JP7394031B2 - 転がり軸受の異常検出装置、及び異常検出方法 - Google Patents

転がり軸受の異常検出装置、及び異常検出方法 Download PDF

Info

Publication number
JP7394031B2
JP7394031B2 JP2020127243A JP2020127243A JP7394031B2 JP 7394031 B2 JP7394031 B2 JP 7394031B2 JP 2020127243 A JP2020127243 A JP 2020127243A JP 2020127243 A JP2020127243 A JP 2020127243A JP 7394031 B2 JP7394031 B2 JP 7394031B2
Authority
JP
Japan
Prior art keywords
rotational speed
vibration
frequency
detection device
rolling bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020127243A
Other languages
English (en)
Other versions
JP2022024573A (ja
Inventor
豊美 吉田
真 辺見
靖 早坂
貴之 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Industrial Products Ltd
Original Assignee
Hitachi Industrial Products Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Industrial Products Ltd filed Critical Hitachi Industrial Products Ltd
Priority to JP2020127243A priority Critical patent/JP7394031B2/ja
Publication of JP2022024573A publication Critical patent/JP2022024573A/ja
Application granted granted Critical
Publication of JP7394031B2 publication Critical patent/JP7394031B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、転がり軸受の異常検出装置と異常検出方法に関し、特に、回転速度を求めて転がり軸受の異常を検出する装置と方法に関する。
転がり軸受の異常(例えば、損傷や欠陥など)は、回転速度と振動に基づいて検出することができる。回転速度が変化する回転機械を転がり軸受が支持している場合では、転がり軸受の異常の検出に際して、計測した振動データを分析するためには、回転機械の回転速度も同時に得る必要がある。しかし、回転機械の回転速度を計測して収集するには、データロガーのチャンネルを1つ増やしてデータロガーから回転速度の情報を取得したり、回転機械に回転速度センサを設置したりする必要があるため、使用する装置や素子が増えるという課題がある。
このような課題を解決する技術として、例えば、特許文献1に記載された転がり軸受装置がある。特許文献1に記載された転がり軸受装置は、転がり軸受で検出した振動波形を利用して回転数を算出する装置であり、固定輪に取り付けられている振動検出器からの検出信号に基づいて軸受本体の振動及び回転数を算出する演算部を備える。演算部は、検出信号から得られる振動の周波数成分と、軸受本体の固有の振動回数とに基づいて軸受本体の回転数を算出する。
特開2017-133580号公報
特許文献1に記載された技術などの従来の技術では、データロガーから回転速度の情報を取得したり、回転機械に回転速度センサを設置したりしなくても、計測した振動波形を用いて回転数を算出することで、回転機械の回転速度を推定することができる。しかし、特許文献1に記載された技術のような振動波形の周波数分析を用いる回転速度の推定では、アンバランスが小さく振動が小さい回転軸の場合や、回転速度が筐体などの構造物の固有振動の周波数に近い場合などは、回転速度に対応する周波数における振動の強度が必ずしも最大にならず、回転速度を正確に推定できないことがある。
本発明の目的は、転がり軸受で支持されて回転速度が変化する回転機械の回転速度を算出できる、転がり軸受の異常検出装置と異常検出方法を提供することである。
本発明による異常検出装置は、回転速度が変化する回転機械を支持する転がり軸受に設置され、前記転がり軸受の振動を検出する振動検出器と、前記振動検出器が検出した前記振動の時間領域の波形を取得するデータ取得部と、時間領域の前記波形の包絡線を求め、高速フーリエ変換処理により時間領域の前記包絡線の波形を周波数領域の強度分布データに変換し、周波数領域の前記強度分布データを用いて前記回転機械の回転速度を求める回転速度算出部と、前記回転速度算出部が求めた前記回転速度と、前記転がり軸受の振動の要因を示す特徴周波数とを用いて、前記転がり軸受の異常部品を特定する異常特定部とを備える。前記回転速度算出部は、周波数領域の前記強度分布データについて、予め定めた範囲内の周波数である基準周波数に比例する複数の周波数における振動の強度を求め、求めた前記強度を用いて前記回転速度を求める。
本発明による異常検出方法は、異常検出装置が、回転速度が変化する回転機械を支持する転がり軸受の振動を検出する振動検出器が検出した前記振動の時間領域の波形を取得するデータ取得工程と、異常検出装置が、時間領域の前記波形の包絡線を求め、高速フーリエ変換処理により時間領域の前記包絡線の波形を周波数領域の強度分布データに変換し、周波数領域の前記強度分布データを用いて前記回転機械の回転速度を求める回転速度算出工程と、異常検出装置が、前記回転速度算出工程で求めた前記回転速度と、前記転がり軸受の振動の要因を示す特徴周波数とを用いて、前記転がり軸受の異常部品を特定する異常特定工程とを有する。前記回転速度算出工程では、異常検出装置が、周波数領域の前記強度分布データについて、予め定めた範囲内の周波数である基準周波数に比例する複数の周波数における振動の強度を求め、求めた前記強度を用いて前記回転速度を求める。
本発明によると、転がり軸受で支持されて回転速度が変化する回転機械の回転速度を算出できる、転がり軸受の異常検出装置と異常検出方法を提供することができる。
本発明の実施例1による、転がり軸受の異常検出装置を示す模式図である。 転がり軸受の構成を示す模式図である。 転がり軸受を、回転機械の軸に直交する方向から見た断面の模式図である。 本発明の実施例1による異常検出装置が行う、転がり軸受の異常部品を特定する処理の例を示すフローチャートである。 図4のステップS5で異常検出装置が行う、回転機械の回転速度の算出の手順の一例を示すフローチャートである。 図4のステップS3で異常検出装置が行う、振動の時間領域の波形に包絡線処理を行って包絡線波形を求める処理の手順の一例を示すフローチャートである。 図4のステップS6で異常検出装置が行う、転がり軸受の異常部品を特定する処理の手順の一例を示すフローチャートである。 図4のステップS5で異常検出装置が行う、回転機械の回転速度の算出の手順の別の例を示すフローチャートである。 図4のステップS5で異常検出装置が行う、回転機械の回転速度の算出の手順のさらに別の例を示すフローチャートである。 転がり軸受の振動の時間領域の波形の例を示す図である。 転がり軸受の振動の時間領域の包絡線波形の例を示す図である。 転がり軸受の振動の時間領域の包絡線波形の周波数(強度)分析の例を示す図である。
本発明による、転がり軸受の異常検出装置と異常検出方法は、転がり軸受で支持されて回転速度が変化する回転機械の回転速度を転がり軸受の振動を利用して算出し、算出した回転速度を用いて転がり軸受の異常部品を特定することで、転がり軸受の異常を検出する。本発明による、転がり軸受の異常検出装置と異常検出方法では、転がり軸受の異常検出に用いる回転速度を、次のようにして算出する。すなわち、転がり軸受の振動の波形に包絡線処理を行った後で高速フーリエ変換(以下、「FFT」とも記す)処理を行った周波数領域の強度分布データにおいて、基準周波数を設定し、この基準周波数に比例する複数の周波数における振動の強度を求め、求めた複数の周波数における振動の強度の和を求める。そして、複数の基準周波数についてこの振動の強度の和を求め、振動の強度の和が最大となる基準周波数を、回転機械の回転速度として算出する。求めた複数の周波数における振動の強度の平均が最大となる基準周波数を、回転機械の回転速度として算出することもでき、求めた複数の周波数における振動の強度の2乗平均(2乗平均平方根)が最大となる基準周波数を、回転機械の回転速度として算出することもできる。
以下、本発明の実施例による、転がり軸受の異常検出装置と異常検出方法を、図面を用いて説明する。
図1は、本発明の実施例1による、転がり軸受の異常検出装置10を示す模式図である。図1には、異常検出装置10が異常を検出する転がり軸受20と、転がり軸受20が支持する回転機械30も示している。
異常検出装置10は、データ取得部11と、回転速度算出部12と、異常特定部13と、出力部14を備え、データロガー16に接続される。また、異常検出装置10は、転がり軸受20に設置された振動検出器15と、不要な振動成分を除去するためのバンドパスフィルタ18(「BPF」とも記す)を備える。
データ取得部11は、振動検出器15が検出した振動の波形を取得する。回転速度算出部12は、データ取得部11が取得した波形から回転機械30の回転速度を求める。異常特定部13は、回転速度算出部12が求めた回転速度を用いて、転がり軸受20の異常部品を特定する。出力部14は、表示画面や、外部装置へのインターフェースで構成することができ、異常検出の結果を出力する。
異常検出装置10は、パソコンなどのコンピュータ17で操作することができる装置である。異常検出装置10は、コンピュータ17で構成することもできる。
振動検出器15は、例えば加速度センサで構成されており、転がり軸受20の振動を検出する。
データロガー16は、振動検出器15が検出した転がり軸受20の振動のデータ、すなわち、転がり軸受20の振動の時間領域の波形のデータを保存する保存装置である。
異常検出装置10のデータ取得部11は、データロガー16から、転がり軸受20の振動の時間領域の波形を取得する。
転がり軸受20は、回転機械30を支持する。
回転機械30は、回転する軸31を備え、軸31が転がり軸受20で支持されている。回転機械30は、運転中に回転速度(すなわち、軸31の回転速度)が変化する。回転機械30の例は、電動機、遠心圧縮機、及びポンプである。
図2は、転がり軸受20の構成を示す模式図であり、転がり軸受20を、回転機械30の軸31に平行な方向から見た模式図である。転がり軸受20は、内輪21と、外輪22と、複数の転動体23と、保持器24を備える。内輪21は、回転機械30の軸31に固定されている環状部材であり、軸31とともに回転する。外輪22は、転がり軸受20のハウジングに固定されている環状部材であり、内輪21と同心円状に配置されている。複数の転動体23は、内輪21と外輪22との間の空間に配置された部材であり、自転しながら内輪21と同じ周方向に回転(公転)する。保持器24は、複数の転動体23を、互いの周方向の相対位置を保つように保持する部材である。
図2には、転動体23の径dと、ピッチ円径D(転動体23の中心を通る円の直径)も示している。
図3は、転がり軸受20を、回転機械30の軸31に直交する方向から見た断面の模式図である。図3には、転がり軸受20の接触角αを示している。接触角αは、転動体23の転走面(転動体23と接する内輪21と外輪22の面)と転動体23との間にかかる荷重の方向25と、転がり軸受20の径方向26(軸31に直交する方向)との間の角度である。
図4は、本発明の実施例1による異常検出装置10が行う、転がり軸受20の異常部品を特定する処理の例を示すフローチャートである。
ステップS1で、異常検出装置10が起動され、処理が開始される。
ステップS2で、異常検出装置10のデータ取得部11は、データロガー16から、転がり軸受20の振動の時間領域の波形を取得する。
図10は、ステップS2で取得した、転がり軸受20の振動の時間領域の波形の例を示す図である。図10に示すように、転がり軸受20には、回転機械30の回転(転がり軸受20の内輪21の回転)に応じて、周期的な振動(加速度の変化)が発生している。
ステップS3で、異常検出装置10の回転速度算出部12は、ステップS2で取得した振動の波形に包絡線処理を行い、振動の時間領域の波形の包絡線を求める。すなわち、異常検出装置10は、振動の時間領域の波形の輪郭をなぞる曲線(包絡線)を求める。
図11は、ステップS3で求めた、転がり軸受20の振動の時間領域の包絡線波形の例を示す図である。図11は、転がり軸受20に発生した周期的な振動(加速度の変化)の波形の包絡線を示している。
ステップS4で、異常検出装置10の回転速度算出部12は、ステップS3で求めた時間領域の包絡線波形に高速フーリエ変換処理(FFT処理)を行い、時間領域の包絡線波形を周波数領域の強度分布データに変換する。
図12は、ステップS4で求めた、転がり軸受20の振動の時間領域の包絡線波形の周波数(強度)分析の例を示す図である。図12に示すように、振動の時間領域の包絡線波形の周波数(強度)分析では、いくつかの周波数において、振動の強度が大きくなっている(すなわち、ピークが発生している)ことがわかる。
ステップS5で、異常検出装置10の回転速度算出部12は、ステップS4で得た時間領域の包絡線波形の周波数(強度)分析を用いて、回転機械30の回転速度を算出する。
ステップS6で、異常検出装置10の異常特定部13は、ステップS5で算出した回転機械30の回転速度と、転がり軸受20の特徴周波数を用いて、転がり軸受20の異常部品を特定する。
ステップS7で、異常検出装置10は、転がり軸受20の異常検出を終了して停止する。
転がり軸受20の特徴周波数とは、転がり軸受20の幾何学的寸法と回転機械30の回転速度(回転周波数)から決まる値であり、転がり軸受20の異常な振動の要因を示す周波数である。特徴周波数は、例えば、転動体23の公転周波数(保持器24の回転周波数)FTF、転動体23の自転周波数BSF、外輪転動体通過周波数BPFO、及び内輪転動体通過周波数BPFIである。これらの特徴周波数は、以下の式で計算することができる。
転動体23の公転周波数(保持器24の回転周波数)FTF
FTF=1/2*(1-d/D*cosα)*fs (1)
転動体23の自転周波数BSF
BSF=D/(2d)*[1-(d/D*cosα)]*fs (2)
外輪転動体通過周波数(外輪22の一地点を転動体23が通過していく周波数)BPFO
BPFO=z/2*(1-d/D*cosα)*fs (3)
内輪転動体通過周波数(内輪21の一地点を転動体23が通過していく周波数)BPFI
BPFI=z/2*(1+d/D*cosα)*fs (4)
但し、式(1)~(4)において、
dは転動体23の径(mm)、
Dはピッチ円径(mm)
αは転がり軸受20の接触角(ラジアン)
zは転動体23の数
fsは回転機械30の回転周波数(Hz)
である。
転がり軸受20に損傷や欠陥などの異常があると、転がり軸受20の振動の周波数領域の波形には、異常の部位に関連した特徴周波数とその高調波の周波数にピークが発生する。すなわち、保持器24に異常がある場合は、式(1)で表される周波数とその高調波の周波数にピークが発生する。転動体23に異常がある場合は、式(2)の2倍の周波数とその高調波の周波数にピークが発生する。外輪22に異常がある場合は、式(3)の周波数とその高調波の周波数にピークが発生する。内輪21に異常がある場合は、式(4)の周波数とその高調波の周波数にピークが発生する。
なお、これらのピークは、転がり軸受20に損傷や欠陥などの異常がほとんど無い場合でも、微弱なものを確認できることが多い。このため、これらのピークを与える周波数(すなわち、特徴周波数とその高調波の周波数)は、後述するように、回転機械30の回転速度の算出に用いることができる。
図5は、図4のステップS5で異常検出装置10の回転速度算出部12が行う、回転機械30の回転速度の算出の手順の一例を示すフローチャートである。転がり軸受20の特徴周波数を用いて異常部品を特定するには、式(1)~(4)に示したように、回転機械30の回転速度(回転周波数fs)が既知であることが前提である。本実施例では、ステップS4で得た周波数領域の強度分布データについて、基準周波数を予め定めた範囲内の周波数として設定し、基準周波数に比例する複数の周波数における振動の強度を求め、求めた複数の周波数における振動の強度の和を求める。複数の基準周波数についてこの振動の強度の和を求め、振動の強度の和が最大となる基準周波数を、回転機械30の回転速度として求める。
ステップS501で、異常検出装置10は、使用する変数であるWmax、SPD、及びispに初期値を設定する。Wmaxは、基準周波数に比例する複数の周波数における振動の強度の和の最大値を表す。SPDは、回転機械30の回転速度を表す。ispは、基準周波数に比例する複数の周波数における振動の強度の和が最大となるときのループカウンタiの値である。本実施例では、一例として、Wmax=0.00、SPD=0、isp=0と設定した。
ステップS502で、異常検出装置10は、基準周波数fs(i)の範囲を設定する。基準周波数fs(i)の最小値をf1とし、基準周波数fs(i)の最大値をfNとすると、基準周波数fs(i)の範囲は、f1からfNである。基準周波数fs(i)の範囲(最小値f1と最大値fN)は、例えば、回転機械30の運転周波数の範囲などに基づいて予め定めることができる。基準周波数fs(i)の範囲は、異常検出装置10の操作者が最小値f1と最大値fNを異常検出装置10に入力することで、異常検出装置10に設定される。
ステップS503で、異常検出装置10は、ループカウンタiの値を1に設定する。
ステップS504で、異常検出装置10は、基準周波数fs(i)にf1を設定する。
ステップS505で、異常検出装置10は、基準周波数fs(i)を変化させる周波数刻みΔfを設定する。周波数刻みΔfは、基準周波数fs(i)がステップS502で設定した範囲内で変化するように任意に定めることができ、例えば、得られる回転速度の精度と計算に要する時間を考慮して定めることができる。周波数刻みΔfは、異常検出装置10の操作者が異常検出装置10に入力することで、異常検出装置10に設定される。
基準周波数fs(i)は、転がり軸受20の特徴周波数とその高調波の周波数を用いて定めることもできる。すなわち、転がり軸受20の異常部位が予想できる場合は、基準周波数fs(i)を、その異常部位に関連する特徴周波数から決められる周波数(その高調波も含む)としてもよい。転がり軸受20の異常部位が予想できない場合は、基準周波数fs(i)を、転がり軸受20の全ての特徴周波数から決められる周波数(その高調波も含む)としてもよい。
ステップS506で、異常検出装置10は、周波数領域の強度分布データについて、基準周波数fs(i)に比例する複数の周波数における振動の強度を求める。このとき、基準周波数fs(i)に比例する複数の周波数は、Δf×比例倍数の範囲で最大となる周波数とする。また、異常(損傷)部位があらかじめ特定できる機械の場合は、特定の損傷周波数(特徴周波数から決まる周波数)としてもよい。異常(損傷)部位があらかじめ特定できない機械の場合は、すべての損傷周波数(特徴周波数から決まる周波数)としてもよい。これらの周波数は、その高周波を含めてもよい。振動の強度は、例えば、振幅の大きさから求めることができる。振動の強度を求める周波数の数は、例えば、特徴周波数の数を基に定めることができる。本実施例では、特徴周波数の数が4個(式(1)~(4))であるので、振動の強度を求める周波数の数は、最低4個であり、n次の高調波まで考慮するのであれば4n個とすることができる(nの最大値は、例えば4である)。
ステップS507で、異常検出装置10は、ステップS506で求めた複数の周波数における振動の強度の和W(i)を求める。
ステップS508で、異常検出装置10は、ステップS507で求めた振動の強度の和W(i)とWmaxの大きさを比較する。振動の強度の和W(i)がWmaxより大きい場合は、ステップS509に進み、W(i)がWmax以下である場合は、ステップS510に進む。
ステップS509で、異常検出装置10は、WmaxにW(i)の値を代入し、ispにiを設定した後、ステップS510に進む。
ステップS510で、異常検出装置10は、ループカウンタiの値に1を加える。
ステップS511で、異常検出装置10は、基準周波数fs(i)にfs(i-1)+Δfを設定する。すなわち、基準周波数fs(i)は、Δfだけ増加するように変化する。
ステップS512で、異常検出装置10は、基準周波数fs(i)が基準周波数fs(i)の範囲の最大値fN以下であるか判定する。基準周波数fs(i)が最大値fN以下の場合は、異常検出装置10は、ステップS506からステップS511までの処理を繰り返す。ステップS511で基準周波数fs(i)をΔfだけ変化させているので、ステップS506では、異常検出装置10は、Δfだけ変化させた基準周波数fs(i)に比例する複数の周波数における振動の強度を求めることになる。基準周波数fs(i)が最大値fNより大きい場合は、ステップS513に進む。
ステップS513で、異常検出装置10は、ispの値がゼロか判定する。ispの値がゼロの場合は、ステップS505からステップS512までの処理を繰り返す。ispの値がゼロでない場合は、ステップS514に進む。
ステップS514で、異常検出装置10は、基準周波数fs(isp)を回転機械30の回転速度SPDとする。回転機械30の回転速度SPDは、このようにして算出することで求められる。
この回転速度SPDの算出には、基準周波数fs(i)に比例する周波数以外の周波数における振動の強度は、通常、大きくならないことを利用している。転がり軸受20の振動は、回転機械30の回転速度SPDに比例した周波数で発生し、この周波数以外の周波数ではほとんど発生せず、発生したとしても小さな振動である(なお、比例の倍数は、振動の原因により異なる)。従って、基準周波数fs(i)が回転速度SPDと一致した場合には、基準周波数fs(i)に比例する周波数における振動の強度が大きくなる。但し、どの原因(軸受の場合は、損傷や欠陥の位置)によって振動が発生するのか不明であるので、振動を起こす可能性のある複数の周波数における振動の強度の和W(i)を求めて、和W(i)が最大となる基準周波数fs(isp)を回転機械30の回転速度SPDとして求めることにしている。
図6は、図4のステップS3で異常検出装置10の回転速度算出部12が行う、振動の時間領域の波形に包絡線処理を行って包絡線波形を求める処理の手順の一例を示すフローチャートである。
転がり軸受20に異常があると、振動の時間領域の波形として、高周波数の振動が周期的に変動した成分を含む波形が得られる。この時間領域の波形に対し、単に高速フーリエ変換処理(FFT処理)を行うと、高い周波数成分のスペクトルが得られるのみで、高周波数の振動が周期的に変動するスペクトルは得られない。このため、周期的に変動する高周波数の振動の周期性を抽出するためには、振動の波形に包絡線処理を行ってからFFT処理を行うのが有効である。
ステップS301で、異常検出装置10は、振動の時間領域の波形(図10)にFFT処理を行い、振動波形のデータを時間領域から周波数領域に変換する。
ステップS302で、異常検出装置10は、バンドパスフィルタ18(「BPF」とも記す)を用いて、周波数領域に変換した振動の波形から不要な振動成分を除去する。回転1次成分や低周波の振動成分は、高周波数の振動の波形を抽出する際にノイズとなる。このため、バンドパスフィルタ18を用いて、これらの不要な振動成分を除去し、必要な周波数範囲の振動成分を取り出す。バンドパスフィルタ18が取り出す周波数成分は、転がり軸受20の構成や、回転機械30の運転周波数の範囲に基づいて定めることができる。例えば、損傷した転がり軸受20の構成部品は、その固有振動の周波数で振動するので、バンドパスフィルタ18は、この固有振動の周波数成分を取り出せるように設定される。
ステップS303で、異常検出装置10は、バンドパスフィルタ18で不要な振動成分を除去した振動の波形(周波数領域の波形)に対し、逆高速フーリエ変換処理(IFFT処理)を行い、振動波形のデータを周波数領域から時間領域に戻す。
ステップS304で、異常検出装置10は、時間領域に戻した振動の波形に包絡線処理を行い、振動の時間領域の包絡線波形(図11)を得る。包絡線処理は、振動の時間領域の波形の輪郭をなぞる曲線(包絡線)を求める処理である。包絡線処理には、波形の信号にヒルベルト変換を施す方法など、任意の既存の方法を用いることができる。
以上のようにして振動の波形に包絡線処理を行うと、周期的に変動する高周波数の振動の周期性を抽出することが可能になるため、転がり軸受20の異常の特定に用いる特徴周波数を抽出することができる。
図7は、図4のステップS6で異常検出装置10が行う、転がり軸受20の異常部品を特定する処理の手順の一例を示すフローチャートである。
ステップS601で、異常検出装置10の異常特定部13は、図4のステップS4で得られた、振動の周波数領域の包絡線波形に、予め任意に定めた閾値より大きい振幅が含まれているかを調べる。振動の周波数領域の強度分布データに、この閾値より大きい振幅が含まれている場合は、転がり軸受20に異常があるとして、ステップS602に進む。振動の周波数領域の強度分布データに、この閾値より大きい振幅が含まれていない場合は、転がり軸受20に異常がないとして、ステップS603に進む。
ステップS602で、異常検出装置10の異常特定部13は、特徴周波数を用いて転がり軸受20の異常部品を特定する。特徴周波数は、図4のステップS5で算出した回転機械30の回転速度SPDを式(1)~(4)の回転周波数fsとすることで、式(1)~(4)から求めることができる。異常検出装置10は、ステップS601で求めた、閾値より大きい振幅について、この振幅のピークを与える周波数を特定する。そして、異常検出装置10は、ピークを与える周波数が、式(1)~(4)で与えられる特徴周波数やその高調波の周波数のうち、どの周波数に対応するか調べる。異常検出装置10は、ピークを与える周波数に対応した特徴周波数(特徴周波数の高調波も含む)から、転がり軸受20の異常部品が保持器24、転動体23、外輪22、及び内輪21のうちのどれであるかを特定する。
ステップS603で、異常検出装置10の出力部14は、転がり軸受20に異常があるかないかという検出結果を出力する。異常検出装置10は、転がり軸受20に異常がある場合には、ステップS602で特定した異常部品が何かを出力することもできる。異常検出装置10は、検出結果や特定した異常部品を、異常検出装置10の表示画面に出力したり、コンピュータ17や外部の表示装置、記憶装置、または印刷装置に出力したりすることができる。
図5に示したフローチャートでは、ステップS507において、異常検出装置10は、ステップS506で求めた複数の周波数における振動の強度の和W(i)を求め、ステップS514において、この和W(i)が最大となる基準周波数fs(isp)を回転機械30の回転速度SPDとして算出する。本実施例による異常検出装置10は、複数の周波数における振動の強度の和W(i)の他に、振動の強度の平均W1(i)や振動の強度の2乗平均W2(i)を用いて、回転機械30の回転速度SPDを算出することもできる。
上述したように、基準周波数fs(i)が回転速度SPDと一致した場合には、基準周波数fs(i)に比例する周波数における振動の強度が大きくなる。振動の発生原因が不明であるので、振動を起こす可能性のある複数の周波数における振動の強度の平均W1(i)や振動の強度の2乗平均W2(i)を求めて、平均W1(i)や2乗平均W2(i)が最大となる基準周波数fs(isp)を回転機械30の回転速度SPDとして求めることもできる。
図8は、図4のステップS5で異常検出装置10の回転速度算出部12が行う、回転機械30の回転速度の算出の手順の別の例を示すフローチャートである。図8に示すフローチャートは、図5に示したフローチャートと、ステップS517からステップS519までの処理が異なる。図8に示すフローチャートでは、ステップS506で求めた複数の周波数における振動の強度の平均W1(i)が最大となる基準周波数fs(isp)を、回転速度SPDとして算出する。
ステップS517で、異常検出装置10は、ステップS506で求めた複数の周波数における振動の強度の平均W1(i)を求める。
ステップS518で、異常検出装置10は、ステップS517で求めた振動の強度の平均W1(i)とWmaxの大きさを比較する。
ステップS509で、異常検出装置10は、WmaxにW1(i)の値を代入し、ispにiを設定する。
図9は、図4のステップS5で異常検出装置10の回転速度算出部12が行う、回転機械30の回転速度の算出の手順のさらに別の例を示すフローチャートである。図9に示すフローチャートは、図5に示したフローチャートと、ステップS527からステップS529までの処理が異なる。図9に示すフローチャートでは、ステップS506で求めた複数の周波数における振動の強度の2乗平均W2(i)が最大となる基準周波数fs(isp)を、回転速度SPDとして算出する。
ステップS527で、異常検出装置10は、ステップS506で求めた複数の周波数における振動の強度の2乗平均W2(i)を求める。
ステップS528で、異常検出装置10は、ステップS527で求めた振動の強度の2乗平均W2(i)とWmaxの大きさを比較する。
ステップS529で、異常検出装置10は、WmaxにW2(i)の値を代入し、ispにiを設定する。
本実施例による異常検出装置10は、以上に説明したように、回転速度が変化する回転機械30の回転速度を、転がり軸受20の振動データを利用して算出することができる。したがって、データロガー16から回転速度の情報を取得したり、回転機械30に回転速度センサを設置したりしなくても、異常検出装置10で回転機械30の回転速度を正確に算出することができ、コストダウンや作業効率と作業精度の向上を図ることができる。
なお、本発明は、上記の実施例に限定されるものではなく、様々な変形が可能である。例えば、上記の実施例は、本発明を分かりやすく説明するために詳細に説明したものであり、本発明は、必ずしも説明した全ての構成を備える態様に限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能である。また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、削除したり、他の構成を追加・置換したりすることが可能である。
10…異常検出装置、11…データ取得部、12…回転速度算出部、13…異常特定部、14…出力部、15…振動検出器、16…データロガー、17…コンピュータ、18…バンドパスフィルタ、20…転がり軸受、21…内輪、22…外輪、23…転動体、24…保持器、25…荷重の方向、26…径方向、30…回転機械、31…軸。

Claims (8)

  1. 回転速度が変化する回転機械を支持する転がり軸受に設置され、前記転がり軸受の振動を検出する振動検出器と、
    前記振動検出器が検出した前記振動の時間領域の波形を取得するデータ取得部と、
    時間領域の前記波形の包絡線を求め、高速フーリエ変換処理により時間領域の前記包絡線の波形を周波数領域の強度分布データに変換し、周波数領域の前記強度分布データを用いて前記回転機械の回転速度を求める回転速度算出部と、
    前記回転速度算出部が求めた前記回転速度と、前記転がり軸受の振動の要因を示す特徴周波数とを用いて、前記転がり軸受の異常部品を特定する異常特定部と、
    を備え、
    前記回転速度算出部は、周波数領域の前記強度分布データについて、予め定めた範囲内の周波数である基準周波数に比例する複数の周波数における振動の強度を求め、求めた前記強度を用いて前記回転速度を求め、
    前記回転速度算出部は、前記基準周波数を変化させ、変化させた前記基準周波数に比例する複数の周波数における振動の前記強度を求め、求めた前記強度を用いて前記回転速度を求める、
    ことを特徴とする、転がり軸受の異常検出装置。
  2. 前記回転速度算出部は、前記基準周波数に比例する複数の周波数における振動の強度の和を求め、前記和が最大となる前記基準周波数を前記回転速度として求める、
    請求項に記載の、転がり軸受の異常検出装置。
  3. 前記回転速度算出部は、前記基準周波数に比例する複数の周波数における振動の強度の平均を求め、前記平均が最大となる前記基準周波数を前記回転速度として求める、
    請求項に記載の、転がり軸受の異常検出装置。
  4. 前記回転速度算出部は、前記基準周波数に比例する複数の周波数における振動の強度の2乗平均を求め、前記2乗平均が最大となる前記基準周波数を前記回転速度として求める、
    請求項に記載の、転がり軸受の異常検出装置。
  5. 異常検出装置が、回転速度が変化する回転機械を支持する転がり軸受の振動を検出する振動検出器が検出した前記振動の時間領域の波形を取得するデータ取得工程と、
    異常検出装置が、時間領域の前記波形の包絡線を求め、高速フーリエ変換処理により時間領域の前記包絡線の波形を周波数領域の強度分布データに変換し、周波数領域の前記強度分布データを用いて前記回転機械の回転速度を求める回転速度算出工程と、
    異常検出装置が、前記回転速度算出工程で求めた前記回転速度と、前記転がり軸受の振動の要因を示す特徴周波数とを用いて、前記転がり軸受の異常部品を特定する異常特定工程と、
    を有し、
    前記回転速度算出工程では、異常検出装置が、周波数領域の前記強度分布データについて、予め定めた範囲内の周波数である基準周波数に比例する複数の周波数における振動の強度を求め、求めた前記強度を用いて前記回転速度を求め、
    前記回転速度算出工程では、異常検出装置が、前記基準周波数を変化させ、変化させた前記基準周波数に比例する複数の周波数における振動の前記強度を求め、求めた前記強度を用いて前記回転速度を求める、
    ことを特徴とする、転がり軸受の異常検出方法。
  6. 前記回転速度算出工程では、異常検出装置が、前記基準周波数に比例する複数の周波数における振動の強度の和を求め、前記和が最大となる前記基準周波数を前記回転速度として求める、
    請求項に記載の、転がり軸受の異常検出方法。
  7. 前記回転速度算出工程では、異常検出装置が、前記基準周波数に比例する複数の周波数における振動の強度の平均を求め、前記平均が最大となる前記基準周波数を前記回転速度として求める、
    請求項に記載の、転がり軸受の異常検出方法。
  8. 前記回転速度算出工程では、異常検出装置が、前記基準周波数に比例する複数の周波数における振動の強度の2乗平均を求め、前記2乗平均が最大となる前記基準周波数を前記回転速度として求める、
    請求項に記載の、転がり軸受の異常検出方法。
JP2020127243A 2020-07-28 2020-07-28 転がり軸受の異常検出装置、及び異常検出方法 Active JP7394031B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020127243A JP7394031B2 (ja) 2020-07-28 2020-07-28 転がり軸受の異常検出装置、及び異常検出方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020127243A JP7394031B2 (ja) 2020-07-28 2020-07-28 転がり軸受の異常検出装置、及び異常検出方法

Publications (2)

Publication Number Publication Date
JP2022024573A JP2022024573A (ja) 2022-02-09
JP7394031B2 true JP7394031B2 (ja) 2023-12-07

Family

ID=80265851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020127243A Active JP7394031B2 (ja) 2020-07-28 2020-07-28 転がり軸受の異常検出装置、及び異常検出方法

Country Status (1)

Country Link
JP (1) JP7394031B2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116625685B (zh) * 2023-04-20 2023-12-15 广东海洋大学 一种基于多域特征构建的滚动轴承组合故障诊断方法
JP7389303B1 (ja) * 2023-10-12 2023-11-29 旭精機工業株式会社 データ抽出装置及び異常監視装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001208655A (ja) 2000-01-28 2001-08-03 Rion Co Ltd 故障診断方法及びその装置
JP2001255241A (ja) 2000-03-10 2001-09-21 Toshiba Corp 回転機の軸受診断装置
JP2011196944A (ja) 2010-03-23 2011-10-06 Nippon Steel Corp 回転機械の回転数推定方法、装置及びプログラム
JP2017133580A (ja) 2016-01-27 2017-08-03 株式会社ジェイテクト 転がり軸受装置および転がり軸受の異常の検出方法
US20190383702A1 (en) 2012-01-30 2019-12-19 S.P.M. Instrument Ab Apparatus and method for analysing the condition of a machine having a rotating part

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001208655A (ja) 2000-01-28 2001-08-03 Rion Co Ltd 故障診断方法及びその装置
JP2001255241A (ja) 2000-03-10 2001-09-21 Toshiba Corp 回転機の軸受診断装置
JP2011196944A (ja) 2010-03-23 2011-10-06 Nippon Steel Corp 回転機械の回転数推定方法、装置及びプログラム
US20190383702A1 (en) 2012-01-30 2019-12-19 S.P.M. Instrument Ab Apparatus and method for analysing the condition of a machine having a rotating part
JP2017133580A (ja) 2016-01-27 2017-08-03 株式会社ジェイテクト 転がり軸受装置および転がり軸受の異常の検出方法

Also Published As

Publication number Publication date
JP2022024573A (ja) 2022-02-09

Similar Documents

Publication Publication Date Title
Singh et al. Motor current signature analysis for bearing fault detection in mechanical systems
JP5565120B2 (ja) 転がり軸受部振動データの高周波電磁振動成分除去方法および高周波電磁振動成分除去装置、回転機械の転がりの軸受診断方法および軸受診断装置
Wang et al. Rotating speed isolation and its application to rolling element bearing fault diagnosis under large speed variation conditions
JP5733913B2 (ja) 回転機械系の異常診断方法
KR101482509B1 (ko) 베어링 결함 진단 시스템 및 그 진단 방법
JP7394031B2 (ja) 転がり軸受の異常検出装置、及び異常検出方法
JP6017649B2 (ja) 回転機械系の異常診断方法
RU2551388C2 (ru) Контроль осевой вибрации для обнаружения несоосности валов в турбомашинных установках
CZ306833B6 (cs) Způsob detekce a lokalizace částečného kontaktu rotor-stator při provozu turbíny
CN111397877A (zh) 一种旋转机械拍振故障检测与诊断方法
önel et al. Detection of outer raceway bearing defects in small induction motors using stator current analysis
Wang Analysis of fault detection in rolling element bearings
JP5828948B2 (ja) 回転機械系の異常診断方法
Patel et al. Condition monitoring of induction motor bearing based on bearing damage index
Bouaouiche et al. Detection of defects in a bearing by analysis of vibration signals
JP7083293B2 (ja) 状態監視方法および状態監視装置
JP2006189333A (ja) 軸受の異常診断装置
Kedadouche et al. Cyclostationarity applied to acoustic emission and development of a new indicator for monitoring bearing defects
WO2022152336A1 (en) A method for monitoring turbine blade vibration
Thanagasundram et al. Autoregressive based diagnostics scheme for detection of bearing faults
Mikolajczak Vibration analysis of reconditioned high-speed electric motors
RU2730109C1 (ru) Способ мониторинга вибрации щеточно-коллекторных узлов электродвигателей постоянного тока
Roque et al. An approach to fault diagnosis of rolling bearings
Zhang et al. Rolling bearing fault diagnosis based on synchroextracting transform under variable rotational speed conditions
Ertunç et al. Vibration analysis based localized bearing fault diagnosis under different load conditions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231127

R150 Certificate of patent or registration of utility model

Ref document number: 7394031

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150