JP2021196291A - Dust radiation monitor and method for measuring dust radiation - Google Patents

Dust radiation monitor and method for measuring dust radiation Download PDF

Info

Publication number
JP2021196291A
JP2021196291A JP2020103739A JP2020103739A JP2021196291A JP 2021196291 A JP2021196291 A JP 2021196291A JP 2020103739 A JP2020103739 A JP 2020103739A JP 2020103739 A JP2020103739 A JP 2020103739A JP 2021196291 A JP2021196291 A JP 2021196291A
Authority
JP
Japan
Prior art keywords
concentration
dust
average current
reference value
rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020103739A
Other languages
Japanese (ja)
Other versions
JP7395428B2 (en
Inventor
博之 矢澤
Hiroyuki Yazawa
将史 黒崎
Masashi Kurosaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2020103739A priority Critical patent/JP7395428B2/en
Publication of JP2021196291A publication Critical patent/JP2021196291A/en
Application granted granted Critical
Publication of JP7395428B2 publication Critical patent/JP7395428B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

To measure a dust radiation over a wide measurement range even if there is a significant change in the concentration of dust.SOLUTION: A dust radiation monitor according to an embodiment includes a radiation detector 15, a counting processing circuit 17, an average current processing unit 18; and a concentration operation unit 19. The concentration operation unit 19 includes: a counting rate concentration operation unit 33 for calculating the concentration of a counting rate on the basis of the counting rate; an average current concentration operation unit 34 for calculating an average current concentration on the basis of the average current; and an added average calculation unit 35 for calculating an added average of the counting rate concentration and the average current concentration when the counting rate concentration is higher than a low concentration reference value and the average current concentration is lower than a high concentration reference value.SELECTED DRAWING: Figure 1

Description

本発明の実施形態は、ダスト放射線モニタおよびダスト放射線計測方法に関する。 Embodiments of the present invention relate to a dust radiation monitor and a dust radiation measuring method.

放射線管理区域内における作業を行うにあたっては、作業エリアの空気に含まれる放射性物質の濃度(単位体積当たりの放射能。以下、「ダスト濃度」とも呼ぶ。)を測定し、当該エリアの安全監視を常時行うことが必須である。これを達成する装置としてダスト放射線モニタがある。ダスト濃度の測定においては、サンプリング点から測定装置まで配管を敷設し、ポンプにより吸引した気体をろ紙で集塵し、ろ紙対面に配置する放射線検出器にてろ紙から放出される放射線を検知し、そこから出力されるパルス状の電気信号を計数し、それを基にダスト濃度を算出する方式が一般的である。 When working in a radiation controlled area, measure the concentration of radioactive substances contained in the air of the work area (radioactivity per unit volume, hereinafter also referred to as "dust concentration"), and monitor the safety of the area. It is essential to do it all the time. There is a dust radiation monitor as a device to achieve this. In measuring the dust concentration, a pipe is laid from the sampling point to the measuring device, the gas sucked by the pump is collected by the filter paper, and the radiation emitted from the filter paper is detected by the radiation detector placed on the opposite side of the filter paper. A general method is to count the pulsed electric signals output from them and calculate the dust concentration based on them.

しかし、たとえば建物や機器の解体を進めている作業エリアにおいては、作業の中で多量の粉塵等が舞い上がり、高濃度の放射性物質が含まれる気体を一時的に、もしくは一定時間吸引することがあり得る。この時、放射線検出器は頻繁に放射線を検知するため、放射線検出器から出力される各々のパルス状の電気信号が頻発し重畳することにより正しい計数が困難となることが想定される。つまり計測機器としての測定上限を超えるような高いダスト濃度となる場合においては、測定機器が飽和状態となり監視が困難となることが懸念されており、その解決策が求められている。 However, for example, in a work area where buildings and equipment are being demolished, a large amount of dust may fly up during the work, and gas containing high-concentration radioactive substances may be sucked temporarily or for a certain period of time. obtain. At this time, since the radiation detector frequently detects radiation, it is assumed that accurate counting becomes difficult due to frequent occurrence and superposition of each pulse-shaped electric signal output from the radiation detector. In other words, when the dust concentration is high enough to exceed the upper limit of measurement as a measuring device, there is a concern that the measuring device will be saturated and monitoring will be difficult, and a solution is required.

一方、放射線計測システムにおいて、放射線量が低い場合には放射線計数率に基づいて放射線量を評価し、放射線量が高い場合には所定時間内の平均電流に基づいて放射線量を評価する技術が知られている。 On the other hand, in the radiation measurement system, when the radiation dose is low, the radiation dose is evaluated based on the radiation count rate, and when the radiation dose is high, the radiation dose is evaluated based on the average current within a predetermined time. Has been done.

特開昭61−62886号公報Japanese Unexamined Patent Publication No. 61-62886 特開2003−35779号公報Japanese Unexamined Patent Publication No. 2003-35779

しかし、ダスト濃度が大幅に変化した場合に、ダスト濃度を低濃度領域から高濃度領域までの広い測定レンジにわたって、途切れなく連続的に測定する技術は知られていない。 However, there is no known technique for continuously and continuously measuring the dust concentration over a wide measurement range from the low concentration region to the high concentration region when the dust concentration changes drastically.

本発明の実施形態は、ダスト濃度が大幅に変化した場合であっても、広い測定レンジにわたって、途切れなく連続的にダスト放射線を測定することができるようにすることを目的とする。 An object of the present invention is to enable continuous and continuous measurement of dust radiation over a wide measurement range even when the dust concentration changes significantly.

本発明の実施形態に係るダスト放射線モニタは、ダストを含むガスを流通させる集塵容器と、前記集塵容器に取り付けられて、前記ダストを捕集して前記ガスを透過させるフィルタと、前記フィルタで捕集された前記ダストから出る放射線を検出して電気信号を出力する放射線検出器と、前記放射線検出器の出力に基づいて放射線の計数率を算出する計数処理回路と、前記放射線検出器の出力の所定時間内の平均電流を算出する平均電流処理部と、前記計数処理回路で得られた前記計数率と、前記平均電流算出部で得られた平均電流と、に基づいて、前記ガス中のダスト濃度を算出する濃度演算部と、を有するダスト放射線モニタであって、前記濃度演算部は、前記計数率と前記ガス中のダスト濃度とが比例すると仮定して、前記計数率に基づいて前記ガス中のダスト濃度に対応する計数率濃度を算出する計数率濃度演算部と、前記平均電流と前記ガス中のダスト濃度とが比例すると仮定して、前記平均電流に基づいて前記ガス中のダスト濃度に対応する平均電流濃度を算出する平均電流濃度演算部と、前記計数率濃度演算部の出力が所定の低濃度基準値よりも高く、かつ前記平均電流濃度演算部の出力が前記低濃度基準値よりも高い所定の高濃度基準値よりも低い場合に、前記計数率濃度と前記平均電流濃度との加重平均を算出する加重平均算出部と、を備え、前記加重平均は、前記計数率濃度が前記低濃度基準値に近いほど前記計数率濃度への加重率が大きく、前記平均電流濃度が前記高濃度基準値に近いほど前記平均電流濃度への加重率が大きくなるように加重するものであって、前記計数率濃度への加重率は、前記計数率濃度が前記低濃度基準値に等しいときに1であり、前記平均電流濃度が前記高濃度基準値に等しいときにゼロであること、を特徴とする。 The dust radiation monitor according to the embodiment of the present invention includes a dust collecting container for circulating a gas containing dust, a filter attached to the dust collecting container to collect the dust and allow the gas to pass through, and the filter. A radiation detector that detects the radiation emitted from the dust collected in the above and outputs an electric signal, a counting processing circuit that calculates the count rate of the radiation based on the output of the radiation detector, and the radiation detector. In the gas, based on the average current processing unit that calculates the average current of the output within a predetermined time, the counting rate obtained by the counting processing circuit, and the average current obtained by the average current calculating unit. A dust radiation monitor having a concentration calculation unit for calculating the dust concentration of the above, and the concentration calculation unit is based on the count rate assuming that the count rate is proportional to the dust concentration in the gas. Assuming that the average current is proportional to the dust concentration in the gas, the count rate concentration calculation unit that calculates the count rate concentration corresponding to the dust concentration in the gas is assumed to be proportional to the dust concentration in the gas. The output of the average current concentration calculation unit that calculates the average current concentration corresponding to the dust concentration and the count rate concentration calculation unit is higher than the predetermined low concentration reference value, and the output of the average current concentration calculation unit is the low concentration. A weighted average calculation unit for calculating a weighted average of the count rate concentration and the average current concentration when the count rate concentration is lower than a predetermined high concentration reference value higher than the reference value, and the weighted average is the count rate. The closer the concentration is to the low concentration reference value, the larger the weighting factor to the counting rate concentration, and the closer the average current concentration is to the high concentration reference value, the larger the weighting factor to the average current concentration. The weighting factor for the count rate concentration is 1 when the count rate concentration is equal to the low concentration reference value, and is zero when the average current concentration is equal to the high concentration reference value. , Is characterized.

また、本発明の実施形態に係るダスト放射線計測方法は、ダストを含むガスをフィルタに透過させて前記ダストを捕集するダスト捕集ステップと、前記フィルタで捕集された前記ダストから出る放射線を放射線検出器によって検出して電気信号を出力する放射線検出ステップと、前記放射線検出器の出力に基づいて放射線の計数率を算出する計数処理ステップと、前記放射線検出器の出力の所定時間内の平均電流を算出する平均電流算出ステップと、前記計数率と前記ガス中のダスト濃度とが比例すると仮定して、前記計数率に基づいて、前記ガス中のダスト濃度に対応する計数率濃度を算出する計数率濃度演算ステップと、前記平均電流と前記ガス中のダスト濃度とが比例すると仮定して、前記平均電流に基づいて、前記ガス中のダスト濃度に対応する平均電流濃度を算出する平均電流濃度演算ステップと、前記計数率濃度が所定の低濃度基準値よりも高く、かつ前記平均電流濃度が前記低濃度基準値よりも高い所定の高濃度基準値よりも低い場合に、前記計数率濃度と前記平均電流濃度との加重平均を算出する加重平均算出ステップと、を備えたダスト放射線計測方法であって、前記加重平均は、前記計数率濃度が前記低濃度基準値に近いほど前記計数率濃度への加重率が大きく、前記平均電流濃度が前記高濃度基準値に近いほど前記平均電流濃度への加重率が大きくなるように加重するものであって、前記計数率濃度への加重率は、前記計数率濃度が前記低濃度基準値に等しいときに1とし、前記平均電流濃度が前記高濃度基準値に等しいときにゼロとし、前記計数率濃度が前記低濃度基準値以下である場合には前記計数率濃度を前記ガス中のダスト濃度とし、前記平均電流濃度が前記高濃度基準値以上である場合には前記平均電流濃度を前記ガス中のダスト濃度とし、前記計数率濃度が前記低濃度基準値よりも高く、かつ、前記平均電流濃度が前記高濃度基準値よりも低い場合には、前記加重平均を前記ガス中のダスト濃度とすること、を特徴とする。 Further, in the dust radiation measuring method according to the embodiment of the present invention, a dust collecting step of permeating a gas containing dust through a filter to collect the dust and a radiation emitted from the dust collected by the filter are obtained. A radiation detection step that detects an electric signal by a radiation detector and outputs an electric signal, a counting processing step that calculates a current count rate based on the output of the radiation detector, and an average of the outputs of the radiation detector within a predetermined time. Assuming that the average current calculation step for calculating the current is proportional to the count rate and the dust concentration in the gas, the count rate concentration corresponding to the dust concentration in the gas is calculated based on the count rate. The average current concentration for calculating the average current concentration corresponding to the dust concentration in the gas based on the average current, assuming that the count rate concentration calculation step is proportional to the average current and the dust concentration in the gas. The calculation step and the count rate concentration when the count rate concentration is higher than the predetermined low concentration reference value and the average current concentration is lower than the predetermined high concentration reference value higher than the low concentration reference value. It is a dust radiation measuring method including a weighted average calculation step for calculating a weighted average with the average current concentration. In the weighted average, the closer the count rate concentration is to the low concentration reference value, the more the count rate concentration is. The weighting rate is large, and the closer the average current concentration is to the high concentration reference value, the greater the weighting rate to the average current concentration. When the count rate concentration is equal to the low concentration reference value, it is set to 1, when the average current concentration is equal to the high concentration reference value, it is set to zero, and when the count rate concentration is equal to or less than the low concentration reference value, it is set to 1. The count rate concentration is defined as the dust concentration in the gas, and when the average current concentration is equal to or higher than the high concentration reference value, the average current concentration is defined as the dust concentration in the gas, and the count rate concentration is the low concentration. When the average current concentration is higher than the reference value and the average current concentration is lower than the high concentration reference value, the weighted average is used as the dust concentration in the gas.

本発明の実施形態によれば、ダスト濃度が大幅に変化した場合であっても、広い測定レンジにわたって、途切れなく連続的にダスト放射線を測定することができる。 According to the embodiment of the present invention, dust radiation can be continuously measured without interruption over a wide measurement range even when the dust concentration changes significantly.

本発明に係るダスト放射線モニタの一実施形態の構成を示すブロック図。The block diagram which shows the structure of one Embodiment of the dust radiation monitor which concerns on this invention. 図1のダスト放射線モニタを用いたダスト放射線測定方法の一実施形態の手順を示すフロー図。The flow chart which shows the procedure of one Embodiment of the dust radiation measurement method using the dust radiation monitor of FIG. 本発明に係るダスト放射線モニタの一実施形態におけるダスト濃度算出の手法を説明するための図であって、横軸は真のダクト濃度であり、縦軸はダスト濃度指示値である。It is a figure for demonstrating the method of the dust concentration calculation in one Embodiment of the dust radiation monitor which concerns on this invention, the horizontal axis is a true duct concentration, and the vertical axis is a dust concentration instruction value. 図1のダスト放射線モニタを用いたダスト放射線測定方法の一実施形態において、低濃度基準値、高濃度基準値および加重率関係式を決定する手順を示すフロー図。FIG. 5 is a flow chart showing a procedure for determining a low concentration reference value, a high concentration reference value, and a weighting factor relational expression in one embodiment of the dust radiation measurement method using the dust radiation monitor of FIG. 1.

以下に、図面を参照して本発明の一実施形態に係るダスト放射線モニタおよびダスト放射線計測方法について説明する。 Hereinafter, the dust radiation monitor and the dust radiation measurement method according to the embodiment of the present invention will be described with reference to the drawings.

図1は、本発明に係るダスト放射線モニタの一実施形態の構成を示すブロック図である。このダスト放射線モニタは、集塵容器12と、吸引ポンプ13と、ろ紙(フィルタ)14と、放射線検出器15と、増幅回路16と、計数処理回路17と、平均電流処理部18と、濃度演算部19とを有する。 FIG. 1 is a block diagram showing a configuration of an embodiment of a dust radiation monitor according to the present invention. This dust radiation monitor includes a dust collecting container 12, a suction pump 13, a filter paper (filter) 14, a radiation detector 15, an amplifier circuit 16, a counting processing circuit 17, an average current processing unit 18, and a concentration calculation. It has a part 19.

集塵容器12にはガス導入管21およびガス排出管22が接続され、ガス排出管22に吸引ポンプ13が取り付けられている。ろ紙14は、集塵容器12に取り付けられている。測定対象であるダスト(塵埃)を含むガス(たとえば空気)11は、ガス導入管21から集塵容器12に導入され、ろ紙14を透過して、吸引ポンプ13によって吸引され、ガス排出管22から排出される。ガス11中に含まれたダストは、ろ紙14によって捕集される。ろ紙14は、微細な孔を無数に有し、紙もしくは樹脂の材質で構成されるものである。集塵容器12には、図示しないろ紙巻取り装置が取り付けられていて、所定時間(たとえば、数分ないし数時間)に放射線検出が終了するごとに新たなろ紙14の部分がガス11中に曝されるように構成されている。 A gas introduction pipe 21 and a gas discharge pipe 22 are connected to the dust collection container 12, and a suction pump 13 is attached to the gas discharge pipe 22. The filter paper 14 is attached to the dust collecting container 12. The gas (for example, air) 11 containing dust (dust) to be measured is introduced from the gas introduction pipe 21 into the dust collection container 12, passes through the filter paper 14, is sucked by the suction pump 13, and is sucked from the gas discharge pipe 22. It is discharged. The dust contained in the gas 11 is collected by the filter paper 14. The filter paper 14 has innumerable fine holes and is made of a paper or resin material. A filter paper winder (not shown) is attached to the dust collector container 12, and every time radiation detection is completed within a predetermined time (for example, several minutes to several hours), a portion of the new filter paper 14 is exposed to the gas 11. It is configured to be.

放射線検出器15は、ろ紙14によって捕集されたダストから発せられる放射線を電気信号に変換するものであって、放射線(たとえばβ線)を検知して発光するシンチレータ25と、光を受光するとそれに応じた電気信号を出力する光電子増倍管26とを有する。放射線検出器15に放射線24が入射するとシンチレータ25がわずかな蛍光を発生する。シンチレータ25から発せられた光が光電子増倍管26に入射して光電子が生成され、電子数が数百〜数万倍の数に増幅され、光電子増倍管26よりパルス状の電気信号として出力される。放射線検出器15は筐体が閉構造となっており、外部からの光は入らないように構成されている。 The radiation detector 15 converts the radiation emitted from the dust collected by the filter paper 14 into an electric signal, and has a scintillator 25 that detects radiation (for example, β rays) and emits light, and a scintillator 25 that emits light when it receives light. It has a photomultiplier tube 26 that outputs a corresponding electric signal. When the radiation 24 is incident on the radiation detector 15, the scintillator 25 generates a slight fluorescence. The light emitted from the scintillator 25 is incident on the photomultiplier tube 26 to generate photoelectrons, the number of electrons is amplified to several hundreds to tens of thousands times, and the light is output as a pulsed electric signal from the photomultiplier tube 26. Will be done. The radiation detector 15 has a closed housing and is configured to prevent light from entering from the outside.

増幅回路16は、ケーブル30によって放射線検出器15に接続されていて、光電子増倍管26から出力される電気信号を増幅するものである。 The amplifier circuit 16 is connected to the radiation detector 15 by a cable 30 and amplifies the electric signal output from the photomultiplier tube 26.

計数処理回路17は、増幅回路16の出力に基づいて、設定された閾値以下の信号を除去する波高弁別処理を行い、単位時間当たりの電気信号の数を計数して、計数率(単位時間当たりパルス数)を算出する。 Based on the output of the amplifier circuit 16, the counting processing circuit 17 performs wave height discrimination processing for removing signals below the set threshold value, counts the number of electric signals per unit time, and counts the counting rate (per unit time). Number of pulses) is calculated.

平均電流処理部18は、増幅回路16の出力である電気信号の所定時間内の平均である平均電流値を算出する。 The average current processing unit 18 calculates the average current value, which is the average of the electric signals output from the amplifier circuit 16 within a predetermined time.

濃度演算部19は、計数処理回路17の出力および平均電流処理部18の出力に基づいてダスト濃度を出力するものであって、計数率濃度演算部33と、平均電流濃度演算部34と、加重平均演算部35と、出力選択部36とを有している。 The density calculation unit 19 outputs the dust concentration based on the output of the counting processing circuit 17 and the output of the average current processing unit 18, and is weighted by the counting rate concentration calculation unit 33, the average current concentration calculation unit 34, and the weight. It has an average calculation unit 35 and an output selection unit 36.

計数率濃度演算部33は、計数処理回路17の出力である計数率Rに対して換算係数を乗じることによってダスト濃度を算出する。ダスト濃度を算出するための演算は、たとえば下記の式(1)による。式(1)において、Cはダスト濃度、Rは計数率、ηは検出器固有の検出効率、Qはろ紙14を通過したガスの流量の平均値、tは集塵経過時間、Dはろ紙14固有の捕集効率である。この式(1)を用いる場合は、換算係数は、D・η/(Q・t)である。なお、(Q・t)は塵埃経過時間内にフィルタ14を透過したガスの体積である。 The count rate concentration calculation unit 33 calculates the dust concentration by multiplying the count rate R, which is the output of the count processing circuit 17, by a conversion coefficient. The calculation for calculating the dust concentration is, for example, by the following equation (1). In the formula (1), C is the dust concentration, R is the counting rate, η is the detection efficiency peculiar to the detector, Q is the average value of the flow rate of the gas passing through the filter paper 14, t is the elapsed dust collection time, and D is the filter paper 14. It is a unique collection efficiency. When this equation (1) is used, the conversion coefficient is D · η / (Q · t). Note that (Q.t) is the volume of gas that has passed through the filter 14 within the elapsed time of dust.

C=D・η・R/(Q・t) ・・・ (1)
計数率濃度演算部33によって得られたダスト濃度を、ここでは「計数率濃度」と呼ぶ。ダスト濃度が比較的低い場合に、計数率濃度がダクト濃度として使用される。
C = D ・ η ・ R / (Q ・ t) ・ ・ ・ (1)
The dust concentration obtained by the counting rate concentration calculation unit 33 is referred to as a "counting rate concentration" here. When the dust concentration is relatively low, the count rate concentration is used as the duct concentration.

平均電流濃度演算部34では、平均電流処理部18の出力に、係数を乗ずることにより、ダスト濃度を求める。この係数は平均電流と計数率の関係性を示すものであり、予め得られているものとする。平均電流濃度演算部34によって得られたダスト濃度を、ここでは「平均電流濃度」と呼ぶ。ダスト濃度が比較的高い場合に、平均電流濃度がダクト濃度として使用される。 The average current density calculation unit 34 obtains the dust concentration by multiplying the output of the average current processing unit 18 by a coefficient. This coefficient shows the relationship between the average current and the counting rate, and is assumed to be obtained in advance. The dust concentration obtained by the average current density calculation unit 34 is referred to here as an "average current density". When the dust concentration is relatively high, the average current concentration is used as the duct concentration.

計数率濃度演算部33の出力および平均電流濃度演算部34の出力は、ともに、加重平均演算部35および出力選択部36に入力される。加重平均演算部35は、計数率濃度が所定の低濃度基準値よりも高く平均電流濃度が所定の高濃度基準値よりも低い場合に、計数率濃度と平均電流濃度の加重平均を計算して、その結果を出力選択部36に出力する。高濃度基準値は低濃度基準値よりも高い。高濃度基準値、低濃度基準値および加重平均の計算方法については、図3および図4を用いて後述する。 Both the output of the count rate density calculation unit 33 and the output of the average current density calculation unit 34 are input to the weighted average calculation unit 35 and the output selection unit 36. The weighted average calculation unit 35 calculates the weighted average of the count rate concentration and the average current concentration when the count rate concentration is higher than the predetermined low concentration reference value and the average current concentration is lower than the predetermined high concentration reference value. , The result is output to the output selection unit 36. The high concentration reference value is higher than the low concentration reference value. The calculation method of the high concentration reference value, the low concentration reference value and the weighted average will be described later with reference to FIGS. 3 and 4.

出力選択部36は、計数率濃度が低濃度基準値以下のときは計数率濃度をダクト濃度として出力し、平均電流濃度が高濃度基準値以上のときは平均電流濃度をダクト濃度として出力し、計数率濃度が低濃度基準値より高く平均電流濃度が高濃度基準値より低いときは加重平均演算部35の出力をダクト濃度として出力する。 The output selection unit 36 outputs the count rate concentration as the duct concentration when the count rate concentration is equal to or less than the low concentration reference value, and outputs the average current concentration as the duct concentration when the average current concentration is equal to or higher than the high concentration reference value. When the count rate concentration is higher than the low concentration reference value and the average current concentration is lower than the high concentration reference value, the output of the weighted average calculation unit 35 is output as the duct concentration.

図2は、図1のダスト放射線モニタを用いたダスト放射線測定方法の一実施形態の手順を示すフロー図である。 FIG. 2 is a flow chart showing a procedure of one embodiment of the dust radiation measuring method using the dust radiation monitor of FIG. 1.

まず、ダストを含むガス11をフィルタ14に透過させてダストを捕集する(ダスト捕集ステップS11)。つぎに、フィルタ14で捕集されたダストから出る放射線を放射線検出器15によって検出して電気信号を出力する(放射線検出ステップS12)。 First, the gas 11 containing dust is passed through the filter 14 to collect the dust (dust collection step S11). Next, the radiation emitted from the dust collected by the filter 14 is detected by the radiation detector 15 and an electric signal is output (radiation detection step S12).

つぎに、計数処理回路17が、放射線検出器15の出力に基づいて放射線の計数率を算出する(計数処理ステップS13)。また、平均電流処理部18が、放射線検出器15の出力の所定時間内の平均電流を算出する(平均電流算出ステップS14)。 Next, the counting processing circuit 17 calculates the radiation counting rate based on the output of the radiation detector 15 (counting processing step S13). Further, the average current processing unit 18 calculates the average current of the output of the radiation detector 15 within a predetermined time (average current calculation step S14).

つぎに、計数率濃度演算部33が、計数率とガス中のダスト濃度とが比例すると仮定して、計数率とガスの体積とに基づいて、ガス中のダスト濃度に対応する計数率濃度を算出する(計数率濃度演算ステップS15)。また、平均電流濃度演算部34が、平均電流とガス中のダスト濃度とが比例すると仮定して、平均電流とガスの体積とに基づいて、ガス中のダスト濃度に対応する平均電流濃度を算出する(平均電流濃度演算ステップS16)。 Next, assuming that the counting rate is proportional to the dust concentration in the gas, the counting rate concentration calculation unit 33 calculates the counting rate concentration corresponding to the dust concentration in the gas based on the counting rate and the volume of the gas. Calculate (counting rate concentration calculation step S15). Further, the average current concentration calculation unit 34 calculates the average current concentration corresponding to the dust concentration in the gas based on the average current and the volume of the gas, assuming that the average current is proportional to the dust concentration in the gas. (Average current density calculation step S16).

つぎに、計数率濃度が所定の低濃度基準値よりも高く、かつ平均電流濃度が低濃度基準値よりも高い所定の高濃度基準値よりも低い場合に、加重平均演算部35が、計数率濃度と平均電流濃度との加重平均を算出する(加重平均算出ステップS17)。 Next, when the count rate concentration is higher than the predetermined low concentration reference value and the average current concentration is lower than the predetermined high concentration reference value higher than the low concentration reference value, the weighted average calculation unit 35 determines the count rate. A weighted average of the concentration and the average current concentration is calculated (weighted average calculation step S17).

つぎに、出力選択部36が、計数率濃度、平均電流濃度および加重平均のうちの一つを選択してガス中のダスト濃度として出力する(濃度計測結果出力ステップS18)。ここで、計数率濃度が低濃度基準値以下である場合には計数率濃度をガス中のダスト濃度として選択し、平均電流濃度が高濃度基準値以上である場合には平均電流濃度をガス中のダスト濃度として選択する。また、計数率濃度が低濃度基準値よりも高く、かつ、平均電流濃度が高濃度基準値よりも低い場合には、加重平均をガス中のダスト濃度として選択する。 Next, the output selection unit 36 selects one of the count rate concentration, the average current density, and the weighted average and outputs it as the dust concentration in the gas (concentration measurement result output step S18). Here, when the count rate concentration is below the low concentration reference value, the count rate concentration is selected as the dust concentration in the gas, and when the average current concentration is above the high concentration reference value, the average current concentration is set in the gas. Select as the dust concentration of. When the count rate concentration is higher than the low concentration reference value and the average current concentration is lower than the high concentration reference value, the weighted average is selected as the dust concentration in the gas.

ここで、計数率濃度と平均電流濃度とを用いて広範囲のダスト濃度を求める方法について、図3を用いて説明する。 Here, a method of obtaining a dust concentration in a wide range using the count rate concentration and the average current concentration will be described with reference to FIG.

図3は、本発明に係るダスト放射線モニタの一実施形態におけるダスト濃度算出の手法を説明するための図であって、横軸は真のダクト濃度であり、縦軸はダスト濃度指示値である。 FIG. 3 is a diagram for explaining a method for calculating the dust concentration in one embodiment of the dust radiation monitor according to the present invention, in which the horizontal axis represents the true duct concentration and the vertical axis represents the dust concentration indicated value. ..

計数処理回路17による計数率濃度は比較的低計数率において高い精度を持ち、また平均電流処理部18による平均電流濃度は比較的高計数率において高い精度を持つ。計数処理回路17は、高計数率、つまり多量の放射性物質がろ紙14に集塵される場合においては、パルス状の電気信号の頻度が非常に高くなり、各々の電気信号が重畳することにより正確な計数が困難となり精度が低下する。また、平均電流処理部18は、比較的低計数率において、パルス状の電気信号により平均化を行うことから精度が低い。 The counting rate concentration by the counting processing circuit 17 has high accuracy at a relatively low counting rate, and the average current concentration by the average current processing unit 18 has high accuracy at a relatively high counting rate. The counting processing circuit 17 has a high counting rate, that is, when a large amount of radioactive material is collected on the filter paper 14, the frequency of pulsed electric signals becomes very high, and the respective electric signals are superimposed to be accurate. It becomes difficult to count and the accuracy decreases. Further, since the average current processing unit 18 performs averaging with a pulsed electric signal at a relatively low count rate, the accuracy is low.

図3に示すように、計数処理回路17による計数率濃度の指示値C1は、真のダスト濃度が低濃度基準値CL以下の比較的低い場合は、真のダスト濃度に一致する。そのため、真のダスト濃度が低濃度基準値CL以下の比較的低い場合は、計数率濃度の指示値C1を真のダスト濃度とすることができる。真のダスト濃度が低濃度基準値CLを超えると、計数率濃度の指示値C1は真のダスト濃度よりも低い値を示す。 As shown in FIG. 3, the indicated value C1 of the counting rate concentration by the counting processing circuit 17 corresponds to the true dust concentration when the true dust concentration is relatively low below the low concentration reference value CL. Therefore, when the true dust concentration is relatively low, which is equal to or lower than the low concentration reference value CL, the indicated value C1 of the count rate concentration can be set as the true dust concentration. When the true dust concentration exceeds the low concentration reference value CL, the indicated value C1 of the count rate concentration indicates a value lower than the true dust concentration.

平均電流処理部18による平均電流濃度の指示値C2は、真のダスト濃度が高濃度基準値CH以上の比較的高い場合は、真のダスト濃度に一致する。そのため、真のダスト濃度が高濃度基準値CH以上の比較的高い場合は、計数率濃度の指示値C2を真のダスト濃度とすることができる。真のダスト濃度が高濃度基準値CHを下回ると、計数率濃度の指示値C2は真のダスト濃度よりも高い値を示す。 The indicated value C2 of the average current density by the average current processing unit 18 corresponds to the true dust concentration when the true dust concentration is relatively high above the high concentration reference value CH. Therefore, when the true dust concentration is relatively high, which is equal to or higher than the high concentration reference value CH, the indicated value C2 of the count rate concentration can be set as the true dust concentration. When the true dust concentration is lower than the high concentration reference value CH, the indicated value C2 of the count rate concentration shows a value higher than the true dust concentration.

CL〜CHの中間領域については、下記の式(2)により、計数処理による計数率濃度の指示値C1と平均電流による平均電流濃度の指示値C2の加重平均を計算し、この加重平均をダスト濃度とする。 For the intermediate region of CL to CH, the weighted average of the indicated value C1 of the count rate concentration by the counting process and the indicated value C2 of the average current concentration by the average current is calculated by the following equation (2), and this weighted average is used as dust. Let it be the concentration.

C=k・C1+(1−k)・C2 ・・・ (2)
ここで、kは、計数率濃度への加重率であって、計数率濃度の指示値C1および平均電流濃度の指示値C2の関数であり、ゼロから1の値である。平均電流濃度への加重率は(1−k)となる。計数率濃度の指示値C1が低濃度基準値CLに等しい場合はk=1であり、平均電流濃度の指示値C2が高濃度基準値CHに等しい場合はk=0である。CL〜CHの中間領域において、計数率濃度への加重率kは、計数率濃度の指示値C1が大きいほど、また、平均電流濃度の指示値C2が大きいほど、小さくなる。
C = k ・ C1 + (1-k) ・ C2 ・ ・ ・ (2)
Here, k is a weighting factor to the count rate concentration, which is a function of the indicated value C1 of the count rate concentration and the indicated value C2 of the average current concentration, and is a value from zero to one. The weighting factor for the average current density is (1-k). When the indicated value C1 of the count rate concentration is equal to the low concentration reference value CL, k = 1, and when the indicated value C2 of the average current density is equal to the high concentration reference value CH, k = 0. In the intermediate region of CL to CH, the weighting factor k to the count rate concentration becomes smaller as the indicated value C1 of the count rate concentration is larger and as the indicated value C2 of the average current concentration is larger.

つぎに、上記の処理を行うために必要となる低濃度基準値、高濃度基準値および加重率関係式を決定する手順について、図4を用いて説明する。図4は、図1のダスト放射線モニタを用いたダスト放射線測定方法の一実施形態において、低濃度基準値、高濃度基準値および加重率関係式を決定する手順を示すフロー図である。 Next, a procedure for determining the low concentration reference value, the high concentration reference value, and the weighting factor relational expression required for performing the above processing will be described with reference to FIG. FIG. 4 is a flow chart showing a procedure for determining a low concentration reference value, a high concentration reference value, and a weighting factor relational expression in one embodiment of the dust radiation measuring method using the dust radiation monitor of FIG.

これらの値および関係式を決定するに当たっては、はじめに、図1に示すダスト放射線モニタを用いて、さらに、少なくとも3種類以上の既知のダスト濃度のガスそれぞれについて、ダスト捕集ステップS11と放射線検出ステップS12と計数処理ステップS13と(図2参照)を行う。これによって、計数率とダスト濃度との関係を求める(計数率ダスト濃度関係取得ステップS51)。これにより、図3の計数処理によるダスト濃度指示値C1の曲線を得ることができる。 In determining these values and relational expressions, first, using the dust radiation monitor shown in FIG. 1, a dust collection step S11 and a radiation detection step for each of at least three types of gases having known dust concentrations. S12 and the counting process step S13 (see FIG. 2) are performed. As a result, the relationship between the counting rate and the dust concentration is obtained (counting rate dust concentration relationship acquisition step S51). As a result, the curve of the dust concentration indicated value C1 by the counting process of FIG. 3 can be obtained.

同様に、図1に示すダスト放射線モニタを用いて、さらに、少なくとも3種類以上の既知のダスト濃度のガスそれぞれについて、ダスト捕集ステップS11と放射線検出ステップS12と平均電流算出ステップS14と(図2参照)を行う。これによって、平均電流とダスト濃度との関係を求める(平均電流ダスト濃度関係取得ステップS52)。これにより、図3の平均電流によるダスト濃度指示値C2の曲線を得ることができる。 Similarly, using the dust radiation monitor shown in FIG. 1, the dust collection step S11, the radiation detection step S12, and the average current calculation step S14 are further performed for each of at least three types of gases having known dust concentrations (FIG. 2). See). As a result, the relationship between the average current and the dust concentration is obtained (average current dust concentration relationship acquisition step S52). As a result, the curve of the dust concentration indicated value C2 based on the average current in FIG. 3 can be obtained.

なお、上述の計数率ダスト濃度関係取得ステップS51において用いる既知のダスト濃度のガスと、平均電流ダスト濃度関係取得ステップS52において用いる既知のダスト濃度のガスとは、一部または全部で共通のものであってもよい。また、既知のダスト濃度のガスが共通である場合においては、計数率ダスト濃度関係取得ステップS51および平均電流ダスト濃度関係取得ステップS52におけるダスト捕集ステップS11および放射線検出ステップS12は、それぞれ共通のステップとすることができる。 The gas having a known dust concentration used in the above-mentioned count rate dust concentration relationship acquisition step S51 and the gas having a known dust concentration used in the average current dust concentration relationship acquisition step S52 are partially or wholly common. There may be. When the gas having a known dust concentration is common, the dust collection step S11 and the radiation detection step S12 in the count rate dust concentration relationship acquisition step S51 and the average current dust concentration relationship acquisition step S52 are common steps. Can be.

つぎに、図3の計数処理によるダスト濃度指示値C1の曲線が、傾き1で原点を通る直線からずれ始める点として、低濃度基準値CLを求める(低濃度基準値決定ステップS53)。計数処理によるダスト濃度指示値C1の曲線は、低濃度基準値CL以下の領域で傾き1で原点を通る直線となっている。 Next, the low concentration reference value CL is obtained as the point where the curve of the dust concentration indicated value C1 obtained by the counting process in FIG. 3 starts to deviate from the straight line passing through the origin at the slope 1 (low concentration reference value determination step S53). The curve of the dust concentration indicated value C1 by the counting process is a straight line passing through the origin with a slope of 1 in the region below the low concentration reference value CL.

同様に、図3の平均電流による濃度指示値C2の曲線が、傾き1で原点を通る直線からずれ始める点として、高濃度基準値CHを求める(高濃度基準値決定ステップS54)。平均電流による濃度指示値C2の曲線は、高濃度基準値CH以上の領域で傾き1で原点を通る直線となっている。 Similarly, the high concentration reference value CH is obtained as the point where the curve of the concentration indicated value C2 based on the average current in FIG. 3 starts to deviate from the straight line passing through the origin at the slope 1 (high concentration reference value determination step S54). The curve of the concentration indicated value C2 based on the average current is a straight line passing through the origin with a slope of 1 in the region above the high concentration reference value CH.

つぎに、図3で、真のダスト濃度が低濃度基準値CLと高濃度基準値CHの間にある領域(中間領域)で、式(2)を満足させる加重率kの式を決定する(加重率関係式決定ステップS55)。 Next, in FIG. 3, in the region (intermediate region) where the true dust concentration is between the low concentration reference value CL and the high concentration reference value CH, the formula of the weighting factor k that satisfies the formula (2) is determined ( Weighted rate relational expression determination step S55).

ここで、加重率kは、計数処理によるダスト濃度指示値C1と平均電流による濃度指示値C2の関数であり、図3の真のダスト濃度Cと、計数処理によるダスト濃度指示値C1の曲線および平均電流による濃度指示値C2の曲線の関係から、その関係式を決定することができる。 Here, the weighting factor k is a function of the dust concentration indicated value C1 by the counting process and the concentration indicated value C2 by the average current, and is the curve of the true dust concentration C in FIG. 3 and the dust concentration indicated value C1 by the counting process. The relational expression can be determined from the relation of the curve of the concentration indicated value C2 by the average current.

以上説明した実施形態によれば、ダスト濃度が大幅に変化した場合であっても、広い測定レンジにわたって、途切れなく連続的にダスト放射線を測定することができる。 According to the embodiment described above, even when the dust concentration changes significantly, the dust radiation can be continuously measured over a wide measurement range without interruption.

以上説明したダスト放射線モニタの実施形態において、計数処理回路17、平均電流処理部18および濃度演算部19は、電子回路などのハードウェアで実現することもできるが、その一部または全部を電子計算機のソフトウェアによって実現することもできる。 In the embodiment of the dust radiation monitor described above, the counting processing circuit 17, the average current processing unit 18, and the concentration calculation unit 19 can be realized by hardware such as an electronic circuit, but a part or all of them can be realized by a computer. It can also be realized by the software of.

[その他の実施形態]
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。
[Other embodiments]
Although some embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These embodiments can be implemented in various other embodiments, and various omissions, replacements, and changes can be made without departing from the gist of the invention. These embodiments and variations thereof are included in the scope of the invention described in the claims and the equivalent scope thereof, as are included in the scope and gist of the invention.

11…ガス(空気)、 12…集塵容器、 13…吸引ポンプ、 14…ろ紙(フィルタ)、 15…放射線検出器、 16…増幅回路、 17…計数処理回路、 18…平均電流処理部、 19…濃度演算部、 21…ガス導入管、 22…ガス排出管、 24…放射線、 25…シンチレータ、 26…光電子増倍管、 30…ケーブル、 33…計数率濃度演算部、 34…平均電流濃度演算部、 35…加重平均演算部、 36…出力選択部 11 ... Gas (air), 12 ... Dust collection container, 13 ... Suction pump, 14 ... Filter paper (filter), 15 ... Radiation detector, 16 ... Amplification circuit, 17 ... Counting processing circuit, 18 ... Average current processing unit, 19 ... concentration calculation unit, 21 ... gas introduction pipe, 22 ... gas discharge pipe, 24 ... radiation, 25 ... scintillator, 26 ... photoelectron multiplier tube, 30 ... cable, 33 ... count rate concentration calculation unit, 34 ... average current concentration calculation Unit, 35 ... Weighted average calculation unit, 36 ... Output selection unit

Claims (4)

ダストを含むガスを流通させる集塵容器と、
前記集塵容器に取り付けられて、前記ダストを捕集して前記ガスを透過させるフィルタと、
前記フィルタで捕集された前記ダストから出る放射線を検出して電気信号を出力する放射線検出器と、
前記放射線検出器の出力に基づいて放射線の計数率を算出する計数処理回路と、
前記放射線検出器の出力の所定時間内の平均電流を算出する平均電流処理部と、
前記計数処理回路で得られた前記計数率と、前記平均電流算出部で得られた平均電流と、に基づいて、前記ガス中のダスト濃度を算出する濃度演算部と、
を有するダスト放射線モニタであって、
前記濃度演算部は、
前記計数率と前記ガス中のダスト濃度とが比例すると仮定して、前記計数率に基づいて前記ガス中のダスト濃度に対応する計数率濃度を算出する計数率濃度演算部と、
前記平均電流と前記ガス中のダスト濃度とが比例すると仮定して、前記平均電流に基づいて前記ガス中のダスト濃度に対応する平均電流濃度を算出する平均電流濃度演算部と、
前記計数率濃度演算部の出力が所定の低濃度基準値よりも高く、かつ前記平均電流濃度演算部の出力が前記低濃度基準値よりも高い所定の高濃度基準値よりも低い場合に、前記計数率濃度と前記平均電流濃度との加重平均を算出する加重平均算出部と、
を備え、
前記加重平均は、前記計数率濃度が前記低濃度基準値に近いほど前記計数率濃度への加重率が大きく、前記平均電流濃度が前記高濃度基準値に近いほど前記平均電流濃度への加重率が大きくなるように加重するものであって、前記計数率濃度への加重率は、前記計数率濃度が前記低濃度基準値に等しいときに1であり、前記平均電流濃度が前記高濃度基準値に等しいときにゼロであること、
を特徴とするダスト放射線モニタ。
A dust collection container that circulates gas containing dust,
A filter attached to the dust collecting container to collect the dust and allow the gas to permeate.
A radiation detector that detects the radiation emitted from the dust collected by the filter and outputs an electric signal,
A counting processing circuit that calculates the radiation counting rate based on the output of the radiation detector, and
An average current processing unit that calculates the average current of the output of the radiation detector within a predetermined time, and
A concentration calculation unit that calculates the dust concentration in the gas based on the counting rate obtained by the counting processing circuit and the average current obtained by the average current calculation unit.
Is a dust radiation monitor with
The concentration calculation unit is
A counting rate concentration calculation unit that calculates the counting rate concentration corresponding to the dust concentration in the gas based on the counting rate, assuming that the counting rate is proportional to the dust concentration in the gas.
An average current concentration calculation unit that calculates an average current concentration corresponding to the dust concentration in the gas based on the average current, assuming that the average current and the dust concentration in the gas are proportional to each other.
When the output of the count rate concentration calculation unit is higher than the predetermined low concentration reference value and the output of the average current concentration calculation unit is lower than the predetermined high concentration reference value higher than the low concentration reference value, the said A weighted average calculation unit that calculates a weighted average of the count rate concentration and the average current concentration,
Equipped with
As for the weighted average, the closer the count rate concentration is to the low concentration reference value, the larger the weight rate to the count rate concentration, and the closer the average current concentration is to the high concentration reference value, the greater the weight rate to the average current concentration. The weighting factor to the count rate concentration is 1 when the count rate concentration is equal to the low concentration reference value, and the average current concentration is the high concentration reference value. Be zero when equal to
A dust radiation monitor featuring.
前記計数率濃度が前記低濃度基準値以下である場合には前記計数率濃度を前記ガス中のダスト濃度として出力し、
前記平均電流濃度が前記高濃度基準値以上である場合には前記平均電流濃度を前記ガス中のダスト濃度として出力し、
前記計数率濃度が前記低濃度基準値よりも高く、かつ、前記平均電流濃度が前記高濃度基準値よりも低い場合には、前記加重平均を前記ガス中のダスト濃度として出力するように構成されていること、
を特徴とする請求項1に記載のダスト放射線モニタ。
When the count rate concentration is equal to or lower than the low concentration reference value, the count rate concentration is output as the dust concentration in the gas.
When the average current concentration is equal to or higher than the high concentration reference value, the average current concentration is output as the dust concentration in the gas.
When the count rate concentration is higher than the low concentration reference value and the average current concentration is lower than the high concentration reference value, the weighted average is output as the dust concentration in the gas. That
The dust radiation monitor according to claim 1.
ダストを含むガスをフィルタに透過させて前記ダストを捕集するダスト捕集ステップと、
前記フィルタで捕集された前記ダストから出る放射線を放射線検出器によって検出して電気信号を出力する放射線検出ステップと、
前記放射線検出器の出力に基づいて放射線の計数率を算出する計数処理ステップと、
前記放射線検出器の出力の所定時間内の平均電流を算出する平均電流算出ステップと、
前記計数率と前記ガス中のダスト濃度とが比例すると仮定して、前記計数率に基づいて、前記ガス中のダスト濃度に対応する計数率濃度を算出する計数率濃度演算ステップと、
前記平均電流と前記ガス中のダスト濃度とが比例すると仮定して、前記平均電流に基づいて、前記ガス中のダスト濃度に対応する平均電流濃度を算出する平均電流濃度演算ステップと、
前記計数率濃度が所定の低濃度基準値よりも高く、かつ前記平均電流濃度が前記低濃度基準値よりも高い所定の高濃度基準値よりも低い場合に、前記計数率濃度と前記平均電流濃度との加重平均を算出する加重平均算出ステップと、
を備えたダスト放射線計測方法であって、
前記加重平均は、前記計数率濃度が前記低濃度基準値に近いほど前記計数率濃度への加重率が大きく、前記平均電流濃度が前記高濃度基準値に近いほど前記平均電流濃度への加重率が大きくなるように加重するものであって、前記計数率濃度への加重率は、前記計数率濃度が前記低濃度基準値に等しいときに1とし、前記平均電流濃度が前記高濃度基準値に等しいときにゼロとし、
前記計数率濃度が前記低濃度基準値以下である場合には前記計数率濃度を前記ガス中のダスト濃度とし、
前記平均電流濃度が前記高濃度基準値以上である場合には前記平均電流濃度を前記ガス中のダスト濃度とし、
前記計数率濃度が前記低濃度基準値よりも高く、かつ、前記平均電流濃度が前記高濃度基準値よりも低い場合には、前記加重平均を前記ガス中のダスト濃度とすること、
を特徴とするダスト放射線計測方法。
A dust collection step in which a gas containing dust is permeated through a filter to collect the dust,
A radiation detection step in which a radiation detector detects radiation emitted from the dust collected by the filter and outputs an electric signal, and a radiation detection step.
A counting process step for calculating the radiation counting rate based on the output of the radiation detector, and
An average current calculation step for calculating the average current of the output of the radiation detector within a predetermined time, and
Assuming that the counting rate is proportional to the dust concentration in the gas, the counting rate concentration calculation step for calculating the counting rate concentration corresponding to the dust concentration in the gas based on the counting rate,
Assuming that the average current is proportional to the dust concentration in the gas, the average current concentration calculation step for calculating the average current concentration corresponding to the dust concentration in the gas based on the average current,
When the count rate concentration is higher than the predetermined low concentration reference value and the average current concentration is lower than the predetermined high concentration reference value higher than the low concentration reference value, the count rate concentration and the average current concentration are used. And the weighted average calculation step to calculate the weighted average of
It is a dust radiation measurement method equipped with
As for the weighted average, the closer the count rate concentration is to the low concentration reference value, the larger the weight rate to the count rate concentration, and the closer the average current concentration is to the high concentration reference value, the greater the weight rate to the average current concentration. The weighting factor to the count rate concentration is set to 1 when the count rate concentration is equal to the low concentration reference value, and the average current concentration is set to the high concentration reference value. Zero when equal
When the count rate concentration is equal to or lower than the low concentration reference value, the count rate concentration is defined as the dust concentration in the gas.
When the average current concentration is equal to or higher than the high concentration reference value, the average current concentration is defined as the dust concentration in the gas.
When the count rate concentration is higher than the low concentration reference value and the average current concentration is lower than the high concentration reference value, the weighted average shall be the dust concentration in the gas.
A dust radiation measurement method characterized by.
少なくとも3種類の既知のダスト濃度のガスそれぞれについて、前記ダスト捕集ステップと前記放射線検出ステップと前記計数処理ステップとを行うことによって、前記計数率と前記ダスト濃度との関係を求める計数率ダスト濃度関係取得ステップと、
少なくとも3種類の既知のダスト濃度のガスそれぞれについて、前記ダスト捕集ステップと前記放射線検出ステップと前記平均電流算出ステップとを行うことによって、前記平均電流と前記ダスト濃度との関係を求める平均電流ダスト濃度関係取得ステップと、
前記計数率と前記ダスト濃度との関係および前記平均電流と前記ダスト濃度との関係に基づいて、前記低濃度基準値および前記高濃度基準値を決定する基準値決定ステップと、
前記計数率と前記ダスト濃度との関係および前記平均電流と前記ダスト濃度との関係に基づいて、前記計数率および前記平均電流の関数として前記加重率を求める加重率関係式を決定する加重率関係式決定ステップと、
をさらに有することを特徴とする請求項3に記載のダスト放射線計測方法。
By performing the dust collection step, the radiation detection step, and the counting processing step for each of at least three types of gases having a known dust concentration, the counting rate dust concentration for obtaining the relationship between the counting rate and the dust concentration is obtained. Relationship acquisition steps and
Average current dust for which the relationship between the average current and the dust concentration is obtained by performing the dust collection step, the radiation detection step, and the average current calculation step for each of at least three types of gases having a known dust concentration. Concentration-related acquisition step and
A reference value determination step for determining the low concentration reference value and the high concentration reference value based on the relationship between the count rate and the dust concentration and the relationship between the average current and the dust concentration.
Based on the relationship between the count rate and the dust concentration and the relationship between the average current and the dust concentration, the weight rate relationship for determining the weight rate relational expression for obtaining the weight rate as a function of the count rate and the average current. Formula determination step and
The dust radiation measuring method according to claim 3, further comprising.
JP2020103739A 2020-06-16 2020-06-16 Dust radiation monitor and dust radiation measurement method Active JP7395428B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020103739A JP7395428B2 (en) 2020-06-16 2020-06-16 Dust radiation monitor and dust radiation measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020103739A JP7395428B2 (en) 2020-06-16 2020-06-16 Dust radiation monitor and dust radiation measurement method

Publications (2)

Publication Number Publication Date
JP2021196291A true JP2021196291A (en) 2021-12-27
JP7395428B2 JP7395428B2 (en) 2023-12-11

Family

ID=79197953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020103739A Active JP7395428B2 (en) 2020-06-16 2020-06-16 Dust radiation monitor and dust radiation measurement method

Country Status (1)

Country Link
JP (1) JP7395428B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9720371D0 (en) 1997-09-24 1997-11-26 Euratom Method and apparatus for selectively monitoring tritiated water vapour in a gas
JP2000098038A (en) 1998-09-24 2000-04-07 Mitsubishi Electric Corp Radiation detector and radiation monitor
JP4131824B2 (en) 2003-02-06 2008-08-13 株式会社東芝 Radiation measurement equipment
JP5603919B2 (en) 2012-11-26 2014-10-08 日立アロカメディカル株式会社 Radiation measuring instrument
JP6234299B2 (en) 2014-03-28 2017-11-22 三菱電機株式会社 Radioactive gas monitor
JP6359345B2 (en) 2014-05-30 2018-07-18 株式会社東芝 Gas radioactivity concentration measurement apparatus, gas radioactivity concentration measurement system, and gas radioactivity concentration measurement method

Also Published As

Publication number Publication date
JP7395428B2 (en) 2023-12-11

Similar Documents

Publication Publication Date Title
JP4462429B2 (en) Radiation monitor
US7485868B2 (en) Stabilization of a scintillation detector
CN107407595A (en) Light quantity detection means, immunoassay apparatus and charge particle bundle device using it
JP7026443B2 (en) Radioactive dust monitor
JP6218941B2 (en) Radiation measurement equipment
CN105353398A (en) System and method for on-line measurement of radon and thoron, and daughter concentration therefor
JPH1164529A (en) Dust monitor
US6822235B2 (en) Environmental radioactivity monitor
JP2021196291A (en) Dust radiation monitor and method for measuring dust radiation
JP3735401B2 (en) Radiation monitor
JP2019219340A (en) Radioactive dust monitor for alpha ray
JP4455279B2 (en) Radioactive dust monitor
CN113805219A (en) Radionuclides60Co detection method and detection system
JP3542936B2 (en) Radiation measurement device
JP2016125922A (en) X-ray analysis device
KR20200072811A (en) Tritium detector using scintillator
Freitas et al. PMT calibration of a scintillation detector using primary scintillation
KR101443710B1 (en) Fluorenscent X-ray analysis device using Pile-up signal removing and Analysis method using thereof
JP2883282B2 (en) Dust monitor
JP3550169B2 (en) Dust radiation monitor
JPH07306267A (en) Radiation measuring equipment
JP3534456B2 (en) Radiation measurement device
JP2000214265A (en) Radiation monitor
JP3085770B2 (en) Radiation monitoring device
JP2020139826A5 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231025

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231129

R150 Certificate of patent or registration of utility model

Ref document number: 7395428

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150