WO2019194244A1 - Filter medium - Google Patents

Filter medium Download PDF

Info

Publication number
WO2019194244A1
WO2019194244A1 PCT/JP2019/014868 JP2019014868W WO2019194244A1 WO 2019194244 A1 WO2019194244 A1 WO 2019194244A1 JP 2019014868 W JP2019014868 W JP 2019014868W WO 2019194244 A1 WO2019194244 A1 WO 2019194244A1
Authority
WO
WIPO (PCT)
Prior art keywords
nonwoven fabric
layer
water droplet
filter material
less
Prior art date
Application number
PCT/JP2019/014868
Other languages
French (fr)
Japanese (ja)
Inventor
山田 達也
天野 整一
航平 谷口
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to JP2020512298A priority Critical patent/JPWO2019194244A1/en
Publication of WO2019194244A1 publication Critical patent/WO2019194244A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • B01D17/04Breaking emulsions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D35/00Filtering devices having features not specifically covered by groups B01D24/00 - B01D33/00, or for applications not specifically covered by groups B01D24/00 - B01D33/00; Auxiliary devices for filtration; Filter housing constructions
    • B01D35/02Filters adapted for location in special places, e.g. pipe-lines, pumps, stop-cocks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D39/00Filtering material for liquid or gaseous fluids
    • B01D39/14Other self-supporting filtering material ; Other filtering material
    • B01D39/16Other self-supporting filtering material ; Other filtering material of organic material, e.g. synthetic fibres
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/22Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines, e.g. arrangements in the feeding system
    • F02M37/32Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines, e.g. arrangements in the feeding system characterised by filters or filter arrangements
    • F02M37/34Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines, e.g. arrangements in the feeding system characterised by filters or filter arrangements by the filter structure, e.g. honeycomb, mesh or fibrous

Definitions

  • the present invention relates to a filter material.
  • filter materials capable of separating fine particles in a liquid and collecting water in the liquid are required.
  • a filter material include a diesel fuel filter.
  • a diesel engine that operates using light oil as fuel has better fuel combustion efficiency and better fuel efficiency than a gasoline engine, which is a typical internal combustion engine.
  • the fuel injection device built into the diesel engine has an elaborate and precise structure that injects fuel at ultra-high pressure, and there is free moisture and solid foreign matter in the fuel. Otherwise, the fuel injection device may be damaged or deteriorated. For this reason, it is essential to install a fuel filter in an automobile equipped with a diesel engine.
  • Patent Document 1 describes a diesel fuel filter device. This diesel fuel filter device is described as being able to separate water in fuel by combining a particle collecting filter and a water collecting member.
  • the water droplet coarsening ability of the filter material may be significantly reduced.
  • the diesel fuel filter device of Patent Document 1 is mounted on a vehicle, water droplets finely dispersed in the fuel oil cannot be sufficiently separated, and fine particles present in the fuel oil are effectively removed. In this case, water droplets and fine particles may flow into the engine.
  • the fine particles contained in the fuel oil are typically iron rust, dust, and the like. Since these fine particles are hydrophilic, if they are captured by the water collecting member, water droplets on the water collecting member There is a problem that the coarsening ability is remarkably lowered.
  • the present invention has been made in view of the above points, and an object thereof is to provide a filter material having improved particulate collection performance and water separation performance.
  • a filter material comprising a particle collection layer and a water droplet coarsening layer, wherein the particle collection layer comprises a laminate of two or more meltblown nonwoven fabrics having different average fiber diameters, and the water droplet coarsening layer is A filter material comprising a laminate of a melt blown nonwoven fabric and a spunbond nonwoven fabric.
  • the particle collection layer includes at least two melt blown nonwoven fabrics having an average fiber diameter of 0.1 ⁇ m or more and 5.0 ⁇ m or less, the total thickness of the particle collection layer is 0.2 mm or more and 0.7 mm or less, and the particles Item 2.
  • the filter material according to Item 1 wherein an average flow pore size of the entire collection layer is 0.5 ⁇ m or more and 2.0 ⁇ m or less.
  • the water droplet coarsening layer includes at least one layer of melt blown nonwoven fabric having an average fiber diameter of 0.1 ⁇ m to 5.0 ⁇ m and at least one layer of spunbond nonwoven fabric having an average fiber diameter of 10 ⁇ m to 20 ⁇ m on the downstream side of the melt blown nonwoven fabric. Including Item 3.
  • the filter according to Item 1 or 2 wherein the entire water droplet coarsened layer has a thickness of 0.5 mm or more and 1.2 mm or less, and the average flow pore size of the entire water droplet coarsened layer is 1.0 ⁇ m or more and 4.0 ⁇ m or less. Wood.
  • a liquid filtration method using a filter material including a particle collection layer and a water droplet coarsening layer The particle collection layer includes a laminate of two or more melt blown nonwoven fabrics having different average fiber diameters, The water droplet coarsening layer includes a laminate of a meltblown nonwoven fabric and a spunbond nonwoven fabric, A liquid filtration method comprising filtering the liquid in the order of the particle collection layer and the water droplet coarsening layer.
  • Item 6 The method according to Item 5, wherein the liquid is a diesel vehicle fuel.
  • the oil / water separation performance can also be improved by improving the separation and removal performance of fine particles in the liquid to be filtered and agglomerating and coarsening the water finely dispersed in the liquid.
  • the present embodiment an embodiment of the present invention (hereinafter referred to as “the present embodiment”) will be described in detail, but the present invention is not limited to the present embodiment.
  • the present embodiment provides a filter material in which a particle collection layer and a water droplet coarsening layer are laminated.
  • the particle collection layer includes a laminate of two or more melt blown nonwoven fabrics having different average fiber diameters, whereby fine particles as well as coarse particles are collected and dispersed with high accuracy. Water droplets can be collected.
  • the water droplet coarsening layer includes a laminate of a melt blown nonwoven fabric and a spunbond nonwoven fabric, whereby finely dispersed water droplets can be collected and coarsened.
  • non-woven fabric used in the filter material of the present embodiment it is preferable to use a melt blown non-woven fabric from the viewpoint of improving the capturing performance of fine particles having a target particle size and collecting dispersed water droplets. Moreover, it is preferable to use a spunbonded nonwoven fabric from the viewpoint of collecting and coarsening the dispersed water droplets.
  • Melt blown nonwoven fabric refers to a melt blown method, i.e. a nonwoven fabric made by spinning one or more polymers in a high-speed hot gas stream into fibers, and after cooling, collecting them on a moving screen and made by one or more bonding methods (See JIS L0222: 2001, “nonwoven fabric terms”).
  • the “meltblown nonwoven fabric” used in the particle collection layer and the water droplet coarsening layer in the present embodiment refers to a meltblown nonwoven fabric composed of fibers having an average fiber diameter of 0.1 ⁇ m or more and less than 10 ⁇ m.
  • melt blown nonwoven fabrics are typically manufactured by blowing molten thermoplastic resin from a die placed after the extruder onto a net conveyor or collection screen with high-speed and high-temperature airflow to self-adhere the fibers. .
  • the degree of crystallinity of the fibers constituting the meltblown nonwoven fabric is preferably 10% or more and 30% or less.
  • spunbond nonwoven fabric is a nonwoven fabric made by one or more bonding methods in which continuous fibers spun from a nozzle are collected on a moving screen by a spunbond method, that is, melting or dissolution of a polymer. (See JIS L0222: 2001, “nonwoven fabric terms”).
  • the “spunbond nonwoven fabric” used for the water droplet coarsening layer in this embodiment refers to a spunbond nonwoven fabric composed of fibers having an average fiber diameter of 10 ⁇ m or more and 30 ⁇ m or less.
  • a spunbonded nonwoven fabric is typically produced by obtaining a continuous filament web by melt spinning and partially thermocompression bonding with a pair of embossing rolls and smooth rolls. The degree of crystallinity of the fibers constituting the spunbonded nonwoven fabric is preferably 30% or more and 60% or less.
  • the meltblown nonwoven fabric used for the particle collection layer of this embodiment includes a laminate of two or more meltblown nonwoven fabrics having different average fiber diameters.
  • the particle collection layer preferably includes at least two melt blown nonwoven fabrics having an average fiber diameter of 0.1 ⁇ m or more and 5.0 ⁇ m or less, and the average fiber diameter of the entire particle collection layer is 0.5 ⁇ m or more and 2.0 ⁇ m or less. Preferably there is. It is preferable to laminate the melt blown nonwoven fabric so that the average fiber diameter becomes narrower from the upstream to the downstream with respect to the liquid passing direction of the filtered liquid.
  • the filter material of the present embodiment preferably has a first melt blown nonwoven fabric having a first average fiber diameter and a second melt blown nonwoven fabric having a second average fiber diameter smaller than the first average fiber diameter.
  • the particle collection layer is composed of two layers of melt blown nonwoven fabrics having different functions, ie, collection of coarse particles and collection of fine particles, and it is possible to efficiently collect fine particles in a liquid. it can.
  • the first average fiber diameter of the meltblown nonwoven fabric disposed on the upstream side is preferably 1.0 ⁇ m or more and 5.0 ⁇ m or less, more preferably 1.0 ⁇ m or more and 2.0 ⁇ m or less.
  • the second average fiber diameter of the melt blown nonwoven fabric disposed on the downstream side is preferably 0.1 ⁇ m or more and 5.0 ⁇ m or less, more preferably 0.1 ⁇ m or more and 3.0 ⁇ m or less, and further preferably 0.1 ⁇ m or more and 1.0 ⁇ m. It is as follows.
  • the average fiber diameter of the melt blown nonwoven fabric is in these ranges, which is preferable because fine particles having a particle diameter of 4 ⁇ m can be effectively collected.
  • the total thickness of the particle collection layer is preferably 0.2 mm or more and 0.7 mm or less, more preferably 0.3 mm or more and 0.5 mm or less.
  • the thickness of the meltblown nonwoven fabric disposed on the upstream side is preferably 0.1 mm to 0.7 mm, more preferably 0.2 mm to 0.6 mm.
  • the thickness of the melt blown nonwoven fabric disposed on the downstream side is preferably 0.01 mm to 0.5 mm, more preferably 0.05 mm to 0.3 mm.
  • the meltblown nonwoven fabric used for the water droplet coarsening layer of this embodiment includes a laminate of a meltblown nonwoven fabric and a spunbond nonwoven fabric. Thereby, it is possible to improve the water separation performance of the filter material.
  • the average fiber diameter of the melt blown nonwoven fabric is preferably 0.1 ⁇ m or more and 5.0 ⁇ m or less, more preferably 0.1 ⁇ m or more and 3.0 ⁇ m or less, and further preferably 1.0 ⁇ m or more and 2.0 ⁇ m or less.
  • the water droplet coarsening layer preferably has a melt blown nonwoven fabric on the upstream side with respect to the liquid flow direction, that is, the particle collection layer side, and a spunbonded nonwoven fabric on the downstream side.
  • the water droplet coarsening layer is preferably laminated on the second melt blown nonwoven fabric side.
  • the average fiber diameter of the spunbonded nonwoven fabric is preferably 10 ⁇ m to 30 ⁇ m, more preferably 10 ⁇ m to 20 ⁇ m, and still more preferably 10 ⁇ m to 15 ⁇ m.
  • the average fiber diameters of the meltblown nonwoven fabric and spunbond nonwoven fabric of the water droplet coarsening layer are in these ranges, which is preferable because fine water droplets can be efficiently and effectively captured and coarsened and separated.
  • the total thickness of the water droplet coarsening layer is preferably 0.5 mm or more and 1.2 mm or less, more preferably 0.5 mm or more and 1.0 mm or less.
  • the thickness of the meltblown nonwoven fabric in the water droplet coarsening layer is preferably from 0.1 mm to 0.7 mm, more preferably from 0.2 mm to 0.6 mm.
  • the thickness of the spunbonded nonwoven fabric in the water droplet coarsening layer is preferably from 0.1 mm to 0.7 mm, more preferably from 0.2 mm to 0.6 mm.
  • the main filtration function of the filter material in the thickness direction of the filter material.
  • the porosity of the entire particle collection layer may be preferably 65% or more and less than 95%, more preferably 80% or more and less than 95%.
  • the average flow pore size is a measure of the capture efficiency of fine particles.
  • the value of the average flow pore diameter of the entire particle collection layer is preferably 0.5 ⁇ m or more and 2.0 ⁇ m or less. Preferably, they are 1 micrometer or more and 1.9 micrometers or less, More preferably, they are 1 micrometer or more and 1.5 micrometers or less. As a result, fine particles in the liquid to be filtered can be captured.
  • the average flow pore size value of the melt blown nonwoven fabric used on the upstream side of the particle collection layer is preferably 3.5 ⁇ m or more and 10 ⁇ m or less, and the average flow pore size value of the melt blown nonwoven fabric used on the downstream side is preferably 0.00. 5 ⁇ m or more and less than 3.5 ⁇ m.
  • the average flow pore size of the entire water droplet coarsening layer is preferably 1.0 ⁇ m or more and 4.0 ⁇ m or less. Thereby, coarse separation can be performed more efficiently.
  • the average flow pore size of the meltblown nonwoven fabric used for the water droplet coarsening layer is preferably 0.5 ⁇ m or more and 10 ⁇ m or less, more preferably 1 ⁇ m or more and 5 ⁇ m or less.
  • the average flow pore size of the spunbonded nonwoven fabric used for the water droplet coarsening layer is preferably 10 ⁇ m or more and 50 ⁇ m or less, more preferably 20 ⁇ m or more and 40 ⁇ m or less.
  • polyester resins such as polyethylene terephthalate and copolymerized polyester
  • polyamide resins such as nylon 6, nylon 66, and copolymerized polyamide.
  • the filter material of the present embodiment is preferably used as a fuel filter material for diesel vehicles.
  • diesel fuel filter device of this embodiment When the diesel fuel filter device of this embodiment is mounted on a diesel vehicle, water droplets finely dispersed in the fuel oil can be effectively separated, and fine particles present in the fuel oil can be effectively removed. It can be collected and removed.
  • the liquid filtration method using the filter material of the present embodiment provides the filter material of the present embodiment, and includes passing the liquid in the order of the particle collection layer and the water droplet coarsening layer and filtering.
  • By passing the liquid in the order of the particle collection layer and the water droplet coarsening layer fine particles can be efficiently separated and removed, and water droplets can be effectively coarsened and separated. it can.
  • the liquid is preferably a diesel vehicle fuel.
  • Diesel vehicle fuel typically includes particulates such as iron rust and dirt. These fine particles are hydrophilic, and when trapped by a conventional filter material, there is a problem that the water droplet coarsening ability of the filter material is significantly reduced. While separating and removing fine particles such as iron rust and dirt, it is possible to suppress a drop in water droplet coarsening separation ability.
  • Weight per unit area (g / m 2 ): Ten samples of 100 mm ⁇ 100 mm were randomly sampled, weighed, converted to g / m 2 , and the average value was obtained.
  • Thickness (mm) A sample of 100 mm ⁇ 100 mm was collected at random, and a method conforming to the measurement method defined in JIS-L-1913-2010, that is, under a pressure of 0.5 kPa, 1 The average value of 10 points measured per sample was determined.
  • Air permeability (cc / min ⁇ cm 2 ) Three points were measured with a fragile type tester specified in JIS-L-1913-2010, and the average value was obtained.
  • Average flow pore diameter ( ⁇ m) Measured with a porous through-pore diameter evaluation apparatus (PSI Palm Porometer) using a bubble point method based on JIS K 3832. That is, to a sample wetted with a reagent having a stable and known surface tension (propylene, 1,1,2,3,3,3 oxide hexafluoric acid; manufactured by Porous Materials, Inc., surface tension of 15.9 dyne / cm) In contrast, when the air pressure is increased and the applied pressure exceeds the capillary action force of the reagent in the pores contained in the sample, the air permeation flow rate and the dry air permeation flow rate are compared. The value of the average flow pore size was obtained.
  • PSI Palm Porometer a porous through-pore diameter evaluation apparatus
  • Fine particle capture amount Measured by a simple method based on JIS-D1617 method. That is, JIS 8 type dust was added to JIS No. 2 diesel oil at a rate of 20 mg / L, the diesel oil was passed through the sample at a flow rate of 150 ml / min, and the time (minutes) required to reach a differential pressure of 10 kPa was measured. The value obtained from this equation was taken as the amount of trapped fine particles.
  • Fine particle trapping amount (g / cm 2 ) Time (min) to reach a differential pressure of 10 kPa ⁇ Flow rate 150 (ml / min) ⁇ Additional fine particle concentration 0.020 (mg / ml) ⁇ Sample area (cm 2 )
  • Table 1 below shows the nonwoven fabrics used in the examples and comparative examples.
  • Nonwoven fabrics A, B, C, F, G and H are melt blown nonwoven fabrics obtained by a known method.
  • the melt blown nonwoven fabrics having different fiber diameters were obtained by changing the discharge amount of the melted polyethylene terephthalate or nylon 6 polymer.
  • Nonwoven fabrics D and E are spunbond nonwoven fabrics obtained by a known method.
  • the raw materials were polyethylene terephthalate or nylon 6 polymer, respectively.
  • Nonwoven fabric I is a commercially available filter paper.
  • Examples 1 to 4 As shown in Table 2 below, filter performance comparison was performed on samples in which three or more layers of melt blown nonwoven fabrics and spunbond nonwoven fabrics having different fiber diameters were laminated. As shown in Table 2, in Examples 1 to 4, melt blown nonwoven fabrics and spunbond nonwoven fabrics having different fiber diameters were laminated in order from the first layer.
  • melt blown nonwoven fabrics and spunbond nonwoven fabrics having different fiber diameters were laminated in order from the first layer.
  • 90% of 1 ⁇ m particles were collected, 99.9% of 4 ⁇ m particles were collected, and water was removed by 95% or more. Further, the dust retention measured by a simple method based on JIS-D1617 was 40 mg / cm 2 or more.
  • the comparative example 1 changes the order of lamination
  • the capture rate and moisture removal rate of 1 ⁇ m particles and 4 ⁇ m particles were similar, however, it was found that the amount of dust retained was small and the filter life was short.
  • Comparative Example 2 evaluated the filter performance by using only the nonwoven fabric C as the water droplet coarsening layer used in Example 1, that is, only a melt blown nonwoven fabric having an average fiber diameter of 1.8 ⁇ m. Compared with Examples 1 to 4, it was found that the capture rate of 1 ⁇ m particles and 4 ⁇ m particles was the same, but the water removal rate was as low as 85% and the water droplet coarsening ability was low.
  • Example 3 the water droplet coarsening layer used in Example 1 was made of only the nonwoven fabric D, that is, only the spunbond nonwoven fabric, and the filter performance was evaluated. Compared with Examples 1 to 4, it was found that the capture rate of 1 ⁇ m particles and 4 ⁇ m particles was the same, but the water removal rate was as low as 70% and the water droplet coarsening ability was low.
  • Example 4 the particle collection layer used in Example 1 was only nonwoven fabric A, that is, only a melt blown nonwoven fabric having an average fiber diameter of 1.8 ⁇ m, and the filter performance was evaluated. Compared with Examples 1 to 4, it was found that the capture rate of 1 ⁇ m particles and 4 ⁇ m particles was low and the water removal rate was as low as 85%, so that the particle capture capability and water droplet coarsening capability were low.
  • Comparative Example 5 a commercially available filter paper having an average fiber diameter of 25 ⁇ m was disposed as the water droplet coarsening layer used in Example 1, and the filter performance was evaluated. Compared with Examples 1 to 4, the capture rates of 1 ⁇ m particles and 4 ⁇ m particles were equivalent, however, it was found that the water removal rate was as low as 20% and the water droplet coarsening ability was low.
  • Comparative Example 6 as the particle collection layer used in Example 1, a commercially available filter paper having an average fiber diameter of 25 ⁇ m was disposed, and the filter performance was evaluated. Compared with Examples 1 to 4, it was found that the trapping rate of 1 ⁇ m particles and 4 ⁇ m particles was low, the moisture removal rate was as low as 85%, and the particle trapping rate and the moisture removal rate were low.
  • the filter material of the present invention has improved fine particle capturing and moisture removal properties and extended filter life compared to conventional filter materials. Therefore, the filter material of the present invention can be suitably used as a filter material for a fuel filter installed in a diesel vehicle, for example.

Abstract

Provided is a filter medium that includes a particle collection layer and a water droplet coarsening layer. The particle collection layer includes a layered product of two or more layers of melt-blown nonwoven fabric having different average fiber diameters, and the water droplet coarsening layer includes a layered product of a melt-blown nonwoven fabric and a spunbond nonwoven fabric.

Description

フィルタ材Filter material
 本発明は、フィルタ材に関する。 The present invention relates to a filter material.
 様々な技術分野において、液体中の微粒子を分離し、かつ液体中の水分を捕集することのできるフィルタ材が求められている。そのようなフィルタ材としては、例えば、ディーゼル燃料フィルタが挙げられる。軽油を燃料として作動するディーゼルエンジンは、内燃機関の代表格であるガソリンエンジンと比して燃料の燃焼効率が良く、燃費性能が良好とされている。燃料の燃焼効率を向上させるために、ディーゼルエンジンに組み込まれている燃料噴射装置は、超高圧で燃料を噴射させる精巧精緻な構造を有しており、燃料中に遊離水分や固形異物が存在していると、燃料噴射装置の破損や劣化を招く恐れがある。そのため、ディーゼルエンジンを搭載する自動車などにおいては、燃料フィルタの搭載が必須となっている。例えば、特許文献1は、ディーゼル燃料フィルタ装置を記載する。このディーゼル燃料フィルタ装置は、粒子捕集用濾過体と水捕集部材とを組み合わせることで、燃料中の水を分離することができると記載されている。 In various technical fields, filter materials capable of separating fine particles in a liquid and collecting water in the liquid are required. Examples of such a filter material include a diesel fuel filter. A diesel engine that operates using light oil as fuel has better fuel combustion efficiency and better fuel efficiency than a gasoline engine, which is a typical internal combustion engine. In order to improve the combustion efficiency of fuel, the fuel injection device built into the diesel engine has an elaborate and precise structure that injects fuel at ultra-high pressure, and there is free moisture and solid foreign matter in the fuel. Otherwise, the fuel injection device may be damaged or deteriorated. For this reason, it is essential to install a fuel filter in an automobile equipped with a diesel engine. For example, Patent Document 1 describes a diesel fuel filter device. This diesel fuel filter device is described as being able to separate water in fuel by combining a particle collecting filter and a water collecting member.
特開2015-081521号公報Japanese Patent Laying-Open No. 2015-081521
 しかしながら、濾過される液体中に含まれる微細粒子がフィルタ材に捕捉されると、フィルタ材の水滴粗大化能力が著しく低下することがある。例えば、特許文献1のディーゼル燃料フィルタ装置を車両に搭載した場合には、燃料油中に細かく分散した水滴を十分に分離することができず、また、燃料油中に存在する微細粒子を効果的に捕集除去できず、エンジンに水滴や微細粒子を流入させてしまうことがある。 However, when fine particles contained in the liquid to be filtered are trapped by the filter material, the water droplet coarsening ability of the filter material may be significantly reduced. For example, when the diesel fuel filter device of Patent Document 1 is mounted on a vehicle, water droplets finely dispersed in the fuel oil cannot be sufficiently separated, and fine particles present in the fuel oil are effectively removed. In this case, water droplets and fine particles may flow into the engine.
 燃料油中に含まれる微細粒子は、典型的には鉄錆、土埃などであり、これらの微細粒子は親水性であるため、水捕集部材に捕捉されてしまうと、水捕集部材の水滴粗大化能力が著しく低下してしまう問題がある。 The fine particles contained in the fuel oil are typically iron rust, dust, and the like. Since these fine particles are hydrophilic, if they are captured by the water collecting member, water droplets on the water collecting member There is a problem that the coarsening ability is remarkably lowered.
 本発明は、上記点に鑑みてなされたものであり、改善された微粒子の捕集性能と水分離性能とを有する、フィルタ材を提供することを目的とする。 The present invention has been made in view of the above points, and an object thereof is to provide a filter material having improved particulate collection performance and water separation performance.
 本発明者らは鋭意検討を行い、平均繊維径の異なる2層以上のメルトブロー不織布の積層体と、メルトブロー不織布とスパンボンド不織布との積層体とを積層させることなどによって、液体中から微細粒子及び水を良好に分離除去することが可能であることを見出した。以下、本発明の実施形態の例を列記する。
[1]
 粒子捕集層と水滴粗大化層とを含む、フィルタ材であって、上記粒子捕集層は、平均繊維径の異なる2層以上のメルトブロー不織布の積層体を含み、上記水滴粗大化層は、メルトブロー不織布とスパンボンド不織布との積層体を含む、フィルタ材。
[2]
 上記粒子捕集層は、平均繊維径0.1μm以上5.0μm以下のメルトブロー不織布を少なくとも2層以上含み、上記粒子捕集層全体の厚みが0.2mm以上0.7mm以下であり、上記粒子捕集層全体の平均流量孔径が0.5μm以上2.0μm以下である、項目1に記載のフィルタ材。
[3]
 上記水滴粗大化層は、平均繊維径0.1μm以上5.0μm以下のメルトブロー不織布を少なくとも1層以上と、上記メルトブロー不織布の下流側に平均繊維径10μm以上20μm以下のスパンボンド不織布を少なくとも1層以上とを含み、
 上記水滴粗大化層全体の厚みが0.5mm以上1.2mm以下であり、上記水滴粗大化層全体の平均流量孔径が1.0μm以上4.0μm以下である、項目1又は2に記載のフィルタ材。
[4]
 ディーゼル車両用燃料フィルタ材として用いられる、項目1~3のいずれか一項に記載のフィルタ材。
[5]
 粒子捕集層と水滴粗大化層とを含むフィルタ材を用いた液体の濾過方法であって、
 上記粒子捕集層は、平均繊維径の異なる2層以上のメルトブロー不織布の積層体を含み、
 上記水滴粗大化層は、メルトブロー不織布とスパンボンド不織布との積層体を含み、
 上記液体を、上記粒子捕集層、上記水滴粗大化層の順に濾過することを含む、液体の濾過方法。
[6]
 上記液体はディーゼル車両用燃料である、項目5に記載の方法。
The present inventors have conducted intensive studies, and by laminating a laminate of two or more melt blown nonwoven fabrics having different average fiber diameters and a laminate of a melt blown nonwoven fabric and a spunbond nonwoven fabric, fine particles and It has been found that water can be separated and removed well. Examples of embodiments of the present invention are listed below.
[1]
A filter material comprising a particle collection layer and a water droplet coarsening layer, wherein the particle collection layer comprises a laminate of two or more meltblown nonwoven fabrics having different average fiber diameters, and the water droplet coarsening layer is A filter material comprising a laminate of a melt blown nonwoven fabric and a spunbond nonwoven fabric.
[2]
The particle collection layer includes at least two melt blown nonwoven fabrics having an average fiber diameter of 0.1 μm or more and 5.0 μm or less, the total thickness of the particle collection layer is 0.2 mm or more and 0.7 mm or less, and the particles Item 2. The filter material according to Item 1, wherein an average flow pore size of the entire collection layer is 0.5 µm or more and 2.0 µm or less.
[3]
The water droplet coarsening layer includes at least one layer of melt blown nonwoven fabric having an average fiber diameter of 0.1 μm to 5.0 μm and at least one layer of spunbond nonwoven fabric having an average fiber diameter of 10 μm to 20 μm on the downstream side of the melt blown nonwoven fabric. Including
Item 3. The filter according to Item 1 or 2, wherein the entire water droplet coarsened layer has a thickness of 0.5 mm or more and 1.2 mm or less, and the average flow pore size of the entire water droplet coarsened layer is 1.0 µm or more and 4.0 µm or less. Wood.
[4]
The filter material according to any one of items 1 to 3, which is used as a fuel filter material for a diesel vehicle.
[5]
A liquid filtration method using a filter material including a particle collection layer and a water droplet coarsening layer,
The particle collection layer includes a laminate of two or more melt blown nonwoven fabrics having different average fiber diameters,
The water droplet coarsening layer includes a laminate of a meltblown nonwoven fabric and a spunbond nonwoven fabric,
A liquid filtration method comprising filtering the liquid in the order of the particle collection layer and the water droplet coarsening layer.
[6]
Item 6. The method according to Item 5, wherein the liquid is a diesel vehicle fuel.
 本発明によれば、濾過される液体中の微細粒子の分離除去性能を向上させ、かつ、液体中に微分散した水を凝集粗大化させることで、油水分離性能もまた向上させることができる。 According to the present invention, the oil / water separation performance can also be improved by improving the separation and removal performance of fine particles in the liquid to be filtered and agglomerating and coarsening the water finely dispersed in the liquid.
 以下、本発明の実施形態(以下、「本実施形態」という。)を例示する目的で詳細に説明するが、本発明は本実施形態に限定されるものではない。 Hereinafter, an embodiment of the present invention (hereinafter referred to as “the present embodiment”) will be described in detail, but the present invention is not limited to the present embodiment.
《フィルタ材》
 本実施形態は、粒子捕集層と水滴粗大化層とを積層させた、フィルタ材を提供する。粒子捕集層は、平均繊維径の異なる2層以上のメルトブロー不織布の積層体を含み、これによって、粗大な粒子だけでなく、微細な粒子を高精度かつ効果的に捕集しかつ、分散した水滴を捕集することができる。また、水滴粗大化層は、メルトブロー不織布とスパンボンド不織布との積層体を含み、これによって、微細に分散した水滴を捕集し粗大化させることができる。本実施形態のフィルタ材は、濾過される液体の流れを基準にして上流側に粒子捕集層、下流側に水滴粗大化層が積層されていることが好ましい。
<Filter material>
The present embodiment provides a filter material in which a particle collection layer and a water droplet coarsening layer are laminated. The particle collection layer includes a laminate of two or more melt blown nonwoven fabrics having different average fiber diameters, whereby fine particles as well as coarse particles are collected and dispersed with high accuracy. Water droplets can be collected. Further, the water droplet coarsening layer includes a laminate of a melt blown nonwoven fabric and a spunbond nonwoven fabric, whereby finely dispersed water droplets can be collected and coarsened. In the filter material of this embodiment, it is preferable that a particle collection layer is laminated on the upstream side and a water droplet coarsening layer is laminated on the downstream side based on the flow of the liquid to be filtered.
 本実施形態のフィルタ材に用いられる不織布としては、目的とする粒径の微細粒子の捕捉性能を向上させ、分散した水滴を捕集する観点から、メルトブロー不織布を用いることが好ましい。また、分散した水滴を捕集し粗大化させる観点から、スパンボンド不織布を用いることが好ましい。 As the non-woven fabric used in the filter material of the present embodiment, it is preferable to use a melt blown non-woven fabric from the viewpoint of improving the capturing performance of fine particles having a target particle size and collecting dispersed water droplets. Moreover, it is preferable to use a spunbonded nonwoven fabric from the viewpoint of collecting and coarsening the dispersed water droplets.
 「メルトブロー不織布」とは、メルトブロー方法、すなわち、ポリマーを高速熱ガス流中に紡糸して繊維状にし、冷却後、動くスクリーンに集積し、一つ又は二つ以上の結合方法で作られた不織布である(JIS L0222:2001、「不織布用語」を参照)。本実施形態において粒子捕集層及び水滴粗大化層に用いる「メルトブロー不織布」は、特に、0.1μm以上10μm未満の平均繊維径を有する繊維から構成されるメルトブロー不織布をいう。メルトブロー不織布は、典型的には、溶融した熱可塑性プラスチック樹脂を押出機の後に設置したダイから、ネットコンベアーまたは捕集スクリーン上に高速高温の気流で吹き出して繊維を自己接着させることにより製造される。メルトブロー不織布を構成する繊維の結晶化度は、10%以上30%以下であることが好ましい。 "Melt blown nonwoven fabric" refers to a melt blown method, i.e. a nonwoven fabric made by spinning one or more polymers in a high-speed hot gas stream into fibers, and after cooling, collecting them on a moving screen and made by one or more bonding methods (See JIS L0222: 2001, “nonwoven fabric terms”). The “meltblown nonwoven fabric” used in the particle collection layer and the water droplet coarsening layer in the present embodiment refers to a meltblown nonwoven fabric composed of fibers having an average fiber diameter of 0.1 μm or more and less than 10 μm. Melt blown nonwoven fabrics are typically manufactured by blowing molten thermoplastic resin from a die placed after the extruder onto a net conveyor or collection screen with high-speed and high-temperature airflow to self-adhere the fibers. . The degree of crystallinity of the fibers constituting the meltblown nonwoven fabric is preferably 10% or more and 30% or less.
 「スパンボンド不織布」とは、スパンボンド方法、すなわち、ポリマーの溶融または溶解によって、ノズルから紡糸された連続繊維を、動くスクリーンに集積し、一つ又は二つ以上の結合方法で作られた不織布である(JIS L0222:2001、「不織布用語」を参照)。本実施形態において水滴粗大化層に用いる「スパンボンド不織布」は、特に、10μm以上30μm以下の平均繊維径を有する繊維から構成されるスパンボンド不織布をいう。スパンボンド不織布は、典型的には、溶融紡糸で連続フィラメントのウェブを得て、一対のエンボスロールと平滑ロールで部分的に熱圧着することにより製造される。スパンボンド不織布を構成する繊維の結晶化度は、30%以上60%以下であることが好ましい。 "Spunbond nonwoven fabric" is a nonwoven fabric made by one or more bonding methods in which continuous fibers spun from a nozzle are collected on a moving screen by a spunbond method, that is, melting or dissolution of a polymer. (See JIS L0222: 2001, “nonwoven fabric terms”). The “spunbond nonwoven fabric” used for the water droplet coarsening layer in this embodiment refers to a spunbond nonwoven fabric composed of fibers having an average fiber diameter of 10 μm or more and 30 μm or less. A spunbonded nonwoven fabric is typically produced by obtaining a continuous filament web by melt spinning and partially thermocompression bonding with a pair of embossing rolls and smooth rolls. The degree of crystallinity of the fibers constituting the spunbonded nonwoven fabric is preferably 30% or more and 60% or less.
 本実施形態の粒子捕集層に用いられるメルトブロー不織布は、平均繊維径の異なる2層以上のメルトブロー不織布の積層体を含む。粒子捕集層は、平均繊維径0.1μm以上5.0μm以下のメルトブロー不織布を少なくとも2層以上含むことが好ましく、粒子捕集層全体の平均繊維径は、0.5μm以上2.0μm以下であることが好ましい。濾過される液体の通液方向に対して上流から下流に向かうにしたがい平均繊維径が細くなるように、メルトブロー不織布を積層させることが好ましい。すなわち、本実施形態のフィルタ材は、第一の平均繊維径を有する第一のメルトブロー不織布、第一の平均繊維径より小さな第二の平均繊維径を有する第二のメルトブロー不織布を有することが好ましい。これによって、粒子捕集層が、粗大粒子の捕集、及び微細粒子の捕集という、それぞれ機能の異なる2層のメルトブロー不織布で構成され、液体中の微細粒子を効率的に捕集することができる。上流側に配置されたメルトブロー不織布の第一の平均繊維径は、好ましくは1.0μm以上5.0μm以下、より好ましくは1.0μm以上2.0μm以下である。下流側に配置されたメルトブロー不織布の第二の平均繊維径は、好ましくは0.1μm以上5.0μm以下、より好ましくは0.1μm以上3.0μm以下、更に好ましくは0.1μm以上1.0μm以下である。メルトブロー不織布の平均繊維径がこれらの範囲にあることにより、粒子径4μmの微粒子を効果的に捕集することができるという理由で好ましい。 The meltblown nonwoven fabric used for the particle collection layer of this embodiment includes a laminate of two or more meltblown nonwoven fabrics having different average fiber diameters. The particle collection layer preferably includes at least two melt blown nonwoven fabrics having an average fiber diameter of 0.1 μm or more and 5.0 μm or less, and the average fiber diameter of the entire particle collection layer is 0.5 μm or more and 2.0 μm or less. Preferably there is. It is preferable to laminate the melt blown nonwoven fabric so that the average fiber diameter becomes narrower from the upstream to the downstream with respect to the liquid passing direction of the filtered liquid. That is, the filter material of the present embodiment preferably has a first melt blown nonwoven fabric having a first average fiber diameter and a second melt blown nonwoven fabric having a second average fiber diameter smaller than the first average fiber diameter. . As a result, the particle collection layer is composed of two layers of melt blown nonwoven fabrics having different functions, ie, collection of coarse particles and collection of fine particles, and it is possible to efficiently collect fine particles in a liquid. it can. The first average fiber diameter of the meltblown nonwoven fabric disposed on the upstream side is preferably 1.0 μm or more and 5.0 μm or less, more preferably 1.0 μm or more and 2.0 μm or less. The second average fiber diameter of the melt blown nonwoven fabric disposed on the downstream side is preferably 0.1 μm or more and 5.0 μm or less, more preferably 0.1 μm or more and 3.0 μm or less, and further preferably 0.1 μm or more and 1.0 μm. It is as follows. The average fiber diameter of the melt blown nonwoven fabric is in these ranges, which is preferable because fine particles having a particle diameter of 4 μm can be effectively collected.
 粒子捕集層全体の厚みは、好ましくは0.2mm以上0.7mm以下、より好ましくは0.3mm以上0.5mm以下である。上流側に配置されたメルトブロー不織布の厚みは、好ましくは0.1mm以上0.7mm、より好ましくは0.2mm以上0.6mm以下である。下流側に配置されたメルトブロー不織布の厚みは、好ましくは0.01mm以上0.5mm以下、より好ましくは0.05mm以上0.3mm以下である。 The total thickness of the particle collection layer is preferably 0.2 mm or more and 0.7 mm or less, more preferably 0.3 mm or more and 0.5 mm or less. The thickness of the meltblown nonwoven fabric disposed on the upstream side is preferably 0.1 mm to 0.7 mm, more preferably 0.2 mm to 0.6 mm. The thickness of the melt blown nonwoven fabric disposed on the downstream side is preferably 0.01 mm to 0.5 mm, more preferably 0.05 mm to 0.3 mm.
 本実施形態の水滴粗大化層に用いられるメルトブロー不織布は、メルトブロー不織布とスパンボンド不織布との積層体を含む。これによって、フィルタ材の水分離性能を向上させることが可能である。メルトブロー不織布の平均繊維径は、好ましくは0.1μm以上5.0μm以下、より好ましくは0.1μm以上3.0μm以下、更に好ましくは1.0μm以上2.0μm以下である。水滴粗大化層は、液体の通液方向に対して上流側、すなわち粒子捕集層側にメルトブロー不織布を有し、下流側にスパンボンド不織布を有することが好ましい。水滴粗大化層は、第二のメルトブロー不織布の側に積層されていることが好ましい。スパンボンド不織布の平均繊維径は、好ましくは10μm以上30μm以下、より好ましくは10μm以上20μm以下、更に好ましくは10μm以上15μm以下である。水滴粗大化層のメルトブロー不織布及びスパンボンド不織布の平均繊維径がこれらの範囲にあることにより、微細な水滴を効率的かつ効果的に捕捉し、粗大化分離ができるという理由で好ましい。 The meltblown nonwoven fabric used for the water droplet coarsening layer of this embodiment includes a laminate of a meltblown nonwoven fabric and a spunbond nonwoven fabric. Thereby, it is possible to improve the water separation performance of the filter material. The average fiber diameter of the melt blown nonwoven fabric is preferably 0.1 μm or more and 5.0 μm or less, more preferably 0.1 μm or more and 3.0 μm or less, and further preferably 1.0 μm or more and 2.0 μm or less. The water droplet coarsening layer preferably has a melt blown nonwoven fabric on the upstream side with respect to the liquid flow direction, that is, the particle collection layer side, and a spunbonded nonwoven fabric on the downstream side. The water droplet coarsening layer is preferably laminated on the second melt blown nonwoven fabric side. The average fiber diameter of the spunbonded nonwoven fabric is preferably 10 μm to 30 μm, more preferably 10 μm to 20 μm, and still more preferably 10 μm to 15 μm. The average fiber diameters of the meltblown nonwoven fabric and spunbond nonwoven fabric of the water droplet coarsening layer are in these ranges, which is preferable because fine water droplets can be efficiently and effectively captured and coarsened and separated.
 水滴粗大化層全体の厚みは、好ましくは0.5mm以上1.2mm以下、より好ましくは0.5mm以上1.0mm以下である。水滴粗大化層におけるメルトブロー不織布の厚みは、好ましくは0.1mm以上0.7mm、より好ましくは0.2mm以上0.6mm以下である。水滴粗大化層におけるスパンボンド不織布の厚みは、好ましくは0.1mm以上0.7mm以下、より好ましくは0.2mm以上0.6mm以下である。 The total thickness of the water droplet coarsening layer is preferably 0.5 mm or more and 1.2 mm or less, more preferably 0.5 mm or more and 1.0 mm or less. The thickness of the meltblown nonwoven fabric in the water droplet coarsening layer is preferably from 0.1 mm to 0.7 mm, more preferably from 0.2 mm to 0.6 mm. The thickness of the spunbonded nonwoven fabric in the water droplet coarsening layer is preferably from 0.1 mm to 0.7 mm, more preferably from 0.2 mm to 0.6 mm.
 フィルタ材に使用される不織布において、一般的に繊維径が細くなるほど、繊維の交絡によって形成される細孔径がより微細になり、フィルタ材にとって重要な性能である捕捉性能が向上するが、しかしながら、フィルタ寿命が短くなるという二律背反関係がある。 In the nonwoven fabric used for the filter material, generally, the smaller the fiber diameter, the finer the pore diameter formed by the entanglement of the fibers, and the capture performance, which is an important performance for the filter material, is improved. There is a tradeoff that the filter life is shortened.
 フィルタ材の寿命を延長させる方法として、フィルタ材における主たるろ過機能を、フィルタ材の厚み方向に持たせる方法が挙げられる。厚み方向にろ過機能を持たせるために、具体的には、捕捉対象となる粒子径に対して、フィルタ材における粒子捕集層全体の平均流量孔径を一割から三割大きくすることが好ましい。粒子捕集層全体の空隙率を好ましくは65%以上95%未満、より好ましくは80%以上95%未満にしてもよい。 As a method of extending the life of the filter material, there is a method of providing the main filtration function of the filter material in the thickness direction of the filter material. In order to provide a filtration function in the thickness direction, specifically, it is preferable to increase the average flow pore diameter of the entire particle collection layer in the filter material by 10 to 30% with respect to the particle diameter to be captured. The porosity of the entire particle collection layer may be preferably 65% or more and less than 95%, more preferably 80% or more and less than 95%.
 平均流量孔径は、微細な粒子の捕捉効率の目安となる。捕捉対象となる粒子を、繊維と繊維の交絡から形成される開孔部にて捕捉するため、粒子捕集層全体の平均流量孔径の値は、好ましくは0.5μm以上2.0μm以下、より好ましくは、1μm以上1.9μm以下、更により好ましくは、1μm以上1.5μm以下である。これによって、濾過される液体中の微細な粒子を捕捉することができる。粒子捕集層の上流側に使用されるメルトブロー不織布の平均流量孔径の値は、好ましくは3.5μm以上10μm以下、下流側に使用されるメルトブロー不織布の平均流量孔径の値は、好ましくは0.5μm以上3.5μm未満である。 The average flow pore size is a measure of the capture efficiency of fine particles. In order to capture the particles to be captured at the opening formed by the entanglement between the fibers, the value of the average flow pore diameter of the entire particle collection layer is preferably 0.5 μm or more and 2.0 μm or less. Preferably, they are 1 micrometer or more and 1.9 micrometers or less, More preferably, they are 1 micrometer or more and 1.5 micrometers or less. As a result, fine particles in the liquid to be filtered can be captured. The average flow pore size value of the melt blown nonwoven fabric used on the upstream side of the particle collection layer is preferably 3.5 μm or more and 10 μm or less, and the average flow pore size value of the melt blown nonwoven fabric used on the downstream side is preferably 0.00. 5 μm or more and less than 3.5 μm.
 水滴粗大化層全体の平均流量孔径の値は、好ましくは1.0μm以上4.0μm以下である。これによって、より効率的に粗大化分離することができる。水滴粗大化層に使用されるメルトブロー不織布の平均流量孔径の値は、好ましくは0.5μm以上10μm以下、より好ましくは1μm以上5μm以下である。水滴粗大化層に使用されるスパンボンド不織布の平均流量孔径の値は、好ましくは10μm以上50μm以下、より好ましくは20μm以上40μm以下である。 The average flow pore size of the entire water droplet coarsening layer is preferably 1.0 μm or more and 4.0 μm or less. Thereby, coarse separation can be performed more efficiently. The average flow pore size of the meltblown nonwoven fabric used for the water droplet coarsening layer is preferably 0.5 μm or more and 10 μm or less, more preferably 1 μm or more and 5 μm or less. The average flow pore size of the spunbonded nonwoven fabric used for the water droplet coarsening layer is preferably 10 μm or more and 50 μm or less, more preferably 20 μm or more and 40 μm or less.
 フィルタ材の材質としては、ポリエチレンテレフタレート、共重合ポリエステルなどのポリエステル系樹脂、ナイロン6、ナイロン66、共重合ポリアミドなどのポリアミド系樹脂などが挙げられる。 Examples of the material of the filter material include polyester resins such as polyethylene terephthalate and copolymerized polyester, and polyamide resins such as nylon 6, nylon 66, and copolymerized polyamide.
 本実施形態のフィルタ材は、ディーゼル車両用燃料フィルタ材として用いることが好ましい。本実施形態のディーゼル燃料フィルタ装置をディーゼル車両に搭載した場合には、燃料油中に細かく分散した水滴を効果的に分離することができ、また、燃料油中に存在する微細粒子を効果的に捕集除去することができる。 The filter material of the present embodiment is preferably used as a fuel filter material for diesel vehicles. When the diesel fuel filter device of this embodiment is mounted on a diesel vehicle, water droplets finely dispersed in the fuel oil can be effectively separated, and fine particles present in the fuel oil can be effectively removed. It can be collected and removed.
《濾過方法》
 本実施形態のフィルタ材を用いた液体の濾過方法は、本実施形態のフィルタ材を提供し、液体を、粒子捕集層、水滴粗大化層の順に通過させ、濾過することを含む。粒子捕集層、及び水滴粗大化層について、詳細は《フィルタ材》の欄を参照されたい。本実施形態の濾過方法では、粒子捕集層、及び水滴粗大化層の順に液体を通過させることによって、微細粒子を効率的に分離除去し、かつ、水滴を効果的に粗大化分離することができる。
<Filtering method>
The liquid filtration method using the filter material of the present embodiment provides the filter material of the present embodiment, and includes passing the liquid in the order of the particle collection layer and the water droplet coarsening layer and filtering. For details of the particle collection layer and the water droplet coarsening layer, refer to the section of “Filter material”. In the filtration method of the present embodiment, by passing the liquid in the order of the particle collection layer and the water droplet coarsening layer, fine particles can be efficiently separated and removed, and water droplets can be effectively coarsened and separated. it can.
 本実施形態の濾過方法において、液体は、ディーゼル車両用燃料であることが好ましい。ディーゼル車両用燃料は、典型的に、鉄錆、土埃などの微粒子を含む。これらの微細粒子は親水性であり、従来のフィルタ材に捕捉されると、フィルタ材の水滴粗大化能力を著しく低下するという問題があった。鉄錆、土埃などの微粒子を分離除去しつつ、水滴粗大化分離能力の低下を抑制することができる。 In the filtration method of the present embodiment, the liquid is preferably a diesel vehicle fuel. Diesel vehicle fuel typically includes particulates such as iron rust and dirt. These fine particles are hydrophilic, and when trapped by a conventional filter material, there is a problem that the water droplet coarsening ability of the filter material is significantly reduced. While separating and removing fine particles such as iron rust and dirt, it is possible to suppress a drop in water droplet coarsening separation ability.
 以下、本発明を実施例及び比較例により具体的に説明する。しかしながら、本発明は、これらの実施例及び比較例に限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples and comparative examples. However, the present invention is not limited to these examples and comparative examples.
 《測定及び評価方法》
 実施例中の特性は、下記の方法で測定した。
<< Measurement and evaluation method >>
The characteristics in the examples were measured by the following methods.
 (1)目付(g/m):100mm×100mmの試料を無作為に10点採取し、重量を測定し、g/mに換算し、その平均値を求めた。 (1) Weight per unit area (g / m 2 ): Ten samples of 100 mm × 100 mm were randomly sampled, weighed, converted to g / m 2 , and the average value was obtained.
 (2)厚み(mm):100mm×100mmの試料を無作為に10点採取し、JIS-L-1913-2010に規定される測定方法に準拠した方法で、すなわち0.5kPa加圧下で、1試料当たり10点測定した値の平均値を求めた。 (2) Thickness (mm): A sample of 100 mm × 100 mm was collected at random, and a method conforming to the measurement method defined in JIS-L-1913-2010, that is, under a pressure of 0.5 kPa, 1 The average value of 10 points measured per sample was determined.
 (3)空隙率(%):目付と、JIS-L-1913-2010に規定される測定方法に準拠した方法により測定した厚み、すなわち0.5kPa加圧下で測定した厚みから、以下の計算式により算出した。尚、ポリエチレンテレフタレートの比重には1.38を用いており、ポリアミドの比重には1.13を用いた。単位面積当たりの空隙率を求め、3か所の平均値で示した。
  空隙率(%)=(1-(目付(g/m))/比重/厚み(mm))×100
(3) Porosity (%): From the basis weight and the thickness measured by a method based on the measurement method specified in JIS-L-1913-2010, that is, the thickness measured under a pressure of 0.5 kPa, the following calculation formula Calculated by The specific gravity of polyethylene terephthalate was 1.38, and the specific gravity of polyamide was 1.13. The porosity per unit area was calculated and shown as an average value at three locations.
Porosity (%) = (1− (weight per unit area (g / m 2 )) / specific gravity / thickness (mm)) × 100
 (4)平均繊維径(μm):不織布の表面を走査型電子顕微鏡で観察し、観察で得られた像に含まれる繊維の直径を10点測定し、その平均値を求めた。 (4) Average fiber diameter (μm): The surface of the nonwoven fabric was observed with a scanning electron microscope, and the diameters of the fibers contained in the image obtained by observation were measured at 10 points, and the average value was obtained.
 (5)通気度(cc/min・cm):JIS-L-1913-2010に規定されるフラジール形試験機で、3か所測定し、その平均値を求めた。 (5) Air permeability (cc / min · cm 2 ): Three points were measured with a fragile type tester specified in JIS-L-1913-2010, and the average value was obtained.
 (6)平均流量孔径(μm):JIS K 3832に基づくバブルポイント法を用いた多孔質貫通細孔径評価装置(PSI社製パームポロメーター)で測定した。すなわち、表面張力が安定かつ既知である試薬(プロピレン,1,1,2,3,3,3酸化ヘキサフッ酸;Porous Materials,Inc社製、表面張力15.9dyne/cm)に湿潤させた試料に対して空気圧を増大させ、与えられた圧力が試料に含まれる細孔の中の試薬の毛細管作用の力を越えた時に空気が透過流量と、乾燥した状態の空気の透過流量を比較することで、平均流量孔径の値を得た。 (6) Average flow pore diameter (μm): Measured with a porous through-pore diameter evaluation apparatus (PSI Palm Porometer) using a bubble point method based on JIS K 3832. That is, to a sample wetted with a reagent having a stable and known surface tension (propylene, 1,1,2,3,3,3 oxide hexafluoric acid; manufactured by Porous Materials, Inc., surface tension of 15.9 dyne / cm) In contrast, when the air pressure is increased and the applied pressure exceeds the capillary action force of the reagent in the pores contained in the sample, the air permeation flow rate and the dry air permeation flow rate are compared. The value of the average flow pore size was obtained.
 (7)微粒子捕捉効率(%):JIS-D1617法に準拠した簡便法により測定した。すなわち、JIS2号軽油中にJIS8種のダストを5mg/Lの割合で混合し、超音波振動で1分間攪拌して均一に分散させた液を、流量12cc/min/cmで試料に通過させ、通過前後の液を採取し、各液の粒子個数を液中パーティクルカウンターで測定し、1μm粒子径及び4μm粒子径に対する捕捉効率を下記の式より求めた。
  捕捉効率(%)=(1-(通過前個数/通過後個数))×100
(7) Fine particle capture efficiency (%): Measured by a simple method based on the JIS-D1617 method. That is, JIS No. 8 diesel oil was mixed at a rate of 5 mg / L in JIS No. 2 gas oil, and stirred for 1 minute with ultrasonic vibration to uniformly disperse the liquid through the sample at a flow rate of 12 cc / min / cm 2. The liquid before and after passing was collected, the number of particles in each liquid was measured with a particle counter in the liquid, and the trapping efficiency for 1 μm particle diameter and 4 μm particle diameter was obtained from the following formula.
Capture efficiency (%) = (1− (number before passage / number after passage)) × 100
 (8)微粒子捕捉量:JIS-D1617法に準拠した簡便法により測定した。すなわち、JIS2号軽油中にJIS8種のダストを20mg/Lの割合で添加し、当該軽油を流量150ml/minで試料に通過させ、差圧10kPaに達するまでの時間(分)を測定し、下記の式より得られた値を微粒子捕捉量とした。
 微粒子捕捉量(g/cm)=差圧10kPaに達するまでの時間(分)×流量150(ml/分)×添加微粒子濃度0.020(mg/ml)÷試料面積(cm
(8) Fine particle capture amount: Measured by a simple method based on JIS-D1617 method. That is, JIS 8 type dust was added to JIS No. 2 diesel oil at a rate of 20 mg / L, the diesel oil was passed through the sample at a flow rate of 150 ml / min, and the time (minutes) required to reach a differential pressure of 10 kPa was measured. The value obtained from this equation was taken as the amount of trapped fine particles.
Fine particle trapping amount (g / cm 2 ) = Time (min) to reach a differential pressure of 10 kPa × Flow rate 150 (ml / min) × Additional fine particle concentration 0.020 (mg / ml) ÷ Sample area (cm 2 )
 (9)水分除去率(%):JIS-D1617法に準拠した簡便法により測定した。すなわち、JIS2号軽油中に蒸留水を1体積%の割合で混合し、定格流量15L/minの渦巻ポンプを用いて均一に蒸留水を分散させた液を分離前液として、分離前後の水分濃度をカールフィッシャー水分計にて3点測定し、得られた値の平均値を下記の式を用いて水分除去率を求めた。
 水分除去率(%)=(1-(分離前水分濃度(ppm)/分離後水分濃度(ppm))
(9) Moisture removal rate (%): Measured by a simple method based on the JIS-D1617 method. That is, the water concentration before and after the separation is obtained by mixing the distilled water in JIS No. 2 gas oil at a rate of 1% by volume and uniformly dispersing the distilled water using a centrifugal pump with a rated flow rate of 15 L / min. Was measured at three points with a Karl Fischer moisture meter, and the average value of the obtained values was used to determine the moisture removal rate using the following formula.
Moisture removal rate (%) = (1− (water concentration before separation (ppm) / water concentration after separation (ppm))
 以下の表1に、実施例及び比較例で使用した不織布を示す。 Table 1 below shows the nonwoven fabrics used in the examples and comparative examples.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 不織布A、B、C、F、G及びHは、公知の方法で得られたメルトブロー不織布である。それぞれ、溶融させたポリエチレンテレフタレートもしくはナイロン6のポリマーの吐出量を変更することで、異なる繊維径のメルトブロー不織布を得た。 Nonwoven fabrics A, B, C, F, G and H are melt blown nonwoven fabrics obtained by a known method. The melt blown nonwoven fabrics having different fiber diameters were obtained by changing the discharge amount of the melted polyethylene terephthalate or nylon 6 polymer.
 不織布D及びEは、公知の方法で得られたスパンボンド不織布である。それぞれ、ポリエチレンテレフタレートもしくはナイロン6のポリマーを原料とした。 Nonwoven fabrics D and E are spunbond nonwoven fabrics obtained by a known method. The raw materials were polyethylene terephthalate or nylon 6 polymer, respectively.
 不織布Iは、市販の濾紙である。 Nonwoven fabric I is a commercially available filter paper.
[実施例1~4]
 以下の表2に示すように、繊維径の異なるメルトブロー不織布とスパンボンド不織布を3層以上積層させたサンプルについて、フィルタ性能比較を行った。
 表2に示すように、実施例1~4では、第1層から順番に繊維径の異なるメルトブロー不織布及びスパンボンド不織布を積層させた。JIS-D1617法に準拠した簡便法により、1μmの粒子を90%捕集し、4μmの粒子を99.9%捕集し、水分を95%以上除去した。また、JIS-D1617法に準拠した簡便法により測定したダスト保持量は、40mg/cm以上であった。
[Examples 1 to 4]
As shown in Table 2 below, filter performance comparison was performed on samples in which three or more layers of melt blown nonwoven fabrics and spunbond nonwoven fabrics having different fiber diameters were laminated.
As shown in Table 2, in Examples 1 to 4, melt blown nonwoven fabrics and spunbond nonwoven fabrics having different fiber diameters were laminated in order from the first layer. By a simple method based on the JIS-D1617 method, 90% of 1 μm particles were collected, 99.9% of 4 μm particles were collected, and water was removed by 95% or more. Further, the dust retention measured by a simple method based on JIS-D1617 was 40 mg / cm 2 or more.
[比較例1~6]
 比較例1は、実施例1に使用した粒子捕集層の積層の順番を変更したものである。すなわち、上流側に平均繊維径0.7μmのメルトブロー不織布を配置し、下流に平均繊維径1.8μmのメルトブロー不織布を配置したものを用いてフィルタ性能評価を行った。実施例1~4と比較して、1μm粒子および4μm粒子の捕捉率や水分除去率は同等であったが、しかしながら、ダスト保持量が少なく、フィルタとして寿命が短いことがわかった。
[Comparative Examples 1 to 6]
The comparative example 1 changes the order of lamination | stacking of the particle collection layer used for Example 1. FIG. That is, filter performance evaluation was performed using a melt blown nonwoven fabric having an average fiber diameter of 0.7 μm disposed upstream and a melt blown nonwoven fabric having an average fiber diameter of 1.8 μm disposed downstream. Compared with Examples 1 to 4, the capture rate and moisture removal rate of 1 μm particles and 4 μm particles were similar, however, it was found that the amount of dust retained was small and the filter life was short.
 比較例2は、実施例1に使用した水滴粗大化層を不織布Cのみ、すなわち平均繊維径1.8μmのメルトブロー不織布のみにして、フィルタ性能評価を行った。実施例1~4と比較して、1μm粒子および4μm粒子の捕捉率は同等であるが、水分除去率が85%と低く、水滴粗大化能力が低いことがわかった。 Comparative Example 2 evaluated the filter performance by using only the nonwoven fabric C as the water droplet coarsening layer used in Example 1, that is, only a melt blown nonwoven fabric having an average fiber diameter of 1.8 μm. Compared with Examples 1 to 4, it was found that the capture rate of 1 μm particles and 4 μm particles was the same, but the water removal rate was as low as 85% and the water droplet coarsening ability was low.
 比較例3は、実施例1に使用した水滴粗大化層を不織布Dのみ、すなわちスパンボンド不織布のみにして、フィルタ性能評価を行った。実施例1~4と比較して、1μm粒子および4μm粒子の捕捉率は同等であるが、水分除去率が70%と低く、水滴粗大化能力が低いことがわかった。 In Comparative Example 3, the water droplet coarsening layer used in Example 1 was made of only the nonwoven fabric D, that is, only the spunbond nonwoven fabric, and the filter performance was evaluated. Compared with Examples 1 to 4, it was found that the capture rate of 1 μm particles and 4 μm particles was the same, but the water removal rate was as low as 70% and the water droplet coarsening ability was low.
 比較例4は、実施例1に使用した粒子捕集層を不織布Aのみ、すなわち平均繊維径1.8μmのメルトブロー不織布のみにして、フィルタ性能評価を行った。実施例1~4と比較して、1μm粒子および4μm粒子の捕捉率が低く、また水分除去率が85%と低く、粒子捕捉能力及び水滴粗大化能力が低いことがわかった。 In Comparative Example 4, the particle collection layer used in Example 1 was only nonwoven fabric A, that is, only a melt blown nonwoven fabric having an average fiber diameter of 1.8 μm, and the filter performance was evaluated. Compared with Examples 1 to 4, it was found that the capture rate of 1 μm particles and 4 μm particles was low and the water removal rate was as low as 85%, so that the particle capture capability and water droplet coarsening capability were low.
 比較例5は、実施例1に使用した水滴粗大化層として、市販の平均繊維径25μmの濾紙を配置し、フィルタ性能評価を行った。実施例1~4と比較して、1μm粒子および4μm粒子の捕捉率は同等であったが、しかしながら、水分除去率が20%と低く、水滴粗大化能力が低いことがわかった。 In Comparative Example 5, a commercially available filter paper having an average fiber diameter of 25 μm was disposed as the water droplet coarsening layer used in Example 1, and the filter performance was evaluated. Compared with Examples 1 to 4, the capture rates of 1 μm particles and 4 μm particles were equivalent, however, it was found that the water removal rate was as low as 20% and the water droplet coarsening ability was low.
 比較例6は、実施例1に使用した粒子捕集層として、市販の平均繊維径25μmの濾紙を配置し、フィルタ性能評価を行った。実施例1~4と比較して、1μm粒子および4μm粒子の捕捉率が低く、水分除去率が85%と低く、粒子捕捉率と水分除去率が低いことがわかった。 In Comparative Example 6, as the particle collection layer used in Example 1, a commercially available filter paper having an average fiber diameter of 25 μm was disposed, and the filter performance was evaluated. Compared with Examples 1 to 4, it was found that the trapping rate of 1 μm particles and 4 μm particles was low, the moisture removal rate was as low as 85%, and the particle trapping rate and the moisture removal rate were low.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本発明のフィルタ材は、従来のフィルタ材に比べて、改善された微細粒子の捕捉性及び水分除去性、並びに延長されたフィルタ寿命を有する。したがって、本発明のフィルタ材は、例えば、ディーゼル自動車に設置される燃料フィルタのフィルタ材として好適に利用可能である。 The filter material of the present invention has improved fine particle capturing and moisture removal properties and extended filter life compared to conventional filter materials. Therefore, the filter material of the present invention can be suitably used as a filter material for a fuel filter installed in a diesel vehicle, for example.

Claims (6)

  1.  粒子捕集層と水滴粗大化層とを含む、フィルタ材であって、前記粒子捕集層は、平均繊維径の異なる2層以上のメルトブロー不織布の積層体を含み、前記水滴粗大化層は、メルトブロー不織布とスパンボンド不織布との積層体を含む、フィルタ材。 A filter material comprising a particle collection layer and a water droplet coarsening layer, wherein the particle collection layer comprises a laminate of two or more meltblown nonwoven fabrics having different average fiber diameters, A filter material comprising a laminate of a melt blown nonwoven fabric and a spunbond nonwoven fabric.
  2.  前記粒子捕集層は、平均繊維径0.1μm以上5.0μm以下のメルトブロー不織布を少なくとも2層以上含み、前記粒子捕集層全体の厚みが0.2mm以上0.7mm以下であり、前記粒子捕集層全体の平均流量孔径が0.5μm以上2.0μm以下である、請求項1に記載のフィルタ材。 The particle collection layer includes at least two melt blown nonwoven fabrics having an average fiber diameter of 0.1 μm or more and 5.0 μm or less, and the total particle collection layer has a thickness of 0.2 mm or more and 0.7 mm or less, and the particles The filter material according to claim 1, wherein an average flow pore size of the entire collection layer is 0.5 µm or more and 2.0 µm or less.
  3.  前記水滴粗大化層は、平均繊維径0.1μm以上5.0μm以下のメルトブロー不織布を少なくとも1層以上と、前記メルトブロー不織布の下流側に平均繊維径10μm以上20μm以下のスパンボンド不織布を少なくとも1層以上とを含み、
     前記水滴粗大化層全体の厚みが0.5mm以上1.2mm以下であり、前記水滴粗大化層全体の平均流量孔径が1.0μm以上4.0μm以下である、請求項1又は2に記載のフィルタ材。
    The water droplet coarsening layer includes at least one layer of melt blown nonwoven fabric having an average fiber diameter of 0.1 μm or more and 5.0 μm or less, and at least one layer of spunbond nonwoven fabric having an average fiber diameter of 10 μm or more and 20 μm or less downstream of the melt blown nonwoven fabric. Including
    The thickness of the whole said water droplet coarsening layer is 0.5 mm or more and 1.2 mm or less, The average flow hole diameter of the said whole water droplet coarsening layer is 1.0 micrometer or more and 4.0 micrometers or less, The Claim 1 or 2 characterized by the above-mentioned. Filter material.
  4.  ディーゼル車両用燃料フィルタ材として用いられる、請求項1~3のいずれか一項に記載のフィルタ材。 The filter material according to any one of claims 1 to 3, which is used as a fuel filter material for a diesel vehicle.
  5.  粒子捕集層と水滴粗大化層とを含むフィルタ材を用いた液体の濾過方法であって、
     前記粒子捕集層は、平均繊維径の異なる2層以上のメルトブロー不織布の積層体を含み、
     前記水滴粗大化層は、メルトブロー不織布とスパンボンド不織布との積層体を含み、
     前記液体を、前記粒子捕集層、前記水滴粗大化層の順に濾過することを含む、液体の濾過方法。
    A liquid filtration method using a filter material including a particle collection layer and a water droplet coarsening layer,
    The particle collection layer includes a laminate of two or more melt blown nonwoven fabrics having different average fiber diameters,
    The water droplet coarsening layer includes a laminate of a meltblown nonwoven fabric and a spunbond nonwoven fabric,
    A liquid filtration method comprising filtering the liquid in the order of the particle collection layer and the water droplet coarsening layer.
  6.  前記液体はディーゼル車両用燃料である、請求項5に記載の方法。 6. The method of claim 5, wherein the liquid is a diesel vehicle fuel.
PCT/JP2019/014868 2018-04-06 2019-04-03 Filter medium WO2019194244A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020512298A JPWO2019194244A1 (en) 2018-04-06 2019-04-03 Filter material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018073662 2018-04-06
JP2018-073662 2018-04-06

Publications (1)

Publication Number Publication Date
WO2019194244A1 true WO2019194244A1 (en) 2019-10-10

Family

ID=68100348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/014868 WO2019194244A1 (en) 2018-04-06 2019-04-03 Filter medium

Country Status (2)

Country Link
JP (1) JPWO2019194244A1 (en)
WO (1) WO2019194244A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7395949B2 (en) 2019-10-21 2023-12-12 東洋紡エムシー株式会社 Laminated filter media

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000288303A (en) * 1999-04-06 2000-10-17 Asahi Chem Ind Co Ltd Oil-water separating filter and method for coarsely granulating and separating oil-water mixed liquid
JP2010019151A (en) * 2008-07-10 2010-01-28 Nifco Inc Fuel filter
JP2010509039A (en) * 2006-11-02 2010-03-25 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Fuel filter
JP2012200682A (en) * 2011-03-25 2012-10-22 Asahi Kasei Fibers Corp Oil/water separation filter
JP2016507371A (en) * 2013-01-18 2016-03-10 クス フィルトレーション,インコーポレイティド Channel depth filtration media
WO2017007348A1 (en) * 2015-07-08 2017-01-12 Amazon Filters Spółka z Ograniczoną Odpowiedzialnością Separation system for simultaneous removal of both solid particles and liquid droplets suspended in another liquid

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000288303A (en) * 1999-04-06 2000-10-17 Asahi Chem Ind Co Ltd Oil-water separating filter and method for coarsely granulating and separating oil-water mixed liquid
JP2010509039A (en) * 2006-11-02 2010-03-25 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Fuel filter
JP2010019151A (en) * 2008-07-10 2010-01-28 Nifco Inc Fuel filter
JP2012200682A (en) * 2011-03-25 2012-10-22 Asahi Kasei Fibers Corp Oil/water separation filter
JP2016507371A (en) * 2013-01-18 2016-03-10 クス フィルトレーション,インコーポレイティド Channel depth filtration media
WO2017007348A1 (en) * 2015-07-08 2017-01-12 Amazon Filters Spółka z Ograniczoną Odpowiedzialnością Separation system for simultaneous removal of both solid particles and liquid droplets suspended in another liquid

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7395949B2 (en) 2019-10-21 2023-12-12 東洋紡エムシー株式会社 Laminated filter media

Also Published As

Publication number Publication date
JPWO2019194244A1 (en) 2021-01-07

Similar Documents

Publication Publication Date Title
CN102596862B (en) Surface coalescer
JP6441446B2 (en) Nanofiber-containing composite structure
JP5619723B2 (en) Air filtration media with improved dust accumulation capacity and improved resistance to high humidity environments
EP2079921B1 (en) Fuel filter
US8636833B2 (en) Air filtration medium with improved dust loading capacity and improved resistance to high humidity environment
US9895637B2 (en) Filter medium of a filter element, filter element and method for producing a filter medium
AU2011220734B2 (en) Compressed nanofiber composite media
US20120292252A1 (en) Tubular surface coalescers
US8372292B2 (en) Melt blown polymeric filtration medium for high efficiency fluid filtration
JP3802839B2 (en) Nonwoven fabric for filters and filters for engines
JP6907205B2 (en) Self-cleaning filter
WO2019194244A1 (en) Filter medium
JP4342282B2 (en) Filter material
JP6832089B2 (en) Filter material for automobile fuel
JP2021003704A (en) Filter material for fuel for automobile
JP2011184832A (en) Filter material for fuel suction filter
Wertz et al. Advantages of a new and advanced nanofiber coating technology for filtration media compared to the electrospinning process
Lee et al. Computational Modeling of High-efficiency Air Filter Media and Its Structural Design
CZ257797A3 (en) Multilayer filter bag

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19781866

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020512298

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19781866

Country of ref document: EP

Kind code of ref document: A1