JP7395428B2 - Dust radiation monitor and dust radiation measurement method - Google Patents

Dust radiation monitor and dust radiation measurement method Download PDF

Info

Publication number
JP7395428B2
JP7395428B2 JP2020103739A JP2020103739A JP7395428B2 JP 7395428 B2 JP7395428 B2 JP 7395428B2 JP 2020103739 A JP2020103739 A JP 2020103739A JP 2020103739 A JP2020103739 A JP 2020103739A JP 7395428 B2 JP7395428 B2 JP 7395428B2
Authority
JP
Japan
Prior art keywords
concentration
dust
average current
reference value
count rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020103739A
Other languages
Japanese (ja)
Other versions
JP2021196291A (en
Inventor
博之 矢澤
将史 黒崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2020103739A priority Critical patent/JP7395428B2/en
Publication of JP2021196291A publication Critical patent/JP2021196291A/en
Application granted granted Critical
Publication of JP7395428B2 publication Critical patent/JP7395428B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)

Description

本発明の実施形態は、ダスト放射線モニタおよびダスト放射線計測方法に関する。 Embodiments of the present invention relate to a dust radiation monitor and a dust radiation measurement method.

放射線管理区域内における作業を行うにあたっては、作業エリアの空気に含まれる放射性物質の濃度(単位体積当たりの放射能。以下、「ダスト濃度」とも呼ぶ。)を測定し、当該エリアの安全監視を常時行うことが必須である。これを達成する装置としてダスト放射線モニタがある。ダスト濃度の測定においては、サンプリング点から測定装置まで配管を敷設し、ポンプにより吸引した気体をろ紙で集塵し、ろ紙対面に配置する放射線検出器にてろ紙から放出される放射線を検知し、そこから出力されるパルス状の電気信号を計数し、それを基にダスト濃度を算出する方式が一般的である。 When performing work in a radiation controlled area, the concentration of radioactive substances contained in the air in the work area (radioactivity per unit volume, hereinafter also referred to as "dust concentration") is measured and safety monitoring of the area is carried out. It is essential to do this at all times. A device that accomplishes this is a dust radiation monitor. To measure dust concentration, piping is laid from the sampling point to the measuring device, the gas sucked in by a pump is collected with filter paper, and a radiation detector placed opposite the filter paper detects the radiation emitted from the filter paper. A common method is to count the pulsed electrical signals output from the sensor and calculate the dust concentration based on that.

しかし、たとえば建物や機器の解体を進めている作業エリアにおいては、作業の中で多量の粉塵等が舞い上がり、高濃度の放射性物質が含まれる気体を一時的に、もしくは一定時間吸引することがあり得る。この時、放射線検出器は頻繁に放射線を検知するため、放射線検出器から出力される各々のパルス状の電気信号が頻発し重畳することにより正しい計数が困難となることが想定される。つまり計測機器としての測定上限を超えるような高いダスト濃度となる場合においては、測定機器が飽和状態となり監視が困難となることが懸念されており、その解決策が求められている。 However, for example, in a work area where buildings and equipment are being dismantled, a large amount of dust may be stirred up during the work, and gas containing high concentrations of radioactive materials may be inhaled temporarily or for a certain period of time. obtain. At this time, since the radiation detector frequently detects radiation, it is assumed that each pulse-shaped electrical signal outputted from the radiation detector occurs frequently and overlaps, making accurate counting difficult. In other words, if the dust concentration exceeds the upper limit of measurement for a measuring device, there is a concern that the measuring device will become saturated and monitoring will become difficult, and a solution is needed.

一方、放射線計測システムにおいて、放射線量が低い場合には放射線計数率に基づいて放射線量を評価し、放射線量が高い場合には所定時間内の平均電流に基づいて放射線量を評価する技術が知られている。 On the other hand, in radiation measurement systems, there is a known technology that evaluates the radiation dose based on the radiation count rate when the radiation dose is low, and based on the average current within a predetermined time when the radiation dose is high. It is being

特開昭61-62886号公報Japanese Unexamined Patent Publication No. 61-62886 特開2003-35779号公報Japanese Patent Application Publication No. 2003-35779

しかし、ダスト濃度が大幅に変化した場合に、ダスト濃度を低濃度領域から高濃度領域までの広い測定レンジにわたって、途切れなく連続的に測定する技術は知られていない。 However, there is no known technique for continuously measuring the dust concentration over a wide measurement range from a low concentration region to a high concentration region when the dust concentration changes significantly.

本発明の実施形態は、ダスト濃度が大幅に変化した場合であっても、広い測定レンジにわたって、途切れなく連続的にダスト放射線を測定することができるようにすることを目的とする。 Embodiments of the present invention aim to enable uninterrupted and continuous measurement of dust radiation over a wide measurement range, even when the dust concentration changes significantly.

本発明の実施形態に係るダスト放射線モニタは、ダストを含むガスを流通させる集塵容器と、前記集塵容器に取り付けられて、前記ダストを捕集して前記ガスを透過させるフィルタと、前記フィルタで捕集された前記ダストから出る放射線を検出して電気信号を出力する放射線検出器と、前記放射線検出器の出力に基づいて放射線の計数率を算出する計数処理回路と、前記放射線検出器の出力の所定時間内の平均電流を算出する平均電流処理部と、前記計数処理回路で得られた前記計数率と、前記平均電流処理部で得られた平均電流と、に基づいて、前記ガス中のダスト濃度を算出する濃度演算部と、を有するダスト放射線モニタであって、前記濃度演算部は、前記計数率と前記ガス中のダスト濃度とが比例すると仮定して、前記計数率に基づいて前記ガス中のダスト濃度に対応する計数率濃度を算出する計数率濃度演算部と、前記平均電流と前記ガス中のダスト濃度とが比例すると仮定して、前記平均電流に基づいて前記ガス中のダスト濃度に対応する平均電流濃度を算出する平均電流濃度演算部と、前記計数率濃度演算部の出力が所定の低濃度基準値よりも高く、かつ前記平均電流濃度演算部の出力が前記低濃度基準値よりも高い所定の高濃度基準値よりも低い場合に、前記計数率濃度と前記平均電流濃度との加重平均を算出する加重平均算出部と、を備え、前記加重平均は、前記計数率濃度が前記低濃度基準値に近いほど前記計数率濃度への加重率が大きく、前記平均電流濃度が前記高濃度基準値に近いほど前記平均電流濃度への加重率が大きくなるように加重するものであって、前記計数率濃度への加重率は、前記計数率濃度が前記低濃度基準値に等しいときに1であり、前記平均電流濃度が前記高濃度基準値に等しいときにゼロであること、を特徴とする。

A dust radiation monitor according to an embodiment of the present invention includes a dust collection container through which a gas containing dust flows, a filter attached to the dust collection container to collect the dust and transmit the gas, and the filter. a radiation detector that detects radiation emitted from the dust collected by the dust and outputs an electrical signal; a counting processing circuit that calculates a radiation counting rate based on the output of the radiation detector; an average current processing unit that calculates an average current within a predetermined time of output; the counting rate obtained by the counting processing circuit; and the average current obtained by the average current processing unit. A dust radiation monitor comprising: a concentration calculation unit that calculates a dust concentration of a count rate concentration calculation unit that calculates a count rate concentration corresponding to the dust concentration in the gas; and a count rate concentration calculation unit that calculates a count rate concentration corresponding to the dust concentration in the gas, and a an average current concentration calculation section that calculates an average current concentration corresponding to the dust concentration, and an output of the count rate concentration calculation section that is higher than a predetermined low concentration reference value, and an output of the average current concentration calculation section that calculates the low concentration a weighted average calculation unit that calculates a weighted average of the count rate concentration and the average current concentration when the concentration is lower than a predetermined high concentration reference value that is higher than a reference value; Weighting is performed such that the closer the concentration is to the low concentration reference value, the greater the weighting rate to the count rate concentration, and the closer the average current concentration is to the high concentration reference value, the greater the weighting rate to the average current concentration. wherein the weighting factor for the count rate concentration is 1 when the count rate concentration is equal to the low concentration reference value and zero when the average current concentration is equal to the high concentration reference value. , is characterized by.

また、本発明の実施形態に係るダスト放射線計測方法は、ダストを含むガスをフィルタに透過させて前記ダストを捕集するダスト捕集ステップと、前記フィルタで捕集された前記ダストから出る放射線を放射線検出器によって検出して電気信号を出力する放射線検出ステップと、前記放射線検出器の出力に基づいて放射線の計数率を算出する計数処理ステップと、前記放射線検出器の出力の所定時間内の平均電流を算出する平均電流算出ステップと、前記計数率と前記ガス中のダスト濃度とが比例すると仮定して、前記計数率に基づいて、前記ガス中のダスト濃度に対応する計数率濃度を算出する計数率濃度演算ステップと、前記平均電流と前記ガス中のダスト濃度とが比例すると仮定して、前記平均電流に基づいて、前記ガス中のダスト濃度に対応する平均電流濃度を算出する平均電流濃度演算ステップと、前記計数率濃度が所定の低濃度基準値よりも高く、かつ前記平均電流濃度が前記低濃度基準値よりも高い所定の高濃度基準値よりも低い場合に、前記計数率濃度と前記平均電流濃度との加重平均を算出する加重平均算出ステップと、を備えたダスト放射線計測方法であって、前記加重平均は、前記計数率濃度が前記低濃度基準値に近いほど前記計数率濃度への加重率が大きく、前記平均電流濃度が前記高濃度基準値に近いほど前記平均電流濃度への加重率が大きくなるように加重するものであって、前記計数率濃度への加重率は、前記計数率濃度が前記低濃度基準値に等しいときに1とし、前記平均電流濃度が前記高濃度基準値に等しいときにゼロとし、前記計数率濃度が前記低濃度基準値以下である場合には前記計数率濃度を前記ガス中のダスト濃度とし、前記平均電流濃度が前記高濃度基準値以上である場合には前記平均電流濃度を前記ガス中のダスト濃度とし、前記計数率濃度が前記低濃度基準値よりも高く、かつ、前記平均電流濃度が前記高濃度基準値よりも低い場合には、前記加重平均を前記ガス中のダスト濃度とすること、を特徴とする。 Further, the dust radiation measuring method according to the embodiment of the present invention includes a dust collecting step of transmitting a gas containing dust through a filter and collecting the dust, and a step of collecting the dust, and collecting the radiation emitted from the dust collected by the filter. a radiation detection step of detecting with a radiation detector and outputting an electrical signal; a counting processing step of calculating a radiation counting rate based on the output of the radiation detector; and an average of the output of the radiation detector within a predetermined time. an average current calculation step of calculating a current, and calculating a count rate concentration corresponding to the dust concentration in the gas based on the count rate, assuming that the count rate and the dust concentration in the gas are proportional. a count rate concentration calculation step; and an average current concentration for calculating an average current concentration corresponding to the dust concentration in the gas based on the average current, assuming that the average current and the dust concentration in the gas are proportional. calculating the count rate concentration when the count rate concentration is higher than a predetermined low concentration reference value and the average current concentration is lower than a predetermined high concentration reference value higher than the low concentration reference value; A dust radiation measurement method comprising: a weighted average calculation step of calculating a weighted average with the average current concentration, wherein the weighted average is such that the closer the count rate concentration is to the low concentration reference value, the lower the count rate concentration is. The weighting rate to the count rate concentration is large, and the closer the average current concentration is to the high concentration reference value, the higher the weighting rate to the average current concentration is.The weighting rate to the count rate concentration is: Set to 1 when the count rate concentration is equal to the low concentration reference value, set to 0 when the average current concentration is equal to the high concentration reference value, and set to 0 when the count rate concentration is equal to or lower than the low concentration reference value. The count rate concentration is the dust concentration in the gas, and if the average current concentration is equal to or higher than the high concentration reference value, the average current concentration is the dust concentration in the gas, and the count rate concentration is the low concentration. If the average current concentration is higher than a reference value and lower than the high concentration reference value, the weighted average is set as the dust concentration in the gas.

本発明の実施形態によれば、ダスト濃度が大幅に変化した場合であっても、広い測定レンジにわたって、途切れなく連続的にダスト放射線を測定することができる。 According to embodiments of the present invention, dust radiation can be continuously measured without interruption over a wide measurement range even when the dust concentration changes significantly.

本発明に係るダスト放射線モニタの一実施形態の構成を示すブロック図。FIG. 1 is a block diagram showing the configuration of an embodiment of a dust radiation monitor according to the present invention. 図1のダスト放射線モニタを用いたダスト放射線測定方法の一実施形態の手順を示すフロー図。FIG. 2 is a flowchart showing the procedure of an embodiment of a dust radiation measuring method using the dust radiation monitor of FIG. 1. FIG. 本発明に係るダスト放射線モニタの一実施形態におけるダスト濃度算出の手法を説明するための図であって、横軸は真のダクト濃度であり、縦軸はダスト濃度指示値である。FIG. 2 is a diagram for explaining a method of calculating dust concentration in an embodiment of the dust radiation monitor according to the present invention, in which the horizontal axis is the true duct concentration, and the vertical axis is the dust concentration instruction value. 図1のダスト放射線モニタを用いたダスト放射線測定方法の一実施形態において、低濃度基準値、高濃度基準値および加重率関係式を決定する手順を示すフロー図。2 is a flowchart showing a procedure for determining a low concentration reference value, a high concentration reference value, and a weighting rate relational expression in an embodiment of the dust radiation measurement method using the dust radiation monitor of FIG. 1. FIG.

以下に、図面を参照して本発明の一実施形態に係るダスト放射線モニタおよびダスト放射線計測方法について説明する。 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A dust radiation monitor and a dust radiation measuring method according to an embodiment of the present invention will be described below with reference to the drawings.

図1は、本発明に係るダスト放射線モニタの一実施形態の構成を示すブロック図である。このダスト放射線モニタは、集塵容器12と、吸引ポンプ13と、ろ紙(フィルタ)14と、放射線検出器15と、増幅回路16と、計数処理回路17と、平均電流処理部18と、濃度演算部19とを有する。 FIG. 1 is a block diagram showing the configuration of an embodiment of a dust radiation monitor according to the present invention. This dust radiation monitor includes a dust collection container 12, a suction pump 13, a filter paper (filter) 14, a radiation detector 15, an amplifier circuit 16, a counting processing circuit 17, an average current processing section 18, and a concentration calculation unit. 19.

集塵容器12にはガス導入管21およびガス排出管22が接続され、ガス排出管22に吸引ポンプ13が取り付けられている。ろ紙14は、集塵容器12に取り付けられている。測定対象であるダスト(塵埃)を含むガス(たとえば空気)11は、ガス導入管21から集塵容器12に導入され、ろ紙14を透過して、吸引ポンプ13によって吸引され、ガス排出管22から排出される。ガス11中に含まれたダストは、ろ紙14によって捕集される。ろ紙14は、微細な孔を無数に有し、紙もしくは樹脂の材質で構成されるものである。集塵容器12には、図示しないろ紙巻取り装置が取り付けられていて、所定時間(たとえば、数分ないし数時間)に放射線検出が終了するごとに新たなろ紙14の部分がガス11中に曝されるように構成されている。 A gas introduction pipe 21 and a gas discharge pipe 22 are connected to the dust collection container 12, and a suction pump 13 is attached to the gas discharge pipe 22. Filter paper 14 is attached to dust collection container 12. A gas (for example, air) 11 containing dust to be measured is introduced into the dust collection container 12 from the gas introduction pipe 21, passes through the filter paper 14, is sucked by the suction pump 13, and is discharged from the gas exhaust pipe 22. be discharged. Dust contained in the gas 11 is collected by the filter paper 14. The filter paper 14 has countless fine holes and is made of paper or resin material. A filter paper winding device (not shown) is attached to the dust collection container 12, and a new portion of the filter paper 14 is exposed to the gas 11 every time radiation detection is completed at a predetermined time (for example, several minutes to several hours). is configured to be

放射線検出器15は、ろ紙14によって捕集されたダストから発せられる放射線を電気信号に変換するものであって、放射線(たとえばβ線)を検知して発光するシンチレータ25と、光を受光するとそれに応じた電気信号を出力する光電子増倍管26とを有する。放射線検出器15に放射線24が入射するとシンチレータ25がわずかな蛍光を発生する。シンチレータ25から発せられた光が光電子増倍管26に入射して光電子が生成され、電子数が数百~数万倍の数に増幅され、光電子増倍管26よりパルス状の電気信号として出力される。放射線検出器15は筐体が閉構造となっており、外部からの光は入らないように構成されている。 The radiation detector 15 converts the radiation emitted from the dust collected by the filter paper 14 into an electrical signal, and includes a scintillator 25 that detects radiation (for example, β rays) and emits light, and a scintillator 25 that detects radiation (for example, β rays) and emits light, and a scintillator 25 that detects radiation (for example, β rays) and emits light. It has a photomultiplier tube 26 that outputs a corresponding electric signal. When the radiation 24 is incident on the radiation detector 15, the scintillator 25 generates a slight fluorescence. The light emitted from the scintillator 25 enters the photomultiplier tube 26 to generate photoelectrons, the number of electrons is amplified several hundred to tens of thousands of times, and the photoelectron multiplier tube 26 outputs it as a pulsed electrical signal. be done. The radiation detector 15 has a closed housing and is configured to prevent light from entering from the outside.

増幅回路16は、ケーブル30によって放射線検出器15に接続されていて、光電子増倍管26から出力される電気信号を増幅するものである。 The amplifier circuit 16 is connected to the radiation detector 15 via a cable 30 and amplifies the electrical signal output from the photomultiplier tube 26.

計数処理回路17は、増幅回路16の出力に基づいて、設定された閾値以下の信号を除去する波高弁別処理を行い、単位時間当たりの電気信号の数を計数して、計数率(単位時間当たりパルス数)を算出する。 The counting processing circuit 17 performs wave height discrimination processing to remove signals below a set threshold based on the output of the amplifier circuit 16, counts the number of electrical signals per unit time, and calculates the counting rate (per unit time). (number of pulses).

平均電流処理部18は、増幅回路16の出力である電気信号の所定時間内の平均である平均電流値を算出する。 The average current processing unit 18 calculates an average current value that is the average of the electrical signal output from the amplifier circuit 16 within a predetermined time.

濃度演算部19は、計数処理回路17の出力および平均電流処理部18の出力に基づいてダスト濃度を出力するものであって、計数率濃度演算部33と、平均電流濃度演算部34と、加重平均演算部35と、出力選択部36とを有している。 The concentration calculation unit 19 outputs the dust concentration based on the output of the counting processing circuit 17 and the output of the average current processing unit 18, and includes a count rate concentration calculation unit 33, an average current concentration calculation unit 34, and a weighted It has an average calculation section 35 and an output selection section 36.

計数率濃度演算部33は、計数処理回路17の出力である計数率Rに対して換算係数を乗じることによってダスト濃度を算出する。ダスト濃度を算出するための演算は、たとえば下記の式(1)による。式(1)において、Cはダスト濃度、Rは計数率、ηは検出器固有の検出効率、Qはろ紙14を通過したガスの流量の平均値、tは集塵経過時間、Dはろ紙14固有の捕集効率である。この式(1)を用いる場合は、換算係数は、D・η/(Q・t)である。なお、(Q・t)は塵埃経過時間内にフィルタ14を透過したガスの体積である。 The count rate concentration calculation unit 33 calculates the dust concentration by multiplying the count rate R, which is the output of the counting processing circuit 17, by a conversion coefficient. The calculation for calculating the dust concentration is based on the following equation (1), for example. In equation (1), C is the dust concentration, R is the counting rate, η is the detection efficiency specific to the detector, Q is the average flow rate of the gas passing through the filter paper 14, t is the elapsed time for dust collection, and D is the filter paper 14 Inherent collection efficiency. When using this equation (1), the conversion coefficient is D·η/(Q·t). Note that (Q·t) is the volume of gas that has passed through the filter 14 within the dust elapsed time.

C=D・η・R/(Q・t) ・・・ (1)
計数率濃度演算部33によって得られたダスト濃度を、ここでは「計数率濃度」と呼ぶ。ダスト濃度が比較的低い場合に、計数率濃度がダクト濃度として使用される。
C=D・η・R/(Q・t) ... (1)
The dust concentration obtained by the count rate concentration calculation unit 33 is herein referred to as "count rate concentration." When the dust concentration is relatively low, the count rate concentration is used as the duct concentration.

平均電流濃度演算部34では、平均電流処理部18の出力に、係数を乗ずることにより、ダスト濃度を求める。この係数は平均電流と計数率の関係性を示すものであり、予め得られているものとする。平均電流濃度演算部34によって得られたダスト濃度を、ここでは「平均電流濃度」と呼ぶ。ダスト濃度が比較的高い場合に、平均電流濃度がダクト濃度として使用される。 The average current concentration calculating section 34 calculates the dust concentration by multiplying the output of the average current processing section 18 by a coefficient. This coefficient indicates the relationship between the average current and the counting rate, and is assumed to be obtained in advance. The dust concentration obtained by the average current concentration calculating section 34 is referred to as "average current concentration" here. When the dust concentration is relatively high, the average current concentration is used as the duct concentration.

計数率濃度演算部33の出力および平均電流濃度演算部34の出力は、ともに、加重平均演算部35および出力選択部36に入力される。加重平均演算部35は、計数率濃度が所定の低濃度基準値よりも高く平均電流濃度が所定の高濃度基準値よりも低い場合に、計数率濃度と平均電流濃度の加重平均を計算して、その結果を出力選択部36に出力する。高濃度基準値は低濃度基準値よりも高い。高濃度基準値、低濃度基準値および加重平均の計算方法については、図3および図4を用いて後述する。 The output of the count rate concentration calculation section 33 and the output of the average current concentration calculation section 34 are both input to the weighted average calculation section 35 and the output selection section 36. The weighted average calculation unit 35 calculates a weighted average of the count rate concentration and the average current concentration when the count rate concentration is higher than a predetermined low concentration reference value and the average current concentration is lower than a predetermined high concentration reference value. , and outputs the result to the output selection section 36. The high concentration reference value is higher than the low concentration reference value. A method for calculating the high concentration reference value, low concentration reference value, and weighted average will be described later using FIGS. 3 and 4.

出力選択部36は、計数率濃度が低濃度基準値以下のときは計数率濃度をダクト濃度として出力し、平均電流濃度が高濃度基準値以上のときは平均電流濃度をダクト濃度として出力し、計数率濃度が低濃度基準値より高く平均電流濃度が高濃度基準値より低いときは加重平均演算部35の出力をダクト濃度として出力する。 The output selection unit 36 outputs the count rate concentration as a duct concentration when the count rate concentration is below the low concentration reference value, outputs the average current concentration as the duct concentration when the average current concentration is above the high concentration reference value, When the count rate concentration is higher than the low concentration reference value and the average current concentration is lower than the high concentration reference value, the output of the weighted average calculation section 35 is output as the duct concentration.

図2は、図1のダスト放射線モニタを用いたダスト放射線測定方法の一実施形態の手順を示すフロー図である。 FIG. 2 is a flow diagram showing the procedure of an embodiment of a dust radiation measuring method using the dust radiation monitor of FIG. 1.

まず、ダストを含むガス11をフィルタ14に透過させてダストを捕集する(ダスト捕集ステップS11)。つぎに、フィルタ14で捕集されたダストから出る放射線を放射線検出器15によって検出して電気信号を出力する(放射線検出ステップS12)。 First, the gas 11 containing dust is transmitted through the filter 14 and the dust is collected (dust collection step S11). Next, the radiation detector 15 detects radiation emitted from the dust collected by the filter 14 and outputs an electrical signal (radiation detection step S12).

つぎに、計数処理回路17が、放射線検出器15の出力に基づいて放射線の計数率を算出する(計数処理ステップS13)。また、平均電流処理部18が、放射線検出器15の出力の所定時間内の平均電流を算出する(平均電流算出ステップS14)。 Next, the counting processing circuit 17 calculates a radiation counting rate based on the output of the radiation detector 15 (counting processing step S13). Further, the average current processing unit 18 calculates the average current of the output of the radiation detector 15 within a predetermined time (average current calculation step S14).

つぎに、計数率濃度演算部33が、計数率とガス中のダスト濃度とが比例すると仮定して、計数率とガスの体積とに基づいて、ガス中のダスト濃度に対応する計数率濃度を算出する(計数率濃度演算ステップS15)。また、平均電流濃度演算部34が、平均電流とガス中のダスト濃度とが比例すると仮定して、平均電流とガスの体積とに基づいて、ガス中のダスト濃度に対応する平均電流濃度を算出する(平均電流濃度演算ステップS16)。 Next, on the assumption that the count rate and the dust concentration in the gas are proportional, the count rate concentration calculation unit 33 calculates the count rate concentration corresponding to the dust concentration in the gas based on the count rate and the volume of the gas. Calculate (count rate concentration calculation step S15). Further, the average current concentration calculation unit 34 calculates the average current concentration corresponding to the dust concentration in the gas based on the average current and the volume of the gas, assuming that the average current and the dust concentration in the gas are proportional. (average current concentration calculation step S16).

つぎに、計数率濃度が所定の低濃度基準値よりも高く、かつ平均電流濃度が低濃度基準値よりも高い所定の高濃度基準値よりも低い場合に、加重平均演算部35が、計数率濃度と平均電流濃度との加重平均を算出する(加重平均算出ステップS17)。 Next, when the count rate concentration is higher than a predetermined low concentration reference value and the average current concentration is lower than a predetermined high concentration reference value which is higher than the low concentration reference value, the weighted average calculation unit 35 calculates the count rate A weighted average of the concentration and the average current concentration is calculated (weighted average calculation step S17).

つぎに、出力選択部36が、計数率濃度、平均電流濃度および加重平均のうちの一つを選択してガス中のダスト濃度として出力する(濃度計測結果出力ステップS18)。ここで、計数率濃度が低濃度基準値以下である場合には計数率濃度をガス中のダスト濃度として選択し、平均電流濃度が高濃度基準値以上である場合には平均電流濃度をガス中のダスト濃度として選択する。また、計数率濃度が低濃度基準値よりも高く、かつ、平均電流濃度が高濃度基準値よりも低い場合には、加重平均をガス中のダスト濃度として選択する。 Next, the output selection unit 36 selects one of the count rate concentration, average current concentration, and weighted average and outputs it as the dust concentration in the gas (concentration measurement result output step S18). Here, if the count rate concentration is below the low concentration standard value, the count rate concentration is selected as the dust concentration in the gas, and if the average current concentration is above the high concentration standard value, the average current concentration is selected as the dust concentration in the gas. Select as the dust concentration. Furthermore, when the count rate concentration is higher than the low concentration reference value and the average current concentration is lower than the high concentration reference value, the weighted average is selected as the dust concentration in the gas.

ここで、計数率濃度と平均電流濃度とを用いて広範囲のダスト濃度を求める方法について、図3を用いて説明する。 Here, a method for determining the dust concentration over a wide range using the count rate concentration and the average current concentration will be explained using FIG. 3.

図3は、本発明に係るダスト放射線モニタの一実施形態におけるダスト濃度算出の手法を説明するための図であって、横軸は真のダクト濃度であり、縦軸はダスト濃度指示値である。 FIG. 3 is a diagram for explaining a method of calculating dust concentration in an embodiment of the dust radiation monitor according to the present invention, in which the horizontal axis is the true duct concentration and the vertical axis is the dust concentration indication value. .

計数処理回路17による計数率濃度は比較的低計数率において高い精度を持ち、また平均電流処理部18による平均電流濃度は比較的高計数率において高い精度を持つ。計数処理回路17は、高計数率、つまり多量の放射性物質がろ紙14に集塵される場合においては、パルス状の電気信号の頻度が非常に高くなり、各々の電気信号が重畳することにより正確な計数が困難となり精度が低下する。また、平均電流処理部18は、比較的低計数率において、パルス状の電気信号により平均化を行うことから精度が低い。 The count rate density produced by the counting processing circuit 17 has high accuracy at relatively low counting rates, and the average current density produced by the average current processing unit 18 has high precision at relatively high counting rates. In the counting processing circuit 17, when the counting rate is high, that is, when a large amount of radioactive material is collected on the filter paper 14, the frequency of pulsed electrical signals becomes very high, and the accuracy is increased by superimposing each electrical signal. This makes accurate counting difficult and reduces accuracy. Furthermore, the average current processing unit 18 has low accuracy because it performs averaging using a pulsed electrical signal at a relatively low counting rate.

図3に示すように、計数処理回路17による計数率濃度の指示値C1は、真のダスト濃度が低濃度基準値CL以下の比較的低い場合は、真のダスト濃度に一致する。そのため、真のダスト濃度が低濃度基準値CL以下の比較的低い場合は、計数率濃度の指示値C1を真のダスト濃度とすることができる。真のダスト濃度が低濃度基準値CLを超えると、計数率濃度の指示値C1は真のダスト濃度よりも低い値を示す。 As shown in FIG. 3, the instruction value C1 of the count rate concentration by the counting processing circuit 17 matches the true dust concentration when the true dust concentration is relatively low below the low concentration reference value CL. Therefore, when the true dust concentration is relatively low below the low concentration reference value CL, the count rate concentration instruction value C1 can be set as the true dust concentration. When the true dust concentration exceeds the low concentration reference value CL, the count rate concentration instruction value C1 indicates a value lower than the true dust concentration.

平均電流処理部18による平均電流濃度の指示値C2は、真のダスト濃度が高濃度基準値CH以上の比較的高い場合は、真のダスト濃度に一致する。そのため、真のダスト濃度が高濃度基準値CH以上の比較的高い場合は、計数率濃度の指示値C2を真のダスト濃度とすることができる。真のダスト濃度が高濃度基準値CHを下回ると、計数率濃度の指示値C2は真のダスト濃度よりも高い値を示す。 The average current concentration instruction value C2 by the average current processing unit 18 matches the true dust concentration when the true dust concentration is relatively high, equal to or higher than the high concentration reference value CH. Therefore, when the true dust concentration is relatively high, equal to or higher than the high concentration reference value CH, the instruction value C2 of the count rate concentration can be set as the true dust concentration. When the true dust concentration is lower than the high concentration reference value CH, the count rate concentration instruction value C2 indicates a value higher than the true dust concentration.

CL~CHの中間領域については、下記の式(2)により、計数処理による計数率濃度の指示値C1と平均電流による平均電流濃度の指示値C2の加重平均を計算し、この加重平均をダスト濃度とする。 For the intermediate region between CL and CH, the weighted average of the indicated value C1 of the count rate concentration by the counting process and the indicated value C2 of the average current concentration by the average current is calculated using the following equation (2), and this weighted average is calculated as the dust Let it be the concentration.

C=k・C1+(1-k)・C2 ・・・ (2)
ここで、kは、計数率濃度への加重率であって、計数率濃度の指示値C1および平均電流濃度の指示値C2の関数であり、ゼロから1の値である。平均電流濃度への加重率は(1-k)となる。計数率濃度の指示値C1が低濃度基準値CLに等しい場合はk=1であり、平均電流濃度の指示値C2が高濃度基準値CHに等しい場合はk=0である。CL~CHの中間領域において、計数率濃度への加重率kは、計数率濃度の指示値C1が大きいほど、また、平均電流濃度の指示値C2が大きいほど、小さくなる。
C=k・C1+(1-k)・C2... (2)
Here, k is a weighting rate to the count rate concentration, is a function of the count rate concentration instruction value C1 and the average current concentration instruction value C2, and has a value from zero to one. The weighting rate for the average current concentration is (1-k). When the count rate concentration instruction value C1 is equal to the low concentration reference value CL, k=1, and when the average current concentration instruction value C2 is equal to the high concentration reference value CH, k=0. In the intermediate region from CL to CH, the weighting rate k to the count rate concentration becomes smaller as the indicated value C1 of the count rate concentration becomes larger and as the indicated value C2 of the average current concentration becomes larger.

つぎに、上記の処理を行うために必要となる低濃度基準値、高濃度基準値および加重率関係式を決定する手順について、図4を用いて説明する。図4は、図1のダスト放射線モニタを用いたダスト放射線測定方法の一実施形態において、低濃度基準値、高濃度基準値および加重率関係式を決定する手順を示すフロー図である。 Next, a procedure for determining the low concentration reference value, high concentration reference value, and weighting rate relational expression necessary for performing the above processing will be explained using FIG. 4. FIG. 4 is a flowchart showing a procedure for determining a low concentration reference value, a high concentration reference value, and a weighting rate relational expression in an embodiment of the dust radiation measurement method using the dust radiation monitor of FIG.

これらの値および関係式を決定するに当たっては、はじめに、図1に示すダスト放射線モニタを用いて、さらに、少なくとも3種類以上の既知のダスト濃度のガスそれぞれについて、ダスト捕集ステップS11と放射線検出ステップS12と計数処理ステップS13と(図2参照)を行う。これによって、計数率とダスト濃度との関係を求める(計数率ダスト濃度関係取得ステップS51)。これにより、図3の計数処理によるダスト濃度指示値C1の曲線を得ることができる。 In determining these values and relational expressions, first, using the dust radiation monitor shown in FIG. S12 and counting process step S13 (see FIG. 2) are performed. Thereby, the relationship between the count rate and the dust concentration is determined (count rate dust concentration relationship acquisition step S51). Thereby, a curve of the dust concentration instruction value C1 can be obtained by the counting process shown in FIG. 3.

同様に、図1に示すダスト放射線モニタを用いて、さらに、少なくとも3種類以上の既知のダスト濃度のガスそれぞれについて、ダスト捕集ステップS11と放射線検出ステップS12と平均電流算出ステップS14と(図2参照)を行う。これによって、平均電流とダスト濃度との関係を求める(平均電流ダスト濃度関係取得ステップS52)。これにより、図3の平均電流によるダスト濃度指示値C2の曲線を得ることができる。 Similarly, using the dust radiation monitor shown in FIG. ). Thereby, the relationship between the average current and the dust concentration is determined (average current dust concentration relationship acquisition step S52). Thereby, the curve of the dust concentration instruction value C2 according to the average current shown in FIG. 3 can be obtained.

なお、上述の計数率ダスト濃度関係取得ステップS51において用いる既知のダスト濃度のガスと、平均電流ダスト濃度関係取得ステップS52において用いる既知のダスト濃度のガスとは、一部または全部で共通のものであってもよい。また、既知のダスト濃度のガスが共通である場合においては、計数率ダスト濃度関係取得ステップS51および平均電流ダスト濃度関係取得ステップS52におけるダスト捕集ステップS11および放射線検出ステップS12は、それぞれ共通のステップとすることができる。 Note that the gas with a known dust concentration used in the above-mentioned count rate dust concentration relationship acquisition step S51 and the gas with a known dust concentration used in the average current dust concentration relationship acquisition step S52 are partially or completely common. There may be. Furthermore, in the case where gases having a known dust concentration are common, the dust collection step S11 and the radiation detection step S12 in the count rate dust concentration relationship acquisition step S51 and the average current dust concentration relationship acquisition step S52 are each a common step. It can be done.

つぎに、図3の計数処理によるダスト濃度指示値C1の曲線が、傾き1で原点を通る直線からずれ始める点として、低濃度基準値CLを求める(低濃度基準値決定ステップS53)。計数処理によるダスト濃度指示値C1の曲線は、低濃度基準値CL以下の領域で傾き1で原点を通る直線となっている。 Next, a low concentration reference value CL is determined as the point at which the curve of the dust concentration instruction value C1 obtained by the counting process in FIG. 3 begins to deviate from the straight line passing through the origin with a slope of 1 (low concentration reference value determination step S53). The curve of the dust concentration instruction value C1 obtained by the counting process is a straight line passing through the origin with a slope of 1 in the region below the low concentration reference value CL.

同様に、図3の平均電流による濃度指示値C2の曲線が、傾き1で原点を通る直線からずれ始める点として、高濃度基準値CHを求める(高濃度基準値決定ステップS54)。平均電流による濃度指示値C2の曲線は、高濃度基準値CH以上の領域で傾き1で原点を通る直線となっている。 Similarly, the high concentration reference value CH is determined as the point at which the curve of the concentration instruction value C2 based on the average current in FIG. 3 begins to deviate from the straight line passing through the origin with a slope of 1 (high concentration reference value determination step S54). The curve of the concentration instruction value C2 based on the average current is a straight line passing through the origin with a slope of 1 in the region of the high concentration reference value CH or higher.

つぎに、図3で、真のダスト濃度が低濃度基準値CLと高濃度基準値CHの間にある領域(中間領域)で、式(2)を満足させる加重率kの式を決定する(加重率関係式決定ステップS55)。 Next, in FIG. 3, in the region (intermediate region) where the true dust concentration is between the low concentration reference value CL and the high concentration reference value CH, a formula for the weighting rate k that satisfies formula (2) is determined ( Weighting rate relational expression determination step S55).

ここで、加重率kは、計数処理によるダスト濃度指示値C1と平均電流による濃度指示値C2の関数であり、図3の真のダスト濃度Cと、計数処理によるダスト濃度指示値C1の曲線および平均電流による濃度指示値C2の曲線の関係から、その関係式を決定することができる。 Here, the weighting rate k is a function of the dust concentration instruction value C1 obtained by the counting process and the concentration instruction value C2 obtained by the average current, and the curve of the true dust concentration C and the dust concentration instruction value C1 obtained by the counting process in FIG. The relational expression can be determined from the relationship of the curve of the concentration instruction value C2 with the average current.

以上説明した実施形態によれば、ダスト濃度が大幅に変化した場合であっても、広い測定レンジにわたって、途切れなく連続的にダスト放射線を測定することができる。 According to the embodiment described above, even if the dust concentration changes significantly, dust radiation can be measured continuously over a wide measurement range without interruption.

以上説明したダスト放射線モニタの実施形態において、計数処理回路17、平均電流処理部18および濃度演算部19は、電子回路などのハードウェアで実現することもできるが、その一部または全部を電子計算機のソフトウェアによって実現することもできる。 In the embodiment of the dust radiation monitor described above, the counting processing circuit 17, the average current processing section 18, and the concentration calculation section 19 can be realized by hardware such as an electronic circuit, but some or all of them can be implemented by an electronic computer. It can also be realized by software.

[その他の実施形態]
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
[Other embodiments]
Although several embodiments of the invention have been described, these embodiments are presented by way of example and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, substitutions, and changes can be made without departing from the gist of the invention. These embodiments and their modifications are included within the scope and gist of the invention as well as within the scope of the invention described in the claims and its equivalents.

11…ガス(空気)、 12…集塵容器、 13…吸引ポンプ、 14…ろ紙(フィルタ)、 15…放射線検出器、 16…増幅回路、 17…計数処理回路、 18…平均電流処理部、 19…濃度演算部、 21…ガス導入管、 22…ガス排出管、 24…放射線、 25…シンチレータ、 26…光電子増倍管、 30…ケーブル、 33…計数率濃度演算部、 34…平均電流濃度演算部、 35…加重平均演算部、 36…出力選択部 11... Gas (air), 12... Dust collection container, 13... Suction pump, 14... Filter paper (filter), 15... Radiation detector, 16... Amplification circuit, 17... Counting processing circuit, 18... Average current processing section, 19 ... Concentration calculation section, 21 ... Gas introduction pipe, 22 ... Gas discharge pipe, 24 ... Radiation, 25 ... Scintillator, 26 ... Photomultiplier tube, 30 ... Cable, 33 ... Counting rate concentration calculation section, 34 ... Average current concentration calculation Part, 35... Weighted average calculation part, 36... Output selection part

Claims (4)

ダストを含むガスを流通させる集塵容器と、
前記集塵容器に取り付けられて、前記ダストを捕集して前記ガスを透過させるフィルタと、
前記フィルタで捕集された前記ダストから出る放射線を検出して電気信号を出力する放射線検出器と、
前記放射線検出器の出力に基づいて放射線の計数率を算出する計数処理回路と、
前記放射線検出器の出力の所定時間内の平均電流を算出する平均電流処理部と、
前記計数処理回路で得られた前記計数率と、前記平均電流処理部で得られた平均電流と、に基づいて、前記ガス中のダスト濃度を算出する濃度演算部と、
を有するダスト放射線モニタであって、
前記濃度演算部は、
前記計数率と前記ガス中のダスト濃度とが比例すると仮定して、前記計数率に基づいて前記ガス中のダスト濃度に対応する計数率濃度を算出する計数率濃度演算部と、
前記平均電流と前記ガス中のダスト濃度とが比例すると仮定して、前記平均電流に基づいて前記ガス中のダスト濃度に対応する平均電流濃度を算出する平均電流濃度演算部と、
前記計数率濃度演算部の出力が所定の低濃度基準値よりも高く、かつ前記平均電流濃度演算部の出力が前記低濃度基準値よりも高い所定の高濃度基準値よりも低い場合に、前記計数率濃度と前記平均電流濃度との加重平均を算出する加重平均算出部と、
を備え、
前記加重平均は、前記計数率濃度が前記低濃度基準値に近いほど前記計数率濃度への加重率が大きく、前記平均電流濃度が前記高濃度基準値に近いほど前記平均電流濃度への加重率が大きくなるように加重するものであって、前記計数率濃度への加重率は、前記計数率濃度が前記低濃度基準値に等しいときに1であり、前記平均電流濃度が前記高濃度基準値に等しいときにゼロであること、
を特徴とするダスト放射線モニタ。
A dust collection container that circulates gas containing dust;
a filter that is attached to the dust collection container and that collects the dust and allows the gas to pass through;
a radiation detector that detects radiation emitted from the dust collected by the filter and outputs an electrical signal;
a counting processing circuit that calculates a radiation counting rate based on the output of the radiation detector;
an average current processing unit that calculates an average current of the output of the radiation detector within a predetermined time;
a concentration calculation unit that calculates the dust concentration in the gas based on the counting rate obtained by the counting processing circuit and the average current obtained by the average current processing unit;
A dust radiation monitor having:
The concentration calculation section is
a count rate concentration calculation unit that calculates a count rate concentration corresponding to the dust concentration in the gas based on the count rate, assuming that the count rate and the dust concentration in the gas are proportional;
an average current concentration calculation unit that calculates an average current concentration corresponding to the dust concentration in the gas based on the average current, assuming that the average current and the dust concentration in the gas are proportional;
When the output of the count rate concentration calculation section is higher than a predetermined low concentration reference value, and the output of the average current concentration calculation section is lower than a predetermined high concentration reference value that is higher than the low concentration reference value, the a weighted average calculation unit that calculates a weighted average of the count rate concentration and the average current concentration;
Equipped with
In the weighted average, the closer the count rate concentration is to the low concentration reference value, the greater the weighting rate to the count rate concentration, and the closer the average current concentration is to the high concentration reference value, the greater the weighting rate to the average current concentration. is weighted to increase the count rate concentration, and the weighting rate to the count rate concentration is 1 when the count rate concentration is equal to the low concentration reference value, and the average current concentration is equal to the high concentration reference value. be zero when equal to,
A dust radiation monitor featuring:
前記計数率濃度が前記低濃度基準値以下である場合には前記計数率濃度を前記ガス中のダスト濃度として出力し、
前記平均電流濃度が前記高濃度基準値以上である場合には前記平均電流濃度を前記ガス中のダスト濃度として出力し、
前記計数率濃度が前記低濃度基準値よりも高く、かつ、前記平均電流濃度が前記高濃度基準値よりも低い場合には、前記加重平均を前記ガス中のダスト濃度として出力するように構成されていること、
を特徴とする請求項1に記載のダスト放射線モニタ。
If the count rate concentration is below the low concentration reference value, output the count rate concentration as a dust concentration in the gas;
If the average current concentration is equal to or higher than the high concentration reference value, output the average current concentration as a dust concentration in the gas,
When the count rate concentration is higher than the low concentration reference value and the average current concentration is lower than the high concentration reference value, the weighted average is output as the dust concentration in the gas. that you are
The dust radiation monitor according to claim 1, characterized in that:
ダストを含むガスをフィルタに透過させて前記ダストを捕集するダスト捕集ステップと、
前記フィルタで捕集された前記ダストから出る放射線を放射線検出器によって検出して電気信号を出力する放射線検出ステップと、
前記放射線検出器の出力に基づいて放射線の計数率を算出する計数処理ステップと、
前記放射線検出器の出力の所定時間内の平均電流を算出する平均電流算出ステップと、
前記計数率と前記ガス中のダスト濃度とが比例すると仮定して、前記計数率に基づいて、前記ガス中のダスト濃度に対応する計数率濃度を算出する計数率濃度演算ステップと、
前記平均電流と前記ガス中のダスト濃度とが比例すると仮定して、前記平均電流に基づいて、前記ガス中のダスト濃度に対応する平均電流濃度を算出する平均電流濃度演算ステップと、
前記計数率濃度が所定の低濃度基準値よりも高く、かつ前記平均電流濃度が前記低濃度基準値よりも高い所定の高濃度基準値よりも低い場合に、前記計数率濃度と前記平均電流濃度との加重平均を算出する加重平均算出ステップと、
を備えたダスト放射線計測方法であって、
前記加重平均は、前記計数率濃度が前記低濃度基準値に近いほど前記計数率濃度への加重率が大きく、前記平均電流濃度が前記高濃度基準値に近いほど前記平均電流濃度への加重率が大きくなるように加重するものであって、前記計数率濃度への加重率は、前記計数率濃度が前記低濃度基準値に等しいときに1とし、前記平均電流濃度が前記高濃度基準値に等しいときにゼロとし、
前記計数率濃度が前記低濃度基準値以下である場合には前記計数率濃度を前記ガス中のダスト濃度とし、
前記平均電流濃度が前記高濃度基準値以上である場合には前記平均電流濃度を前記ガス中のダスト濃度とし、
前記計数率濃度が前記低濃度基準値よりも高く、かつ、前記平均電流濃度が前記高濃度基準値よりも低い場合には、前記加重平均を前記ガス中のダスト濃度とすること、
を特徴とするダスト放射線計測方法。
a dust collection step of transmitting a gas containing dust through a filter and collecting the dust;
a radiation detection step of detecting radiation emitted from the dust collected by the filter with a radiation detector and outputting an electric signal;
a counting processing step of calculating a radiation counting rate based on the output of the radiation detector;
an average current calculation step of calculating an average current of the output of the radiation detector within a predetermined time;
a count rate concentration calculation step of calculating a count rate concentration corresponding to the dust concentration in the gas based on the count rate, assuming that the count rate and the dust concentration in the gas are proportional;
an average current concentration calculation step of calculating an average current concentration corresponding to the dust concentration in the gas based on the average current, assuming that the average current and the dust concentration in the gas are proportional;
When the count rate concentration is higher than a predetermined low concentration reference value and the average current concentration is lower than a predetermined high concentration reference value that is higher than the low concentration reference value, the count rate concentration and the average current concentration a weighted average calculation step of calculating a weighted average of
A dust radiation measurement method comprising:
In the weighted average, the closer the count rate concentration is to the low concentration reference value, the greater the weighting rate to the count rate concentration, and the closer the average current concentration is to the high concentration reference value, the greater the weighting rate to the average current concentration. The weighting rate for the count rate concentration is set to 1 when the count rate concentration is equal to the low concentration reference value, and when the average current concentration is equal to the high concentration reference value. Set to zero when equal,
If the count rate concentration is below the low concentration reference value, the count rate concentration is set as the dust concentration in the gas,
If the average current concentration is equal to or higher than the high concentration reference value, the average current concentration is set as the dust concentration in the gas,
When the count rate concentration is higher than the low concentration reference value and the average current concentration is lower than the high concentration reference value, the weighted average is set as the dust concentration in the gas;
A dust radiation measurement method characterized by:
少なくとも3種類の既知のダスト濃度のガスそれぞれについて、前記ダスト捕集ステップと前記放射線検出ステップと前記計数処理ステップとを行うことによって、前記計数率と前記ダスト濃度との関係を求める計数率ダスト濃度関係取得ステップと、
少なくとも3種類の既知のダスト濃度のガスそれぞれについて、前記ダスト捕集ステップと前記放射線検出ステップと前記平均電流算出ステップとを行うことによって、前記平均電流と前記ダスト濃度との関係を求める平均電流ダスト濃度関係取得ステップと、
前記計数率と前記ダスト濃度との関係および前記平均電流と前記ダスト濃度との関係に基づいて、前記低濃度基準値および前記高濃度基準値を決定する基準値決定ステップと、
前記計数率と前記ダスト濃度との関係および前記平均電流と前記ダスト濃度との関係に基づいて、前記計数率および前記平均電流の関数として前記加重率を求める加重率関係式を決定する加重率関係式決定ステップと、
をさらに有することを特徴とする請求項3に記載のダスト放射線計測方法。
A count rate dust concentration in which the relationship between the count rate and the dust concentration is determined by performing the dust collection step, the radiation detection step, and the counting processing step for each of at least three types of gases with known dust concentrations. a relationship acquisition step;
An average current dust that calculates the relationship between the average current and the dust concentration by performing the dust collection step, the radiation detection step, and the average current calculation step for each of at least three types of gases with known dust concentrations. a concentration relationship acquisition step;
a reference value determining step of determining the low concentration reference value and the high concentration reference value based on the relationship between the counting rate and the dust concentration and the relationship between the average current and the dust concentration;
a weighting rate relationship that determines a weighting rate relational expression for determining the weighting rate as a function of the counting rate and the average current, based on the relationship between the counting rate and the dust concentration and the relationship between the average current and the dust concentration; a formula determination step;
The dust radiation measuring method according to claim 3, further comprising:
JP2020103739A 2020-06-16 2020-06-16 Dust radiation monitor and dust radiation measurement method Active JP7395428B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020103739A JP7395428B2 (en) 2020-06-16 2020-06-16 Dust radiation monitor and dust radiation measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020103739A JP7395428B2 (en) 2020-06-16 2020-06-16 Dust radiation monitor and dust radiation measurement method

Publications (2)

Publication Number Publication Date
JP2021196291A JP2021196291A (en) 2021-12-27
JP7395428B2 true JP7395428B2 (en) 2023-12-11

Family

ID=79197953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020103739A Active JP7395428B2 (en) 2020-06-16 2020-06-16 Dust radiation monitor and dust radiation measurement method

Country Status (1)

Country Link
JP (1) JP7395428B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000098038A (en) 1998-09-24 2000-04-07 Mitsubishi Electric Corp Radiation detector and radiation monitor
JP2001517802A (en) 1997-09-24 2001-10-09 ヨーロピアン・アトミック・エナジー・コミュニティー(ユーラトム) Method for selective monitoring of tritium-containing nuclides in gas
JP2004239762A (en) 2003-02-06 2004-08-26 Toshiba Corp Radiation measuring instrument, and radiation measuring method
JP2014106060A (en) 2012-11-26 2014-06-09 Hitachi Aloka Medical Ltd Radiation meter
JP2015190819A (en) 2014-03-28 2015-11-02 三菱電機株式会社 radioactive gas monitor
JP2015227815A (en) 2014-05-30 2015-12-17 株式会社東芝 Gaseous activity concentration measuring apparatus, gaseous activity concentration measuring system and gaseous activity concentration measuring method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001517802A (en) 1997-09-24 2001-10-09 ヨーロピアン・アトミック・エナジー・コミュニティー(ユーラトム) Method for selective monitoring of tritium-containing nuclides in gas
JP2000098038A (en) 1998-09-24 2000-04-07 Mitsubishi Electric Corp Radiation detector and radiation monitor
JP2004239762A (en) 2003-02-06 2004-08-26 Toshiba Corp Radiation measuring instrument, and radiation measuring method
JP2014106060A (en) 2012-11-26 2014-06-09 Hitachi Aloka Medical Ltd Radiation meter
JP2015190819A (en) 2014-03-28 2015-11-02 三菱電機株式会社 radioactive gas monitor
JP2015227815A (en) 2014-05-30 2015-12-17 株式会社東芝 Gaseous activity concentration measuring apparatus, gaseous activity concentration measuring system and gaseous activity concentration measuring method

Also Published As

Publication number Publication date
JP2021196291A (en) 2021-12-27

Similar Documents

Publication Publication Date Title
CN107407595B (en) Light quantity detection device, immunoassay apparatus and charge particle bundle device using it
KR101051126B1 (en) Plastic Scintillator-based Radiation Detector and Radionuclide Detection Method Using the Same
JP4462429B2 (en) Radiation monitor
US7642518B1 (en) Stabilization of a scintillation detector
RU2007123032A (en) DEVICE AND METHOD FOR DETERMINING THE PART OF THE PHASE OF A FLUID USING X-RAY RAYS
US20060278828A1 (en) Radioactive gas measurement apparatus and failed fuel detection system
US9035266B2 (en) Dosimeter and method for determining an energy dose of a pulsed radiation field
JPH1164529A (en) Dust monitor
WO2015189887A1 (en) Radiation measurement device
JP7395428B2 (en) Dust radiation monitor and dust radiation measurement method
KR102327710B1 (en) Aerosol and radiation integrated detection device of radioactive aerosol
JPH03123881A (en) Method and apparatus for analyzing gamma ray nuclide
CN113805219A (en) Radionuclides60Co detection method and detection system
JP2005091334A (en) Tritium measuring device
KR102663201B1 (en) Apparatus for radiation measurement and operation method thereof
JP4455279B2 (en) Radioactive dust monitor
EP1980837A1 (en) Particle measuring apparatus
JPH09211133A (en) Radiation monitor
JP2007187682A (en) Radiation measuring apparatus
JP2001116844A (en) Instrument for measuring radiation
JP2001194460A (en) Radiation monitor
KR20200072811A (en) Tritium detector using scintillator
JPH0259952B2 (en)
JP2023045462A (en) Radioactivity measurement device
KR101522103B1 (en) An emitted neutron measuring instrument at external-core of nuclear reactor vessel for whole reacting range and measuring method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231129

R150 Certificate of patent or registration of utility model

Ref document number: 7395428

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150