-10-21 Laminated filter media

Country Status (1)

Country Link
JP (1) JP7395949B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004019062A (en) 2002-06-18 2004-01-22 Toyobo Co Ltd Acoustic material
JP2004105829A (en) 2002-09-17 2004-04-08 Kurashiki Seni Kako Kk Filter for cleaning air
JP2004154760A (en) 2002-09-09 2004-06-03 Asahi Kasei Fibers Corp Nonwoven fabric for filter and extraction pack
JP2009535237A (en) 2006-04-27 2009-10-01 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Polymer pipes and containers with high barrier layers
JP2010121261A (en) 2008-10-21 2010-06-03 Asahi Kasei Fibers Corp Laminated nonwoven fabric
WO2019194244A1 (en) 2018-04-06 2019-10-10 旭化成株式会社 Filter medium

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2981533B2 (en) * 1990-11-13 1999-11-22 旭化成工業株式会社 Molded filter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004019062A (en) 2002-06-18 2004-01-22 Toyobo Co Ltd Acoustic material
JP2004154760A (en) 2002-09-09 2004-06-03 Asahi Kasei Fibers Corp Nonwoven fabric for filter and extraction pack
JP2004105829A (en) 2002-09-17 2004-04-08 Kurashiki Seni Kako Kk Filter for cleaning air
JP2009535237A (en) 2006-04-27 2009-10-01 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Polymer pipes and containers with high barrier layers
JP2010121261A (en) 2008-10-21 2010-06-03 Asahi Kasei Fibers Corp Laminated nonwoven fabric
WO2019194244A1 (en) 2018-04-06 2019-10-10 旭化成株式会社 Filter medium

Also Published As

Publication number Publication date
JP2021065824A (en) 2021-04-30

Similar Documents

Publication Publication Date Title
JP5609334B2 (en) Spunbond nonwoven fabric and filter using the same
JP6264438B2 (en) Air filter medium, filter pack, and air filter unit
US8308833B2 (en) Nonwoven fabric for filters
JP6861493B2 (en) Air filter filter media, air filter pack and air filter unit
JP5082365B2 (en) Nonwoven fabric for filters
US11406927B2 (en) Air filter medium, air filter pack, and air filter unit
KR20140049031A (en) Blended filament nonwoven fabric
JP2007152216A (en) Nonwoven fabric for filter
JP6962494B1 (en) Spun-bonded non-woven fabric, filter laminated filter media, dust collector pleated filter filter media, dust collector pleated filter and medium air volume pulse jet type dust collector
JP4737039B2 (en) Filter nonwoven fabric for air intake
JP7395949B2 (en) Laminated filter media
JP5267809B2 (en) Filter base material and filter using the same
KR101242687B1 (en) Polyester nonwoven fabrics and preparation method thereof
JP7415919B2 (en) Filter media and filter units
JP2024040961A (en) Lamination filter medium for filter
JP4543332B2 (en) Low pressure loss laminated nonwoven fabric and filter
WO2019181827A1 (en) Long-fiber nonwoven fabric and filter reinforcing material using same
WO2021132410A1 (en) Spunbond nonwoven fabric, filter media for dust-collector pleated filter, dust collector pleated filter, and large air-blast pulse-jet-type dust collector
WO2021132403A1 (en) Spun-bonded nonwoven fabric, filter media for dust collector pleated filter, dust collector pleated filter, and high-airflow pulse-jet dust collector
WO2021132409A1 (en) Spunbond nonwoven fabric for filters, filter medium for powder-coated filters, and powder-coated filter
WO2021132411A1 (en) Spun-bonded nonwoven fabric, multilayer filter medium, filter medium for pleated filters, and pleated filter
JP2016175074A (en) Cartridge filter
JP2021098928A (en) Spun-bonded nonwoven fabric, filter laminated medium, filter medium for dust collector pleat filter, dust collector pleat filter, and pulse jet type dust collector having medium amount of air capacity
JP2021098927A (en) Spun-bonded nonwoven fabric, filter medium for dust collector pleat filter, dust collector pleat filter, and pulse jet type dust collector having large amount of air capacity
JP2021098196A (en) Spun-bonded nonwoven fabric for filter, filter medium for automobile oil filter, and automobile oil filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221006

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20230404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230620

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231113

R150 Certificate of patent or registration of utility model

Ref document number: 7395949

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150