JP7392524B2 - Inner wall member for plasma processing equipment and plasma processing equipment - Google Patents

Inner wall member for plasma processing equipment and plasma processing equipment Download PDF

Info

Publication number
JP7392524B2
JP7392524B2 JP2020037550A JP2020037550A JP7392524B2 JP 7392524 B2 JP7392524 B2 JP 7392524B2 JP 2020037550 A JP2020037550 A JP 2020037550A JP 2020037550 A JP2020037550 A JP 2020037550A JP 7392524 B2 JP7392524 B2 JP 7392524B2
Authority
JP
Japan
Prior art keywords
wall member
plasma processing
chamber
plasma
processing apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020037550A
Other languages
Japanese (ja)
Other versions
JP2021141190A (en
Inventor
聡 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2020037550A priority Critical patent/JP7392524B2/en
Publication of JP2021141190A publication Critical patent/JP2021141190A/en
Application granted granted Critical
Publication of JP7392524B2 publication Critical patent/JP7392524B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、プラズマ処理装置用内壁部材及びその内壁部材を用いたプラズマ処理装置に関するものである。 The present invention relates to an inner wall member for a plasma processing apparatus and a plasma processing apparatus using the inner wall member.

半導体デバイス製造プロセスに使用されるプラズマエッチング装置やプラズマCVD装置等のプラズマ処理装置は、チャンバ内に、高周波電源に接続される上部電極と下部電極とを、例えば、上下方向に対向配置し、下部電極の上にシリコンウエハを配置した状態として、上部電極に形成した貫通孔から処理ガスを被処理基板に向かって流通させながら高周波電圧を印加することによりプラズマを発生させ、被処理基板にエッチング等の処理を行う構成とされている。 A plasma processing apparatus such as a plasma etching apparatus or a plasma CVD apparatus used in a semiconductor device manufacturing process has an upper electrode and a lower electrode connected to a high-frequency power source arranged vertically opposite each other in a chamber. With a silicon wafer placed on the electrode, plasma is generated by applying a high-frequency voltage while flowing processing gas toward the substrate to be processed through a through hole formed in the upper electrode, and etching, etc. is performed on the substrate to be processed. It is configured to perform the following processing.

このようなプラズマ処理装置において、そのチャンバの周壁の内面がプラズマ領域に晒されるため、その周壁内面からのパーティクルの発生を防止する対策が必要である。
例えば、特許文献1では、チャンバの周壁は、アルミニウム材料又はアルマイト加工されたアルミニウム材料が用いられており、パーティクル発生の防止のため、チャンバ内面を定期的にクリーニングすることが記載されている。
In such a plasma processing apparatus, since the inner surface of the peripheral wall of the chamber is exposed to the plasma region, it is necessary to take measures to prevent the generation of particles from the inner surface of the peripheral wall.
For example, Patent Document 1 describes that an aluminum material or an alumite-processed aluminum material is used for the peripheral wall of the chamber, and that the inner surface of the chamber is periodically cleaned to prevent generation of particles.

また、特許文献2は、チャンバ周壁にアルミニウム系材料として、三酸化アルミニウムが用いられており、この三酸化アルミニウムは、ヘリウムガス、水素ガス、及びネオンガスの浸透に強く、ガスとの反応性が小さい特性を有すると記載されている。
特許文献3では、チャンバの周壁の内側に円筒状のライナを設けて、プラズマがチャンバの周壁と接触することを防いでいる。ライナはステンレス鋼、シリコン等の本体を、酸化エルビウム等でコーティングしたものが用いられている。
Further, in Patent Document 2, aluminum trioxide is used as an aluminum-based material for the chamber peripheral wall, and this aluminum trioxide is resistant to penetration by helium gas, hydrogen gas, and neon gas, and has low reactivity with gases. It is described as having certain characteristics.
In Patent Document 3, a cylindrical liner is provided inside the peripheral wall of the chamber to prevent plasma from coming into contact with the peripheral wall of the chamber. The liner used is a body made of stainless steel, silicone, etc. coated with erbium oxide or the like.

特開2009-152539号公報Japanese Patent Application Publication No. 2009-152539 特開2013-98172号公報Japanese Patent Application Publication No. 2013-98172 特開2017-11265号公報JP 2017-11265 Publication

しかしながら、特許文献1のようにチャンバ内面を定期的にクリーニングするだけでは、パーティクルの発生防止には不十分である。また、特許文献2記載のチャンバ周壁を三酸化アルミニウムとし、あるいは、特許文献3記載のライナを設けたとしても、これらがエッチングされると、パーティクルの発生を完全には防止できない。 However, simply cleaning the inner surface of the chamber periodically as in Patent Document 1 is not sufficient to prevent particle generation. Further, even if the chamber peripheral wall described in Patent Document 2 is made of aluminum trioxide or the liner described in Patent Document 3 is provided, if these are etched, generation of particles cannot be completely prevented.

本発明は、このような事情に鑑みてなされたものであって、パーティクルが発生しにくいプラズマ処理装置用内壁部材を提供し、プラズマ処理品質を高めることを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide an inner wall member for a plasma processing apparatus that is less likely to generate particles, and to improve the quality of plasma processing.

上記課題解決のため、プラズマ処理の対象であるシリコンウエハに対する不純物付着をなくすため、チャンバの周壁をシリコン(Si)で形成することが考えられる。しかしながら、単結晶のシリコンは直径500mm程度までしか製造できず、大きなチャンバの周壁としては利用できない。一方、大きさに制約なく製造可能な多結晶のシリコンを周壁とした場合、結晶粒ごとにエッチングのされやすさが異なるため、長時間エッチングされると、粒界に対応する不規則な凹凸が生じる。この凹凸の段差が、エッチングガス等の処理ガスの流れに対して抵抗となるため、結晶粒の欠損や粒界に存在する不純物の流出等によりパーティクルが発生しやすい。したがって、エッチングされてもパーティクルが発生しにくいものである必要がある。このような知見の下、本発明を以下の解決手段とした。 To solve the above problem, it is conceivable to form the peripheral wall of the chamber with silicon (Si) in order to eliminate impurity adhesion to the silicon wafer that is the target of plasma processing. However, single crystal silicon can only be manufactured up to a diameter of about 500 mm and cannot be used as a peripheral wall of a large chamber. On the other hand, if the peripheral wall is made of polycrystalline silicon, which can be manufactured without any size restrictions, each crystal grain has a different susceptibility to etching, so if etched for a long time, irregular irregularities corresponding to the grain boundaries will appear. arise. Since the unevenness provides resistance to the flow of processing gas such as etching gas, particles are likely to be generated due to loss of crystal grains and outflow of impurities present at grain boundaries. Therefore, it is necessary that the material hardly generates particles even when etched. Based on this knowledge, the present invention has been made into the following solution.

すなわち、本発明のプラズマ処理装置用内壁部材は、プラズマ処理装置のチャンバ内で相互に対向する一対の電極の間の空間を囲む筒状の内壁部材であって、複数の結晶粒が当該内壁部材の軸と略平行に延びてなる柱状晶シリコンにより構成されている。 That is, the inner wall member for a plasma processing apparatus of the present invention is a cylindrical inner wall member that surrounds a space between a pair of electrodes facing each other in a chamber of a plasma processing apparatus, and the plurality of crystal grains are formed in the inner wall member. It is made of columnar silicon crystals extending substantially parallel to the axis of.

柱状晶シリコンは、一方向凝固等の手法により、複数の結晶粒を一方向に成長させた、異方性を有する柱状の結晶組織を有するシリコンである。この柱状晶シリコンを軸と略平行な方向に成長させて構成した内壁部材は、多くの粒界が軸と略平行な方向に沿って配置されている。この内壁部材の軸方向は、両電極の対向方向と平行になり、処理ガスの流れ方向と平行である。このため、プラズマ発生領域に長時間晒されてエッチングされた場合に凹凸が生じるとしても、処理ガスの流れに沿う形状となる。したがって、処理ガスの流れに対する抵抗が小さく、パーティクルが生じにくい。
なお、それぞれの結晶粒において、内壁部材の長さ方向に沿う径が周方向に沿う径より長ければ、その結晶粒は、軸と略平行な方向に延びていると判断する。
Columnar crystal silicon is silicon having an anisotropic columnar crystal structure in which a plurality of crystal grains are grown in one direction by a method such as unidirectional solidification. In the inner wall member formed by growing this columnar silicon in a direction substantially parallel to the axis, many grain boundaries are arranged along the direction substantially parallel to the axis. The axial direction of this inner wall member is parallel to the opposing direction of both electrodes, and parallel to the flow direction of the processing gas. Therefore, even if unevenness occurs when exposed to the plasma generation region for a long time and etched, the shape follows the flow of the processing gas. Therefore, resistance to the flow of processing gas is small, and particles are less likely to be generated.
In addition, in each crystal grain, if the diameter along the length direction of the inner wall member is longer than the diameter along the circumferential direction, it is determined that the crystal grain extends in a direction substantially parallel to the axis.

プラズマ処理装置用内壁部材の一つの実施態様として、前記結晶粒は、軸と平行な方向の長さをX、該軸に直交する方向の長さをYとしたときに、これらの長さの比X/Yの平均値が1.5以上であるとよい。
これらの長さの比X/Yの平均値(平均アスペクト比)が1.5未満では、軸と略平行な方向に延びる粒界の比率が少なくなり、上記した効果が得られにくい。
In one embodiment of the inner wall member for a plasma processing apparatus, the crystal grains have a length in the direction parallel to the axis as X and a length in the direction perpendicular to the axis as Y. It is preferable that the average value of the ratio X/Y is 1.5 or more.
When the average value of the ratio X/Y of these lengths (average aspect ratio) is less than 1.5, the ratio of grain boundaries extending in a direction substantially parallel to the axis decreases, making it difficult to obtain the above-mentioned effects.

プラズマ処理装置用内壁部材の他の一つの実施態様は、前記結晶粒の平均粒径が円相当径で5.0m以上であるとよい。
結晶粒の平均粒径が5.0m未満であると、粒界が多くなることから、処理ガスの流れに対する抵抗が増大し、パーティクルの発生を防止する効果が乏しくなる。
In another embodiment of the inner wall member for a plasma processing apparatus, the average grain size of the crystal grains is preferably 5.0 mm or more in equivalent circle diameter.
If the average grain size of the crystal grains is less than 5.0 mm , the number of grain boundaries increases, which increases the resistance to the flow of the processing gas and reduces the effect of preventing particle generation.

また、内壁部材の内周面の算術平均粗さRaは5.0μm以下であるとよい。算術平均粗さRaが5.0μmを超えると、稼働初期の段階でパーティクルが若干多くなる傾向にある。 Further, the arithmetic mean roughness Ra of the inner circumferential surface of the inner wall member is preferably 5.0 μm or less. When the arithmetic mean roughness Ra exceeds 5.0 μm, the number of particles tends to increase slightly in the initial stage of operation.

プラズマ処理装置用内壁部材のさらに他の一つの実施態様は、少なくとも内周面が円筒面である。
プラズマ発生領域に晒される内周面に角部がない円筒面であると、処理ガスの流れに対する抵抗が生じにくく、パーティクルの発生をより確実に防止できる。
In yet another embodiment of the inner wall member for a plasma processing apparatus, at least the inner peripheral surface is a cylindrical surface.
If the inner circumferential surface exposed to the plasma generation region is a cylindrical surface without corners, resistance to the flow of the processing gas is less likely to occur, and generation of particles can be more reliably prevented.

本発明のプラズマ処理装置は、前記内壁部材が、チャンバ内の電極の間の空間を囲むように配置されている。この場合、チャンバの周壁自体を内壁部材により構成してもよいし、チャンバの周壁の内周面を覆うライナ部材として、あるいはチャンバの周壁の内側に同心的に配置される筒状壁として、内壁部材を配置してもよい。 In the plasma processing apparatus of the present invention, the inner wall member is arranged so as to surround the space between the electrodes in the chamber. In this case, the peripheral wall of the chamber itself may be constituted by an inner wall member, or the inner wall may be formed as a liner member that covers the inner peripheral surface of the peripheral wall of the chamber, or as a cylindrical wall disposed concentrically inside the peripheral wall of the chamber. You may arrange a member.

本発明のプラズマ処理装置用内壁部材はエッチングされてもパーティクルが発生しにくく、これを用いることにより、プラズマ処理品質を高めることができる。 The inner wall member for a plasma processing apparatus of the present invention hardly generates particles even when etched, and by using the inner wall member, it is possible to improve the quality of plasma processing.

一実施形態のプラズマ処理装置の概略構成図である。1 is a schematic configuration diagram of a plasma processing apparatus according to an embodiment. 一実施形態の内壁部材を模式的に示す斜視図である。FIG. 2 is a perspective view schematically showing an inner wall member of one embodiment. 図2の内壁部材における結晶粒を模式的に示す正面図である。3 is a front view schematically showing crystal grains in the inner wall member of FIG. 2. FIG.

以下、本発明の実施形態を、図面を参照しながら説明する。
まず、プラズマ処理装置の例としてプラズマエッチング装置1について説明する。
このプラズマエッチング装置1は、図1の概略断面図に示されるように、チャンバ2内の上部に平板状の上部電極3が設けられるとともに、下部に上下動可能な下部電極4が上部電極3と相互間隔をおいて平行に設けられている。この場合、上部電極3は絶縁体5によりチャンバ2の壁に対して絶縁状態に支持されているとともに、下部電極4の上には、静電チャック6と、その周りを囲むフォーカスリング7とが設けられており、静電チャック6の上に、フォーカスリング7により周縁部を支持した状態でシリコンウエハ(被処理基板)8を載置するようになっている。
Embodiments of the present invention will be described below with reference to the drawings.
First, a plasma etching apparatus 1 will be described as an example of a plasma processing apparatus.
As shown in the schematic cross-sectional view of FIG. 1, this plasma etching apparatus 1 includes a flat plate-shaped upper electrode 3 provided at the upper part of a chamber 2, and a lower electrode 4 which is vertically movable at the lower part. They are arranged parallel to each other and spaced apart from each other. In this case, the upper electrode 3 is supported in an insulated manner against the wall of the chamber 2 by an insulator 5, and an electrostatic chuck 6 and a focus ring 7 surrounding it are placed on the lower electrode 4. A silicon wafer (substrate to be processed) 8 is placed on the electrostatic chuck 6 with its peripheral edge supported by a focus ring 7 .

また、チャンバ2の上部にはエッチングガス供給管9が設けられ、このエッチングガス供給管9から送られてきたエッチングガスは拡散室10を経由した後、上部電極3に設けられたガス通過孔11を通してウエハ8に向かって流され、チャンバ2の側部の排出口12から外部に排出される構成とされている。一方、上部電極3と下部電極4との間には高周波電源13により高周波電圧が印加されるようになっている。 Further, an etching gas supply pipe 9 is provided in the upper part of the chamber 2, and the etching gas sent from the etching gas supply pipe 9 passes through a diffusion chamber 10, and then passes through a gas passage hole 11 provided in the upper electrode 3. It is configured to flow toward the wafer 8 through the chamber 2 and to be discharged to the outside from the discharge port 12 on the side of the chamber 2. On the other hand, a high frequency voltage is applied between the upper electrode 3 and the lower electrode 4 by a high frequency power supply 13.

また、上部電極3は、シリコンによって円板状に形成されており、その背面には熱伝導性に優れるアルミニウム等からなる冷却板14が固定され、この冷却板14にも電極板3のガス通過孔11に連通するように、このガス通過孔11と同じピッチで貫通孔15が形成されている。そして、電極板3は、背面が冷却板に接触した状態でねじ止め等によってプラズマ処理装置1内に固定される。 Further, the upper electrode 3 is formed into a disk shape of silicon, and a cooling plate 14 made of aluminum or the like having excellent thermal conductivity is fixed to the back side of the upper electrode 3, and this cooling plate 14 also has a gas passage through the electrode plate 3. Through holes 15 are formed at the same pitch as the gas passage holes 11 so as to communicate with the holes 11 . Then, the electrode plate 3 is fixed in the plasma processing apparatus 1 by screws or the like with the back surface in contact with the cooling plate.

また、チャンバ2の内側には、上部電極3と下部電極4との間の空間を囲むように円筒形状の内壁部材21が設けられている。図1に示す例では、内壁部材21の上端部が、上部電極3が固定されている部材に取付け固定されており、チャンバ2の周壁2aから離間し、該周壁2aと同心状に配置されている。
この内壁部材21は、図2に模式的に示したように、複数の結晶粒21aが円筒の軸Cと略平行に延びる柱状晶シリコンにより構成されている。この内壁部材21を構成する柱状晶シリコンは、一方向凝固等の手法により、複数の結晶粒21aを軸Cと略平行な方向に成長させた、異方性を有する柱状の結晶組織を有するシリコンである。図1に示すように、内壁部材21は、プラズマエッチング装置1において、電極3,4の対向方向、つまり上下方向に軸Cを配置させた状態で取り付けられる。したがって、その軸Cの方向は、上部電極3のガス通過孔11から矢印で示すように流出するエッチングガスの流れ方向と略平行になる。
Moreover, a cylindrical inner wall member 21 is provided inside the chamber 2 so as to surround the space between the upper electrode 3 and the lower electrode 4. In the example shown in FIG. 1, the upper end of the inner wall member 21 is attached and fixed to the member to which the upper electrode 3 is fixed, and is spaced apart from the peripheral wall 2a of the chamber 2 and arranged concentrically with the peripheral wall 2a. There is.
As schematically shown in FIG. 2, the inner wall member 21 is made of columnar crystal silicon in which a plurality of crystal grains 21a extend substantially parallel to the axis C of the cylinder. The columnar crystal silicon constituting the inner wall member 21 is silicon having an anisotropic columnar crystal structure in which a plurality of crystal grains 21a are grown in a direction substantially parallel to the axis C by a method such as unidirectional solidification. It is. As shown in FIG. 1, the inner wall member 21 is attached to the plasma etching apparatus 1 with the axis C disposed in the opposite direction of the electrodes 3 and 4, that is, in the vertical direction. Therefore, the direction of the axis C is approximately parallel to the flow direction of the etching gas flowing out from the gas passage hole 11 of the upper electrode 3 as shown by the arrow.

この内壁部材21のシリコンの純度は、99.999質量%以上が好ましい。不純物が結晶の粒界に存在する場合もあるが、10質量ppm(0.001質量%)以下であれば、シリコンウエハへの影響は小さい。また、内壁部材21の結晶粒21aは、円筒の軸Cと平行な方向の長さをX、該軸Cに直交する方向の長さをYとしたときに、これらの長さの比の平均(平均アスペクト比)X/Yが1.5以上である。その比X/Yが1.5未満では、軸Cと平行な方向に沿う粒界の比率が少なくなり、パーティクル発生防止の効果が乏しくなる。この比X/Yは1.8以上が好ましい。上限は特に制限ないが、製造上の限界としては、例えばX/Yが1000である。 The purity of silicon of this inner wall member 21 is preferably 99.999% by mass or more. Although impurities may exist at grain boundaries of crystals, if the impurities are 10 mass ppm (0.001 mass %) or less, the influence on the silicon wafer is small. Further, the crystal grains 21a of the inner wall member 21 are the average of the ratio of these lengths, where X is the length in the direction parallel to the axis C of the cylinder and Y is the length in the direction perpendicular to the axis C. (Average aspect ratio) X/Y is 1.5 or more. When the ratio X/Y is less than 1.5, the ratio of grain boundaries along the direction parallel to the axis C decreases, and the effect of preventing particle generation becomes poor. This ratio X/Y is preferably 1.8 or more. There is no particular upper limit, but as a manufacturing limit, for example, X/Y is 1000.

結晶粒21aの平均粒径は、その面積から割り出した円相当直径((4×面積/π)の平方根)で5.0m以上である。結晶粒21aの平均粒径が5.0m未満であると、粒界が多くなることから、エッチングガスの流れに対する抵抗が増大し、パーティクルの発生を防止する効果が乏しくなる。結晶粒21aの平均粒径は10m以上が好ましい。上限は特に制限ないが、通常の条件で製造できる範囲として、例えば1000mである。
この内壁部材21は、円筒面に形成された外周面によりチャンバ2の内周面を緊密に覆い、円筒面に形成された内周面を上部電極3と下部電極4との間の空間に臨ませて配置され、その内周面でプラズマ発生領域Pを囲んだ状態としている。
The average grain size of the crystal grains 21a is 5.0 mm or more in equivalent circle diameter (square root of (4×area/π)) determined from the area thereof. If the average grain size of the crystal grains 21a is less than 5.0 mm , the number of grain boundaries increases, so resistance to the flow of etching gas increases, and the effect of preventing particle generation becomes poor. The average grain size of the crystal grains 21a is preferably 10 mm or more. The upper limit is not particularly limited, but is, for example, 1000 mm as a range that can be manufactured under normal conditions.
This inner wall member 21 tightly covers the inner circumferential surface of the chamber 2 with an outer circumferential surface formed as a cylindrical surface, and exposes the inner circumferential surface formed as a cylindrical surface to the space between the upper electrode 3 and the lower electrode 4. The plasma generating region P is surrounded by the inner circumferential surface of the plasma generating region P.

この内壁部材21を製造するには、垂直に配置した円筒形状の鋳型にシリコンの溶融液を注入し、軸方向の下方から冷却することで、シリコンを鋳型の中で下方から上方に向けて一方向に凝固させ、得られた円柱状のシリコンインゴットの中心部をコアリングによって抜き取ることにより、結晶を円筒の軸Cと略平行な方向に成長させた柱状晶の内壁部材21を得ることができる。鋳型のキャビティを円筒形状に形成してシリコンの溶融液を注入し、下方から一方向凝固させることにより、円筒状の内壁部材を得ることも可能である。最後に、表面を機械加工により研削、研磨して、所望のサイズの内壁部材21に仕上げられる。 To manufacture this inner wall member 21, a molten silicon is poured into a vertically arranged cylindrical mold and cooled from below in the axial direction. By solidifying in the direction and extracting the center part of the obtained cylindrical silicon ingot by coring, it is possible to obtain the inner wall member 21 of columnar crystals in which crystals are grown in a direction substantially parallel to the axis C of the cylinder. . It is also possible to obtain a cylindrical inner wall member by forming a mold cavity into a cylindrical shape, injecting molten silicon, and solidifying it in one direction from below. Finally, the surface is ground and polished by machining to finish the inner wall member 21 of a desired size.

この内壁部材21の諸寸法は、必ずしも限定されるものではないが、例えば、厚さTが5mm~20mm、高さHが50mm~100mm、直径(内径)Dが300mm~600mmとされる。また、プラズマ発生領域Pに晒される内周面は、パーティクルが極力発生しないように平滑であるのが好ましく、その算術平均粗さRaは5.0μm以下であるとよい。Raが5.0μm以下であれば、エッチング開始の初期においても、パーティクルの発生を有効に防止することができる。この内周面の算術平均粗さRaは3.0μm以下がより好ましい。下限は特に制限ないが、通常の条件で製造できる範囲として、例えば0.01μmである。 The dimensions of this inner wall member 21 are not necessarily limited, but for example, the thickness T is 5 mm to 20 mm, the height H is 50 mm to 100 mm, and the diameter (inner diameter) D is 300 mm to 600 mm. Further, the inner circumferential surface exposed to the plasma generation region P is preferably smooth to prevent generation of particles as much as possible, and its arithmetic mean roughness Ra is preferably 5.0 μm or less. When Ra is 5.0 μm or less, generation of particles can be effectively prevented even at the initial stage of etching. The arithmetic mean roughness Ra of this inner peripheral surface is more preferably 3.0 μm or less. The lower limit is not particularly limited, but is, for example, 0.01 μm as a range that can be manufactured under normal conditions.

このように構成されたプラズマエッチング装置1において、上部電極3と下部電極4との間に高周波電源13から高周波電圧を印加した状態でガス供給管9からエッチングガスを供給すると、このエッチングガスは、ガス供給管9の先端に形成されているガス拡散室10内に送られ、上部電極3の通気孔11を通過して上部電極3と下部電極4との間の空間に放出され、この空間内でプラズマとなってシリコンウエハ8に当り、このプラズマのスパッタリングによる物理反応と、エッチングガスによる化学反応とにより、シリコンウエハ8の表面がエッチングされる。 In the plasma etching apparatus 1 configured as described above, when an etching gas is supplied from the gas supply pipe 9 while a high frequency voltage is applied from the high frequency power source 13 between the upper electrode 3 and the lower electrode 4, this etching gas The gas is sent into the gas diffusion chamber 10 formed at the tip of the gas supply pipe 9, passes through the ventilation hole 11 of the upper electrode 3, and is released into the space between the upper electrode 3 and the lower electrode 4. The plasma becomes plasma and hits the silicon wafer 8, and the surface of the silicon wafer 8 is etched by a physical reaction caused by sputtering of this plasma and a chemical reaction caused by the etching gas.

このプラズマ処理中に、エッチングガスは、チャンバ2の内周面に設けられている内壁部材21の内周面にも衝突するが、この内壁部材21は内周面が平滑面であるため、エッチングガスの流れに対する抵抗が小さく、パーティクルが発生しにくい。また、この内壁部材21は、結晶粒が軸Cと略平行な方向に沿う柱状晶シリコンにより構成されているため、多くの粒界が軸Cと平行方向、つまりエッチングガスの流れ方向に沿って配置されているため、プラズマ発生領域Pでエッチングされた場合に凹凸が生じるとしても、その凹凸はエッチングガスの流れに沿う形状となる。したがって、エッチングガスの流れに対する抵抗が小さく、パーティクルが生じにくい。
このプラズマエッチング装置1を用いることにより、パーティクルの発生が少なく、したがって汚染が少なく、高品質のエッチング処理を行うことができる。
During this plasma treatment, the etching gas also collides with the inner circumferential surface of the inner wall member 21 provided on the inner circumferential surface of the chamber 2, but since the inner circumferential surface of this inner wall member 21 is smooth, the etching gas is Low resistance to gas flow and less generation of particles. In addition, since this inner wall member 21 is made of columnar silicon whose crystal grains are aligned in a direction substantially parallel to the axis C, many grain boundaries are aligned in a direction parallel to the axis C, that is, along the flow direction of the etching gas. Because of the arrangement, even if unevenness occurs when etching is performed in the plasma generation region P, the unevenness has a shape that follows the flow of the etching gas. Therefore, resistance to the flow of etching gas is small, and particles are less likely to be generated.
By using this plasma etching apparatus 1, it is possible to perform high-quality etching processing with less generation of particles and therefore less contamination.

なお、本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
上記実施形態では、内壁部材21をチャンバ2の周壁2aの内側にチャンバ2の周壁2aから間隔をあけて同心的に配置したが、チャンバ2の周壁2aの内周面を覆うライナ部材として内壁部材を配置してもよい。あるいは、チャンバ2の周壁2a自体を内壁部材により構成してもよい。これらチャンバ2の周壁2a自体あるいは周壁2aを覆うライナ部材として内壁部材を設ける場合でも、一方向凝固により形成された柱状晶シリコンからなるので、単結晶シリコンの場合とは異なり、大径のものにも適用することが容易である。
Note that the present invention is not limited to the above embodiments, and various changes can be made without departing from the spirit of the present invention.
In the above embodiment, the inner wall member 21 is arranged concentrically inside the circumferential wall 2a of the chamber 2 with a space therebetween, but the inner wall member 21 is used as a liner member that covers the inner circumferential surface of the circumferential wall 2a of the chamber 2. may be placed. Alternatively, the peripheral wall 2a of the chamber 2 itself may be constituted by an inner wall member. Even when an inner wall member is provided as the peripheral wall 2a of the chamber 2 itself or as a liner member covering the peripheral wall 2a, it is made of columnar crystal silicon formed by unidirectional solidification, so unlike the case of single crystal silicon, it is necessary to use a large diameter one. It is also easy to apply.

また、この内壁部材21の内周面は、平滑な円筒面であることが望ましいが、柱状晶シリコンからなることによってパーティクルの発生が抑えられているので、厳密な円筒面でなくても、断面が円形に近い多角形状とすることを除外するものではない。
また、本発明は実施形態のプラズマエッチング装置1の他、プラズマCVD装置等のプラズマ処理装置一般に適用できる。
The inner circumferential surface of the inner wall member 21 is preferably a smooth cylindrical surface, but since the generation of particles is suppressed by being made of columnar crystal silicon, the inner circumferential surface of the inner wall member 21 does not need to be a strictly cylindrical surface. This does not exclude that the shape may be a polygonal shape close to a circle.
Further, the present invention can be applied not only to the plasma etching apparatus 1 of the embodiment but also to general plasma processing apparatuses such as plasma CVD apparatuses.

柱状晶シリコンと多結晶シリコンとにより、厚さ15mm、高さ100mm、内径410mmの円筒状の内壁部材を作製した。これらの作製方法は以下の通りである。 A cylindrical inner wall member having a thickness of 15 mm, a height of 100 mm, and an inner diameter of 410 mm was fabricated from columnar silicon and polycrystalline silicon. The manufacturing method for these is as follows.

(柱状晶シリコン製内壁部材)
円筒形状の鋳型により円柱状のキャビティを形成し、そのキャビティ内にシリコン溶湯を注湯し、下方から冷却することで一方向凝固させ、結晶粒を軸方向と略平行に成長させた柱状晶のシリコンインゴットを得た。ここで、冷却スピードを変化させることで、結晶粒の平均アスペクト比と平均粒径を調整した。次に、シリコンインゴットの中心部をコアリングで抜き取った後、機械加工を施し、厚さ15mm、高さ100mm、径410mmの円筒形状の内壁部材を得た。最後に、内壁部材の内周面を研磨した。
(Inner wall member made of columnar crystal silicon)
A cylindrical cavity is formed using a cylindrical mold, and molten silicon is poured into the cavity and solidified in one direction by cooling from below, resulting in columnar crystal grains that grow approximately parallel to the axial direction. Obtained silicon ingot. Here, the average aspect ratio and average grain size of crystal grains were adjusted by changing the cooling speed. Next, the center of the silicon ingot was extracted using a coring ring, and then machined to obtain a cylindrical inner wall member with a thickness of 15 mm, a height of 100 mm, and a diameter of 410 mm. Finally, the inner peripheral surface of the inner wall member was polished.

なお、得られた内壁部材の組成を、ICP(Inductively Coupled Plasma:誘導結合プラズマ)発光分光分析装置を用いて測定したところ、不純物量は10質量ppm以下であって、純度99.999質量%以上であった。 In addition, when the composition of the obtained inner wall member was measured using an ICP (Inductively Coupled Plasma) emission spectrometer, the amount of impurities was 10 mass ppm or less, and the purity was 99.999 mass % or more. Met.

(多結晶シリコン製内壁部材)
円筒形状の鋳型により円柱状のキャビティを形成し、そのキャビティ内にシリコン溶湯を注湯し、鋳型全周から冷却することで結晶粒の成長方向が不規則な多結晶のシリコンインゴットを得た。ここで、冷却スピードを変化させることで、結晶粒の平均アスペクト比と平均粒径を調整した。次に、シリコンインゴットの中心部をコアリングで抜き取った後、機械加工を施し、厚さ15mm、高さ100mm、径410mmの円筒形状の内壁部材を得た。最後に、内壁部材の内周面を研磨した。
なお、得られた内壁部材の組成をICPを用いて測定したところ、不純物量は10質量ppm以下であって、純度99.999質量%以上であった。
(Polycrystalline silicon inner wall member)
A cylindrical cavity was formed using a cylindrical mold, and molten silicon was poured into the cavity and cooled from the entire circumference of the mold to obtain a polycrystalline silicon ingot with irregular grain growth directions. Here, the average aspect ratio and average grain size of crystal grains were adjusted by changing the cooling speed. Next, the center of the silicon ingot was extracted using a coring ring, and then machined to obtain a cylindrical inner wall member with a thickness of 15 mm, a height of 100 mm, and a diameter of 410 mm. Finally, the inner peripheral surface of the inner wall member was polished.
In addition, when the composition of the obtained inner wall member was measured using ICP, the amount of impurities was 10 mass ppm or less, and the purity was 99.999 mass % or more.

以上のように作製した内壁部材について、結晶粒の平均アスペクト比、結晶粒の平均粒径、内周面の表面粗さ(算術平均粗さ)Raを測定した。
結晶粒の平均アスペクト比は、SEM(走査型電子顕微鏡:Scanning Electron Microscope)により観察し、内壁部材の軸方向に沿う結晶粒の最大長さX、軸方向に直交する方向の最大長さYを測定し、Y/Xを算出した。1個の内壁部材について100個の結晶粒の平均値を求めた。
結晶粒の平均粒径は、SEM(走査型電子顕微鏡)により観察し、結晶粒の投影面積から円相当直径(結晶粒の投影面積と同じ面積を持つ円の直径)を算出して粒径とした。1個の内壁部材について100個の結晶粒の平均値を求めた。
表面粗さ(算術平均粗さ)Raは、JIS-B0601に即した方法で、内壁部材の内周面を軸方向に走査して測定した。1個の内壁部材について4箇所測定し、その平均値を求めた。
Regarding the inner wall member produced as described above, the average aspect ratio of crystal grains, the average grain size of crystal grains, and the surface roughness (arithmetic mean roughness) Ra of the inner peripheral surface were measured.
The average aspect ratio of crystal grains is determined by observing with a SEM (Scanning Electron Microscope) and determining the maximum length X of the crystal grains along the axial direction of the inner wall member and the maximum length Y in the direction perpendicular to the axial direction. It was measured and Y/X was calculated. The average value of 100 crystal grains for one inner wall member was determined.
The average grain size of a crystal grain is determined by observing it with a SEM (scanning electron microscope) and calculating the equivalent circle diameter (diameter of a circle with the same area as the projected area of a crystal grain) from the projected area of the crystal grain. did. The average value of 100 crystal grains for one inner wall member was determined.
The surface roughness (arithmetic mean roughness) Ra was measured by scanning the inner circumferential surface of the inner wall member in the axial direction by a method in accordance with JIS-B0601. Measurements were taken at four locations on one inner wall member, and the average value was determined.

(評価方法)
各実施例、比較例の内壁部材をプラズマエッチング装置のプラズマ発生領域を囲むようにセットし、下記の条件で直径300mmのシリコンウエハへのプラズマエッチングを実施した。
チャンバ内圧力:10-1Torr、
エッチングガス組成:CHF+O +Heの混合ガスとし、流量を90sccm(CHF)+4sccm(O)+150sccm(He)とした。
高周波電力:2kW
周波数:20kHz
(Evaluation method)
The inner wall members of each example and comparative example were set so as to surround the plasma generation area of a plasma etching apparatus, and plasma etching was performed on a silicon wafer having a diameter of 300 mm under the following conditions.
Chamber internal pressure: 10 −1 Torr,
Etching gas composition: A mixed gas of CHF 3 +O 2 +He, and the flow rate was 90 sccm (CHF 3 )+4 sccm (O 2 )+150 sccm (He).
High frequency power: 2kW
Frequency: 20kHz

エッチング開始から50時間と、300時間が経過したそれぞれの時点でのシリコンウエハ上のパーティクル数を測定し、その結果を表1に示した。パーティクル数の測定は、パーティクルカウンター(株式会社トプコン製WM-3000)を使用し、ウエハ表面をレーザ光により走査し、付着したパーティクルからの光散乱強度を測定することによりパーティクルの位置と大きさを認識することにより行った。
これらの結果を表1に示す。
The number of particles on the silicon wafer was measured at 50 hours and 300 hours after the start of etching, and the results are shown in Table 1. To measure the number of particles, use a particle counter (WM-3000 manufactured by Topcon Corporation) to scan the wafer surface with a laser beam and measure the intensity of light scattering from the attached particles to determine the position and size of the particles. This was done by recognizing.
These results are shown in Table 1.

Figure 0007392524000001
Figure 0007392524000001

表1に示されるように、柱状晶シリコンからなる実施例の内壁部材は、多結晶シリコンからなる比較例の内壁部材に比べて、300時間経過後のパーティクル数が少なかった。実施例の中でも、結晶粒の平均アスペクト比が1.5以上、平均粒径が5.0mm以上、内周面の表面粗さRaが5.0μm以下である実施例1及び2は、長時間経過してもパーティクルの発生が抑えられており、高品質でプラズマエッチングを施すことができる。実施例5も長時間経過後のパーティクル発生数が抑えられているが、表面粗さRaが5.0μmを超えるため、50時間経過時のパーティクル発生数が実施例1や2に比べると若干多くなっている。
これに対して、比較例1は、長時間経過後のパーティクル発生数が実施例に比べて多くなった。
As shown in Table 1, the inner wall member of the example made of columnar silicon had fewer particles after 300 hours than the inner wall member of the comparative example made of polycrystalline silicon. Among the examples, Examples 1 and 2 in which the average aspect ratio of the crystal grains is 1.5 or more, the average grain size is 5.0 mm or more, and the surface roughness Ra of the inner peripheral surface is 5.0 μm or less, Particle generation is suppressed even after a long period of time, and high quality plasma etching can be performed. Example 5 also suppresses the number of particles generated after a long period of time, but since the surface roughness Ra exceeds 5.0 μm, the number of particles generated after 50 hours is slightly higher than in Examples 1 and 2. It has become.
On the other hand, in Comparative Example 1, the number of particles generated after a long period of time was greater than in the Example.

1 プラズマエッチング装置
2 チャンバ
2a 周壁
3 上部電極
4 下部電極
5 絶縁体
6 静電チャック
8 シリコンウエハ(被処理基板)
9 エッチングガス供給管
10 拡散室
11 ガス通過孔
12 排出口
13 高周波電源
14 冷却板
15 貫通孔
21 内壁部材
21a 結晶粒
P プラズマ発生領域
C 軸
1 Plasma etching apparatus 2 Chamber 2a Peripheral wall 3 Upper electrode 4 Lower electrode 5 Insulator 6 Electrostatic chuck 8 Silicon wafer (substrate to be processed)
9 Etching gas supply pipe 10 Diffusion chamber 11 Gas passage hole 12 Discharge port 13 High frequency power source 14 Cooling plate 15 Through hole 21 Inner wall member 21a Crystal grain P Plasma generation region C Axis

Claims (3)

プラズマ処理装置のチャンバ内で相互に対向する一対の電極の間の空間を囲む筒状の内壁部材であって、複数の結晶粒が当該内壁部材の軸と略平行に延びてなる柱状晶シリコンにより構成されており、
前記結晶粒の平均粒径が円相当径で14.9mm以上であり、
内周面の算術平均粗さRaが5.0μm以下であることを特徴とするプラズマ処理装置用内壁部材。
A cylindrical inner wall member that surrounds a space between a pair of electrodes facing each other in a chamber of a plasma processing apparatus, and is made of columnar crystal silicon in which a plurality of crystal grains extend approximately parallel to the axis of the inner wall member. It is configured,
The average grain size of the crystal grains is 14.9 mm or more in equivalent circle diameter,
An inner wall member for a plasma processing apparatus, characterized in that the arithmetic mean roughness Ra of the inner peripheral surface is 5.0 μm or less .
少なくとも内周面が円筒面であることを特徴とする請求項1に記載のプラズマ処理装置用内壁部材。 The inner wall member for a plasma processing apparatus according to claim 1, wherein at least the inner peripheral surface is a cylindrical surface. 請求項1又は2に記載のプラズマ処理装置用内壁部材が、チャンバ内で相互に対向する一対の電極の間の空間を囲むように配置されていることを特徴とするプラズマ処理装置。 A plasma processing apparatus, wherein the inner wall member for a plasma processing apparatus according to claim 1 or 2 is arranged to surround a space between a pair of electrodes facing each other within a chamber.
JP2020037550A 2020-03-05 2020-03-05 Inner wall member for plasma processing equipment and plasma processing equipment Active JP7392524B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020037550A JP7392524B2 (en) 2020-03-05 2020-03-05 Inner wall member for plasma processing equipment and plasma processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020037550A JP7392524B2 (en) 2020-03-05 2020-03-05 Inner wall member for plasma processing equipment and plasma processing equipment

Publications (2)

Publication Number Publication Date
JP2021141190A JP2021141190A (en) 2021-09-16
JP7392524B2 true JP7392524B2 (en) 2023-12-06

Family

ID=77669051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020037550A Active JP7392524B2 (en) 2020-03-05 2020-03-05 Inner wall member for plasma processing equipment and plasma processing equipment

Country Status (1)

Country Link
JP (1) JP7392524B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004043250A (en) 2002-07-12 2004-02-12 Mitsubishi Materials Corp Crucible for manufacturing hollow columnar silicon ingot and method for manufacturing hollow columnar silicon ingot
JP2005159289A (en) 2003-10-30 2005-06-16 Kyocera Corp Plasma processing apparatus
JP2005303045A (en) 2004-04-13 2005-10-27 Mitsubishi Materials Corp Silicon component and manufacturing method thereof
JP2009051724A (en) 2007-08-01 2009-03-12 Mitsubishi Materials Corp High-strength columnar crystal silicon and plasma etching device part formed by the high-strength columnar crystal silicon
WO2011055673A1 (en) 2009-11-06 2011-05-12 Jx日鉱日石金属株式会社 Hybrid silicon wafer
JP2014198664A (en) 2013-03-11 2014-10-23 三菱マテリアル株式会社 Silicon member for semiconductor device and production method of silicon member for semiconductor device
JP2016181385A (en) 2015-03-24 2016-10-13 三菱マテリアル株式会社 Method of manufacturing electrode plate for plasma processing apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004043250A (en) 2002-07-12 2004-02-12 Mitsubishi Materials Corp Crucible for manufacturing hollow columnar silicon ingot and method for manufacturing hollow columnar silicon ingot
JP2005159289A (en) 2003-10-30 2005-06-16 Kyocera Corp Plasma processing apparatus
JP2005303045A (en) 2004-04-13 2005-10-27 Mitsubishi Materials Corp Silicon component and manufacturing method thereof
JP2009051724A (en) 2007-08-01 2009-03-12 Mitsubishi Materials Corp High-strength columnar crystal silicon and plasma etching device part formed by the high-strength columnar crystal silicon
WO2011055673A1 (en) 2009-11-06 2011-05-12 Jx日鉱日石金属株式会社 Hybrid silicon wafer
JP2014198664A (en) 2013-03-11 2014-10-23 三菱マテリアル株式会社 Silicon member for semiconductor device and production method of silicon member for semiconductor device
JP2016181385A (en) 2015-03-24 2016-10-13 三菱マテリアル株式会社 Method of manufacturing electrode plate for plasma processing apparatus

Also Published As

Publication number Publication date
JP2021141190A (en) 2021-09-16

Similar Documents

Publication Publication Date Title
US8896210B2 (en) Plasma processing apparatus and method
EP1069603A1 (en) Processing apparatus
US11152196B2 (en) Substrate processing apparatus
JP2010153680A (en) Plasma treatment device
JP4423082B2 (en) Gas nozzle, manufacturing method thereof, and thin film forming apparatus using the same
JP2012221979A (en) Plasma processing apparatus
JP7190491B2 (en) Aluminum alloy member for forming fluoride film and aluminum alloy member having fluoride film
WO2002023610A1 (en) Plasma machining device, and electrode plate, electrode supporter, and shield ring of the device
JP4546448B2 (en) Thermal spray coating coated member having excellent plasma erosion resistance and method for producing the same
JP2010070854A (en) Corrosion resistant member and semiconductor fabrication apparatus using the same
JP3919409B2 (en) Focus ring of plasma processing apparatus and semiconductor manufacturing apparatus
JP7392524B2 (en) Inner wall member for plasma processing equipment and plasma processing equipment
JP4517369B2 (en) Silicon ring for plasma etching equipment
TW202315958A (en) Component, plasma device, and method and device for forming corrosion-resistant coating
JP5158367B2 (en) Method for manufacturing shower electrode of plasma CVD apparatus
JP5895603B2 (en) Electrode plate for plasma processing equipment
US11133156B2 (en) Electrode plate for plasma processing apparatus and method for regenerating electrode plate for plasma processing apparatus
JPH0684851A (en) Plasma etching method and plasma treatment apparatus
TW202209397A (en) Methods and apparatus for reducing defects in preclean chambers
JP3674282B2 (en) Plasma generating apparatus, chamber inner wall protecting member and manufacturing method thereof, chamber inner wall protecting method and plasma processing method
JPWO2019136396A5 (en)
JP2000306886A (en) Plasma etching electrode
JP2007081382A (en) Silicon ring for use of plasma etcher
JP7112509B2 (en) ceramic tube
JP6485270B2 (en) Electrode plate for plasma processing equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230704

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231106

R150 Certificate of patent or registration of utility model

Ref document number: 7392524

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150