JP2001116844A - Instrument for measuring radiation - Google Patents

Instrument for measuring radiation

Info

Publication number
JP2001116844A
JP2001116844A JP30009499A JP30009499A JP2001116844A JP 2001116844 A JP2001116844 A JP 2001116844A JP 30009499 A JP30009499 A JP 30009499A JP 30009499 A JP30009499 A JP 30009499A JP 2001116844 A JP2001116844 A JP 2001116844A
Authority
JP
Japan
Prior art keywords
ionization chamber
ray
counting
measurement value
radiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30009499A
Other languages
Japanese (ja)
Other versions
JP3542936B2 (en
Inventor
Kenichi Yano
賢一 矢野
Shohei Matsubara
昌平 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Aloka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aloka Co Ltd filed Critical Aloka Co Ltd
Priority to JP30009499A priority Critical patent/JP3542936B2/en
Publication of JP2001116844A publication Critical patent/JP2001116844A/en
Application granted granted Critical
Publication of JP3542936B2 publication Critical patent/JP3542936B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce an influence of an α-ray nuclide such as radon and thron contained in the air to enhance measuring precision, in gas monitoring for taking an outside air into an ionization chamber to detect β-rays. SOLUTION: An ionization current output from the ionization chamber 10 is converted into a voltage signal by an electrometer 20. The voltage signal is branched into two paths to be differentiated in the path A by a differentiating circuit 30. A pulse-height discriminator 32 takes out only large pulses corresponding to α-rays out of a differentiated result differentiated hereinbefore and a counting circuit 34 counts the pulses of the α-rays to find a counting rate. The voltage signal is integrated with a prescribed integral time constant in the path B by an integrating circuit 40 to be averaged. A found average voltage is measured by a voltmeter 42 to be digitized. A computing part 50 converts the α-ray counting rate found in the path A into a value of the average voltage to be subtracted from the average voltage found in the path B, and the influence of the α-ray nuclide is removed thereby from a measured result.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、空気の放射能汚染
を測定するための放射線測定装置に関し、特に空気を電
離箱内に取り込んで測定を行うガスモニタなどの放射線
測定装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a radiation measuring device for measuring radioactive contamination of air, and more particularly to a radiation measuring device such as a gas monitor for taking air into an ionization chamber for measurement.

【0002】[0002]

【従来の技術】RI(ラジオアイソトープ)施設などで
は、作業者の内部被爆防止のために、室内の空気の放射
能汚染を監視する必要がある。この目的のために用いら
れる装置にガスモニタがある。
2. Description of the Related Art In an RI (radioisotope) facility or the like, it is necessary to monitor radioactive contamination of indoor air in order to prevent internal exposure of workers. A device used for this purpose is a gas monitor.

【0003】ガスモニタの中にはH(トリチウム)や
14Cなどのβ(γ)線核種による汚染をモニタするβ
(γ)線ガスモニタがある(β線を発する核種は一般に
同時にγ線も発し、電離箱はこれらを共に検出し両者を
区別することはできないので、β(γ)と書いた。以下
では簡単のため単にβ線核種、β線ガスモニタと書
く)。
[0003] Some of the gas monitor Ya 3 H (tritium)
Β for monitoring contamination by β (γ) -ray nuclides such as 14 C
There is a (γ) ray gas monitor. (Nuclides emitting β rays generally also emit γ rays at the same time, and the ionization chamber cannot detect both of them and distinguish them, so I wrote β (γ). Therefore, simply write β-ray nuclide and β-ray gas monitor).

【0004】β線ガスモニタは、通気型の電離箱を用
い、ポンプで電離箱内に外気を連続的に流して測定を行
う。周知のように、この種の電離箱では、内部のガス
(この場合は空気)に含まれる放射性核種から放出され
る放射線によりそのガスが電離する。その電離により生
じたイオンを高電圧印加により集電極に集め、電離電流
として取り出す。この電離電流は、放射線が電離箱内で
失ったエネルギーに比例しており、これから各種の測定
値を求めることが可能である。ただし、電離電流は極め
て微弱なので、電位計(エレクトロメータ)を用いて電
圧信号に変換して処理することが一般的である。この電
圧信号のレベルから、空気中の放射能濃度を測定するこ
とができる。
The β-ray gas monitor uses a vented ionization chamber, and performs measurement by continuously flowing outside air into the ionization chamber with a pump. As is well known, in such an ionization chamber, the gas is ionized by the radiation emitted from the radionuclide contained in the gas inside (in this case, air). The ions generated by the ionization are collected at the collector by applying a high voltage, and extracted as an ionization current. This ionization current is proportional to the energy lost by the radiation in the ionization chamber, from which various measurements can be determined. However, since the ionization current is extremely weak, it is common to convert it into a voltage signal using an electrometer (electrometer) for processing. From the level of this voltage signal, the radioactivity concentration in the air can be measured.

【0005】[0005]

【発明が解決しようとする課題】空気中には、周知のよ
うに、天然の放射性元素であるラドン(及びトロン)が
含まれている。したがって、空気を電離箱に取り込んで
測定した場合、測定したいトリチウム等からのβ線だけ
でなく、空気中に含まれるラドン・トロンが放出するα
線も検出してしまう。
As is known, radon (and thoron), a natural radioactive element, is contained in the air. Therefore, when air is taken into an ionization chamber and measured, not only β-rays from tritium or the like to be measured, but also α-
Lines are also detected.

【0006】α線は、β線よりも空気を電離させる力が
はるかに強い。また、ラドン・トロンの空気中の濃度
は、よく知られているように、季節や天候により大きく
変動し、場合によっては時間単位で大幅に変化すること
もある。このようなことから、ガスモニタの測定信号は
ラドン・トロンの濃度変動に伴って大きく変動し、本当
に測定したいβ線核種の濃度変動を表す信号が、ラドン
・トロンによる信号成分に埋もれてしまう。このことが
β線の精密な測定を困難にしていた。
[0006] α-rays have a much stronger force to ionize air than β-rays. Also, as is well known, the concentration of radon and thoron in the air fluctuates greatly depending on the season and weather, and in some cases, it can fluctuate significantly on an hourly basis. For this reason, the measurement signal of the gas monitor greatly fluctuates with the concentration fluctuation of the radon / thoron, and a signal representing the concentration fluctuation of the β-ray nuclide to be actually measured is buried in the signal component by the radon / thoron. This has made precise measurement of β-rays difficult.

【0007】本発明はこのような問題を解決するために
なされたものであり、電離箱に外気を取り込んで測定を
行うガスモニタ等の放射線測定装置において、環境中の
ラドン・トロンの影響を除去して測定精度を向上させる
ことを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in order to solve such a problem. In a radiation measurement apparatus such as a gas monitor for taking outside air into an ionization chamber for measurement, the present invention eliminates the influence of radon and thoron in the environment. To improve the measurement accuracy.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、本発明に係る放射線測定装置は、外気を電離箱内に
取り込み、電離箱の出力信号から放射線測定値を求める
放射線測定装置であって、前記電離箱の出力信号を分析
してα線の検出回数を計数するα線計数手段と、前記電
離箱の出力信号から放射線測定値を求める測定値算出手
段と、前記α線計数手段の計数結果に基づき前記測定値
算出手段の測定値を補正する補正手段と、を有すること
を特徴とする。
In order to achieve the above object, a radiation measuring apparatus according to the present invention is a radiation measuring apparatus which takes in outside air into an ionization chamber and obtains a radiation measurement value from an output signal of the ionization chamber. An α-ray counting means for analyzing the output signal of the ionization chamber and counting the number of α-ray detections; a measurement value calculating means for obtaining a radiation measurement value from the output signal of the ionization chamber; Correction means for correcting the measurement value of the measurement value calculation means based on the result.

【0009】この構成では、電離箱内に取り込んだ空気
に含まれるラドン・トロン等の天然α線核種の崩壊によ
る放射線をα線計数手段で計数する。測定値に対するα
線核種崩壊の影響は、α線の計数結果と一定の関係を持
っているので、電離箱の出力信号から求めた測定結果を
α線計数手段の計数結果で補正することにより、天然α
線核種の影響を除去又は低減した測定結果を得ることが
できる。
In this configuration, radiation due to the decay of natural α-ray nuclides such as radon and thoron contained in the air taken into the ionization chamber is counted by α-ray counting means. Α for measured value
Since the influence of the decay of radionuclides has a certain relationship with the counting result of α-rays, natural α is corrected by correcting the measurement result obtained from the output signal of the ionization chamber with the counting result of the α-ray counting means.
It is possible to obtain a measurement result in which the influence of the radionuclide is removed or reduced.

【0010】また、本発明に係る放射線測定装置は、電
離箱の出力信号を微分する微分回路と、前記微分回路の
出力のうち、α線検出のために定められた所定波高以上
のパルスを計数する計数回路と、前記電離箱の出力信号
を所定の積分時定数で積分する積分回路と、前記積分回
路の出力を前記計数回路による計数結果を用いて補正す
ることにより放射線測定値を求める測定値算出ユニット
とを有する。
The radiation measuring apparatus according to the present invention comprises a differentiating circuit for differentiating an output signal of the ionization chamber, and counts, from the output of the differentiating circuit, a pulse having a predetermined wave height or more determined for α-ray detection. A counting circuit, an integration circuit for integrating the output signal of the ionization chamber with a predetermined integration time constant, and a measurement value for obtaining a radiation measurement value by correcting the output of the integration circuit using the counting result of the counting circuit. A calculation unit.

【0011】この構成でも、上記構成と同様に、測定値
からα線の影響を除去することができる。
In this configuration, similarly to the above configuration, the influence of α-rays can be removed from the measured values.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施の形態(以下
実施形態という)について、図面に基づいて説明する。
Embodiments of the present invention (hereinafter referred to as embodiments) will be described below with reference to the drawings.

【0013】図1は、本発明に係る放射線測定装置の実
施形態の構成を概略的に示す図である。この装置は、ト
リチウム等の空気中のβ線核種を測定するための装置で
あり、検出器として電離箱10を用いている。この電離
箱10は通気型であり、ポンプ13により一定の流量で
吸気口11から外気が電離箱10に取り込まれ、排気口
14から排出される。電離箱10内の空気中に含まれる
放射性核種が放射線を放出すると、この放射線が空気を
電離させてイオンを発生させる。このイオンが電離箱1
0に印加されている高電圧HVによって集電極17に集
められ、微弱な電離電流として出力される。電離電流は
電位計20により電圧信号に変換される。この電圧信号
は、電離電流に比例した信号である。ここまでの構成は
従来の装置と同様のものである。
FIG. 1 is a diagram schematically showing a configuration of an embodiment of a radiation measuring apparatus according to the present invention. This device is a device for measuring β-ray nuclides in the air such as tritium, and uses an ionization chamber 10 as a detector. The ionization chamber 10 is of a ventilation type, and outside air is taken into the ionization chamber 10 from the intake port 11 by the pump 13 at a constant flow rate, and is discharged from the exhaust port 14. When the radionuclide contained in the air in the ionization chamber 10 emits radiation, the radiation ionizes the air to generate ions. This ion is ionization chamber 1
It is collected by the collector electrode 17 by the high voltage HV applied to 0, and is output as a weak ionization current. The ionization current is converted into a voltage signal by the electrometer 20. This voltage signal is a signal proportional to the ionization current. The configuration up to this point is the same as the conventional device.

【0014】図2及び図3は電位計20の出力の一例を
示すものであり、図2はラドン・トロンの濃度が非常に
低い状態での出力を示し、図3はラドン・トロンの濃度
の高い状態での出力を示す。両者とも、β核種の濃度が
変化していない状況での出力である。両者の対比から分
かるように、ラドン・トロンの濃度が高い場合の電位計
出力には、ラドン・トロンからのα線による大きなピー
クが間欠的に各所に現れており、これが全体の信号レベ
ルの支配的な成分となっている。以下、検出信号に含ま
れるα線核種の影響による成分を除去するための回路構
成を説明する。
2 and 3 show an example of the output of the electrometer 20. FIG. 2 shows the output when the concentration of the radon thoron is very low, and FIG. Shows the output at high state. Both are outputs in the situation where the concentration of β nuclide is not changed. As can be seen from the comparison between the two, when the concentration of radon thoron is high, a large peak due to α-rays from radon thoron appears intermittently in various places in the output of the electrometer, which controls the overall signal level. Component. Hereinafter, a circuit configuration for removing a component due to the influence of the α-ray nuclide included in the detection signal will be described.

【0015】電位計20から出力された電圧信号は、2
つに分岐する。一方の経路Aでは、電圧信号は微分回路
30で微分される。これにより、電圧信号の立ち上がり
の部分が取り出され、変化の急激なα線による立ち上が
り部分は大きなパルスとなる。微分回路30の出力は波
高弁別器32に入力される。波高弁別器32は、微分回
路30の出力信号から所定の波高閾値以上のパルスを取
り出す。波高閾値は、α線によるパルス成分のみを取り
出す(β線によるパルス成分は除去する)ように予め求
められた値に設定されている。したがって、波高弁別器
32からは、α線に対応するパルスのみが出力される。
計数回路34は、このα線パルスを計数し、所定の時間
間隔(例えば1分や10分など)でのその計数結果、す
なわち計数率を順次出力する。計数回路34で求められ
る計数率は、演算部50に順次入力される。
The voltage signal output from the electrometer 20 is 2
Branch into two. On one path A, the voltage signal is differentiated by the differentiating circuit 30. Thereby, the rising portion of the voltage signal is extracted, and the rising portion due to the rapidly changing α-ray becomes a large pulse. The output of the differentiating circuit 30 is input to a wave height discriminator 32. The wave height discriminator 32 extracts a pulse having a predetermined wave height threshold or more from the output signal of the differentiating circuit 30. The pulse height threshold is set to a value determined in advance so that only the pulse component due to α rays is extracted (the pulse component due to β rays is removed). Therefore, the pulse height discriminator 32 outputs only the pulse corresponding to the α-ray.
The counting circuit 34 counts the α-ray pulses and sequentially outputs the counting result at a predetermined time interval (for example, 1 minute or 10 minutes), that is, the counting rate. The counting rates obtained by the counting circuit 34 are sequentially input to the arithmetic unit 50.

【0016】もう一方の経路Bでは、電位計20の出力
電圧は、積分回路40にて所定の積分時定数で積分され
る。積分時定数は例えば60秒である。この結果、積分
回路40からは、電位計20の出力信号を平均化した信
号が出力される。この平均化により信号は滑らかなもの
となり、電圧計42でそのレベルを測定することが可能
となる。電位計20の出力電圧は電離電流に対応してい
るので、その平均化結果である積分回路40の出力電圧
(すなわち電圧計42の測定結果)は、電離電流の平均
に対応した信号となる。電圧計42の測定結果は、A/
D変換器44でディジタル値に変換され、演算部50に
入力される。
In the other path B, the output voltage of the electrometer 20 is integrated by the integration circuit 40 with a predetermined integration time constant. The integration time constant is, for example, 60 seconds. As a result, a signal obtained by averaging the output signal of the electrometer 20 is output from the integration circuit 40. This averaging makes the signal smooth, and the voltmeter 42 can measure the level. Since the output voltage of the electrometer 20 corresponds to the ionization current, the output voltage of the integration circuit 40 (that is, the measurement result of the voltmeter 42), which is the averaged result, becomes a signal corresponding to the average of the ionization current. The measurement result of the voltmeter 42 is A /
The data is converted into a digital value by the D converter 44 and input to the arithmetic unit 50.

【0017】演算部50では、経路Bで求められた平均
電圧と経路Aで求められたα線計数率とに基づき、β線
核種の濃度(単位Bq/m)を算出する。この演算で
は、α線計数率を平均電圧の値に換算し、この換算結果
を経路Bで求められた電離箱10の出力の平均電圧から
減算する。これにより、測定結果からラドン・トロンが
放出するα線による上昇分が取り除かれる。
The arithmetic unit 50 calculates the concentration of β-ray nuclides (unit: Bq / m 3 ) based on the average voltage obtained on the path B and the α-ray counting rate obtained on the path A. In this calculation, the α-ray count rate is converted into an average voltage value, and this conversion result is subtracted from the average voltage of the output of the ionization chamber 10 obtained by the route B. As a result, the increase due to the α-ray emitted by the radon-throne is removed from the measurement result.

【0018】α線計数率の平均電圧への換算は、記憶部
52に保存されている換算関数情報に基づき行う。発明
者は、β線核種を含まないという条件の下、ラドン・ト
ロンの濃度を様々に変えたガスを用いて実験を行い、α
線計数率と電位計20の出力の平均値(平均電圧)との
間にほぼ直線的な関係があることを確認した。平均電圧
は、α線計数率の変化に対して図4に示すように変化す
る。ラドン・トロンから放出されたα線が電離箱内で失
うエネルギー(検出パルスの波高に対応)は、一般に各
α線ごとに異なるが、ある程度長いスパンで見ればα線
のエネルギーは平均的な値になる。したがって、α線の
単位時間当たりの検出回数を表す計数率と、α線群が電
離箱内で失ったエネルギーに起因する電離電流に対応す
る平均電圧とは、直線的な関係になるものと考えられ
る。図4のグラフで、定数部分Cはラドン・トロン等の
α線核種がなくても生じるバックグラウンドによる電圧
である。この定数部分Cを減算した比例部分が、α線核
種による平均電圧の上昇分を示す。記憶部52には、例
えばこの比例部分の比例定数を換算関数情報として保存
しておく。演算部50は、計数回路34から入力された
α線計数率に対応する平均電圧をこの情報から計算し、
これを電圧計42で求められた平均電圧から減算する。
これにより、検出結果の平均電圧から、ラドン・トロン
からのα線による電圧上昇分が取り除かれる。
The conversion of the α-ray count rate into the average voltage is performed based on conversion function information stored in the storage unit 52. The inventor conducted an experiment using a gas having various concentrations of radon and thoron under the condition that no β-ray nuclide was contained, and found that α
It was confirmed that there was a substantially linear relationship between the line count rate and the average value (average voltage) of the output of the electrometer 20. The average voltage changes as shown in FIG. 4 with respect to the change in the α-ray count rate. The energy (corresponding to the pulse height of the detected pulse) lost by the α-rays emitted from the radon thoron in the ionization chamber generally differs for each α-ray, but the energy of the α-rays is an average value over a relatively long span. become. Therefore, it is considered that the count rate indicating the number of detections of α-rays per unit time and the average voltage corresponding to the ionization current caused by the energy lost to the α-ray group in the ionization chamber have a linear relationship. Can be In the graph of FIG. 4, a constant part C is a background voltage generated without an α-ray nuclide such as radon and thoron. The proportional portion obtained by subtracting the constant portion C indicates a rise in the average voltage due to the α-ray nuclide. The storage unit 52 stores, for example, a proportional constant of the proportional portion as conversion function information. The arithmetic unit 50 calculates an average voltage corresponding to the α-ray count rate input from the counting circuit 34 from this information,
This is subtracted from the average voltage obtained by the voltmeter 42.
As a result, the voltage increase due to the α-ray from the radon thoron is removed from the average voltage of the detection result.

【0019】α線計数率の平均電圧への換算は、各α線
計数率に対応する平均電圧値を記憶したテーブルを用い
て行ってもよい。
The conversion of the α-ray count rate into the average voltage may be performed by using a table storing the average voltage value corresponding to each α-ray count rate.

【0020】このようにしてラドン・トロンの影響を取
り除く補正を施された平均電圧値は、監視対象であるβ
線による電離箱10の電離電流に対応した値となる。演
算部50はこの補正後の平均電圧値を、予め設定されて
いる所定の換算関係を用いて放射能濃度値に換算し、表
示したり記録したりする。この換算関係は、監視対象の
β線核種の各種特性や、電離箱10の容積や構造、電位
計20や積分回路40などの回路特性などによって決ま
ってくる関係であり、試験等で予め定められ、本装置内
に記憶されている。
The average voltage value corrected in such a manner as to eliminate the influence of Radon / Tron is β
The value corresponds to the ionization current of the ionization chamber 10 due to the line. The calculation unit 50 converts the corrected average voltage value into a radioactivity concentration value using a predetermined conversion relationship set in advance, and displays and records the radioactivity concentration value. This conversion relationship is a relationship determined by various characteristics of the β-ray nuclide to be monitored, the volume and structure of the ionization chamber 10, circuit characteristics of the electrometer 20, the integration circuit 40, and the like, and is predetermined by a test or the like. Are stored in the apparatus.

【0021】本実施形態では、このような処理により、
ラドン・トロン等による影響を除去した精度のよいβ線
核種に関する放射能濃度を求めることができる。また、
本実施形態では、電離箱10内でのラドン・トロン等の
崩壊をα線計数率として動的に求め、これにより時々刻
々の電位計20の平均電圧を動的に補正する構成をとっ
ているので、ラドン・トロンの濃度が変化しても、これ
に追従して精度のよい補正を行うことができる。したが
って、測定した放射線濃度に応じてアラームを発するよ
うなシステムを構築した場合でも、アラーム要否の判定
基準となる放射線濃度の閾値を固定的なものとすること
ができ、従来のように操作者が季節や天候等の条件を考
慮して設定するなどの必要がなくなる。なお、ラドン・
トロンの影響を除去するよう補正された平均電圧から
は、放射能濃度以外にも有用な放射線に関する測定値を
求めることができる。
In the present embodiment, by such processing,
It is possible to accurately determine the radioactivity concentration of β-ray nuclides without the influence of radon and thoron. Also,
In this embodiment, the decay of radon, thoron or the like in the ionization chamber 10 is dynamically obtained as an α-ray counting rate, and thereby the average voltage of the electrometer 20 is dynamically corrected every moment. Therefore, even if the concentration of radon / thoron changes, accurate correction can be performed following the change. Therefore, even when a system that issues an alarm in accordance with the measured radiation concentration is constructed, the radiation concentration threshold used as a criterion for determining the necessity of the alarm can be fixed. Need not be set in consideration of conditions such as season and weather. In addition, radon
From the average voltage corrected to eliminate the effects of thoron, useful measurements of radiation other than radioactivity concentration can be determined.

【0022】以上の例では、電位計20の出力の平均電
圧を、α線計数率の平均電圧換算値の減算により補正し
たのち、この補正結果を放射能濃度等の所望の放射線測
定値に換算したが、この補正と換算の順序は逆にしても
当然よい。すなわち、α線計数率を所望の放射線測定値
での値に直接換算し、この換算結果により電位計20の
出力の平均を補正することも可能である。
In the above example, after the average voltage of the output of the electrometer 20 is corrected by subtracting the average voltage conversion value of the α-ray count rate, the correction result is converted into a desired radiation measurement value such as radioactivity concentration. However, the order of the correction and the conversion may be reversed. That is, it is also possible to directly convert the α-ray count rate into a value of a desired radiation measurement value and correct the average of the output of the electrometer 20 based on the conversion result.

【0023】また、ラドンとトロンでは放出するα線の
エネルギー等が若干異なるので、ラドンとトロンの成分
比率が変わると同じ数のα線が放出されてもそのエネル
ギーの総和が多少変わってくる。したがって、ラドンと
トロンの成分比率に応じて、α線計数率を平均電圧(又
は所望の放射線測定値)等に換算するための換算関係を
設定変更すると、より精度が向上する。ラドンとトロン
の比率は、地域・場所によって異なる可能性があるの
で、当該設置場所で本装置を校正し、そのとき求めた値
で記憶部52内の換算関係の情報を更新できるような構
成にすることも好適である。
Since the energy of the emitted α-rays is slightly different between radon and thoron, even if the same ratio of α-rays is emitted when the component ratio of radon and tron is changed, the sum of the energies slightly changes. Therefore, if the conversion relationship for converting the α-ray count rate into an average voltage (or a desired radiation measurement value) or the like is changed according to the component ratio of radon and thoron, the accuracy is further improved. Since the ratio of radon and thoron may vary depending on the region and location, the configuration is such that the apparatus can be calibrated at the installation location and the conversion-related information in the storage unit 52 can be updated with the value obtained at that time. It is also preferred to do so.

【0024】以上、外界の空気を電離箱内に連続的に流
す通気型のβ線ガスモニタを例にとって説明したが、本
実施形態におけるα線計数率による補正手法は、通気型
のβ線ガスモニタに限らず、外界の空気を電離箱内に取
り込んで測定するタイプの放射線測定装置ならば基本的
にどのようなものについても適用可能である。
In the above, the description has been given of the ventilation type β-ray gas monitor in which the outside air is continuously flown into the ionization chamber. However, the correction method based on the α-ray counting rate in this embodiment is applied to the ventilation type β-ray gas monitor. The present invention is not limited to this, and basically any radiation measuring apparatus can be applied as long as it is a type of a radiation measuring apparatus that takes in outside air into an ionization chamber for measurement.

【0025】[0025]

【発明の効果】以上説明したように、本発明によれば、
電離箱の出力信号から、試料気体中に含まれるラドン・
トロン等の崩壊による放射線に関する成分を大幅に低減
することができるので、監視したい核種についての測定
精度を向上させることができる。
As described above, according to the present invention,
From the output signal of the ionization chamber, the radon and
Since components related to radiation due to decay of a thoron or the like can be significantly reduced, the measurement accuracy of a nuclide to be monitored can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明に係る放射線測定装置の概略構成を示
す図である。
FIG. 1 is a diagram showing a schematic configuration of a radiation measuring apparatus according to the present invention.

【図2】 ラドン濃度が非常に低い場合の電位計の出力
パターンの例を示す図である。
FIG. 2 is a diagram illustrating an example of an output pattern of an electrometer when the radon concentration is very low.

【図3】 ラドン濃度が高い場合の電位計の出力パター
ンの例を示す図である。
FIG. 3 is a diagram showing an example of an output pattern of an electrometer when the radon concentration is high.

【図4】 計数回路34で求められるα線計数率と、積
分回路40の出力である平均電圧(電位計20の出力の
平均)との関係を示す図である。
FIG. 4 is a diagram showing a relationship between an α-ray count rate obtained by a counting circuit and an average voltage (an average of the output of the electrometer 20) which is an output of the integrating circuit 40.

【符号の説明】[Explanation of symbols]

10 電離箱、11 吸気口、13 ポンプ、15 排
気口、17 集電極、20 電位計、30 微分回路、
32 波高弁別器、34 計数回路、40 積分回路、
42 電圧計、44 A/D変換器、50 演算部、5
2 記憶部。
10 ionization chamber, 11 suction port, 13 pump, 15 exhaust port, 17 collector electrode, 20 electrometer, 30 differentiation circuit,
32 wave height discriminator, 34 counting circuit, 40 integrating circuit,
42 voltmeter, 44 A / D converter, 50 arithmetic unit, 5
2 Storage unit.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 外気を電離箱内に取り込み、電離箱の出
力信号から放射線測定値を求める放射線測定装置であっ
て、 前記電離箱の出力信号を分析してα線の検出回数を計数
するα線計数手段と、 前記電離箱の出力信号から放射線測定値を求める測定値
算出手段と、 前記α線計数手段の計数結果に基づき前記測定値算出手
段の測定値を補正する補正手段と、 を有する放射線測定装置。
1. A radiation measuring apparatus which takes in outside air into an ionization chamber and obtains a radiation measurement value from an output signal of the ionization chamber, wherein the apparatus analyzes the output signal of the ionization chamber and counts the number of detections of α-rays. Line counting means, measurement value calculating means for obtaining a radiation measurement value from the output signal of the ionization chamber, and correction means for correcting the measurement value of the measurement value calculating means based on the counting result of the α-ray counting means. Radiation measurement device.
【請求項2】 外気を電離箱内に取り込み、電離箱の出
力信号から放射線測定値を求める放射線測定装置であっ
て、 電離箱の出力信号を微分する微分回路と、 前記微分回路の出力のうち、α線検出のために定められ
た所定波高以上のパルスを計数する計数回路と、 前記電離箱の出力信号を所定の積分時定数で積分する積
分回路と、 前記積分回路の出力を前記計数回路による計数結果を用
いて補正することにより放射線測定値を求める測定値算
出ユニットと、 を有する放射線測定装置。
2. A radiation measuring apparatus which takes in outside air into an ionization chamber and obtains a radiation measurement value from an output signal of the ionization chamber, wherein: a differentiation circuit for differentiating the output signal of the ionization chamber; A counting circuit that counts pulses having a predetermined wave height or more determined for α-ray detection; an integration circuit that integrates an output signal of the ionization chamber with a predetermined integration time constant; and a counting circuit that outputs an output of the integration circuit. A measurement value calculation unit that obtains a radiation measurement value by correcting using the counting result of the radiation measurement device.
JP30009499A 1999-10-21 1999-10-21 Radiation measurement device Expired - Fee Related JP3542936B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30009499A JP3542936B2 (en) 1999-10-21 1999-10-21 Radiation measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30009499A JP3542936B2 (en) 1999-10-21 1999-10-21 Radiation measurement device

Publications (2)

Publication Number Publication Date
JP2001116844A true JP2001116844A (en) 2001-04-27
JP3542936B2 JP3542936B2 (en) 2004-07-14

Family

ID=17880649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30009499A Expired - Fee Related JP3542936B2 (en) 1999-10-21 1999-10-21 Radiation measurement device

Country Status (1)

Country Link
JP (1) JP3542936B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004239762A (en) * 2003-02-06 2004-08-26 Toshiba Corp Radiation measuring instrument, and radiation measuring method
JP2004279184A (en) * 2003-03-14 2004-10-07 Toshiba Corp Radiation detecting method and device
JP2007225416A (en) * 2006-02-23 2007-09-06 Mitsubishi Electric Corp Radioactive gas monitor
JP2007240467A (en) * 2006-03-11 2007-09-20 Yokoyama Yoshitaka Open window ionization chamber
CN108802792A (en) * 2017-04-28 2018-11-13 北京市射线应用研究中心 The measuring device and method of radioactivity inert gas
CN110621229A (en) * 2017-06-29 2019-12-27 株式会社岛津制作所 Radiation measuring instrument and radiation imaging apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004239762A (en) * 2003-02-06 2004-08-26 Toshiba Corp Radiation measuring instrument, and radiation measuring method
JP2004279184A (en) * 2003-03-14 2004-10-07 Toshiba Corp Radiation detecting method and device
JP2007225416A (en) * 2006-02-23 2007-09-06 Mitsubishi Electric Corp Radioactive gas monitor
JP4536668B2 (en) * 2006-02-23 2010-09-01 三菱電機株式会社 Radioactive gas monitor
JP2007240467A (en) * 2006-03-11 2007-09-20 Yokoyama Yoshitaka Open window ionization chamber
JP4671153B2 (en) * 2006-03-11 2011-04-13 横山 義隆 Open window ionization chamber
CN108802792A (en) * 2017-04-28 2018-11-13 北京市射线应用研究中心 The measuring device and method of radioactivity inert gas
CN108802792B (en) * 2017-04-28 2024-04-26 北京市射线应用研究中心有限公司 Device and method for measuring radioactive inert gas
CN110621229A (en) * 2017-06-29 2019-12-27 株式会社岛津制作所 Radiation measuring instrument and radiation imaging apparatus

Also Published As

Publication number Publication date
JP3542936B2 (en) 2004-07-14

Similar Documents

Publication Publication Date Title
JP3958069B2 (en) Radiation measurement equipment
US4418282A (en) Method and apparatus for determining random coincidence count rate in a scintillation counter utilizing the coincidence technique
JPH1164529A (en) Dust monitor
Koslowsky et al. The half-lives of 26mAl, 34Cl, 38mK: Precision measurements with isotope-separated samples
JP3542936B2 (en) Radiation measurement device
JPH0820517B2 (en) γ-ray nuclide analysis method and device
US7161153B2 (en) Apparatus and method for detecting α-ray
JP4417972B2 (en) Radiation measurement equipment
JP3735401B2 (en) Radiation monitor
Martin et al. The standardization of 125I: a comparison of three methods
JP2020067406A (en) Radioactive iodine monitoring device
RU2390800C2 (en) Method and device for measuring spectral and integral density of neutron stream
US5646409A (en) Method of suppressing extraneous radiation effects in radioactive measuring methods
JP2001242251A (en) Radon restraining type dust radiation monitor
JP2007147287A (en) Discharged fluid monitoring apparatus
JPH0259952B2 (en)
JP3549931B2 (en) Radiation measurement device
JPS60113173A (en) Background subtracting method of pollutive radiation dode measuring device
JP2883282B2 (en) Dust monitor
JPH0532787Y2 (en)
JP2005049144A (en) Radiation measuring method
JP2007240467A (en) Open window ionization chamber
JPH07306267A (en) Radiation measuring equipment
Thompson et al. The assessment of external photon dose rate in the vicinity of nuclear power stations: an intercomparison of different monitoring systems
JPH0668965B2 (en) Radiation measuring device

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040402

R150 Certificate of patent or registration of utility model

Ref document number: 3542936

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110409

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 10

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees