JP7394252B1 - Protruding type wind duct structure perpendicular to the vertical direction and construction method at deep subway station - Google Patents

Protruding type wind duct structure perpendicular to the vertical direction and construction method at deep subway station Download PDF

Info

Publication number
JP7394252B1
JP7394252B1 JP2023109672A JP2023109672A JP7394252B1 JP 7394252 B1 JP7394252 B1 JP 7394252B1 JP 2023109672 A JP2023109672 A JP 2023109672A JP 2023109672 A JP2023109672 A JP 2023109672A JP 7394252 B1 JP7394252 B1 JP 7394252B1
Authority
JP
Japan
Prior art keywords
wind
shaft
passage
main body
piston
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023109672A
Other languages
Japanese (ja)
Other versions
JP2024007536A (en
Inventor
福才 華
剛 雷
沚▲ふい▼ 楊
智勇 朱
広亮 鄭
建業 祝
春新 胡
恩迪 遅
嬋紅 汪
麗 王
寧 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hua Fucai
Beijing Urban Construction Design and Development Group Co Ltd
Original Assignee
Hua Fucai
Beijing Urban Construction Design and Development Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hua Fucai, Beijing Urban Construction Design and Development Group Co Ltd filed Critical Hua Fucai
Application granted granted Critical
Publication of JP7394252B1 publication Critical patent/JP7394252B1/en
Publication of JP2024007536A publication Critical patent/JP2024007536A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F1/00Ventilation of mines or tunnels; Distribution of ventilating currents
    • E21F1/04Air ducts
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D17/00Excavations; Bordering of excavations; Making embankments
    • E02D17/02Foundation pits
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D29/00Independent underground or underwater structures; Retaining walls
    • E02D29/04Making large underground spaces, e.g. for underground plants, e.g. stations of underground railways; Construction or layout thereof
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F17/00Vertical ducts; Channels, e.g. for drainage
    • E04F17/04Air-ducts or air channels
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D1/00Sinking shafts
    • E21D1/08Sinking shafts while moving the lining downwards
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/04Lining with building materials
    • E21D11/10Lining with building materials with concrete cast in situ; Shuttering also lost shutterings, e.g. made of blocks, of metal plates or other equipment adapted therefor
    • E21D11/107Reinforcing elements therefor; Holders for the reinforcing elements
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/14Lining predominantly with metal
    • E21D11/18Arch members ; Network made of arch members ; Ring elements; Polygon elements; Polygon elements inside arches
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/38Waterproofing; Heat insulating; Soundproofing; Electric insulating
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D20/00Setting anchoring-bolts
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D5/00Lining shafts; Linings therefor
    • E21D5/04Lining shafts; Linings therefor with brick, concrete, stone, or similar building materials
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/14Layout of tunnels or galleries; Constructional features of tunnels or galleries, not otherwise provided for, e.g. portals, day-light attenuation at tunnel openings

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Architecture (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Paleontology (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Development (AREA)
  • Underground Structures, Protecting, Testing And Restoring Foundations (AREA)
  • Lining And Supports For Tunnels (AREA)

Abstract

【課題】大深度地下鉄駅における縦方向に直交する突き出し型風道構造及び施工方法を提供する。【解決手段】オープンカット掘削とアンダーカット掘削を組み合わせた方式で施工し、地下1層がオープンカット掘削とアンダーカット掘削を組み合わせた工法を用い、4つの水平風道即ち左右線ピストン風道、排風道、外気導入風道が地下1層から延出してそれぞれ左右線ピストン通風坑、排風坑、外気導入通風坑及び避難出入口に通じる。地下2層乃至地下5層が第2期のオープンカット部分である。地下4層が駅本体の駅ホール層に接続され、地下5層が区間トンネル及び駅本体のプラットホーム層に接続される。列車が運行時に風道の地下5層から駅を出入りすることによるピストン風及び熱などは風道本体を通過して4つの水平風道に通じてから4つの通風坑を介して外部環境に伝播する。【効果】より容易に施工でき、施工進度を加速して工事期間を短縮することができる。【選択図】図1[Problem] To provide a protruding type wind duct structure perpendicular to the vertical direction and a construction method in a deep subway station. [Solution] Construction is carried out using a method that combines open-cut excavation and undercut excavation. A wind duct and an outside air intake duct extend from the first floor underground and lead to the left and right piston ventilation shafts, the exhaust shaft, the outside air introduction ventilation shaft, and the evacuation entrance, respectively. The 2nd to 5th basement level is the open cut part of the second stage. The fourth underground level is connected to the station hall level of the station main body, and the fifth underground level is connected to the section tunnel and the platform level of the station main body. During train operation, the piston wind and heat generated by entering and exiting the station from the five underground levels of the windway pass through the main body of the windway, connect to four horizontal windways, and then propagate to the outside environment via four ventilation shafts. do. [Effect] Construction can be performed more easily, accelerating the construction progress and shortening the construction period. [Selection diagram] Figure 1

Description

本発明は都市軌道交通の設計及び施工の技術分野に関し、特に大深度地下鉄駅における縦方向に直交する突き出し型風道構造及び施工方法に関する。 The present invention relates to the technical field of design and construction of urban rail transportation, and more particularly to a projecting type wind duct structure orthogonal to the vertical direction in a deep subway station and a construction method.

地下鉄は都市交通手段の重要な構成部分として、人口が密集した都市の旅客輸送交通に対してますます高まっている有益な役割を果たしている。地下鉄のアンダーカット掘削駅は一般的に流量が比較的大きな都市道路の下方に設置され、駅本体が一般的にアーチ型トンネル構造であり、その付属構造が本体構造から水平に延出して地盤に通じ、地盤から露出する部分が一般的に道路赤線の外に設置される。風道は代表的な付属構造として、一般的に駅の両端に設置され、区間トンネルに隣接し、通風坑により地盤に連通し、密閉された地下駅を外部環境に接続して内外空気を交換し、駅内の空気が新鮮で快適になることが確保される。一般的には、換気効率を向上させて省エネ・排出削減の目的を実現するために、送風機が正常に動作する空間があることが確保される上で、風道が短ければ短いほど良くなり、最新の規範≪都市軌道交通における通風空気調節及び暖房設計標準≫の要件に応じて、全密閉式ホームドアを用いる場合にピストン風道の長さが40mを超えてはいけない。 As an important component of urban transportation, subways play an increasingly beneficial role for passenger transport traffic in densely populated cities. Subway undercut excavation stations are generally installed under urban roads with relatively large flow rates, and the station body generally has an arched tunnel structure, and its auxiliary structure extends horizontally from the main structure and sinks into the ground. The part exposed from the ground is generally installed outside the road red line. Airways are a typical auxiliary structure that is generally installed at both ends of a station, adjacent to the section tunnel, and communicated with the ground through ventilation shafts, connecting the sealed underground station to the outside environment and exchanging internal and external air. This will ensure that the air inside the station is fresh and comfortable. In general, in order to improve ventilation efficiency and realize the purpose of energy saving and emission reduction, the shorter the air path, the better, while ensuring that there is space for the blower to operate normally. In accordance with the requirements of the latest code <<Standard for Ventilation Air Conditioning and Heating Design in Urban Rail Transit>>, the length of the piston air channel should not exceed 40 m when fully enclosed platform doors are used.

大深度でアンダーカット掘削する地下鉄駅の真上には地盤から露出する風亭を設置することができる場合、延出型風道の設計はその優位性をなくして欠点を表現することになる。延出型設計により風道が長くなって内外空気の交換にとって不利になる一方、風道の立て坑が比較的小さく、施工時に横通路の切り換えが比較的多く、リスクが高く、遅くスラグ排出し、施工効率が比較的低い。 If it is possible to install a wind pavilion exposed from the ground directly above a subway station that requires deep undercut excavation, the design of an extended wind passage would eliminate its advantages and express its shortcomings. The extended type design makes the wind channel long, which is disadvantageous for the exchange of inside and outside air, while the shaft of the wind channel is relatively small, and there are relatively many side passage changes during construction, which is high risk and slow slag discharge. , construction efficiency is relatively low.

このために、本発明の設計者は上記欠陥に鑑みて、研究及び設計に専念して、長期間長年にわたって関連産業を従事する経験及び成果をまとめて、大深度地下鉄駅における縦方向に直交する突き出し型風道構造及び施工方法を研究して設計し、上記欠陥を克服し、大深度駅の上方の垂直空間をより良く利用でき、通風効率を向上させ、施工工事量を減少させてグリーンで環境にやさしい省エネ・排出削減の理念を実現する。 To this end, in view of the above deficiencies, the designers of the present invention have devoted themselves to research and design, and have compiled the experience and results of engaging in related industries for many years to create a design that is perpendicular to the vertical direction in a deep subway station. We researched and designed the protruding wind duct structure and construction method to overcome the above deficiencies, make better use of the vertical space above the deep station, improve ventilation efficiency, reduce the amount of construction work, and make it greener. Realize the philosophy of environmentally friendly energy saving and emission reduction.

本発明の目的は大深度地下鉄駅における縦方向に直交する突き出し型風道構造及び施工方法を提供することにあり、風道の長さを効果的に短縮し、大深度駅の上方の空間利用率を向上させることができ、且つアンダーカット掘削駅の本体構造及び区間トンネルと連携して施作でき、効率を向上させ、工事期間を短縮する。その施工方法はオープンカット掘削とアンダーカット掘削とを組み合わせて施工し、その土地の事情に応じて適当な方法をとって、建設費用及び建設現場のバランスを効果的にとって、生産高の最大化を実現することができる。 An object of the present invention is to provide a protruding type wind duct structure orthogonal to the vertical direction in a deep subway station and a construction method, which can effectively shorten the length of the wind duct and utilize the space above the deep subway station. In addition, the undercut excavation can be carried out in conjunction with the main structure of the station and the section tunnel, improving efficiency and shortening the construction period. The construction method is a combination of open cut excavation and undercut excavation, and an appropriate method is used depending on the local circumstances to effectively balance construction costs and construction site, and maximize production. It can be realized.

上記目的を実現するために、本発明は大深度地下鉄駅における縦方向に直交する突き出し型風道構造を開示し、風道分離部分及び風道本体部分を備え、
前記風道分離部分は風道本体部分の両側に位置し、且つ施工時に風道分離部分と風道本体部分を同時に行い、前記風道分離部分は左線ピストン通風坑、右線ピストン通風坑、排風坑、外気導入通風坑及び一部の風道横通路を備え、前記一部の風道横通路は一部の左線ピストン風道横通路、一部の右線ピストン風道横通路、一部の排風道横通路及び一部の外気導入風道横通路を備え、前記風道本体部分は第1期のオープンカット基礎坑、アンダーカット掘削ドーム部分、第2期のオープンカット基礎坑、第3期のオープンカット基礎坑及び残りの風道横通路に分けられ、前記残りの風道横通路は残りの左線ピストン風道横通路、残りの右線ピストン風道横通路、残りの排風道横通路及び残りの外気導入風道横通路を備え、前記一部の左線ピストン風道横通路と残りの左線ピストン風道横通路とが連通して左線ピストン風道横通路を構成し、前記一部の右線ピストン風道横通路と残りの右線ピストン風道横通路とが連通して右線ピストン風道横通路を構成し、前記一部の排風道横通路と残りの排風道横通路とが連通して排風道横通路を構成し、前記一部の外気導入風道横通路と残りの外気導入風道横通路とが連通して外気導入風道横通路を構成し、前記風道本体部分は区間トンネルと駅本体部分との間に位置することを特徴とする。
In order to achieve the above object, the present invention discloses a protruding type wind duct structure perpendicular to the longitudinal direction in a deep subway station, comprising a wind duct separation part and a wind duct main part,
The air duct separation part is located on both sides of the air duct main part, and the air duct separation part and the air duct main part are performed at the same time during construction, and the air duct separation part includes a left line piston ventilation shaft, a right line piston ventilation shaft, It is equipped with an exhaust shaft, an outside air introduction ventilation shaft, and a part of the horizontal passageway of the windway, and the said part of the horizontal passageway of the windway includes a part of the horizontal piston windway passage of the left piston, a part of the horizontal passageway of the right piston windway, It is equipped with a part of the ventilation duct horizontal passage and a part of the outside air intake passage. , the third stage open-cut foundation shaft and the remaining wind passageway are divided into the remaining left piston wind passageway, the remaining right piston wind passageway, and the remaining right piston wind passageway. It is provided with an exhaust air passageway and the remaining outside air intake air passageway, and the part of the left line piston airway side passageway and the remaining left line piston airway side passageway communicate with each other to form a left line piston airway side passageway. , the part of the right line piston air passage horizontal passage and the remaining right line piston air passage horizontal passage communicate with each other to form a right line piston air passage horizontal passage, and the part of the right line piston air passage horizontal passage and the remaining ventilation passageways communicate with each other to form a ventilation passageway, and the part of the outside air introduction passageway and the remaining outside air introduction passageway communicate with each other to form an outside air introduction passageway. The windway main part is located between the section tunnel and the station main part, forming a side passage.

風道分離部分及び風道本体部分を備える大深度地下鉄駅における縦方向に直交する突き出し型風道の施工方法を更に開示し、
前記風道分離部分の施工は、
左線ピストン通風坑、右線ピストン通風坑、排風坑及び外気導入通風坑の地盤から露出する位置には口止め型リングビームを施作して、立坑櫓を引き上げる基礎埋込部材を取り付けるステップ1.1と、
立て坑の土砂岩石を掘削して、掘削につれて支保するステップ1.2と、
コンクリートを初期吹き付けて格子鉄骨及び鉄筋網を取り付けるステップ1.3と、
吹き付けコンクリートを施作して周囲岩石を密閉するステップ1.4と、
立て坑の底の標高に掘削するまでステップ1.2~1.4を繰り返すステップ1.5と、
立て坑の底を密閉するステップ1.6と、
それぞれ左線ピストン通風坑、右線ピストン通風坑、排風坑、外気導入通風坑からそれぞれの風道横通路の位置には3つの格子鉄骨を結合して立設して、モルタルアンカーボルトを打設するステップ1.7と、
それぞれ左線ピストン通風坑、右線ピストン通風坑、排風坑、外気導入通風坑の全断面に掘削する一部の左線ピストン風道横通路、一部の右線ピストン風道横通路、一部の排風道横通路及び一部の外気導入風道横通路からアンカーボルトを施作して、鉄筋網を結束して、コンクリートを吹き付けるステップ1.8と、
岩盤防水層を敷設して岩盤を施作するステップ1.9と、
残りの防水層を敷設してアーチ部及び側壁の二次覆工を施作するステップ1.10と、
一部のピストン風道横通路が完了するまでステップ1.8~1.10を繰り返すステップ1.11と、を含み、
前記風道本体部分の施工は、
掘削前に坑内の水位を降下すべきであり、地下水位を最終的な基礎坑の掘削面よりも1m低い箇所に降下し、法面の法肩に承水路及び地盤硬化を行うべきであり、地表水が法尻に滲み込むことを防止するステップ2.1と、
岩石地層に1段の鋼管杭を打設するステップ2.2と、
トップビームを施作して、フランジブレースを架設してプレストレストアンカーボルトを打設するステップ2.3と、
土砂の掘削を下向きに行い、第1期のオープンカット基礎坑を上から下まで1層ずつ掘削し、掘削後に1層のコンクリートを吹き付けて周囲岩石を密閉し、次にアンカーボルトを打設して、鉄筋網を掛けてから吹き付けコンクリートパネルを施作するステップ2.4と、
第1期のオープンカット基礎坑をドーム脚基盤における標高即ち水平横通路の一次覆工の頂部の標高まで1層ずつ掘削し、アンダーカット掘削ドーム部分の施工を行い始めるステップ2.5と、
オープンカット基礎坑内には先行配置されたパイプルーフを打設するステップ2.6と、
100~200mm厚さの吹き付けコンクリート又は200~500mm厚さのコンクリートで切り羽を密閉するステップ2.7と、
まず両側壁の導坑を順次掘削し、コンクリートを吹き付けて周囲岩石を密閉し、格子型枠を立設し、仮設鋼支保工を立設し、鉄筋網を結束して、コンクリートを吹き付けるステップ2.8と、
各格子型枠を立設した後、格子脚部の地盤軟土を掘り出して、100厚さの吹き付けコンクリート下敷を格子脚部の基礎として施作して、格子が安定するように確保するステップ2.9と、
縦方向に5m程度ずらして中央の2つの導坑を掘削し、掘削後にコンクリートを直ちに吹き付けて周囲岩石を密閉し、格子型枠を立設し、仮設鋼支保工を立設し、鉄筋網を結束して、コンクリートを吹き付けるステップ2.10と、
ドーム構造を施作して、中央仮設支保工を段階的に取り外すステップ2.11と、
ドーム構造により保護されながら第2期の基礎坑の掘削を行うステップ2.12と、
風道横通路の底の標高に掘削してから掘削を一時停止し、両側へ馬頭門を開けてトンネルに入り始め、4つの残りの風道横通路を掘削するステップ2.13と、
残りの風道横通路の二次覆工施作を完了した後、下部土砂の掘削を行い続け、風道横通路の底の標高から駅本体構造の外輪郭線に沿って第3期の基礎坑の掘削部分が垂直に仕切られるステップ2.14と、
鋼管杭の範囲内に下向きに掘削し続けて、直ちに支保するステップ2.15と、
坑の掘削を基礎坑下敷から300mm以上行うと、基礎坑の検収を行って、残りの土砂を手動で掘り出し、設計標高まで掘り出した後に基礎坑を直ちにならして、坑内に溜まった水を排出して、下敷を直ちに施作すべきであるステップ2.16と、
風道本体の基礎坑から駅本体のアンダーカット掘削施工を行うステップ2.17と、
駅本体構造を全断面でアンダーカット掘削してトンネルに入った後、風道本体構造の防水層を敷設し、次に下から上まで風道本体の二次覆工構造を順次施作し始めるステップ2.18と、
風道本体コンクリートの二次覆工構造が設計強度の75%に達した後、土砂を埋め戻して突き固めて、地盤を元に戻すステップ2.19と、を含むことを特徴とする。
Further discloses a construction method of a protruding type wind duct perpendicular to the longitudinal direction in a deep subway station comprising a wind duct separation part and a wind duct main part,
The construction of the wind duct separation part is as follows:
Step 1: Construct a closed ring beam at the positions exposed from the ground of the left line piston ventilation shaft, right line piston ventilation shaft, exhaust shaft, and outside air introduction ventilation shaft, and install the foundation embedded members to raise the shaft turret. .1 and
step 1.2 of excavating the earth and rock of the shaft and supporting it as it is excavated;
step 1.3 of initially spraying concrete and installing lattice steel frames and reinforcing bar mesh;
step 1.4 of applying shotcrete to seal the surrounding rock;
step 1.5, repeating steps 1.2 to 1.4 until drilling to the bottom elevation of the shaft;
step 1.6 of sealing the bottom of the shaft;
Three lattice steel frames were connected and erected at the positions of the left piston ventilation shaft, right piston ventilation shaft, exhaust shaft, and outside air introduction ventilation shaft, respectively, and mortar anchor bolts were driven. Step 1.7 of setting
Some left piston wind passages are excavated in the entire cross section of the left piston ventilation shaft, right piston ventilation shaft, exhaust shaft, outside air introduction ventilation shaft, some right piston ventilation passages, and one right piston ventilation shaft. step 1.8, installing anchor bolts from the side passages of the ventilation ducts in the section and the lateral passages of the part of the outside air intake ducts, tying up the reinforcing bars, and spraying concrete;
Step 1.9 of laying the bedrock waterproofing layer and constructing the bedrock;
step 1.10 of laying the remaining waterproof layer and performing secondary lining of the arch and side walls;
repeating steps 1.8 to 1.10 until some piston airway cross passages are completed, step 1.11;
The construction of the main body of the wind duct is as follows:
Before excavation, the water level in the pit should be lowered, the groundwater level should be lowered to a point 1 m lower than the final excavation surface of the foundation pit, and a water intake channel should be built on the shoulder of the slope and soil hardening should be carried out. Step 2.1 of preventing surface water from seeping into the slope;
Step 2.2 of driving one stage of steel pipe piles into the rocky strata;
Step 2.3 of constructing the top beam, erecting the flange brace, and driving prestressed anchor bolts;
The earth and sand are excavated downward, and the first stage open-cut foundation shaft is excavated one layer at a time from top to bottom. After excavation, one layer of concrete is sprayed to seal the surrounding rock, and then anchor bolts are driven. step 2.4 of installing the shotcrete panels after installing the reinforcing steel mesh;
step 2.5, in which the first stage open-cut foundation shaft is excavated one layer at a time up to the elevation of the dome leg foundation, that is, the elevation of the top of the primary lining of the horizontal lateral passage, and the construction of the undercut excavation dome portion begins;
step 2.6 of pouring a previously placed pipe roof in the open cut foundation pit;
step 2.7 of sealing the face with 100-200 mm thick shotcrete or 200-500 mm thick concrete;
Step 2: First, tunnels on both sides are excavated in sequence, concrete is sprayed to seal the surrounding rocks, lattice formwork is erected, temporary steel shoring is erected, reinforcing bars are tied together, and concrete is sprayed. .8 and
Step 2: After each lattice formwork is erected, dig out the soft soil of the lattice legs and install a 100mm thick shotcrete underlayment as a foundation for the lattice legs to ensure the lattice is stable. .9 and
Two central guide shafts were excavated about 5 meters apart in the vertical direction, and after the excavation, concrete was immediately sprayed to seal the surrounding rocks, lattice formwork was erected, temporary steel shoring was erected, and a reinforcing bar net was installed. Step 2.10 of tying and spraying concrete;
step 2.11 of constructing the dome structure and removing the central temporary shoring in stages;
step 2.12 of excavating the second stage foundation shaft while being protected by the dome structure;
step 2.13 of excavating to the bottom elevation of the windway cross passage, then temporarily stopping the excavation, opening horsehead gates on both sides and starting to enter the tunnel, and excavating the four remaining windway cross passages;
After completing the secondary lining construction for the remaining windway side passages, we continued to excavate the lower part of the earth and sand, and built the third stage foundation from the bottom elevation of the windway sideways along the outer contour of the station main structure. step 2.14 in which the excavated portion of the well is partitioned vertically;
Step 2.15 of continuing to excavate downward into the steel pipe pile and immediately shoring;
When a pit is excavated more than 300mm from the base of the foundation, the foundation is inspected, the remaining soil is manually dug out, and after the excavation reaches the design elevation, the foundation is leveled immediately to drain the water that has accumulated inside the pit. step 2.16, in which the underlayment should be applied immediately;
step 2.17 of carrying out undercut excavation construction of the station body from the foundation shaft of the windway body;
After undercutting the entire station structure and entering the tunnel, we will lay a waterproof layer for the windway main structure, and then begin constructing the secondary lining structure for the windway main body from bottom to top. Step 2.18 and
After the secondary lining structure of the wind channel main body concrete reaches 75% of the design strength, it is characterized by including step 2.19 of backfilling with earth and sand, compacting it, and restoring the ground to its original state.

ステップ2.6において、長いパイプルーフの施工精度を確保するために、ψ140mm・壁厚さ5mmのガイド鋼管をL=0.8mとし、長いパイプルーフがドーム全体の水平深さを被覆する。 In step 2.6, in order to ensure the construction accuracy of the long pipe roof, the guide steel pipe with a diameter of 140 mm and a wall thickness of 5 mm is set to L=0.8 m, and the long pipe roof covers the horizontal depth of the entire dome.

長いパイプルーフは16mであって、1部分あたりに4m長さの熱間圧延シームレス鋼管をネジで接続してなるのであり、注入はセメントスラリーを用い、水セメント比を1:1、注入圧力を0.5~2.0MPaとし、注入が終了した後にM7.5セメントモルタルで鋼管を充填し、パイプルーフの強度を強化する。 The long pipe roof is 16 m long, and each section is made up of 4 m long hot-rolled seamless steel pipes connected with screws.Cement slurry is used for injection, with a water-cement ratio of 1:1 and injection pressure. After the injection is completed, the steel pipe is filled with M7.5 cement mortar to strengthen the strength of the pipe roof.

ステップ2.12における第2期のオープンカット基礎坑は2つの部分に分けられ、一方の部分が第1期の基礎坑から下向きに掘削し続けるのであり、他方の部分がアンダーカット掘削部分からドームにより保護されながら下向きにトップダウン掘削を行うのであり、施工時に先支後掘の原則を用い、掘削後に1層のコンクリートを直ちに吹き付けて周囲岩石を密閉し、次にアンカーボルトを打設して、鉄筋網を掛けてから吹き付けコンクリートパネルを施作する。 The second stage open cut foundation shaft in step 2.12 is divided into two parts, one part continues to excavate downward from the first stage foundation shaft, and the other part continues to excavate from the undercut excavation part to the dome. Top-down excavation is carried out downward while being protected by the ground.During construction, the principle of first-branch-back excavation is used, and after excavation, one layer of concrete is immediately sprayed to seal the surrounding rock, and then anchor bolts are driven. , install the shotcrete panels after installing the reinforcing steel mesh.

前記ステップ2.13において、前記残りの左線ピストン風道横通路及び残りの外気導入風道横通路のトンネル入り口が第1期のオープンカット基礎坑の下方に位置し、残りの右線ピストン風道横通路及び残りの排風道横通路のトンネル入り口がドームの下方に位置する。 In step 2.13, the tunnel entrances of the remaining left piston wind passages and the remaining outside air introduction wind passages are located below the first stage open cut foundation shaft, and the remaining right piston wind passages are located below the first stage open cut foundation shaft. The tunnel entrances of the road side passage and the remaining ventilation road side passage are located below the dome.

前記オープンカット基礎坑の下方の残りの左線ピストン風道横通路及び残りの外気導入風道横通路のトンネル入りは全断面掘削を用い、具体的には、
全断面を掘削し、アンカーボルトを施作して、鉄筋網を結束して、コンクリートを吹き付けるステップAと、
岩盤防水層を敷設して、岩盤を施作するステップBと、
残りの防水層を敷設して、アーチ部及び側壁の二次覆工を施作し、アーチ部及び側壁の二次覆工進度が岩盤のインバートアーチよりも1つの掘削掘進度遅いステップCと、を含む。
Entry into the tunnel of the remaining left piston wind passage below the open cut foundation shaft and the remaining outside air introduction wind passage is performed by full-section excavation, specifically,
Step A: excavating the entire cross section, installing anchor bolts, tying up the reinforcing steel mesh, and spraying concrete;
Step B of laying a bedrock waterproof layer and constructing the bedrock;
Step C, in which the remaining waterproof layer is laid and secondary lining is applied to the arch part and side walls, and the secondary lining progress of the arch part and side walls is one excavation progress slower than that of the inverted rock arch; including.

前記ドームの下方の残りの右線ピストン風道横通路及び残りの排風道横通路は中壁工法によって掘削し、具体的には、
左側導坑を掘削し、コンクリートを直ちに初期吹き付けて周囲岩石を密閉し、格子鋼型枠及び縦方向の仮設I形鋼支保工を立設し、鉄筋網を結束してから150mm厚さのコンクリートを吹き付けるステップAと、
0.5mずらして右側導坑を掘削し、コンクリートを直ちに初期吹き付けて周囲岩石を密閉し、格子鋼型枠を立設し、格子が安定するように確保するために、各格子を立設した後にいずれも格子脚部の地盤の軟土を掘り出して、100mm厚さの吹き付けコンクリート下敷を格子脚部の基礎として施作すべきであるステップBと、
ドームが設計強度に達した後、仮設形鋼支保工を取り外して、馬頭門における風道の二次覆工構造を施作するステップCと、
馬頭門部分の長さを約3mとし、掘削掘進度を0.5m以下にし、馬頭門部分から離れてから全断面法で掘削するステップDと、を含む。
The remaining right-hand piston wind passageway and the remaining ventilation passageway below the dome are excavated by the middle wall construction method, and specifically,
The left-hand shaft was excavated, concrete was immediately sprayed initially to seal the surrounding rocks, lattice steel formwork and vertical temporary I-shaped steel supports were erected, and the reinforcing bar network was tied together, then concrete was poured to a thickness of 150 mm. Step A of spraying
A right-hand shaft was excavated with a shift of 0.5 m, concrete was immediately sprayed initially to seal the surrounding rock, lattice steel forms were erected, and each lattice was erected to ensure that the lattice was stable. Step B, in which the soft soil at the base of the lattice legs should be excavated and a 100mm thick shotcrete underlayment should be laid as a foundation for the lattice legs;
After the dome reaches its design strength, step C of removing the temporary steel beam support and constructing a secondary lining structure for the wind channel at the horse gate;
The length of the horse head part is about 3 m, the excavation depth is set to 0.5 m or less, and step D is excavated using the full cross-section method after leaving the horse head part.

前記4つの残りの風道横通路と上記ステップ1.11における通風坑から掘削した一部の横通路とがそれぞれ合流して、完全に連通する風道横通路を形成する。 The four remaining air passages and the part of the air passage excavated from the ventilation shaft in step 1.11 are joined together to form a completely communicating air passage.

ステップ2.17において、風道本体の基礎坑からアンダーカット掘削する駅本体は3段階工法・7ステップ法によって掘削する。 In step 2.17, the station main body, which is undercut excavated from the foundation shaft of the windway main body, is excavated using the three-step construction method and the seven-step method.

上記内容から分かるように、本発明に係る大深度地下鉄駅における縦方向に直交する突き出し型風道構造及び施工方法は以下の効果を有する。 As can be seen from the above content, the longitudinally orthogonal protruding wind duct structure and construction method in a deep subway station according to the present invention has the following effects.

第1として、大深度駅の上方の垂直空間を効果的に利用して、地下空間の利用率を向上させ、駅構造をより集中させ、周辺建築環境への影響を軽減する。 First, the vertical space above the deep station will be effectively used to improve the utilization rate of underground space, make the station structure more concentrated, and reduce the impact on the surrounding architectural environment.

第2として、大深度駅の風道の長さを効果的に短縮し、通風換気効率を向上させ、省エネ・排出削減が可能である。 Second, it is possible to effectively shorten the length of the wind duct at the deep station, improve ventilation efficiency, and save energy and reduce emissions.

第3として、施工段階において風道本体の基礎坑が駅本体及び区間トンネルの施工立て坑とされてもよく、駅本体及び区間トンネルと連携して施工でき、工事期間を短縮する。 Thirdly, in the construction stage, the foundation shaft of the wind passage main body may be used as the construction shaft of the station main body and the section tunnel, and the construction can be carried out in cooperation with the station main body and the section tunnel, thereby shortening the construction period.

第4として、オープンカット掘削とアンダーカット掘削を組み合わせた施工スキームは、建設現場を減少させ、複数の作業面を提供し、施工効率を大幅に向上させ、コスト及び人力・物力を効果的に節約することができる。 Fourth, the construction scheme that combines open-cut excavation and undercut excavation reduces the construction site, provides multiple working surfaces, greatly improves construction efficiency, and effectively saves costs and manpower and material resources. can do.

本発明の詳細な内容は下記説明及び図面から明らかになる。 The detailed contents of the present invention will become clear from the following description and drawings.

図1は本発明に係る大深度地下鉄駅における縦方向に直交する突き出し型風道構造の縦方向に直交する突き出し型風道を示す総平面図である。FIG. 1 is a general plan view showing a protruding type air duct perpendicular to the vertical direction of a protruding type air duct structure perpendicular to the vertical direction in a deep subway station according to the present invention. 図2は図1におけるA-A方向の断面図である。FIG. 2 is a sectional view taken along the line AA in FIG. 図3は図1におけるB-B方向の断面図である。FIG. 3 is a sectional view taken along the line BB in FIG. 図4は図1におけるC-CA-A方向の断面図である。FIG. 4 is a cross-sectional view along the C-CA-A direction in FIG. 1. 図5は図1におけるD-DA-A方向の断面図である。FIG. 5 is a cross-sectional view taken along the DDA-A direction in FIG. 図6Aは本発明の施工計画図である。FIG. 6A is a construction plan diagram of the present invention. 図6Bは本発明の施工計画図である。FIG. 6B is a construction plan diagram of the present invention. 図7Aは本発明に係る風道本体の施工模式図である。FIG. 7A is a schematic diagram of the construction of the wind duct main body according to the present invention. 図7Bは本発明に係る風道本体の施工模式図である。FIG. 7B is a schematic diagram of the construction of the wind duct main body according to the present invention. 図7Cは本発明に係る風道本体の施工模式図である。FIG. 7C is a schematic diagram of the construction of the wind duct main body according to the present invention. 図7Dは本発明に係る風道本体の施工模式図である。FIG. 7D is a schematic diagram of the construction of the wind duct main body according to the present invention. 図7Eは本発明に係る風道本体の施工模式図である。FIG. 7E is a schematic diagram of the construction of the wind duct main body according to the present invention. 図7Fは本発明に係る風道本体の施工模式図である。FIG. 7F is a schematic construction diagram of the wind duct main body according to the present invention. 図7Gは本発明に係る風道本体の施工模式図である。FIG. 7G is a schematic construction diagram of the wind duct main body according to the present invention. 図7Hは本発明に係る風道本体の施工模式図である。FIG. 7H is a schematic diagram of the construction of the wind duct main body according to the present invention. 図8は本発明に係る駅本体のトンネル入り施工の模式図である。FIG. 8 is a schematic diagram of construction of a station main body into a tunnel according to the present invention. 図9は本発明に係る導坑の掘削の模式図である。FIG. 9 is a schematic diagram of excavation of a shaft according to the present invention.

図1~5には、本発明に係る大深度地下鉄駅における縦方向に直交する突き出し型風道構造を示す。 1 to 5 show a protruding type wind duct structure perpendicular to the longitudinal direction in a deep subway station according to the present invention.

前記大深度地下鉄駅における縦方向に直交する突き出し型風道構造及び施工方法は以下を含む。 The vertically orthogonal protruding wind duct structure and construction method in the deep subway station include the following.

図1~5に示すように、本発明に係る大深度でアンダーカット掘削する地下鉄駅に適用される突き出し型風道構造は風道分離部分1及び風道本体部分2を備え、前記風道分離部分1は風道本体部分2の両側に位置し、且つ施工時に風道分離部分1と風道本体部分2を同時に行うことができ、それにより工事期間を短縮する。前記風道分離部分1は左線ピストン通風坑11、右線ピストン通風坑12、排風坑13、外気導入通風坑14及び一部の風道横通路を備え、前記一部の風道横通路は一部の左線ピストン風道横通路15、一部の右線ピストン風道横通路16、一部の排風道横通路17及び一部の外気導入風道横通路18を備え、前記風道本体部分2は施工工程によって4つの部分、即ち第1期のオープンカット基礎坑21、アンダーカット掘削ドーム部分22、第2期のオープンカット基礎坑23、第3期のオープンカット基礎坑24及び残りの風道横通路に分けられてもよく、前記残りの風道横通路は残りの左線ピストン風道横通路25、残りの右線ピストン風道横通路26、残りの排風道横通路27及び残りの外気導入風道横通路28を備え、前記一部の左線ピストン風道横通路15と残りの左線ピストン風道横通路25とが連通して左線ピストン風道横通路を構成し、前記一部の右線ピストン風道横通路16と残りの右線ピストン風道横通路26とが連通して右線ピストン風道横通路を構成し、前記一部の排風道横通路17と残りの排風道横通路27とが連通して排風道横通路を構成し、前記一部の外気導入風道横通路18と残りの外気導入風道横通路28とが連通して外気導入風道横通路を構成し、前記風道本体部分2は左右線区間トンネル31、32と駅本体部分33との間に位置し、風道が使用されるようになった後、地下鉄が区間トンネル(駅)から駅(区間トンネル)に入ることによるピストン風は風道本体からピストン風道横通路に入ってからピストン通風坑を介して外部環境に通じる。 As shown in FIGS. 1 to 5, the projecting type wind duct structure applied to a subway station where deep undercut excavation is performed according to the present invention includes a wind duct separation part 1 and a wind duct body part 2, The parts 1 are located on both sides of the air duct body part 2, and the air duct separation part 1 and the air duct main part 2 can be performed at the same time during construction, thereby shortening the construction period. The air passage separation part 1 includes a left-line piston ventilation hole 11, a right-line piston ventilation hole 12, an exhaust hole 13, an outside air introduction ventilation hole 14, and a part of the air passage. is equipped with a part of the left piston air passage 15, a part of the right piston air passage 16, a part of the exhaust air passage 17, and a part of the outside air introduction air passage 18. The road body part 2 is divided into four parts depending on the construction process, namely, the first stage open cut foundation shaft 21, the undercut excavation dome part 22, the second stage open cut foundation shaft 23, the third stage open cut foundation shaft 24, and The remaining horizontal wind passages may be divided into the remaining horizontal piston air passages 25, the remaining piston air passages 25 on the left, the horizontal piston air passages 26 on the right, and the horizontal horizontal exhaust air passages. 27 and the remaining outside air introduction wind passage 28, the part of the left line piston air passage 15 and the remaining left line piston air passage 25 communicate with each other to form the left line piston air passage lateral passage. The part of the right line piston air passage lateral passage 16 and the remaining right line piston air passage lateral passage 26 communicate with each other to form a right line piston air passage lateral passage, and the part of the right line piston air passage lateral passage The passage 17 and the remaining cross-exhaust passage 27 communicate with each other to form a cross-exhaust passage, and the part of the external air introduction passage 18 and the remaining cross-exhaust air passage 28 communicate with each other. The wind passage main part 2 is located between the left and right line section tunnels 31 and 32 and the station main part 33, and after the wind passage is put into use, The piston wind entering the station (section tunnel) from the section tunnel (station) enters the piston airway side passage from the airway body, and then communicates with the outside environment through the piston ventilation shaft.

前記駅本体部分33が第3期のオープンカット基礎坑24に連通し、連通方式は図2、図3及び図5を参照し、前記左右線区間トンネル31、32が第3期のオープンカット基礎坑24に連通し、連通方式は図2、図3及び図4を参照する。駅が使用されるようになった後、列車は右線区間トンネル32を介して風道本体2に入ってから駅本体33に入って、駅に入ることを実現し、列車は駅本体33を介して風道本体2に入ってから右線区間トンネル32に入って、列車が駅を出ることを実現する。列車の高速移動によるピストン風は列車に巻き込まれながら風道本体2に入ってから左線及び右線ピストン風道25、15及び26、16を介して左線及び右線ピストン通風坑11及び12に入り、これにより、外部環境及び地下鉄の軌道走行領域の内部環境の風圧のバランスをとる。駅本体内部の混濁ガスは駅本体33と風道本体2との通風配管を介して排風道27、17に入って排風坑13に通じてから外部環境に排出され、外部の新鮮な空気は外気導入通風坑14を介して外気導入風道18、28に入ってから風道本体2に入って、最後に駅本体33に入り、これにより、駅の非軌道走行領域部分と外部環境のガス交換を実現し、駅内の空気が新鮮であることが確保される。 The station main part 33 communicates with the open-cut foundation shaft 24 of the third stage, and the communication method is shown in FIGS. 2, 3, and 5. It communicates with the well 24, and the communication method is shown in FIGS. 2, 3, and 4. After the station is put into use, the train enters the windway main body 2 through the right track tunnel 32 and then enters the station main body 33 to realize the station, and the train enters the station main body 33. The train enters the windway main body 2 through the train, enters the right line section tunnel 32, and exits the station. The piston wind due to the high-speed movement of the train enters the air passage main body 2 while being caught up in the train, and then passes through the left line and right line piston air passages 25, 15 and 26, 16 to the left line and right line piston ventilation holes 11 and 12. and thereby balance the wind pressures of the external environment and the internal environment of the subway track running area. The turbid gas inside the station main body enters the ventilation ducts 27, 17 through the ventilation pipes between the station main body 33 and the ventilation pipe main body 2, passes through the ventilation shaft 13, and is then discharged to the outside environment, and is discharged to the outside environment. The air enters the outside air intake ducts 18 and 28 through the outside air introduction ventilation shaft 14, then enters the air duct main body 2, and finally enters the station main body 33, thereby separating the non-track running area of the station and the external environment. It will realize gas exchange and ensure that the air inside the station is fresh.

本発明は上記大深度地下鉄駅における縦方向に直交する突き出し型風道の施工方法を更に開示し、下記ステップを含む The present invention further discloses a method for constructing a protruding windway perpendicular to the longitudinal direction in the deep subway station, including the following steps:

図4~6A及び図6Bを参照し、風道分離部分1の施工は下記ステップ1.1~1.11を含む。 Referring to FIGS. 4 to 6A and 6B, the construction of the airway separation part 1 includes the following steps 1.1 to 1.11.

ステップ1.1 左線ピストン通風坑11、右線ピストン通風坑12、排風坑13及び外気導入通風坑14の地盤から露出する位置には口止め型リングビームを施作して、立坑櫓を引き上げる基礎埋込部材を取り付けることができる。 Step 1.1 Install closed ring beams at the positions exposed from the ground of the left line piston ventilation shaft 11, right line piston ventilation shaft 12, exhaust shaft 13, and outside air introduction ventilation shaft 14, and pull up the shaft turret. Foundation embedded components can be attached.

ステップ1.2 立て坑の土砂岩石を掘削して、掘削につれて支保する。立て坑を上から下まで階層的に掘削し、掘削コンパスを格子鉄骨の間隔とする。本実施例では、節理発育領域がψ25の中空注入アンカーボルトを用い、打設長さL=2.5m、打設角度15°とし、左線ピストン通風坑11と右線ピストン通風坑12とを1つの立て坑として同時に掘削して、排風坑13及び外気導入通風坑14の2つの立て坑を同時に掘削してもよい。 Step 1.2 Excavate the earth and rock for the shaft and support it as it is excavated. The shaft is excavated in layers from top to bottom, and the excavation compass is set to the spacing of the steel grid. In this example, a hollow injection anchor bolt with a joint growth area of ψ25 is used, the driving length L is 2.5 m, the driving angle is 15°, and the left piston ventilation hole 11 and the right piston ventilation hole 12 are Two shafts, the exhaust shaft 13 and the outside air introduction ventilation shaft 14, may be excavated simultaneously as one shaft.

ステップ1.3 コンクリートを初期吹き付けて格子鉄骨及び鉄筋網を取り付ける。取り付ける前にクリアランスを検査すべきであり、掘削不足を防止する。好ましくは、本実施例における周囲岩石の条件がより良い箇所にはψ6200mm×200mmの鉄筋網吹き付けコンクリートを用いてもよく、格子鉄骨が取り付けられていない。 Step 1.3 Initial spraying of concrete and installation of grid steel and reinforcing bar mesh. Clearances should be inspected before installation to prevent under-excavation. Preferably, shotcrete with reinforced mesh of ψ6200 mm x 200 mm may be used in locations where the surrounding rock conditions are better in this example, and no grid steel frame is attached.

ステップ1.4 吹き付けコンクリートを施作して周囲岩石を密閉する。コンクリートを吹き付ける際に風圧を(0.1~0.2MPa)に制御するように注意すべきであり、風圧が大きすぎることによる吹き付けコンクリートの反発量が大きすぎることを回避する。ノズルを吹き付け対象面に垂直にすべきであり、距離を1.5m以下にすべきであり、コンクリートの吹き付けを領域に分けて下から上まで順次行うべきである。 Step 1.4 Apply shotcrete to seal the surrounding rock. When spraying concrete, care should be taken to control the wind pressure to (0.1 to 0.2 MPa) to avoid excessive rebound of the sprayed concrete due to too high wind pressure. The nozzle should be perpendicular to the surface to be sprayed, the distance should be less than 1.5 m, and the concrete should be sprayed sequentially from bottom to top in areas.

ステップ1.5 立て坑の底の標高に掘削するまでステップ1.2~1.4を繰り返す。 Step 1.5 Repeat steps 1.2-1.4 until drilling to the bottom elevation of the shaft.

ステップ1.6 立て坑の底を密閉する。 Step 1.6 Seal the bottom of the shaft.

ステップ1.7 それぞれ左線ピストン通風坑11、右線ピストン通風坑12、排風坑13、外気導入通風坑14からそれぞれの風道横通路の位置には3つの格子鉄骨を結合して立設して、Φ28のモルタルアンカーボルトを打設し、長さを4m、角度を15°とする。 Step 1.7 Connect and erect three lattice steel frames at the positions of the respective wind passages from the left piston ventilation shaft 11, right piston ventilation shaft 12, exhaust shaft 13, and outside air introduction ventilation shaft 14, respectively. Then, a mortar anchor bolt with a diameter of Φ28 was installed, with a length of 4 m and an angle of 15°.

ステップ1.8 それぞれ左線ピストン通風坑11、右線ピストン通風坑12、排風坑13、外気導入通風坑14の全断面に掘削する一部の左線ピストン風道横通路15、一部の右線ピストン風道横通路16、一部の排風道横通路17及び一部の外気導入風道横通路18からアンカーボルトを施作して、鉄筋網を結束して、コンクリートを吹き付ける。 Step 1.8 Excavate a portion of the left piston air passage horizontal passage 15 and a portion of the left piston ventilation hole 11, right piston ventilation hole 12, exhaust ventilation hole 13, and outside air introduction ventilation hole 14, respectively. Anchor bolts are installed from the right-line piston air passage 16, some of the exhaust air passages 17, and some of the outside air introduction air passages 18, the reinforcing steel nets are tied together, and concrete is sprayed.

ステップ1.9 岩盤防水層を敷設して岩盤を施作する。 Step 1.9 Lay the bedrock waterproofing layer and construct the bedrock.

ステップ1.10 残りの防水層を敷設してアーチ部及び側壁の二次覆工を施作する。アーチ部及び側壁の二次覆工進度が岩盤のインバートアーチよりも1つの掘削掘進度遅い。 Step 1.10 Lay the remaining waterproofing layer and apply the secondary lining of the arch and side walls. The progress of the secondary lining of the arch portion and side walls is one excavation progress slower than that of the inverted arch made of rock.

ステップ1.11 一部の左線ピストン風道横通路15、一部の右線ピストン風道横通路16、一部の排風道横通路17及び一部の外気導入風道横通路18が全部完了して風道本体部分2の横通路と合流するまで、ステップ1.8~1.10を繰り返す。 Step 1.11 Some of the left piston air passages 15, some of the right piston air passages 16, some of the exhaust air passages 17, and some of the outside air introduction air passages 18 are all Repeat steps 1.8 to 1.10 until completed and merge with the side passage of the main body part 2 of the wind channel.

図5、図7A~7H及び図8を参照し、風道本体部分2の施工は下記ステップ2.1~2.19を含む。 Referring to FIG. 5, FIGS. 7A to 7H, and FIG. 8, the construction of the wind channel main body portion 2 includes the following steps 2.1 to 2.19.

ステップ2.1 図7Aを参照し、一実施例では、地勢の高度差が比較的大きいため、基礎坑の上方をスロープ処理することができ、土釘壁支保工を用いる。掘削前に坑内の水位を降下すべきであり、地下水位を最終的な基礎坑の掘削面よりも1m低い箇所に降下し、法面の法肩に承水路及び地盤硬化を行うべきであり、地表水が法尻に滲み込むことを防止する。 Step 2.1 Referring to FIG. 7A, in one embodiment, because the elevation difference in the terrain is relatively large, the top of the foundation pit can be sloped and earth nail wall shoring is used. Before excavation, the water level in the pit should be lowered, the groundwater level should be lowered to a point 1 m lower than the final excavation surface of the foundation pit, and a water intake channel should be built on the shoulder of the slope and soil hardening should be carried out. Prevent surface water from seeping into the foot of the slope.

ステップ2.2 岩石地層に1段の鋼管杭を打設し、本実施例では、基礎坑の深さがより深くて鋼管杭を打たないため、土砂岩石の掘削はスムーズプラスチングを制御して、設計された坡壁から3メートル離れる箇所には手動で掘削する。施工時に複数回測定する必要があり、過度掘削・掘削不足を防止する。 Step 2.2 Driving one stage of steel pipe piles into the rock strata. In this example, the depth of the foundation pit is deeper and no steel pipe piles are driven, so the excavation of the earth and rock is controlled by smooth plasting. Then, manually excavate the area 3 meters away from the designed wall. It is necessary to measure multiple times during construction to prevent over-excavation or under-excavation.

ステップ2.3 トップビームを施作して、フランジブレースを架設してプレストレストアンカーボルトを打設する。 Step 2.3 Construct the top beam, erect the flange brace, and drive the prestressed anchor bolts.

ステップ2.4 土砂の掘削を下向きに行い、直ちに支保する。第1期のオープンカット基礎坑21を上から下まで1層ずつ掘削し、掘削コンパスをアンカーボルトの間隔とし、過度掘削は禁じられる。掘削後に1層のコンクリートを直ちに吹き付けて周囲岩石を密閉し、次にアンカーボルトを打設して、鉄筋網を掛けてから吹き付けコンクリートパネルを施作する。 Step 2.4 Excavate the earth downwards and shoring immediately. The open-cut foundation shaft 21 of the first stage will be excavated one layer at a time from top to bottom, and the excavation compass will be set at the spacing of the anchor bolts, and excessive excavation will be prohibited. After excavation, a layer of concrete is immediately sprayed to seal the surrounding rock, then anchor bolts are driven, reinforcing bars are placed, and shotcrete panels are constructed.

ステップ2.5 第1期のオープンカット基礎坑21をドーム脚基盤における標高即ち水平横通路の一次覆工の頂部の標高まで1層ずつ掘削し、第1期のオープンカット基礎坑21の施工を一時停止し、アンダーカット掘削ドーム部分22の施工を行い始める。 Step 2.5 The first stage open cut foundation shaft 21 is excavated one layer at a time up to the elevation of the dome leg base, that is, the top elevation of the primary lining of the horizontal passageway, and the construction of the first stage open cut foundation shaft 21 is completed. After a temporary stop, construction of the undercut excavation dome portion 22 begins.

ステップ2.6 オープンカット基礎坑内には先行配置されたパイプルーフを打設する。長いパイプルーフの施工精度を確保するために、ψ140mm・壁厚さ5mmのガイド鋼管をL=0.8mとしてもよい。長いパイプルーフがドーム全体の水平深さを被覆すべきであり、本実施例におけるドームの長さが14.5mであり、従って、選択された16m長いパイプルーフは1部分あたりに4m長さの熱間圧延シームレス鋼管(直径108mm、管壁厚さ6mm)をネジで接続してなるのである。注入はセメントスラリーを用い、水セメント比を1:1、注入圧力を0.5~2.0MPaとする。注入が終了した後にM7.5セメントモルタルで鋼管を充填し、パイプルーフの強度を強化する。 Step 2.6 Pour the previously placed pipe roof into the open cut foundation pit. In order to ensure the construction accuracy of a long pipe roof, a guide steel pipe with a diameter of 140 mm and a wall thickness of 5 mm may have a length of L=0.8 m. The long pipe roof should cover the entire horizontal depth of the dome, and the length of the dome in this example is 14.5 m, so the selected 16 m long pipe roof has a length of 4 m per section. It is made by connecting hot-rolled seamless steel pipes (diameter 108 mm, tube wall thickness 6 mm) with screws. Cement slurry is used for injection, with a water-cement ratio of 1:1 and an injection pressure of 0.5 to 2.0 MPa. After the injection is completed, the steel pipe is filled with M7.5 cement mortar to strengthen the pipe roof.

ステップ2.7 周囲岩石の状況に応じて100~200mm厚さの吹き付けコンクリート又は200~500mm厚さのコンクリートで切り羽を密閉して、切り羽の不安定を防止する。 Step 2.7 Seal the face with 100-200 mm thick shotcrete or 200-500 mm thick concrete depending on the surrounding rock conditions to prevent instability of the face.

ステップ2.8 図7Bに示すように、切り羽のスパンが比較的大きくて、オープンカット基礎坑とアンダーカット掘削部分との境界における受力状況が複雑であるため、アンダーカット掘削ドーム部分が部分的にトンネルに入る掘削を用いるのに適する。まず両側壁の導坑I、Jを順次掘削し、C25コンクリートを直ちに吹き付けて周囲岩石を密閉し、格子型枠を立設し、仮設鋼支保工を立設し、鉄筋網を結束して、コンクリートを吹き付けてもよい。 Step 2.8 As shown in Figure 7B, the span of the face is relatively large and the receiving force situation at the boundary between the open cut foundation shaft and the undercut excavation part is complicated, so the undercut excavation dome part is partially Suitable for use in tunnel excavations. First, we excavated shafts I and J on both sides one after another, immediately sprayed C25 concrete to seal the surrounding rocks, erected lattice formwork, erected temporary steel shoring, and tied up the reinforcing bar network. You can also spray concrete.

ステップ2.9 各格子型枠を立設した後、いずれも格子脚部の地盤軟土を掘り出して、100厚さの吹き付けコンクリート下敷を格子脚部の基礎として施作すべきであり、格子が安定するように確保する。必要な場合、確実な木板下敷を施作してもよい。 Step 2.9 After each lattice formwork is erected, the soft soil of the lattice legs should be dug out and a 100mm thick shotcrete underlayment should be laid as the foundation of the lattice legs, so that the lattice is Ensure stability. If necessary, a solid wood board underlay may be installed.

ステップ2.10 縦方向に5m程度ずらして中央の2つの導坑K、Lを左右に掘削し、掘削後にC25コンクリートを直ちに吹き付けて周囲岩石を密閉し、格子型枠を立設し、仮設鋼支保工を立設し、鉄筋網を結束して、コンクリートを吹き付ける。 Step 2.10 Two center shafts K and L are excavated to the left and right with a vertical shift of approximately 5 m. After excavation, C25 concrete is immediately sprayed to seal the surrounding rocks, lattice formwork is erected, and temporary steel The shoring is erected, the reinforcing bars are tied together, and concrete is sprayed.

ステップ2.11 図7Cに示すように、ドーム構造を施作して、中央仮設支保工を段階的に取り外し、支保工を取り外す際に監視測定を強化すべきであり、監視測定結果に基づいて施工をフィードバック指導し、支保工取り外し部分の長さを直ちに調整し、アーチ部の安全を確保する。大きなアーチ部の施作は一次成形すべきであり、部分的に注入してはいけない。 Step 2.11 As shown in Figure 7C, the dome structure should be installed and the central temporary shoring removed in stages, monitoring measurements should be strengthened during the removal of the shoring, and based on the monitoring measurement results. Provide feedback and guidance on construction, immediately adjust the length of the part from which the shoring has been removed, and ensure the safety of the arch. Large arches should be preformed and not partially poured.

ステップ2.12 図7Dに示すように、ドーム構造により保護されながら第2期の基礎坑23の掘削を行う。第2期のオープンカット基礎坑は2つの部分に分けられ、一方の部分が第1期の基礎坑から下向きに掘削し続けるのであり、他方の部分がアンダーカット掘削部分からドームにより保護されながら下向きにトップダウン掘削を行うのである。施工時に依然として先支後掘の原則を用い、掘削後に1層のコンクリートを直ちに吹き付けて周囲岩石を密閉し、次にアンカーボルトを打設して、鉄筋網を掛けてから吹き付けコンクリートパネルを施作し、支保強度が設計要件を満たさなければ掘削し続けることができない。 Step 2.12 As shown in FIG. 7D, the second stage foundation pit 23 is excavated while being protected by the dome structure. The second stage open cut foundation shaft is divided into two parts, one part continues to excavate downward from the first stage foundation shaft, and the other part continues to excavate downward from the undercut excavation part while being protected by a dome. top-down drilling is performed. During construction, the principle of digging first and digging is still used, and after excavation, a layer of concrete is immediately sprayed to seal the surrounding rock, then anchor bolts are placed, and the reinforcement mesh is hung before the shotcrete panels are installed. However, excavation cannot continue unless the support strength meets the design requirements.

ステップ2.13 図7Eに示すように、風道横通路の底の標高まで掘削してから掘削を一時停止し、両側へ馬頭門を開けてトンネルに入り始め、4つの残りの風道横通路を掘削する。 Step 2.13 As shown in Figure 7E, excavate to the bottom elevation of the windway cross passage, then pause the excavation, open the horsehead gates on both sides and begin to enter the tunnel, and then complete the four remaining windway cross passages. excavate.

前記ステップ2.13は下記キーポイントを含んでもよい。 Said step 2.13 may include the following key points.

第1として、前記4つの残りの風道横通路において、前記残りの風道横通路は残りの左線ピストン風道横通路25及び残りの外気導入風道横通路28のトンネル入り口が第1期のオープンカット基礎坑の下方に位置し、残りの右線ピストン風道横通路26及び残りの排風道横通路27のトンネル入り口がドームの下方に位置することを含み、これは、ドーム構造への妨害を低減して施工の安全を確保するためであり、これにより、2種類の横通路は異なる掘削方式を用いる。 First, in the four remaining wind passages, the tunnel entrances of the remaining left piston wind passages 25 and the remaining outside air introduction wind passages 28 are in the first stage. including that the tunnel entrances of the remaining right-hand piston wind channel lateral passage 26 and the remaining ventilation duct lateral passage 27 are located below the dome, which is connected to the dome structure. This is to ensure construction safety by reducing disturbances to the tunnels, and as a result, the two types of cross passages use different excavation methods.

第2として、前記オープンカット基礎坑の下方の残りの左線ピストン風道横通路25及び残りの外気導入風道横通路28のトンネル入りは全断面掘削を用い、具体的には下記ステップA~Cを含む。 Second, the remaining left line piston wind passageway 25 and the remaining outside air introduction wind passageway 28 below the open cut foundation tunnel are entered into the tunnel by full cross-sectional excavation, and specifically, the following steps A to Contains C.

ステップA 全断面を掘削し、アンカーボルトを施作して、鉄筋網を結束して、コンクリートを吹き付ける。 Step A: Excavate the entire section, install anchor bolts, tie up the reinforcing steel mesh, and spray concrete.

ステップB 岩盤防水層を敷設して岩盤を施作する。 Step B: Lay the bedrock waterproofing layer and construct the bedrock.

ステップC 残りの防水層を敷設してアーチ部及び側壁の二次覆工を施作する。アーチ部及び側壁の二次覆工進度が岩盤のインバートアーチよりも1つの掘削掘進度遅い。 Step C: Lay the remaining waterproof layer and perform secondary lining for the arch and side walls. The progress of the secondary lining of the arch portion and side walls is one excavation progress slower than that of the inverted arch made of rock.

第3として、前記ドームの下方の残りの右線ピストン風道横通路26及び残りの排風道横通路27は中壁工法(CD法)によって掘削し、具体的には下記ステップA~Dを含む。 Thirdly, the remaining right-line piston wind passageway 26 and the remaining ventilation passageway 27 below the dome are excavated by the middle wall construction method (CD method), and specifically, the following steps A to D are carried out. include.

ステップA 左側導坑を掘削し、コンクリートを直ちに初期吹き付けて周囲岩石を密閉し、25格子鋼型枠及び縦方向の仮設I22型鋼支保工を立設し、鉄筋網を結束してから150mm厚さのコンクリートを吹き付ける。 Step A: Excavate the left-hand shaft, immediately spray the initial concrete to seal the surrounding rock, erect the 25-grid steel formwork and the vertical temporary I22 type steel shoring, and tie the reinforcing bar network to a 150mm thickness. spray concrete.

ステップB 0.5mずらして右側導坑を掘削し、コンクリートを直ちに初期吹き付けて周囲岩石を密閉し、格子鋼型枠を立設し、格子が安定するように確保するために、各格子を立設した後にいずれも格子脚部の地盤の軟土を掘り出して、100mm厚さの吹き付けコンクリート下敷を格子脚部の基礎として施作すべきである。 Step B: Excavate the right-hand shaft with a 0.5 m offset, immediately spray the initial concrete to seal the surrounding rock, erect the lattice steel formwork, and erect each lattice to ensure that the lattice is stable. After installation, the soft soil at the base of the lattice legs should be dug out and a 100mm thick shotcrete underlayment should be laid as a foundation for the lattice legs.

ステップC ドームが設計強度に達した後、仮設形鋼支保工22を取り外して、馬頭門における風道の二次覆工構造を施作する。 Step C: After the dome reaches its design strength, the temporary steel support 22 is removed and a secondary lining structure for the wind channel at the horse gate is constructed.

ステップD 馬頭門部分の長さを約3mとし、掘削掘進度を0.5m以下にし、馬頭門部分から離れてから全断面法で掘削し、ステップは上記2に示される。 Step D: The length of the horse head part is about 3 m, the excavation depth is set to 0.5 m or less, and excavation is carried out using the full cross-section method after leaving the horse head part, and the steps are shown in 2 above.

第4として、前記4つの残りの風道横通路が最終的に上記ステップ1.11における通風坑から掘削した一部の横通路とそれぞれ合流して、完全に連通する風道横通路を形成する。両方の施工切り羽が接近するとき、一方が施工を停止して、他方が掘進し続けるべきである。 Fourth, the remaining four horizontal wind passages finally merge with some of the horizontal passages excavated from the ventilation shaft in step 1.11, respectively, to form completely communicating horizontal passages. . When both construction faces approach, one should stop construction and the other should continue digging.

ステップ2.14 残りの風道横通路の二次覆工施作を完了した後、下部土砂の掘削を行い続ける。風道横通路の底の標高から駅本体構造の外輪郭線に沿って第3期の基礎坑24の掘削部分を垂直に仕切る。駅本体輪郭と垂直方向に重なり部分がない第2期の基礎坑は200mm厚さのC20コンクリートで底部を密閉する。 Step 2.14 After completing the secondary lining of the remaining wind passageways, continue excavating the lower soil. The excavated portion of the third stage foundation pit 24 is vertically partitioned from the elevation of the bottom of the wind passageway along the outer contour line of the station main structure. The bottom of the second phase foundation shaft, which has no vertical overlap with the station outline, will be sealed with 200mm thick C20 concrete.

ステップ2.15 図7Fに示すように、鋼管杭の範囲内に下向きに掘削し続けて、直ちに支保する。基礎坑の掘削は上から下まで階層的に順次掘削すべきであり、掘削高さを厳しく制御し、各部分の施工長さがリブ梁の縦方向における間隔であり、設計標高まで掘削した後に直ちに網を掛けてコンクリートを吹き付け、プレストレストアンカーケーブルを打設して、リブ梁又はリブ柱を施作して、基礎坑の未支保の露出時間を短縮し、同一水平施工区間において岩石層面の高い箇所から低い箇所まで施工すべきである。支保工が正常に使用できる程度になる前に下層土砂の過度掘削は禁じられる。 Step 2.15 Continue to excavate downward into the steel pipe pile and immediately shoring as shown in Figure 7F. The excavation of the foundation pit should be carried out hierarchically and sequentially from top to bottom, the excavation height should be strictly controlled, the construction length of each part should be the longitudinal spacing of the rib beam, and after excavating to the design elevation. Immediately cover the net, spray concrete, cast prestressed anchor cables, and install rib beams or rib columns to shorten the exposure time of unsupported foundation shafts and improve the height of the rock layer in the same horizontal construction section. Construction should be carried out from low points to low points. Excessive excavation of the subsoil is prohibited before the shoring is suitable for normal use.

ステップ2.16 坑の掘削を基礎坑下敷から300mm以上行うと、基礎坑の検収を行って、残りの土砂を手動で掘り出し、設計標高まで掘り出した後に基礎坑を直ちにならして、坑内に溜まった水を排出して、下敷を直ちに施作すべきである。 Step 2.16 Once the pit has been excavated to a depth of 300 mm or more from the base of the foundation shaft, the foundation shaft will be inspected, the remaining soil will be manually dug out, and after excavation to the design elevation, the foundation shaft will be leveled immediately to ensure that no dirt accumulates inside the shaft. Water should be drained and underlayment applied immediately.

ステップ2.17 風道本体の基礎坑を駅本体及び区間トンネルの施工立て坑とすることにより、スラグ輸送・スラグ排出効率を向上させることができ、シールド掘進を用いて掘削した区間トンネルの場合には風道本体の基礎坑によってシールド掘進機の吊り上げを容易にすることができる。前記機能を実現するために、図8を参照し、風道本体の基礎坑からアンダーカット掘削する駅本体は下記ステップ1~7を用いるべきである。 Step 2.17 By using the foundation shaft of the wind passage main body as the construction shaft of the station main body and section tunnel, slag transportation and slag discharge efficiency can be improved, and in the case of section tunnels excavated using shield excavation. can facilitate the lifting of the shield excavator by means of the foundation shaft of the main body of the wind duct. In order to realize the above function, referring to FIG. 8, the station body should use the following steps 1 to 7 to excavate an undercut from the foundation hole of the wind channel body.

ステップ1 周囲岩石の等級を判断して支保スキーム及びアンダーカット掘削工法を決定する。本実施例では、駅本体のトンネル入り周囲岩石の等級がII級であるため、先行支保措置を設置せず、3段階工法・7ステップ法によって掘削し、図8に示される。 Step 1: Determine the grade of surrounding rock and decide on the shoring scheme and undercut excavation method. In this example, since the rock around the station main body entering the tunnel is grade II, no advance support measures were installed, and the excavation was carried out using a three-step construction method and a seven-step method, as shown in FIG. 8.

ステップ2 上部弧形導坑aを掘削し、掘削後にコンクリートを直ちに初期吹き付けて周囲岩石を密閉し、アンカーボルトを打設して格子鉄骨を立設し、コンクリートを再び吹き付けて上部弧形導坑aの一次覆工を完了する。 Step 2: Excavate the upper arc-shaped shaft a, immediately after excavation, initially spray concrete to seal the surrounding rocks, drive anchor bolts and erect the lattice steel frame, spray concrete again, and then spray the upper arc-shaped shaft a. Complete the primary lining in a.

ステップ3 中央両側導坑b、c階段を掘削して該部分の一次覆工を施作する。 Step 3: Excavate the stairs B and C on both sides of the center and install the primary lining for these sections.

ステップ4 下部両側導坑d、e階段を掘削して一次覆工を施作する。前記上部弧形導坑、中央両側導坑及び下部両側導坑の階段が前の階段よりも2~3mの後に順次位置し、図9に示される。 Step 4 Excavate the stairs d and e on both sides of the lower part and install the primary lining. The stairs of the upper arc-shaped shaft, the central double-side shaft, and the lower double-side shaft are sequentially located 2 to 3 meters behind the previous stairs, as shown in FIG.

ステップ5 上部、中央、下部の中央土壌f-1、f-2、f-3の掘削が順に5~8m遅い。 Step 5 Excavation of the upper, middle, and lower central soils f-1, f-2, and f-3 is delayed by 5 to 8 m in order.

ステップ6 地層を施作し、防水層を敷設し、二次覆工フロアを施作する。 Step 6: Lay the geological layer, lay the waterproof layer, and install the secondary lining floor.

ステップ7 アーチ壁の二次覆工を施作する。 Step 7: Install the secondary lining of the arch wall.

ステップ2.18 図7Gに示すように、駅本体構造を全断面でアンダーカット掘削してトンネルに入った後、風道本体構造の防水層を直ちに敷設し、次に下から上まで風道本体の二次覆工構造を順次施作し始める。 Step 2.18 As shown in Figure 7G, after the station body structure is undercut excavated in the entire cross section and entered the tunnel, the waterproof layer of the windway body structure is immediately laid, and then the windway body from bottom to top. Construction of the secondary lining structure will begin in sequence.

ステップ2.19 図7Hを参照し、風道本体コンクリートの二次覆工構造が設計強度の75%に達した後、土砂を埋め戻して突き固めて、地盤を元に戻す。 Step 2.19 Referring to Figure 7H, after the secondary lining structure of the wind channel body concrete reaches 75% of its design strength, backfill with earth and sand and compact it to restore the ground to its original state.

風道本体及び地盤から露出する部分を備える。地盤から露出する部分は左線ピストン風道、右線ピストン風道、外気導入風道、排風道、左線ピストン通風坑、右線ピストン通風坑、排風坑、外気導入通風坑及び避難出入口を備える。ピストン通風坑、排風坑、外気導入通風坑及び避難出入口は天地逆に置かれた坑壁法によって施工し、ピストン風道、外気導入風道、排風道は通風坑の底部及び本体部分を通過して馬頭門を開けてトンネルに入ってからアンダーカット掘削法によって施工する。 Includes the main body of the wind duct and a portion exposed from the ground. The parts exposed from the ground are the left piston wind duct, the right piston wind duct, the outside air intake duct, the exhaust duct, the left piston ventilation shaft, the right piston ventilation shaft, the exhaust shaft, the outside air introduction ventilation shaft, and the evacuation entrance. Equipped with. The piston ventilation shaft, ventilation shaft, outside air intake ventilation shaft, and evacuation entrance are constructed using the upside-down pit wall method. After passing through and opening the horsehead gate and entering the tunnel, construction will be carried out using the undercut excavation method.

風道本体部分は地下5層構造があり、オープンカット法によって施工してもよい。地盤施工を行うための貯蓄空間が不足する状況を考慮した上で、本発明はオープンカット掘削とアンダーカット掘削を組み合わせた方式を用いて施工するように薦める。地下1層はオープンカット掘削とアンダーカット掘削を組み合わせた工法を用い、4つの水平風道即ち左右線ピストン風道、排風道、外気導入風道が地下1層から延出してそれぞれ左右線ピストン通風坑、排風坑、外気導入通風坑及び避難出入口に通じる。地下2層乃至地下5層は第2期のオープンカット部分である。地下4層は駅本体の駅ホール層に接続され、地下5層は区間トンネル及び駅本体のプラットホーム層に接続される。列車が運行時に風道の地下5層から駅を出入りすることによるピストン風及び熱などは風道本体から4つの水平風道に通じてから4つの通風坑を介して外部環境に伝播する。 The main body of the wind channel has a five-layer underground structure and may be constructed using the open cut method. In view of the lack of storage space for ground construction, the present invention recommends a combination of open-cut excavation and undercut excavation for construction. The first underground layer is built using a construction method that combines open-cut excavation and undercut excavation, and four horizontal air ducts, namely a left-right piston air duct, a wind exhaust duct, and an outside air intake air duct, extend from the underground 1st layer, and each has a left-right piston air duct. It leads to the ventilation shaft, ventilation shaft, outside air introduction ventilation shaft, and evacuation entrance. The second to fifth basement levels are the open cut portions of the second stage. The fourth underground level is connected to the station hall level of the station main body, and the fifth underground level is connected to the section tunnel and the platform level of the station main body. Piston wind and heat generated when a train enters and exits the station through the five underground levels of the windway during operation travels from the main body of the windway to four horizontal airways and then propagates to the outside environment through four ventilation shafts.

突き出し型風道本体が区間と駅本体との間に位置するため、全体の施工計画において、風道本体のオープンカット基礎坑は駅本体及び区間トンネルに必要なスラグ排出用立て坑又はシールド発進受信坑などとされてもよい。仮設立て坑、斜坑を設置する場合に比べて、基礎坑は規模が比較的大きく、折れ曲がり部が少なく、より容易に施工でき、施工進度を加速して工事期間を短縮することができ、且つそれは駅の付属構造としてその後で埋め戻す必要がなく、より高い経済効果を有する。 Since the projecting type wind duct body is located between the section and the station main body, in the overall construction plan, the open cut foundation shaft of the wind duct main body is a slag discharge shaft or a shield starting reception shaft required for the station body and section tunnel. It may also be considered as a pit. Compared to the case of temporarily establishing a shaft or installing a diagonal shaft, a foundation shaft is relatively large in scale and has fewer bends, making it easier to construct, accelerating the construction progress and shortening the construction period. As an auxiliary structure to a station, it does not need to be backfilled afterwards, and has a higher economic effect.

明らかに、以上の説明及び記載は単に例示的なものであって、本発明の開示内容、応用又は使用を制限するためのものではない。実施例において既に説明しており且つ図面において実施例を説明したが、本発明は図面の例、及び実施例に説明される現在見なされている最適なモードとして本発明の指導の特定例を実施するように制限するのではなく、本発明の範囲は上記明細書及び添付の特許請求の範囲に含まれるいかなる実施例を含む。 Obviously, the above illustrations and descriptions are merely illustrative and are not intended to limit the disclosure, application, or use of the invention. Having already been described in the Examples and illustrated in the drawings, the present invention may be carried out by way of example of the drawings and in the currently considered best mode of implementation of the teachings of the invention. Rather than being so limited, the scope of the invention includes any embodiments falling within the scope of the foregoing specification and appended claims.

Claims (11)

大深度地下鉄駅の突き出し型風道構造であって、前記突き出し型風道構造は、施工時において同時並行で施工可能な風道本体部分と風道分離部分とにより構成されており、
前記風道本体部分は、
第1期のオープンカット基礎坑と、
前記第1期のオープンカット基礎坑に水平方向に隣接するアンダーカット掘削ドーム空間と
前記第1期のオープンカット基礎坑及び前記アンダーカット掘削ドーム空間の下方全面に隣接する第2期のオープンカット基礎坑と、
前記第2期のオープンカット基礎坑の下方全面に隣接する第3期のオープンカット基礎坑と、
前記第2期のオープンカット基礎坑からそれぞれ水平方向に延在する、風道本体側の第1ピストン風道横通路部、風道本体側の第2ピストン風道横通路部、風道本体側の排風道横通路部及び風道本体側の外気導入風道横通路部と
を備えており、
前記風道分離部分は、
一端が地上と連通し、他端が前記風道本体側の第1ピストン風道横通路部と連通し、前記風道本体側の第1ピストン風道横通路部と併せて第1ピストン風道横通路を構成する、分離部分側の第1ピストン風道横通路部と、
一端が地上と連通し、他端が前記風道本体側の第2ピストン風道横通路部と連通し、前記風道本体側の第2ピストン風道横通路部と併せて第2ピストン風道横通路を構成する、分離部分側の第2ピストン風道横通路部と、
一端が地上と連通し、他端が前記風道本体側の排風道横通路部と連通し、前記風道本体側の排風道横通路部と併せて排風道横通路を構成する、分離部分側の排風道横通路部と、
一端が地上と連通し、他端が前記風道本体側の外気導入風道横通路部と連通し、前記風道本体側の外気導入風道横通路部と併せて外気導入風道横通路を構成する、分離部分側の外気導入風道横通路部と
を備えており、
前記風道本体部分の第3期のオープンカット基礎坑は、地下鉄が通過する区間トンネルと前記大深度地下鉄駅の駅本体部分との間に位置していると共に、前記区間トンネル及び前記駅本体部分と連通しており、
前記区間トンネル内及び前記駅本体部分からの地下鉄が、前記風道本体部分の第3期のオープンカット基礎坑内へと進入可能であり、かつ、前記風道本体部分の第3期のオープンカット基礎坑からの地下鉄が、前記区間トンネル内及び前記駅本体部分内へと進出可能であるように構成されている、大深度地下鉄駅突き出し型風道構造。
A protruding type wind duct structure for a deep subway station, the protruding type wind duct structure being composed of a wind duct main part and a wind duct separation part that can be constructed simultaneously in parallel during construction,
The wind duct body part is
Phase 1 open cut foundation shaft,
an undercut excavation dome space horizontally adjacent to the open cut foundation shaft of the first stage;
a second stage open cut foundation shaft adjacent to the entire lower part of the first stage open cut foundation shaft and the undercut excavation dome space;
a third stage open cut foundation shaft adjacent to the entire lower part of the second stage open cut foundation shaft;
A first piston wind passage horizontal passage part on the wind passage main body side, a second piston wind passage horizontal passage part on the air passage main body side, and a wind passage main body side, each extending horizontally from the open cut foundation shaft of the second stage. The side passage of the ventilation duct and the side passage of the outside air introduction wind duct on the side of the wind duct main body.
It is equipped with
The airway separation part is
One end communicates with the ground, the other end communicates with the first piston air passage horizontal passage on the side of the air passage main body, and together with the first piston air passage horizontal passage on the air passage main body side, the first piston air passage a first piston air passage side passage part on the side of the separated part, which constitutes a side passage;
One end communicates with the ground, the other end communicates with the second piston air passage horizontal passage on the side of the air passage main body, and the second piston air passage is connected to the second piston air passage horizontal passage on the side of the air passage main body. a second piston air passage side passage part on the side of the separation part, which constitutes a side passage;
One end communicates with the ground, the other end communicates with a cross-exhaust passage on the side of the airway main body, and together with the cross-exhaust passage on the side of the airway main body constitute a cross-exhaust passage. The side passage of the ventilation duct on the side of the separation part,
One end communicates with the ground, and the other end communicates with the outside air introduction wind passageway on the side of the airway main body, and the outside air introduction windway horizontal passageway is connected to the outside air introduction windway side passageway on the side of the airway main body. The external air introduction wind passage on the separation part side and
It is equipped with
The third stage open-cut foundation shaft of the main part of the wind route is located between the section tunnel through which the subway passes and the station main part of the deep subway station, and is located between the section tunnel through which the subway passes and the station main part of the deep subway station, and is located between the section tunnel and the station main part of the deep subway station. It communicates with
The subway from the section tunnel and the station main part can enter the third stage open cut foundation of the wind road main part, and the third stage open cut foundation of the wind road main part A projecting type wind duct structure for a deep subway station , which is configured so that a subway from a pit can advance into the section tunnel and into the station main body .
前記風道本体部分の水平方向の最大幅が、前記風道本体部分の高さ方向の最大幅よりも小さく、The maximum horizontal width of the wind duct main body portion is smaller than the maximum width of the wind duct main body portion in the height direction,
前記風道本体部分の水平方向の断面積が、風道横通路の断面積より大きい、請求項1に記載の大深度地下鉄駅の突き出し型風道構造。The protruding type air duct structure for a deep subway station according to claim 1, wherein the horizontal cross-sectional area of the air duct main body portion is larger than the cross-sectional area of the air duct cross passage.
深度地下鉄駅突き出し型風道の施工方法であって、前記突き出し型風道は、施工時において同時並行で施工可能な風道本体部分と風道分離部分とにより構成されており、
前記風道分離部分の施工は、
左線ピストン通風坑、右線ピストン通風坑、排風坑及び外気導入通風坑の地盤から露出する位置には口止め型リングビームを施作して、立坑櫓を引き上げる基礎埋込部材を取り付けるステップ1.1と、
立て坑の土砂岩石を掘削して、掘削につれて支保するステップ1.2と、
コンクリートを初期吹き付けて格子鉄骨及び鉄筋網を取り付けるステップ1.3と、
吹き付けコンクリートを施作して周囲岩石を密閉するステップ1.4と、
立て坑の底の標高に掘削するまでステップ1.2~1.4を繰り返すステップ1.5と、
立て坑の底を密閉するステップ1.6と、
それぞれ左線ピストン通風坑、右線ピストン通風坑、排風坑、外気導入通風坑からそれぞれの風道横通路の位置には3つの格子鉄骨を結合して立設して、モルタルアンカーボルトを打設するステップ1.7と、
それぞれ左線ピストン通風坑、右線ピストン通風坑、排風坑、外気導入通風坑の全断面に掘削する一部の左線ピストン風道横通路、一部の右線ピストン風道横通路、一部の排風道横通路及び一部の外気導入風道横通路からアンカーボルトを施作して、鉄筋網を結束して、コンクリートを吹き付けるステップ1.8と、
岩盤防水層を敷設して岩盤を施作するステップ1.9と、
残りの防水層を敷設してアーチ部及び側壁の二次覆工を施作するステップ1.10と、
一部のピストン風道横通路が完了するまでステップ1.8~1.10を繰り返すステップ1.11と、を含み、
前記風道本体部分の施工は、
掘削前に坑内の水位を降下させ、地下水位を最終的な基礎坑の掘削面よりも1m低い箇所に降下させ、法面の法肩に承水路及び地盤硬化を行うことによって、地表水が法尻に滲み込むことを防止するステップ2.1と、
岩石地層に1段の鋼管杭を打設するステップ2.2と、
トップビームを施作して、フランジブレースを架設してプレストレストアンカーボルトを打設するステップ2.3と、土砂の掘削を下向きに行い、第1期のオープンカット基礎坑を上から下まで1層ずつ掘削し、掘削後に1層のコンクリートを吹き付けて周囲岩石を密閉し、次にアンカーボルトを打設して、鉄筋網を掛けてから吹き付けコンクリートパネルを施作するステップ2.4と、
第1期のオープンカット基礎坑をドーム脚基盤における標高即ち水平横通路の一次覆工の頂部の標高まで1層ずつ掘削し、アンダーカット掘削ドーム部分の施工を行い始めるステップ2.5と、
オープンカット基礎坑内には先行配置されたパイプルーフを打設するステップ2.6と、
100~200mm厚さの吹き付けコンクリート又は200~500mm厚さのコンクリートで切り羽を密閉するステップ2.7と、
まず両側壁の導坑を順次掘削し、コンクリートを吹き付けて周囲岩石を密閉し、格子型枠を立設し、仮設鋼支保工を立設し、鉄筋網を結束して、コンクリートを吹き付けるステップ2.8と、
各格子型枠を立設した後、格子脚部の地盤軟土を掘り出して、100厚さの吹き付けコンクリート下敷を格子脚部の基礎として施作して、格子が安定するように確保するステップ2.9と、
縦方向に5m程度ずらして中央の2つの導坑を掘削し、掘削後にコンクリートを直ちに吹き付けて周囲岩石を密閉し、格子型枠を立設し、仮設鋼支保工を立設し、鉄筋網を結束して、コンクリートを吹き付けるステップ2.10と、
ドーム構造を施作して、中央仮設支保工を段階的に取り外すステップ2.11と、
ドーム構造により保護されながら第2期のオープンカット基礎坑の掘削を行うステップ2.12と、
風道横通路の底の標高に掘削してから掘削を一時停止し、両側へ馬頭門を開けてトンネルに入り始め、4つの残りの風道横通路を掘削するステップ2.13と、
残りの風道横通路の二次覆工施作を完了した後、下部土砂の掘削を行い続け、風道横通路の底の標高から駅本体構造の外輪郭線に沿って第3期のオープンカット基礎坑の掘削部分が垂直に仕切られるステップ2.14と、
鋼管杭の範囲内に下向きに掘削し続けて、直ちに支保するステップ2.15と、
坑の掘削を基礎坑下敷から300mm以上行うと、基礎坑の検収を行って、残りの土砂を手動で掘り出し、設計標高まで掘り出した後に基礎坑を直ちにならして、坑内に溜まった水を排出して、下敷を直ちに施作するステップ2.16と、
風道本体部分第3期のオープンカット基礎坑から前記大深度地下鉄駅の駅本体部分のアンダーカット掘削施工を行うステップ2.17と、
駅本体部分の構造を全断面でアンダーカット掘削してトンネルに入った後、風道本体構造の防水層を敷設し、次に下から上まで風道本体の二次覆工構造を順次施作し始めるステップ2.18と、
風道本体コンクリートの二次覆工構造が設計強度の75%に達した後、土砂を埋め戻して突き固めて、地盤を元に戻すステップ2.19と、を含み、
前記風道本体部分の第3期のオープンカット基礎坑は、地下鉄が通過する区間トンネルと前記駅本体部分との間に位置すると共に、前記区間トンネル及び前記駅本体部分と連通し、
前記区間トンネル内及び前記駅本体部分からの地下鉄が、前記風道本体部分の第3期のオープンカット基礎坑内へと進入可能であり、かつ、前記風道本体部分の第3期のオープンカット基礎坑からの地下鉄が、前記区間トンネル内及び前記駅本体部分内へと進出可能であるように構成されている、
ことを特徴とする大深度地下鉄駅突き出し型風道の施工方法。
A construction method for a protruding type wind passage for a deep subway station, wherein the protruding type air passage is composed of a wind passage main part and a wind passage separation part that can be constructed simultaneously in parallel during construction,
The construction of the wind duct separation part is as follows:
Step 1: Construct a closed ring beam at the positions exposed from the ground of the left line piston ventilation shaft, right line piston ventilation shaft, exhaust shaft, and outside air introduction ventilation shaft, and install the foundation embedded members to raise the shaft turret. .1 and
step 1.2 of excavating the earth and rock of the shaft and supporting it as it is excavated;
step 1.3 of initially spraying concrete and installing lattice steel frames and reinforcing bar mesh;
step 1.4 of applying shotcrete to seal the surrounding rock;
step 1.5, repeating steps 1.2 to 1.4 until drilling to the bottom elevation of the shaft;
step 1.6 of sealing the bottom of the shaft;
Three lattice steel frames were connected and erected at the positions of the left piston ventilation shaft, right piston ventilation shaft, exhaust shaft, and outside air introduction ventilation shaft, respectively, and mortar anchor bolts were driven. Step 1.7 of setting
Some left piston wind passages are excavated in the entire cross section of the left piston ventilation shaft, right piston ventilation shaft, exhaust shaft, outside air introduction ventilation shaft, some right piston ventilation passages, and one right piston ventilation shaft. step 1.8, installing anchor bolts from the side passages of the ventilation ducts in the section and the lateral passages of the part of the outside air intake ducts, tying up the reinforcing bars, and spraying concrete;
Step 1.9 of laying the bedrock waterproofing layer and constructing the bedrock;
step 1.10 of laying the remaining waterproof layer and performing secondary lining of the arch and side walls;
repeating steps 1.8 to 1.10 until some piston airway cross passages are completed, step 1.11;
The construction of the main body of the wind duct is as follows:
Before excavation, the water level in the pit is lowered , the groundwater level is lowered to a point 1m lower than the excavation surface of the final foundation pit, and surface water is drained by creating a water intake channel on the shoulder of the slope and hardening the ground. Step 2.1 to prevent seepage into the buttocks;
Step 2.2 of driving one stage of steel pipe piles into the rocky strata;
Construct the top beam, erect the flange brace, and drive the prestressed anchor bolts in step 2.3, and excavate the earth and sand downwards to form the first stage open-cut foundation shaft in one layer from top to bottom. Step 2.4: excavating in stages, spraying one layer of concrete after excavation to seal the surrounding rock, then driving anchor bolts, hanging reinforcing bars, and then constructing shotcrete panels;
step 2.5, in which the first stage open-cut foundation shaft is excavated one layer at a time up to the elevation of the dome leg foundation, that is, the elevation of the top of the primary lining of the horizontal lateral passage, and the construction of the undercut excavation dome portion begins;
step 2.6 of pouring a previously placed pipe roof in the open cut foundation pit;
step 2.7 of sealing the face with 100-200 mm thick shotcrete or 200-500 mm thick concrete;
Step 2: First, tunnels on both sides are excavated in sequence, concrete is sprayed to seal the surrounding rocks, lattice formwork is erected, temporary steel shoring is erected, reinforcing bars are tied together, and concrete is sprayed. .8 and
Step 2: After each lattice formwork is erected, dig out the soft soil of the lattice legs and install a 100mm thick shotcrete underlayment as a foundation for the lattice legs to ensure the lattice is stable. .9 and
Two central guide shafts were excavated about 5 meters apart in the vertical direction, and after the excavation, concrete was immediately sprayed to seal the surrounding rocks, lattice formwork was erected, temporary steel shoring was erected, and a reinforcing bar net was installed. Step 2.10 of tying and spraying concrete;
step 2.11 of constructing the dome structure and removing the central temporary shoring in stages;
step 2.12 of excavating a second stage open-cut foundation shaft while being protected by a dome structure;
step 2.13 of excavating to the bottom elevation of the windway cross passage, then temporarily stopping the excavation, opening horsehead gates on both sides and starting to enter the tunnel, and excavating the four remaining windway cross passages;
After completing the secondary lining construction for the remaining windway side passages, we will continue to excavate the lower part of the earth and sand, and open the third stage from the bottom elevation of the windway sideways along the outer contour of the station main structure. step 2.14 in which the excavated portion of the cut foundation shaft is partitioned vertically;
Step 2.15 of continuing to excavate downward into the steel pipe pile and immediately shoring;
When a pit is excavated more than 300mm from the base of the foundation, the foundation is inspected, the remaining soil is manually dug out, and after the excavation reaches the design elevation, the foundation is leveled immediately to drain the water that has accumulated inside the pit. step 2.16 of immediately applying an underlay;
step 2.17 of carrying out undercut excavation construction of the station main part of the deep subway station from the third stage open cut foundation shaft of the wind channel main part ;
After entering the tunnel by undercutting the entire section of the station main structure, a waterproof layer for the windway main structure is laid, and then the secondary lining structure for the windway main body is installed sequentially from the bottom to the top. step 2.18,
After the secondary lining structure of the wind channel main body concrete reaches 75% of the design strength, step 2.19 of backfilling and compacting earth and sand to return the ground to its original state;
The third stage open cut foundation shaft of the windway main body part is located between the section tunnel through which the subway passes and the station main part, and communicates with the section tunnel and the station main part,
The subway from the section tunnel and the station main part can enter the third stage open cut foundation of the wind road main part, and the third stage open cut foundation of the wind road main part The subway from the pit is configured to be able to advance into the section tunnel and into the station main body part,
A method of constructing a protruding wind passageway for a deep subway station, which is characterized by the following.
ステップ2.6において、長いパイプルーフの施工精度を確保するために、ψ140mm・壁厚さ5mmのガイド鋼管をL=0.8mとし、長いパイプルーフがドーム全体の水平深さを被覆することを特徴とする請求項に記載の大深度地下鉄駅突き出し型風道の施工方法。 In step 2.6, in order to ensure the construction accuracy of the long pipe roof, the guide steel pipe with a diameter of 140 mm and a wall thickness of 5 mm is set to L = 0.8 m, and the long pipe roof covers the entire horizontal depth of the dome. The construction method of a protruding type wind passage for a deep subway station according to claim 3 . 長いパイプルーフは16mであって、1部分あたりに4m長さの熱間圧延シームレス鋼管をネジで接続してなるのであり、注入はセメントスラリーを用い、水セメント比を1:1、注入圧力を0.5~2.0MPaとし、注入が終了した後にM7.5セメントモルタルで鋼管を充填し、パイプルーフの強度を強化することを特徴とする請求項に記載の大深度地下鉄駅突き出し型風道の施工方法。 The long pipe roof is 16 m long, and each section is made up of 4 m long hot-rolled seamless steel pipes connected with screws.Cement slurry is used for injection, with a water-cement ratio of 1:1 and injection pressure. 0.5 to 2.0 MPa , and after the injection is completed, the steel pipe is filled with M7.5 cement mortar to strengthen the strength of the pipe roof. How to construct a wind path. ステップ2.12における第2期のオープンカット基礎坑は2つの部分に分けられ、一方の部分が第1期の基礎坑から下向きに掘削し続けるのであり、他方の部分がアンダーカット掘削部分からドームにより保護されながら下向きにトップダウン掘削を行うのであり、施工時に先支後掘の原則を用い、掘削後に1層のコンクリートを直ちに吹き付けて周囲岩石を密閉し、次にアンカーボルトを打設して、鉄筋網を掛けてから吹き付けコンクリートパネルを施作することを特徴とする請求項に記載の大深度地下鉄駅突き出し型風道の施工方法。 The second stage open cut foundation shaft in step 2.12 is divided into two parts, one part continues to excavate downward from the first stage foundation shaft, and the other part continues to excavate from the undercut excavation part to the dome. Top-down excavation is carried out downward while being protected by the ground.During construction, the principle of first-branch-back excavation is used, and after excavation, one layer of concrete is immediately sprayed to seal the surrounding rock, and then anchor bolts are driven. 4. The method of constructing a protruding windway for a deep subway station according to claim 3 , wherein the shotcrete panels are constructed after the reinforcing steel mesh is installed. 前記ステップ2.13において、前記残りの左線ピストン風道横通路及び残りの外気導入風道横通路のトンネル入り口が第1期のオープンカット基礎坑の下方に位置し、残りの右線ピストン風道横通路及び残りの排風道横通路のトンネル入り口がドームの下方に位置することを特徴とする請求項に記載の大深度地下鉄駅突き出し型風道の施工方法。 In step 2.13, the tunnel entrances of the remaining left piston wind passages and the remaining outside air introduction wind passages are located below the first stage open cut foundation shaft, and the remaining right piston wind passages are located below the first stage open cut foundation shaft. 4. The method of constructing a protruding type wind duct for a deep subway station according to claim 3 , wherein the tunnel entrances of the road side passage and the remaining ventilation passages are located below the dome. 前記オープンカット基礎坑の下方の残りの左線ピストン風道横通路及び残りの外気導入風道横通路のトンネル入りは全断面掘削を用い、具体的には、
全断面を掘削し、アンカーボルトを施作して、鉄筋網を結束して、コンクリートを吹き付けるステップAと、
岩盤防水層を敷設して岩盤を施作するステップBと、
残りの防水層を敷設して、アーチ部及び側壁の二次覆工を施作し、アーチ部及び側壁の二次覆工進度が岩盤のインバートアーチよりも1つの掘削掘進度遅いステップCと、を含むことを特徴とする請求項に記載の大深度地下鉄駅突き出し型風道の施工方法。
Entry into the tunnel of the remaining left piston wind passage below the open cut foundation shaft and the remaining outside air introduction wind passage is performed by full-section excavation, specifically,
Step A: excavating the entire cross section, installing anchor bolts, tying up the reinforcing steel mesh, and spraying concrete;
Step B of laying the bedrock waterproofing layer and constructing the bedrock;
Step C, in which the remaining waterproof layer is laid and secondary lining is applied to the arch part and side walls, and the secondary lining progress of the arch part and side walls is one excavation progress slower than that of the inverted rock arch; 8. The method of constructing a protruding type wind passage for a deep subway station according to claim 7 .
前記ドームの下方の残りの右線ピストン風道横通路及び残りの排風道横通路は中壁工法によって掘削し、具体的には、
左側導坑を掘削し、コンクリートを直ちに初期吹き付けて周囲岩石を密閉し、格子鋼型枠及び縦方向の仮設I形鋼支保工を立設し、鉄筋網を結束してから150mm厚さのコンクリートを吹き付けるステップAと、
0.5mずらして右側導坑を掘削し、コンクリートを直ちに初期吹き付けて周囲岩石を密閉し、格子鋼型枠を立設し、格子が安定するように確保するために、各格子を立設した後にいずれも格子脚部の地盤の軟土を掘り出して、100mm厚さの吹き付けコンクリート下敷を格子脚部の基礎として施作するステップBと、
ドームが設計強度に達した後、仮設形鋼支保工を取り外して、馬頭門における風道の二次覆工構造を施作するステップCと、
馬頭門部分の長さを約3mとし、掘削掘進度を0.5m以下にし、馬頭門部分から離れてから全断面法で掘削するステップDと、を含むことを特徴とする請求項に記載の大深度地下鉄駅突き出し型風道の施工方法。
The remaining right-hand piston wind passageway and the remaining ventilation passageway below the dome are excavated by the middle wall construction method, and specifically,
The left-hand shaft was excavated, concrete was immediately sprayed initially to seal the surrounding rocks, lattice steel formwork and vertical temporary I-shaped steel supports were erected, and the reinforcing bar network was tied together, then concrete was poured to a thickness of 150 mm. Step A of spraying
A right-hand shaft was excavated with a shift of 0.5 m, concrete was immediately sprayed initially to seal the surrounding rock, lattice steel forms were erected, and each lattice was erected to ensure that the lattice was stable. Afterwards, Step B involves digging out the soft soil at the base of the lattice legs and applying a 100mm thick shotcrete underlay as the foundation for the lattice legs;
After the dome reaches its design strength, step C of removing the temporary steel beam support and constructing a secondary lining structure for the wind channel at the horse gate;
According to claim 7 , the step D includes a step D in which the length of the horse head part is about 3 m, the excavation depth is set to 0.5 m or less, and the excavation is performed using the full cross-section method after leaving the horse head part. Construction method for protruding wind passages at deep subway stations.
前記4つの残りの風道横通路と上記ステップ1.11における通風坑から掘削した一部の横通路とがそれぞれ合流して、完全に連通する風道横通路を形成することを特徴とする請求項に記載の大深度地下鉄駅突き出し型風道の施工方法。 A claim characterized in that the four remaining wind passageways and some of the horizontal passageways excavated from the ventilation shaft in step 1.11 are joined together to form a completely communicating wind passageway. The method for constructing a protruding wind duct for a deep subway station as described in item 7 . ステップ2.17において、風道本体の基礎坑からアンダーカット掘削する駅本体は3段階工法・7ステップ法によって掘削することを特徴とする請求項に記載の大深度地下鉄駅突き出し型風道の施工方法。
In step 2.17, the station body to be undercut excavated from the foundation shaft of the wind passage main body is excavated by a three-step construction method and a seven-step method. construction method.
JP2023109672A 2022-07-04 2023-07-03 Protruding type wind duct structure perpendicular to the vertical direction and construction method at deep subway station Active JP7394252B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210776752.1 2022-07-04
CN202210776752.1A CN115182737B (en) 2022-07-04 2022-07-04 Vertical orthogonal ejection type air duct structure of deeply buried subway station and construction method

Publications (2)

Publication Number Publication Date
JP7394252B1 true JP7394252B1 (en) 2023-12-07
JP2024007536A JP2024007536A (en) 2024-01-18

Family

ID=83516320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2023109672A Active JP7394252B1 (en) 2022-07-04 2023-07-03 Protruding type wind duct structure perpendicular to the vertical direction and construction method at deep subway station

Country Status (2)

Country Link
JP (1) JP7394252B1 (en)
CN (1) CN115182737B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117948148A (en) * 2024-03-27 2024-04-30 北京城建道桥建设集团有限公司 Construction method for connecting section of air duct and station hall when barriers exist on ground and underground

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116145729B (en) * 2023-04-23 2023-07-28 北京城建设计发展集团股份有限公司 Subway layered station structure in sea-land connection area and construction method thereof
CN116816396B (en) * 2023-08-31 2023-12-05 中国铁路设计集团有限公司 Structure and method for arranging rail roof heat extraction air duct by combining underground excavation station with transverse channel
CN117307176B (en) * 2023-11-29 2024-02-20 中铁三局集团广东建设工程有限公司 Transverse channel construction method based on formed pilot tunnel

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001056392A (en) 1999-08-17 2001-02-27 Ohbayashi Corp Ventilation structure of spent fuel storage facility
US20140326159A1 (en) 2011-12-20 2014-11-06 Bnttek Inc Co., Ltd. Active pressurization system making use of platform track area upper slab of underground train station
JP2016026271A (en) 2008-01-18 2016-02-12 フロッドブレイク,エルエルシー Automatic flooding protection for underground ventilation duct
CN106930318A (en) 2017-03-27 2017-07-07 中铁隧道勘测设计院有限公司 A kind of buried Room platform channel design in interface water condition subway station and its construction method
CN106948823A (en) 2017-03-15 2017-07-14 中铁十五局集团有限公司 Combine the construction method applied with mining sectbn in station air channel
CN108412500A (en) 2018-02-08 2018-08-17 中铁二院工程集团有限责任公司 Mountainous City Underground Subway Station vented construction and its construction method
CN108843338A (en) 2018-06-27 2018-11-20 北京市政路桥股份有限公司 A kind of integrated excavation construction method of Construction of Silo channel conversion large cross-section tunnel
CN108868814A (en) 2018-08-24 2018-11-23 中铁西安勘察设计研究院有限责任公司 Collapsible loess combination land pebble stratum tunneling air duct connects the ventilating shaft of shield tunnel
CN112112192A (en) 2020-09-22 2020-12-22 佛山轨道交通设计研究院有限公司 Auxiliary channel system of subway station

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT323228B (en) * 1971-09-16 1975-06-25 Swaty Franz VENTILATION SYSTEM FOR SUBWAYS
CN2931792Y (en) * 2006-08-09 2007-08-08 上海市城市建设设计研究院 Piston vent system of subway station
CN105298501B (en) * 2015-11-11 2017-12-22 上海市城市建设设计研究总院(集团)有限公司 The attached air channel structure construction method of Station
RU2645036C1 (en) * 2017-05-22 2018-02-15 Глеб Иванович Ажнов Method of compensation the influence of the piston effect in the ventilation system of subway and the device for its implementation
CN110374657A (en) * 2019-08-16 2019-10-25 中铁西安勘察设计研究院有限责任公司 The Mining Method Subway Tunnel ventilating shaft and its construction method of " well after first shield "

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001056392A (en) 1999-08-17 2001-02-27 Ohbayashi Corp Ventilation structure of spent fuel storage facility
JP2016026271A (en) 2008-01-18 2016-02-12 フロッドブレイク,エルエルシー Automatic flooding protection for underground ventilation duct
US20140326159A1 (en) 2011-12-20 2014-11-06 Bnttek Inc Co., Ltd. Active pressurization system making use of platform track area upper slab of underground train station
CN106948823A (en) 2017-03-15 2017-07-14 中铁十五局集团有限公司 Combine the construction method applied with mining sectbn in station air channel
CN106930318A (en) 2017-03-27 2017-07-07 中铁隧道勘测设计院有限公司 A kind of buried Room platform channel design in interface water condition subway station and its construction method
CN108412500A (en) 2018-02-08 2018-08-17 中铁二院工程集团有限责任公司 Mountainous City Underground Subway Station vented construction and its construction method
CN108843338A (en) 2018-06-27 2018-11-20 北京市政路桥股份有限公司 A kind of integrated excavation construction method of Construction of Silo channel conversion large cross-section tunnel
CN108868814A (en) 2018-08-24 2018-11-23 中铁西安勘察设计研究院有限责任公司 Collapsible loess combination land pebble stratum tunneling air duct connects the ventilating shaft of shield tunnel
CN112112192A (en) 2020-09-22 2020-12-22 佛山轨道交通设计研究院有限公司 Auxiliary channel system of subway station

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117948148A (en) * 2024-03-27 2024-04-30 北京城建道桥建设集团有限公司 Construction method for connecting section of air duct and station hall when barriers exist on ground and underground

Also Published As

Publication number Publication date
CN115182737B (en) 2023-06-09
CN115182737A (en) 2022-10-14
US20240003254A1 (en) 2024-01-04
JP2024007536A (en) 2024-01-18

Similar Documents

Publication Publication Date Title
CN108868778B (en) Non-excavation construction method for large underground structure
JP7394252B1 (en) Protruding type wind duct structure perpendicular to the vertical direction and construction method at deep subway station
CN101440708B (en) PBA shallow buried underground excavating close range large section three-hole separated island type structure construction method
CN105201516B (en) A kind of main structure of subway station and its tetrad arch PBA excavating construction methods
CN106703828A (en) The construction method of building subway station with fabricated lining combination PBA
CN106703814A (en) Mined metro station hole pile construction method
CN110486036B (en) Construction method for expanding arch foot primary support arch cover method
CN107401161A (en) High ferro shield tunnel construction method is worn under pipe-roof method and MJS method joint reinforcements
CN110593308B (en) Open excavation back pressure construction method for foundation pit of overhead operation subway underground comprehensive pipe gallery
CN205036380U (en) Block of four encircles PBA and secretly digs subway station major structure
CN112922646B (en) Building method of underground excavation station excavated by large-section single-span support through superposed arch-wall integrated type
CN112012762B (en) Construction method of double-layer secondary lining multi-arch tunnel structure
CN111101540B (en) Construction method for passing existing electric power tunnel on open cut tunnel
CN106567391A (en) Segmented profile-steel horizontal retaining structure of subway exits and entrances of rock strata and construction method
CN108978673A (en) A kind of foundation pit supporting construction and construction method of viaduct pile foundation underpinning
CN110486062B (en) Method for mechanically underground excavating multi-layer multi-span underground engineering in soft soil
CN205036388U (en) Block of four encircles knot hunch construction structures that PBA secretly dug subway station
CN112983461A (en) Construction method for bias tunnel portal in slope volume
CN106592598A (en) Same-layer double-beam large-diameter steel pipe support and deep foundation pit combined inner support formed thereby
CN116398165A (en) New tunnel penetrating through existing station at zero distance and construction method thereof
CN209704560U (en) Build the scaffolding structure that an ultra shallow buries Large Underground space
CN105986830A (en) Underground-excavation building method for roadside strip-shaped underground garage
CN109736843B (en) Reverse waterproof method for assembling and pouring two linings of small template
CN209687506U (en) Wear river shallow buried covered excavation electric power tunnel constructing structure
CN111911169A (en) Construction method and structure of shallow buried tunnel under existing railway line

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230703

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20230703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230808

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20230904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20230904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231127

R150 Certificate of patent or registration of utility model

Ref document number: 7394252

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150