JP2024040961A - Laminated filter media for filters - Google Patents

Laminated filter media for filters Download PDF

Info

Publication number
JP2024040961A
JP2024040961A JP2022145636A JP2022145636A JP2024040961A JP 2024040961 A JP2024040961 A JP 2024040961A JP 2022145636 A JP2022145636 A JP 2022145636A JP 2022145636 A JP2022145636 A JP 2022145636A JP 2024040961 A JP2024040961 A JP 2024040961A
Authority
JP
Japan
Prior art keywords
nonwoven fabric
laminated
fibers
filter medium
fiber diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022145636A
Other languages
Japanese (ja)
Inventor
恵子 坂口
忠雄 増森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo MC Corp
Original Assignee
Toyobo MC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo MC Corp filed Critical Toyobo MC Corp
Priority to JP2022145636A priority Critical patent/JP2024040961A/en
Publication of JP2024040961A publication Critical patent/JP2024040961A/en
Pending legal-status Critical Current

Links

Abstract

【課題】粉塵の捕集性能に優れた濾材を提供する。【解決手段】本発明の積層濾材は、平均繊維径が10~40μmの繊維からなるスパンボンド不織布と、平均繊維径が1~6μmの繊維からなるメルトブロー不織布とが積層されて成り、メルトブロー不織布とスパンボンド不織布との弾性率比が0.1~0.8であり、メルトブロー不織布とスパンボンド不織布との破断伸度比が0.3~2.0である。【選択図】なし[Problem] To provide a filter medium with excellent dust collection performance. [Solution] The laminated filter medium of the present invention is formed by laminating a spunbond nonwoven fabric made of fibers with an average fiber diameter of 10 to 40 μm and a meltblown nonwoven fabric made of fibers with an average fiber diameter of 1 to 6 μm. The elastic modulus ratio with the spunbond nonwoven fabric is 0.1 to 0.8, and the elongation at break ratio between the meltblown nonwoven fabric and the spunbond nonwoven fabric is 0.3 to 2.0. [Selection diagram] None

Description

本発明は、粉塵の捕集性能に優れ、さらには加工性に優れた積層濾材に関するものである。 TECHNICAL FIELD The present invention relates to a laminated filter medium that has excellent dust collection performance and also has excellent processability.

従来、粉塵を除去するためのエアフィルター、あるいは液体フィルターの材料として種々の不織布が提案されている。特に近年では、剛性に優れる熱圧着タイプの長繊維不織布がプリーツ形状のフィルターとして好適に使用されている。プリーツ形状のフィルター材を使用すると濾過面積を広く取れるため濾過風速を低減することが可能であり、粉塵の捕集能力の向上や機械圧損の低減を図れるという利点がある。 Conventionally, various nonwoven fabrics have been proposed as materials for air filters or liquid filters for removing dust. Particularly in recent years, thermocompression-bonded long fiber nonwoven fabrics with excellent rigidity have been suitably used as pleated filters. When a pleated filter material is used, the filtration area can be widened, so the filtration air speed can be reduced, and there are advantages in that the dust collection ability can be improved and mechanical pressure loss can be reduced.

しかしながら、従来ある熱圧着タイプの長繊維不織布では構成繊維の繊維径は細くても10μm程度であり、十分な捕集能力を有するものではない。 However, in conventional thermocompression-bonded long fiber nonwoven fabrics, the fiber diameter of the constituent fibers is about 10 μm at the most, and does not have sufficient collection ability.

例えば特許文献1には異形繊維からなるフィルター用複合長繊維不織布が提案されている。当該技術によれば、フィルター用不織布の機械的特性や寸法安定性の向上が可能であるが、構成繊維の繊維径は2~15デシテックス、すなわち細くても13μm程度であり、粒径数μm以下の粉塵を十分に捕集できない。 For example, Patent Document 1 proposes a composite long fiber nonwoven fabric for filters made of irregularly shaped fibers. According to this technology, it is possible to improve the mechanical properties and dimensional stability of the nonwoven fabric for filters, but the fiber diameter of the constituent fibers is 2 to 15 decitex, that is, about 13 μm at the thinnest, and the particle size is several μm or less. cannot collect enough dust.

さらに特許文献2には複数の不織布を積層したフィルター用の不織布が提案されている。当該技術によれば目付の高いフィルター用不織布の製造も容易であり、通気性にも優れたフィルター用不織布を得ることができる。しかしながら、当該技術で提案された不織布は、繊維径が7~20μmの不織布と繊維径20~50μmの不織布等を積層一体化させたものであり、特許文献1のものと同様、粒径数μm以下の粉塵を十分に捕集できない。 Further, Patent Document 2 proposes a nonwoven fabric for filters in which a plurality of nonwoven fabrics are laminated. According to this technique, it is easy to manufacture a nonwoven fabric for filters with a high basis weight, and it is possible to obtain a nonwoven fabric for filters that has excellent air permeability. However, the nonwoven fabric proposed in this technology is one in which a nonwoven fabric with a fiber diameter of 7 to 20 μm and a nonwoven fabric with a fiber diameter of 20 to 50 μm are laminated and integrated, and like the one in Patent Document 1, the particle size is several μm. The following dust particles cannot be collected sufficiently.

また、加工時にはプリーツの頂点部分に力がかかり、その部分に穴があいたり破断し易くなったりする。脆化した不織布は強度が低下して物理的に破壊され、下流側にダストとして流れ込む可能性があり、問題がある。 Additionally, during processing, force is applied to the apex portion of the pleats, making them prone to holes or breakage. The embrittled nonwoven fabric has a reduced strength and may be physically destroyed, causing a problem as it may flow downstream as dust.

特開2001-276529号公報Japanese Patent Application Publication No. 2001-276529 特開2004-124317号公報Japanese Patent Application Publication No. 2004-124317

本発明は、上記課題に鑑みなされ、粉塵の捕集性能に優れた積層濾材を提供することを目的とする。 The present invention was made in view of the above problems, and an object of the present invention is to provide a laminated filter medium with excellent dust collection performance.

本発明の積層濾材は、平均繊維径が10~40μmの繊維からなるスパンボンド不織布と、平均繊維径が1~10μmの繊維からなるメルトブロー不織布を積層した濾材であり、さらにメルトブロー不織布とスパンボンド不織布の弾性率の比が0.1~0.8であり、破断伸度の比が0.3~2.0であることを特徴とするフィルター用積層濾材である。 The laminated filter medium of the present invention is a filter medium in which a spunbond nonwoven fabric made of fibers with an average fiber diameter of 10 to 40 μm and a meltblown nonwoven fabric made of fibers with an average fiber diameter of 1 to 10 μm are laminated, and the meltblown nonwoven fabric and the spunbond nonwoven fabric This is a laminated filter medium for a filter, characterized in that the ratio of the elastic modulus of the polyester is 0.1 to 0.8, and the ratio of the elongation at break is 0.3 to 2.0.

本発明の上記構成によれば、加工性に優れ、かつ粉塵の捕集性能に優れた積層濾材を提供することができる。 According to the above configuration of the present invention, it is possible to provide a laminated filter medium that has excellent workability and excellent dust collection performance.

本実施形態の積層濾材は、平均繊維径が10~40μmの繊維からなるスパンボンド不織布と、平均繊維径が1~6μmの繊維からなるメルトブロー不織布を積層した濾材であり、さらにメルトブロー不織布とスパンボンド不織布の弾性率の比が0.1~0.8であり、破断伸度の比が0.3~2.0である。 The laminated filter medium of this embodiment is a filter medium in which a spunbond nonwoven fabric made of fibers with an average fiber diameter of 10 to 40 μm and a meltblown nonwoven fabric made of fibers with an average fiber diameter of 1 to 6 μm are laminated, and the meltblown nonwoven fabric and the spunbond nonwoven fabric are further laminated. The ratio of elastic modulus of the nonwoven fabric is 0.1 to 0.8, and the ratio of elongation at break is 0.3 to 2.0.

濾材は支持層と積層され、プリーツ形状に加工し、除塵用フィルターとして使用される。本発明はメルトブロー不織布とスパンボンド不織布の弾性率の比が0.1~0.8であり、破断伸度の比が0.3~2.0であることで、プリーツ加工時の頂点破れなどなくプリーツ形状を保持し、除塵効率が低下しないことを特徴としている。 The filter medium is laminated with a support layer, processed into a pleated shape, and used as a dust removal filter. In the present invention, the ratio of the elastic modulus of the melt-blown nonwoven fabric and the spunbond nonwoven fabric is 0.1 to 0.8, and the ratio of the elongation at break is 0.3 to 2.0. It is characterized by maintaining its pleated shape without reducing dust removal efficiency.

本発明におけるフィルター用積層濾材は支持層と積層することで補強され、より加工性が向上する。支持層としては、ポリプロピレンやポリエステルを主原料としたサーマルボンド不織布や樹脂含浸スパンボンド不織布、レジンポンド不織布といった一般的に公知な不織布を好適に用いることが出来る。支持繊維層としては厚みが1.0mm以下、ガーレ法剛軟度で1mN以上の繊維層で圧力損失が出来るだけ小さいものを使用することが好ましい。また、抗菌、抗カビ性や難燃性を付与したい場合は、こうした機能を持つ公知の添加剤が添加された繊維を混ぜてもよい。 The laminated filter medium of the present invention is reinforced by laminating it with a support layer, and its workability is further improved. As the support layer, generally known nonwoven fabrics such as thermal bonded nonwoven fabrics, resin-impregnated spunbond nonwoven fabrics, and resin bonded nonwoven fabrics mainly made of polypropylene or polyester can be suitably used. As the supporting fiber layer, it is preferable to use a fiber layer having a thickness of 1.0 mm or less, a Gurley bending resistance of 1 mN or more, and a pressure loss as small as possible. Furthermore, if it is desired to impart antibacterial, antifungal, or flame retardant properties, fibers containing known additives having these functions may be mixed.

本発明におけるフィルター用積層濾材はメルトブロー不織布とスパンボンド不織布との弾性率比(メルトブロー不織布の弾性率/スパンボンド不織布の弾性率)が0.1~0.8が好ましい。0.8より大きいとプリーツ加工時に頂点に応力が残り破断しやすくなる傾向があり、好ましくない。また、破断伸度の比が0.3より小さいと頂点の保護効果が小さくなる可能性があり、2.0より大きいと積層時に皺になりやすく、加工性に難がある。 The laminated filter material for filters in the present invention preferably has an elastic modulus ratio of melt-blown nonwoven fabric and spunbond nonwoven fabric (elastic modulus of melt-blown nonwoven fabric/elastic modulus of spunbond nonwoven fabric) of 0.1 to 0.8. If it is larger than 0.8, stress remains at the apex during pleating and tends to cause breakage, which is not preferable. Moreover, if the ratio of elongation at break is smaller than 0.3, the protection effect of the apex may be reduced, and if it is larger than 2.0, wrinkles tend to occur during lamination, resulting in difficulty in workability.

本発明におけるメルトブロー不織布は、溶融したポリマーを口金より押し出し、これに加熱高速ガス流体等を吹き当てながら該溶融ポリマーを引き伸ばすことにより極細繊維化し、捕集してシートとする方法に代表される、いわゆるメルトブロー法により製造されたものである。 The melt-blown nonwoven fabric in the present invention is typically produced by extruding a molten polymer from a die, stretching the molten polymer while blowing a heated high-speed gas fluid, etc., to form ultra-fine fibers, and collecting them to form a sheet. It is manufactured by the so-called melt blow method.

前記メルトブロー不織布を構成する繊維の平均繊維径は、1~6μmであり、必要とされる除塵の捕集効率によって選定される。平均繊維径が1μmよりも小さいときは、ポリマーを引き伸ばして極細繊維化する際に、繊維が切れやすくなり、塊状のポリマーが混入する場合があり好ましくない。さらには不織布の通気性が低下する傾向もあり好ましくない。平均繊維径が6μmを超える場合は、繊維が太くなり過ぎるため、粉塵の捕集性能が低下する傾向があり好ましくない。なお、ここでいう平均繊維径は、不織布からランダムに小片サンプル10個を採取し、走査型電子顕微鏡等で500~3000倍の写真を撮影し、各サンプルから10本ずつ、計100本の繊維直径を測定し、平均値の小数点以下第一位を四捨五入し算出することで求められるものをいう。 The average fiber diameter of the fibers constituting the melt-blown nonwoven fabric is 1 to 6 μm, and is selected depending on the required dust removal efficiency. When the average fiber diameter is smaller than 1 μm, the fibers tend to break easily when the polymer is stretched to form ultrafine fibers, and lumpy polymers may be mixed in, which is not preferable. Furthermore, the air permeability of the nonwoven fabric tends to decrease, which is not preferable. If the average fiber diameter exceeds 6 μm, the fibers become too thick, which tends to reduce dust collection performance, which is not preferable. Note that the average fiber diameter here is determined by taking 10 small samples randomly from the nonwoven fabric, taking photographs with a scanning electron microscope, etc., magnifying 500 to 3000 times, and measuring 10 fibers in total, 10 from each sample. It is calculated by measuring the diameter and rounding off the average value to the first decimal place.

また、本発明におけるメルトブロー不織布は、例えば、ポリエチレン繊維、ポリプロピレン繊維、共重合ポリプロピレンなどのポリオレフィン系繊維など一般的な繊維が用いられる。 Further, the melt-blown nonwoven fabric in the present invention may be made of common fibers such as polyethylene fibers, polypropylene fibers, and polyolefin fibers such as copolymerized polypropylene.

さらに前記メルトブロー不織布の原料樹脂には、本発明の効果を損なわない範囲で、結晶核剤や艶消し剤、顔料、防カビ剤、抗菌剤、難燃剤、親水剤等を添加してもよい。また、本来の機能を損なうことがなければ、微量の共重合体成分を含むものでもよい。 Further, to the raw material resin of the melt-blown nonwoven fabric, a crystal nucleating agent, a matting agent, a pigment, a fungicide, an antibacterial agent, a flame retardant, a hydrophilic agent, etc. may be added to the extent that the effects of the present invention are not impaired. Further, it may contain a trace amount of a copolymer component as long as the original function is not impaired.

また、本発明におけるスパンボンド不織布は、ポリエステルテレフタレートを含むことが好ましい。ポリエステル系不織布は、融点が高いため耐熱性に優れ、さらには剛性にも優れることから好ましいものである。また、耐酸化性にも非常に優れており、除塵性能、形状保持の観点からも好ましい。前記ポリエステルテレフタレートを含む不織布は、ポリエチレンテレフタレートのみからなるスパンボンド不織布あるいは、芯部がポリエチレンテレフタレートを含んでなり、鞘部が芯部のポリマーより融点の低い共重合ポリエステルを含んでなる芯鞘型繊維からなるスパンボンド不織布が、不織布の強度や剛性の点から好ましい形態である。前記共重合ポリエステルは、芯部に含まれるポリエチレンテレフタレートと比較して、15℃以上融点が低いことが好ましい。また、前記共重合ポリエステルは、共重合ポリエチレンテレフタレートが好ましく、共重合成分としてはイソフタル酸、アジピン酸が好ましい。 Moreover, it is preferable that the spunbond nonwoven fabric in this invention contains polyester terephthalate. Polyester nonwoven fabrics are preferred because they have a high melting point and excellent heat resistance, and also excellent rigidity. Furthermore, it has excellent oxidation resistance and is preferable from the viewpoint of dust removal performance and shape retention. The nonwoven fabric containing polyester terephthalate is a spunbond nonwoven fabric made only of polyethylene terephthalate, or a core-sheath type fiber whose core part contains polyethylene terephthalate and whose sheath part contains a copolymerized polyester having a lower melting point than the polymer in the core part. A spunbond nonwoven fabric consisting of is a preferred form from the viewpoint of strength and rigidity of the nonwoven fabric. The copolymerized polyester preferably has a melting point lower than that of polyethylene terephthalate contained in the core by 15° C. or more. Further, the copolymerized polyester is preferably copolymerized polyethylene terephthalate, and the copolymerized component is preferably isophthalic acid or adipic acid.

前記スパンボンド不織布を構成する繊維の平均繊維径は、10~40μmであり、好ましくは、12~35μmの範囲である。平均繊維径が10μmよりも小さい場合は、不織布の通気性が低下し、不織布の剛性も低下する傾向があり好ましくない。またスパンボンド不織布製造時に、糸切れが生じやすく生産安定性の面からも好ましくない方向である。平均繊維径が40μmよりも大きい場合は、スパンボンド不織布製造時に、糸条の冷却不良により糸切れが生じやすく生産安定性の面から好ましくない。なお、ここでいう平均繊維径は、不織布からランダムに小片サンプル10個を採取し、走査型電子顕微鏡等で500~3000倍の写真を撮影し、各サンプルから10本ずつ、計100本の繊維直径を測定し、平均値の小数点以下第一位を四捨五入し算出することで求められるものをいう。 The average fiber diameter of the fibers constituting the spunbond nonwoven fabric is in the range of 10 to 40 μm, preferably in the range of 12 to 35 μm. If the average fiber diameter is smaller than 10 μm, the air permeability of the nonwoven fabric tends to decrease, and the rigidity of the nonwoven fabric also tends to decrease, which is not preferable. Furthermore, during the production of spunbond nonwoven fabrics, thread breakage tends to occur, which is unfavorable from the viewpoint of production stability. If the average fiber diameter is larger than 40 μm, thread breakage is likely to occur due to insufficient cooling of the threads during production of the spunbond nonwoven fabric, which is undesirable from the viewpoint of production stability. Note that the average fiber diameter here is determined by taking 10 small samples randomly from the nonwoven fabric, taking photographs with a scanning electron microscope, etc., magnifying 500 to 3000 times, and measuring 10 fibers in total, 10 from each sample. It is calculated by measuring the diameter and rounding off the average value to the first decimal place.

さらに前記スパンボンド不織布を構成する繊維の断面形状は何ら制限されるものではないが、円形、中空丸形、楕円形、扁平型、あるいはX型、Y型等の異形型、多角型、多葉型、等が好ましい形態である。円形でない繊維の繊維径は、繊維断面に対して外接円と、内接円を取り、それぞれの直径の平均値を繊維径とすればよい。 Furthermore, the cross-sectional shape of the fibers constituting the spunbond nonwoven fabric is not limited in any way, but may be circular, hollow round, elliptical, flat, irregularly shaped such as X-shape or Y-shape, polygonal, or multilobed. type, etc. are preferred forms. The fiber diameter of non-circular fibers may be determined by taking the circumscribed circle and inscribed circle with respect to the fiber cross section, and taking the average value of the respective diameters as the fiber diameter.

また、さらに、本発明におけるスパンボンド不織布の原料樹脂には、本発明の効果を損なわない範囲で、結晶核剤や艶消し剤、顔料、防カビ剤、抗菌剤、難燃剤、親水剤等を添加してもよい。また、本来の機能を損なうことがなければ、微量の共重合体成分を含むものでもよい。 In addition, the raw material resin for the spunbond nonwoven fabric in the present invention may contain crystal nucleating agents, matting agents, pigments, antifungal agents, antibacterial agents, flame retardants, hydrophilic agents, etc., to the extent that the effects of the present invention are not impaired. May be added. Further, it may contain a trace amount of a copolymer component as long as the original function is not impaired.

本発明におけるメルトブロー不織布とスパンボンド不織布の積層、さらには、積層濾材と支持層の一体化は、公知の方法で接着され、濾材となる。積層方法としては、たとえば、ウォータージェットパンチ加工やニードルパンチ加工により機械的に絡合させた後に部分的熱圧着を行う方法や、熱エンボスロールによる熱接着、ホットメルト樹脂の吹付・塗布による接着などが挙げられる。 In the present invention, the melt-blown nonwoven fabric and the spunbond nonwoven fabric are laminated, and further, the laminated filter medium and the support layer are bonded together by a known method to form a filter medium. Lamination methods include, for example, partial thermocompression bonding after mechanical entanglement using water jet punching or needle punching, thermal bonding using a hot embossing roll, and bonding by spraying or coating hot melt resin. can be mentioned.

また、本発明におけるメルトブロー不織布とスパンボンド不織布の積層方法は何ら制限されるものではないが、一旦メルトブロー不織布とスパンボンド不織布をそれぞれ製作した後に積層一体化する方法、一旦製作したスパンボンド不織布の上にメルトブロー法にて糸条を噴射し積層する方法、一旦製作したメルトブロー不織布の上にスパンボンド法にて糸条を噴射し積層する方法、さらにはこれらの組み合わせにより実施することが出来る。また、メルトブローウェブとスパンボンドウェブを連続的に積層させた後に、熱圧着などにより一体化させ不織布とする方法でも実施することができる。 Further, the method of laminating the melt-blown nonwoven fabric and the spunbond nonwoven fabric in the present invention is not limited in any way, but there is a method of laminating the melt-blown nonwoven fabric and the spunbond nonwoven fabric after each has been produced, and a method of laminating the melt-blown nonwoven fabric and the spunbond nonwoven fabric once produced, This can be carried out by a method in which yarns are sprayed and laminated using a melt-blown method, a method in which yarns are sprayed and laminated by a spunbond method on a once-produced melt-blown nonwoven fabric, or a combination thereof. It can also be carried out by a method in which a meltblown web and a spunbond web are continuously laminated and then integrated by thermocompression bonding or the like to form a nonwoven fabric.

またさらに、本発明におけるメルトブロー不織布(M)とスパンボンド不織布(S)の積層形態は何ら制限されるものではないが、SM積層、SMS積層、SMMS積層等が好ましい形態である(なお、例えばSMS積層とは、1層のメルトブロー不織布が両側からそれぞれ1層のスパンボンド不織布に挟まれた状態で積層された積層体を指す。)。メルトブロー不織布やスパンボンド不織布を複数層積層する場合、それぞれの構成繊維の平均繊維径や繊維形状が異なっていても前述の平均繊維径や繊維形状の範囲内であれば何ら問題ない。 Furthermore, the lamination form of the melt-blown nonwoven fabric (M) and the spunbond nonwoven fabric (S) in the present invention is not limited in any way, but preferred forms include SM lamination, SMS lamination, and SMMS lamination (for example, SMS Lamination refers to a laminate in which one layer of melt-blown nonwoven fabric is sandwiched between one layer of spunbond nonwoven fabric from both sides.) When laminating multiple layers of melt-blown nonwoven fabrics or spunbond nonwoven fabrics, there is no problem even if the average fiber diameters and fiber shapes of the constituent fibers are different as long as the average fiber diameters and fiber shapes are within the above-mentioned ranges.

本発明における積層一体化されてなる不織布には、本発明の効果を損なわない範囲で、防カビ剤や抗菌剤、難燃剤、親水剤、顔料、染料等が部分的あるいは全体に付与されていてもよい。 The laminated and integrated nonwoven fabric of the present invention may be partially or entirely applied with an antifungal agent, an antibacterial agent, a flame retardant, a hydrophilic agent, a pigment, a dye, etc., to the extent that the effects of the present invention are not impaired. Good too.

本実施形態の積層濾材と支持層を一体化した濾材は剛性に優れているため、プリーツ形状の加工も容易であり、またプリーツ形態の保持性にも優れている。従って、プリーツ状としてのフィルターとして使用するのが好ましい形態である。 Since the filter medium in which the laminated filter medium and the support layer of the present embodiment are integrated has excellent rigidity, it can be easily formed into a pleat shape and also has excellent retention of the pleat shape. Therefore, it is preferable to use it as a pleated filter.

以下、実施例を挙げて本発明を具体的に説明する。しかし本発明は、下記の実施例に限定されるものではなく、前・後記の趣旨に適合しうる範囲で適宜変更することも可能である。そして、それら適宜変更したものも本発明の技術的範囲に含まれる。
The present invention will be specifically described below with reference to Examples. However, the present invention is not limited to the following examples, and can be modified as appropriate within the scope of the spirit described above and below. Appropriate modifications thereof are also included within the technical scope of the present invention.

まず、実施例および比較例中で測定した特性値およびその測定方法を以下に示す。

[測定方法]
First, the characteristic values and measurement methods measured in Examples and Comparative Examples are shown below.

[Measuring method]

(1)平均繊維径(μm)
不織布からランダムに小片サンプル10個を採取し、走査型電子顕微鏡で500~3000倍の写真を撮影し、各サンプルから10本ずつ、計100本の繊維直径を測定し、平均値の小数点以下第一位を四捨五入し算出する。
(1) Average fiber diameter (μm)
Take 10 small samples randomly from the nonwoven fabric, take photos with a scanning electron microscope at 500 to 3000 times magnification, measure the diameter of 100 fibers (10 from each sample), and calculate the average value to the decimal place. Calculate by rounding off the first place.

(2)目付(g/m
不織布を200mm角の寸法で切り出し、試料の重量をそれぞれ測定し、単位面積当たりに換算、小数点以下第一位を四捨五入する。
(2) Area weight (g/m 2 )
A 200 mm square piece of nonwoven fabric is cut out, and the weight of each sample is measured, converted to per unit area, and rounded to the first decimal place.

(3)捕集効率(%)
60mm角のアクリルカラムにサンプルをセットし、線速10cm/sに設定した空気を流して、濾材の上流側と下流側の空気をサンプリングし、パーティクルカウンター(RION 社製:KC-01)を用いて1.0~5.0μの粒子の粒子数をカウントする。捕集効率の計算式は下式を用いて求める。
捕集効率(%)=〔1-(D1/D2)〕×100 ここで、D1:下流の粒子数(2回の合計)、D2:上流の粒子数(2回の合計)である。
(4)破断伸度
JIS L-1906に準じ、CD方向に均等になる様に、CD方向5cm、MD方向20cmの試料を5点切り取り、引張試験機で、つかみ間隔15cm引張速度20cm/分で測定した。タテ方向5点の試料を測定し、測定値を平均して破断伸度を算出した。
(5)弾性率
上記(4)で求めたグラフより、横軸を歪み[cm]とし、縦軸を引張応力[cN]とした場合、傾きから弾性率を算出した。
(6)プリーツ加工性
レシプロ折式のプリーツ加工機にてプリーツ折高さ60mm、スリット幅600mm、折り速度20山/分でプリーツ加工を実施した。プリーツ加工性の評価は、山高さが安定し、山および谷の頂点が鋭角に折れている場合を○(プリーツ性は良好)と判定し、プリーツ加工はできるが山高さが安定しなかったり、目視で山谷の部分に破れが見られたりする場合を△(プリーツ加工性はやや不良)と判定し、プリーツ加工ができなかったり、目視で山谷の部分に大きな破れが見られたりする場合を×(プリーツ加工性は不良)と判定し、評価した。
(3) Collection efficiency (%)
A sample was set in a 60 mm square acrylic column, air was flowed at a linear velocity of 10 cm/s, and the air on the upstream and downstream sides of the filter medium was sampled using a particle counter (KC-01 manufactured by RION). and count the number of particles of 1.0 to 5.0μ. The calculation formula for collection efficiency is determined using the following formula.
Collection efficiency (%) = [1-(D1/D2)] x 100 where D1: number of downstream particles (total of two times), D2: number of particles upstream (total of two times).
(4) Breaking elongation According to JIS L-1906, 5 samples were cut out at 5 cm in the CD direction and 20 cm in the MD direction so that they were evenly spaced in the CD direction, and tested using a tensile tester at a gripping interval of 15 cm and a tensile speed of 20 cm/min. It was measured. Samples were measured at five points in the longitudinal direction, and the measured values were averaged to calculate the elongation at break.
(5) Elasticity Modulus From the graph obtained in (4) above, the elasticity modulus was calculated from the slope, where the horizontal axis is strain [cm] and the vertical axis is tensile stress [cN].
(6) Pleating property Pleating was performed using a reciprocating folding type pleating machine at a pleat height of 60 mm, a slit width of 600 mm, and a folding speed of 20 folds/min. Pleating property is evaluated as ○ (good pleating property) when the peak height is stable and the tops of peaks and valleys are bent at acute angles, and when pleating is possible but the peak height is not stable, If tears are visually observed in the peaks and troughs, it is judged as △ (pleatability is slightly poor), and if pleats cannot be processed or large tears are visually observed in the peaks and valleys, it is judged as ×. (The pleat workability was poor) and the evaluation was made.

[実施例1]
ポリエチレンテレフタレート製スパンボンド不織布(平均繊維径10μm、目付20g/m)に合成ゴム系接着剤を霧状に2g/mで噴射し、ポリプロピレンメルトブロー不織布(平均繊維径3μm、目付30g/m)を積層し、実施例1の積層濾材を製造した。メルトブロー不織布とスパンボンド不織布との弾性率比(メルトブロー不織布の弾性率/スパンボンド不織布の弾性率)は、0.6、破断伸度の比は1.5であった。
[Example 1]
Synthetic rubber adhesive was sprayed in the form of a mist at 2 g/m 2 onto a polyethylene terephthalate spunbond nonwoven fabric (average fiber diameter 10 μm, basis weight 20 g/m 2 ), and a polypropylene melt-blown nonwoven fabric (average fiber diameter 3 μm, basis weight 30 g/m 2 ) were laminated to produce the laminated filter medium of Example 1. The elastic modulus ratio between the melt blown nonwoven fabric and the spunbond nonwoven fabric (elastic modulus of the melt blown nonwoven fabric/elastic modulus of the spunbond nonwoven fabric) was 0.6, and the ratio of elongation at break was 1.5.

[実施例2]
ポリエチレンテレフタレート製スパンボンド不織布(平均繊維径40μm、目付20g/m)に合成ゴム系接着剤を霧状に2g/mで噴射し、ポリプロピレンメルトブロー不織布(平均繊維径3μm、目付30g/m)を積層し、実施例2の積層濾材を製造した。メルトブロー不織布とスパンボンド不織布との弾性率比は、0.38、破断伸度の比は0.8であった。
[Example 2]
A synthetic rubber adhesive was sprayed in the form of a mist at 2 g/m 2 onto a polyethylene terephthalate spunbond nonwoven fabric (average fiber diameter 40 μm, basis weight 20 g/m 2 ), and a polypropylene melt-blown nonwoven fabric (average fiber diameter 3 μm, basis weight 30 g/m 2 ) were laminated to produce the laminated filter medium of Example 2. The elastic modulus ratio of the melt-blown nonwoven fabric and the spunbond nonwoven fabric was 0.38, and the ratio of elongation at break was 0.8.

[比較例1]
ポリプロピレン製スパンボンド不織布(平均繊維径20μm、目付15g/m)に合成ゴム系接着剤を霧状に2g/mで噴射し、ポリプロピレンメルトブロー不織布(平均繊維径3μm、目付30g/m)を積層し、比較例1の積層濾材を製造した。メルトブロー不織布とスパンボンド不織布との弾性率比は、1.0、破断伸度の比は2.7であった。
[Comparative example 1]
Synthetic rubber adhesive was sprayed in the form of a mist at 2 g/m 2 onto polypropylene spunbond nonwoven fabric (average fiber diameter 20 μm, basis weight 15 g/m 2 ), and polypropylene melt-blown nonwoven fabric (average fiber diameter 3 μm, basis weight 30 g/m 2 ) was produced. were laminated to produce a laminated filter medium of Comparative Example 1. The elastic modulus ratio of the melt-blown nonwoven fabric and the spunbond nonwoven fabric was 1.0, and the ratio of elongation at break was 2.7.

[比較例2]
ポリプロピレン製スパンボンド不織布(平均繊維径20μm、目付15g/m)に合成ゴム系接着剤を霧状に2g/mで噴射し、ポリプロピレンメルトブロー不織布(平均繊維径7μm、目付20g/m)を積層し、比較例2の積層濾材を製造した。メルトブロー不織布とスパンボンド不織布との弾性率比は、0.7、破断伸度の比は0.2であった。
[Comparative example 2]
A synthetic rubber adhesive was sprayed in the form of a mist at 2 g/m 2 onto a polypropylene spunbond nonwoven fabric (average fiber diameter 20 μm, basis weight 15 g/m 2 ), and a polypropylene melt-blown nonwoven fabric (average fiber diameter 7 μm, basis weight 20 g/m 2 ) was prepared. were laminated to produce a laminated filter medium of Comparative Example 2. The elastic modulus ratio of the melt-blown nonwoven fabric and the spunbond nonwoven fabric was 0.7, and the ratio of elongation at break was 0.2.

次に、フィルターについて説明する。
支持層としてポリエチレンテレフタレート製サーマルボンド不織布(平均繊維径40μm、目付45g/m)を使用し、合成ゴム系接着剤を霧状に2g/mで噴射し、上記実施例1,2及び比較例1,2の積層濾材のメルトブロー不織布側と重ねて、カレンダーロールを通してフィルターを作製した。作製したフィルターの捕集効率、プリーツ加工性について測定した。その結果を表1に示す。
Next, the filter will be explained.
A thermally bonded nonwoven fabric made of polyethylene terephthalate (average fiber diameter 40 μm, basis weight 45 g/m 2 ) was used as the support layer, and a synthetic rubber adhesive was sprayed at 2 g/m 2 in the form of a mist. A filter was produced by overlapping the melt-blown nonwoven fabric side of the laminated filter media of Examples 1 and 2 and passing it through a calender roll. The collection efficiency and pleatability of the produced filter were measured. The results are shown in Table 1.

表1から分かるように、本発明の実施例の積層濾材は、メルトブロー不織布とスパンボンド不織布との弾性率比が0.1~0.8であり、メルトブロー不織布とスパンボンド不織布との破断伸度比が0.3~2.0である。実施例の積層濾材を用いたフィルターは、比較例の積層濾材を用いたフィルターに対して高い粉塵除去効率と加工性に優れていることがわかる。 As can be seen from Table 1, the laminated filter medium of the example of the present invention has an elastic modulus ratio of 0.1 to 0.8 between the melt blown nonwoven fabric and the spunbond nonwoven fabric, and a rupture elongation of the melt blown nonwoven fabric and the spunbond nonwoven fabric. The ratio is between 0.3 and 2.0. It can be seen that the filter using the laminated filter medium of the example has higher dust removal efficiency and excellent workability than the filter using the laminated filter medium of the comparative example.

本発明の濾材は加工性に優れる上に、粉塵捕集性能に優れ、機械的強度も良好である。よって、例えば、工業用のエアフィルターや液体フィルターとして好適に利用することができる。 The filter medium of the present invention not only has excellent processability, but also excellent dust collection performance and good mechanical strength. Therefore, it can be suitably used as, for example, an industrial air filter or a liquid filter.

Claims (4)

平均繊維径が10~40μmの繊維からなるスパンボンド不織布と、平均繊維径が1~6μmの繊維からなるメルトブロー不織布とが積層した濾材であり、
前記メルトブロー不織布と前記スパンボンド不織布との弾性率比が0.1~0.8であり、
前記メルトブロー不織布と前記スパンボンド不織布との破断伸度比が0.3~2.0であることを特徴とする積層濾材。
A filter medium in which a spunbond nonwoven fabric made of fibers with an average fiber diameter of 10 to 40 μm and a meltblown nonwoven fabric made of fibers with an average fiber diameter of 1 to 6 μm are laminated,
The elastic modulus ratio of the melt-blown nonwoven fabric and the spunbond nonwoven fabric is 0.1 to 0.8,
A laminated filter medium characterized in that the elongation at break ratio of the melt-blown nonwoven fabric and the spunbond nonwoven fabric is 0.3 to 2.0.
前記メルトブロー不織布側に平均繊維径が20~50μmの繊維からなる不織布の支持層が積層されたことを特徴とする請求項1に記載の積層濾材。 The laminated filter medium according to claim 1, wherein a support layer of a nonwoven fabric made of fibers having an average fiber diameter of 20 to 50 μm is laminated on the melt-blown nonwoven fabric side. 前記支持層の繊維は、ポリエチレンテレフタレートからなることを特徴とする請求項2に記載の積層濾材。 The laminated filter medium according to claim 2, wherein the fibers of the support layer are made of polyethylene terephthalate. 請求項1から3のいずれか1に記載の積層濾材を用いたフィルター。 A filter using the laminated filter medium according to any one of claims 1 to 3.
JP2022145636A 2022-09-13 2022-09-13 Laminated filter media for filters Pending JP2024040961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022145636A JP2024040961A (en) 2022-09-13 2022-09-13 Laminated filter media for filters

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022145636A JP2024040961A (en) 2022-09-13 2022-09-13 Laminated filter media for filters

Publications (1)

Publication Number Publication Date
JP2024040961A true JP2024040961A (en) 2024-03-26

Family

ID=90368995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022145636A Pending JP2024040961A (en) 2022-09-13 2022-09-13 Laminated filter media for filters

Country Status (1)

Country Link
JP (1) JP2024040961A (en)

Similar Documents

Publication Publication Date Title
JP4955536B2 (en) Aligned fiber web
JP5609334B2 (en) Spunbond nonwoven fabric and filter using the same
KR101441593B1 (en) Nonwoven fabric for filters and process for production of the same
JP5422874B2 (en) Nonwoven fabric for filter and method for producing the same
US8308833B2 (en) Nonwoven fabric for filters
KR20070004823A (en) Pleated aligned web filter
WO2018221122A1 (en) Spunbonded nonwoven fabric for filter and method for producing same
JP5082365B2 (en) Nonwoven fabric for filters
JP2021525168A (en) Manufacturing method of non-woven fabric with improved filtration performance
JP2007152216A (en) Nonwoven fabric for filter
JP6669315B1 (en) Spunbonded nonwoven fabric for filter and method for producing the same
JP5267809B2 (en) Filter base material and filter using the same
JP4737039B2 (en) Filter nonwoven fabric for air intake
WO2018225671A1 (en) Long-fiber nonwoven fabric and filter reinforcement material using same
JP2024040961A (en) Laminated filter media for filters
JP7395949B2 (en) Laminated filter media
JP7287385B2 (en) Long fiber nonwoven fabric and filter reinforcing material using the same
JP2007077522A (en) Laminated nonwoven fabric and filtration material produced by using the same
WO2020116569A1 (en) Long-fiber nonwoven fabric and filter reinforcing material using same
JP6962494B1 (en) Spun-bonded non-woven fabric, filter laminated filter media, dust collector pleated filter filter media, dust collector pleated filter and medium air volume pulse jet type dust collector
KR20220112773A (en) Spunbond nonwoven fabric, filter media for dust collector pleated filter, dust collector pleated filter and large air volume pulse jet type dust collector
CN114846189B (en) Spun-bonded nonwoven fabric, filter material for dust collector pleated filter, and large-air-volume pulse jet type dust collector
JP4906675B2 (en) Non-woven fabric for air filter and air cleaning filter
JP2005238098A (en) Filter medium for air filter and its production method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20230411