WO2002023610A1 - Plasma machining device, and electrode plate, electrode supporter, and shield ring of the device - Google Patents

Plasma machining device, and electrode plate, electrode supporter, and shield ring of the device Download PDF

Info

Publication number
WO2002023610A1
WO2002023610A1 PCT/JP2001/007985 JP0107985W WO0223610A1 WO 2002023610 A1 WO2002023610 A1 WO 2002023610A1 JP 0107985 W JP0107985 W JP 0107985W WO 0223610 A1 WO0223610 A1 WO 0223610A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
plasma
processing chamber
electrode plate
processing
Prior art date
Application number
PCT/JP2001/007985
Other languages
French (fr)
Japanese (ja)
Inventor
Masahiro Ogasawara
Kazuya Kato
Toshifumi Nagaiwa
Kosuke Imafuku
Koichi Kazama
Original Assignee
Tokyo Electron Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2000291717A external-priority patent/JP4602528B2/en
Priority claimed from JP2001204884A external-priority patent/JP2002164329A/en
Application filed by Tokyo Electron Limited filed Critical Tokyo Electron Limited
Publication of WO2002023610A1 publication Critical patent/WO2002023610A1/en
Priority to US10/383,605 priority Critical patent/US20030155078A1/en
Priority to US12/040,523 priority patent/US20080156441A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32532Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32623Mechanical discharge control means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching

Definitions

  • the present invention relates to a plasma processing apparatus and its electrodes, electrode supports, and shield rings.
  • a plasma apparatus has been used as an apparatus for etching an insulating film on a surface of a semiconductor wafer or the like to form a contact hole, for example.
  • the parallel plate type plasma equipment in which electrodes are arranged above and below the processing chamber, has become the mainstream of plasma equipment because it has excellent uniformity, can process large-diameter wafers, and has a relatively simple equipment configuration. ing.
  • electrodes are provided on the upper and lower sides of a processing chamber so as to face each other.
  • the semiconductor wafer which is the processing substrate, is placed on the lower electrode.
  • An etching gas is introduced into the processing chamber, and high-frequency power is supplied to the lower electrode to generate plasma between the upper and lower electrodes, and the etching gas is dissociated. It is configured to etch the insulating film of the semiconductor wafer by the generated etchant component.
  • Fig. 3 is a diagram schematically showing the upper electrode and shield ring in Japanese Patent Application No. 2000-1116.
  • the upper electrode 12 1 has an electrode plate 123, an electrode support 122 located above the electrode plate 123, and a cavity 16 2 provided at the boundary between the two.
  • the structure surrounding the upper electrode 12 1 is fixed to the upper part of the processing chamber of the plasma device by the insulating material 125, and the shield ring 15 5 is located below the insulating material 125. Are located. '
  • a shield ring 1555 protruding from the upper electrode surface to the lower electrode side is provided around the upper electrode 121.
  • a cavity 162 is provided at the boundary with 122 to make the plasma uniform.
  • Fig. 16 is a diagram schematically showing another type of upper electrode 421 in a conventional etching apparatus.
  • the upper electrode 4 21 has an electrode plate 4 2 3 and an electrode support 4 2 2 located above the electrode plate 4 2 3.
  • the electrode support 422 is made of, for example, aluminum.
  • the electrode support 422 supports the electrode plate 423 and functions as a cooling plate for the electrode plate 423.
  • the electrode plate 423 is mounted on the electrode support 422 so that it can be removed by screws 460, and maintenance is removed.
  • a silicon material or the like is used for the electrode plate 423.
  • the processing gas is introduced into the high-vacuum system, and high-frequency power is applied to raise the temperature inside the processing chamber.
  • the aluminum material of the body 422 and the silicon material of the electrode plate 423 sometimes fused at the interface between them.
  • FIG. 17 is a cross-sectional view schematically showing a state in which the conventional upper electrode 421 has been fused after being used in the etching process.
  • FIG. 4 is a view conceptually showing an electrode plate 4 2 3 on which adhesion has occurred.
  • irregularities such as aluminum erosion 165 and silicon fusion 167 occur, resulting in a flat surface. Sex is impaired.
  • the electrode plate 423 removed for maintenance such as cleaning of the etching equipment is attached to the electrode support 422 again, the positional relationship of the unevenness is inevitably different from that before the removal. Therefore, when fixing with the screw 460 at the time of reattachment, stress concentrates on the projections of the electrode support 422 and the electrode plate 423, and the electrode plate 423 may crack.
  • the present invention has been made in view of the above-mentioned problems of the conventional plasma apparatus, and an object of the present invention is to provide a plasma having a uniform distribution, less inferiority due to aging, and An object of the present invention is to provide a new and improved plasma processing apparatus capable of fine processing and its electrode plate, electrode support, and shield ring.
  • Another object of the present invention is to provide a plasma apparatus having a laser electrode plate which does not crack even when reattached while preventing fusion of silicon and aluminum, an electrode plate thereof, and an electrode support. That is. Disclosure of the invention
  • a processing chamber a first electrode on which an object to be processed can be placed in the processing chamber, a second electrode disposed opposite to the first electrode in the processing chamber, and a processing chamber.
  • a processing gas supply system capable of introducing a processing gas into the chamber, an exhaust system capable of evacuating the processing chamber, and applying a high-frequency power to at least one of the first and second electrodes to convert the processing gas into plasma,
  • the second electrode is an electrode plate made of a conductor or a semiconductor provided so as to face the first electrode.
  • a conductive support provided on the surface of the electrode plate opposite to the processing chamber for supporting the electrode plate, and a hollow portion provided at the center of the support.
  • the electrode plate inside the processing chamber.
  • a plasma processing apparatus provided with a shield ring having substantially the same surface, and the shield ring, the support, and the electrode plate are provided.
  • the resistance of the shield ring is preferably lower than the resistance of the electrode plate.
  • the resistance of the shield ring is set to 1 to 10 ⁇ cm
  • the resistance of the electrode plate is set to 65 to 85 ⁇ cm.
  • the shield ring and the electrode plate can be made of the same material. Silicon can be used as the material.
  • the outer diameter of the electrode plate is preferably larger than the outer diameter of the first electrode.
  • an electrode plate that has a cavity in the center of the electrode plate on the side of the support without providing a cavity in the support, and a plasma processing apparatus equipped with the electrode plate, or an electrode body and a support that does not have a cavity are used. It may be a plasma processing device provided.
  • the distribution of plasma is made uniform by suppressing the electric field at the center from becoming strong, and the use of a sheath redling that is flush with the electrode surface results in a change over time.
  • New and improved plasma processing equipment with few defects and capable of microfabrication Electrode plates, electrode supports, and shield rings can be provided.
  • a processing chamber a first electrode on which the object to be processed can be placed in the processing chamber, a second electrode disposed opposite to the first electrode in the processing chamber, and a processing chamber capable of introducing a processing gas into the processing chamber.
  • a gas supply system an evacuation system capable of evacuating the processing chamber, and a high-frequency power applied to at least one of the first and second electrodes to convert the processing gas into plasma to a predetermined level with respect to the object to be processed.
  • the second electrode includes a support and an electrode plate forming a surface facing the object to be processed. The contact surface is provided with a plasma processing apparatus, a support, and an electrode plate on which an insulating coating is formed on at least one of them.
  • the thickness of the insulating film formed on the support or the electrode plate is preferably 50 ⁇ m or less, and more preferably 10 to 30.
  • the support can be composed of aluminum, and the electrode plate can be composed of silicon.
  • the insulating film on the aluminum surface can be a rare earth oxide or aluminum compound, and the insulating film on the silicon surface can be a silicon compound. According to the powerful structure, a durable plasma processing apparatus having electrodes that do not crack even when remounted and an electrode plate and an electrode support thereof are provided. BRIEF DESCRIPTION OF THE FIGURES
  • FIG. 1 is a cross-sectional view showing a configuration of a plasma device 1 according to one embodiment of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing the upper electrode 21 and the shield ring 55 according to the first embodiment.
  • Figure 3 is a cross-sectional view schematically showing the upper electrode and shield ring in a conventional plasma device.
  • Figure 4 is a diagram showing the etching rate in a conventional plasma apparatus using a sinor red ring 155.
  • Fig. 5 is a diagram showing the etching rate in a plasma apparatus using a seedling 55.
  • Figure 6 is a schematic sectional view showing the area around the shield ring 255.
  • Fig. 7 is an enlarged view of part A in Fig. 6.
  • FIG. 8 is a schematic cross-sectional view showing the periphery of a conventional shield ring 1555.
  • Fig. 9 is an enlarged view of part B in Fig. 8.
  • Figure 10 is a graph showing the rate of decrease in etch rate due to changes over time.
  • FIG. 11 is a diagram showing a comparison of the etch rate change amount within the wafer surface.
  • Figure 12 is a diagram showing the change over time in pressure on the wafer.
  • FIG. 13 is a sectional view showing the upper electrode 22 1 and the shield ring 55.
  • FIG. 14 is a cross-sectional view showing the configuration of the plasma device 100 according to the present embodiment.
  • Figure 16 is a diagram schematically showing the upper electrode 421 in a conventional plasma device.
  • Figure 17 is a cross-sectional view schematically showing a state in which fusion has occurred after the conventional upper electrode 4 21 has been used for etching.
  • Fig. 18 is a diagram conceptually showing the fused electrode plate 423 removed from the electrode support 422.
  • FIG. 19 is a cross-sectional view showing the upper electrode 521.
  • FIG. 1 is a cross-sectional view illustrating a configuration of a plasma device 1 according to the present embodiment.
  • the processing chamber 2 of the plasma apparatus 1 is formed as a cylindrical processing vessel made of, for example, aluminum that has been subjected to anodizing with alumite and grounded.
  • An insulating support plate 3 made of ceramic or the like is provided at the bottom of the processing chamber 2. Above the insulating support plate 3, a substantially columnar susceptor support 4 for mounting a substrate to be processed, for example, a semiconductor wafer W having a diameter of 8 inches, is provided. Further, a susceptor 5 constituting a lower electrode is provided on the susceptor support 4, and a high-pass filter (HPF) 6 is connected.
  • HPF high-pass filter
  • a heat exchange chamber 7 is provided inside the susceptor support 4, and a heat exchange medium circulates from the outside through a heat exchange medium introduction pipe 8 and a heat exchange medium discharge pipe 9, and the semiconductor wafer W is passed through the susceptor 5. It is configured so that it can be maintained at a predetermined temperature. The temperature is controlled automatically by a temperature sensor (not shown) and a temperature control mechanism (not shown).
  • an electrostatic chuck 11 for holding the semiconductor wafer W by suction is provided on the susceptor 5.
  • the electrostatic chuck 11 has a configuration in which, for example, a conductive thin-film electrode 12 is sandwiched between polyimide resins from above and below.
  • a voltage of 5 kV is applied to the electrode 12
  • the Coulomb force causes the wafer W to be attracted and held on the upper surface of the electrostatic chuck 11.
  • the peripheral edge of the wafer W may be pressed by a mechanical clamp to hold the wafer W on the susceptor 5.
  • the insulating plate 3, the susceptor support 4, the susceptor 5, and the electrostatic chuck 11 are provided with a gas passage 14 for supplying, for example, He gas to the back surface of the semiconductor wafer W.
  • the semiconductor wafer W is maintained at a predetermined temperature through the heat transfer medium such as He gas.
  • a substantially annular focus ring 15 is provided around the susceptor 5 so as to surround the electrostatic chuck 11.
  • the focus ring 15 is made of, for example, a conductive silicon and has a function of effectively causing ions in the plasma to enter the semiconductor wafer W.
  • An upper electrode 21 is supported at an upper portion in the processing chamber 2 via an insulating member 25 and a shield ring 55.
  • the upper electrode 21 has, for example, an electrode support 22 made of aluminum whose surface is anodized and an electrode plate 23 facing the susceptor 5 and the TO and having a large number of discharge holes 24.
  • Susceptor 5 and upper electrode 2 1 Means, for example, about 10 to 60 mm apart. Detailed configurations of the upper electrode 21 and the shield ring 55 will be described later.
  • the electrode support 22 is provided with a gas inlet 26 and is connected to a gas supply pipe 27. Further, it is connected to a processing gas supply source 30 via a valve 28 and a mass flow controller 29, and an etching gas and other processing gases are introduced into the processing chamber 2.
  • the process gas may be used a fluorocarbon gas (C x F y), such as Hyde port fluorosilicone carbon gas (C p H q F r) , a gas containing a halogen element.
  • a fluorocarbon gas such as Hyde port fluorosilicone carbon gas (C p H q F r)
  • C p H q F r Hyde port fluorosilicone carbon gas
  • the lower part of the processing chamber 2 is connected to an exhaust pipe 31 leading to an exhaust device 35 such as a vacuum pump.
  • the exhaust device 35 is equipped with a vacuum pump such as a turbo-molecular pump, and the inside of the processing chamber 2 can be evacuated to an arbitrary degree of reduced pressure, for example, from 10 mTorr to 1000 mTorr.
  • a gate valve 32 is provided on the side wall of the processing chamber 2 so that the semiconductor wafer W can be sent to an adjacent load lock chamber (not shown) while the gate valve 32 is open. I have.
  • a high-frequency power supply system of the plasma device 1 will be described.
  • power is supplied to the upper electrode 21 from the first high-frequency power supply 40 that outputs high-frequency power with a frequency of, for example, 27 to 150 MHz, via the matching box 41 and the feed rod 33. It has become.
  • a low-pass filter (LPF) 42 is connected to the upper electrode 21.
  • FIG. 2 is a cross-sectional view schematically showing the upper electrode 21 and the shield ring 55.
  • a cavity 62 is provided at the center of the electrode support 22 provided above the electrode plate 23 so as to be in contact with the electrode plate 23.
  • the cavity 62 is formed such that resonance occurs at the frequency of the high-frequency power supplied to the upper electrode 21 and an electric field orthogonal to the electrode plate 23 is generated in the gap, that is, the electrode plate 2
  • the thickness of the part where the high-frequency power is supplied from the surface of the electrode plate in 3 ie the skin differential expressed by the following equation (1).
  • the dimension (diameter and thickness) is determined so as to be larger than the thickness ⁇ force S and the thickness of the electrode plate 23.
  • magnetic permeability of electrode plate
  • the shield ring 55 has the lower part flush with the electrode plate 23 as shown in FIG.
  • the resistance value is set lower than the resistance value of the electrode plate 23, and may be the same material as the electrode plate 23. Silicon can be used as a material for the electrode plate 23 and the shield ring 55.
  • FIG. 4 is a diagram showing an etching rate in a plasma device using the conventional shield ring 155
  • FIG. 5 is a diagram showing an etching rate in a plasma device using the shield ring 55 according to the present embodiment.
  • Figures 4 and 5 show the average of the etching rates (nmZrn in.) Obtained by performing the same time treatment under the same conditions except for the material and structure of the shield ring from both centers of the semiconductor wafer. These are the results of measurements in two directions (X and Y directions) orthogonal to the distance (mm).
  • the shield ring 155 is made of quartz
  • the sinored ring 555 is made of silicon with a resistance of about 2 ⁇ .
  • the etching rate clearly decreases when the distance from the center exceeds 100 mm.
  • the high-frequency current flowing in the low-resistance shield ring 55 becomes larger than when a higher-resistance sinor red ring 155 is used, so that the plasma density in that part increases and the plasma density over the entire surface of the semiconductor wafer increases. It is possible to improve the uniformity of the film.
  • the protruding part is always exposed to the plasma, is shaved and changes with time, and does not exhibit the original plasma confinement effect. It is self-evident that this tendency becomes even more pronounced when processing is repeated several times.
  • the electric field can be controlled by the cavity 62 above the electrode 23 provided in the support 22, and the plasma distribution can be kept sufficiently uniform.
  • the same effect can be obtained even when the cavity 62 is provided in the electrode plate 22 3 as in the upper electrode 22 1 shown in FIG. Therefore, by using the shield ring 55 together, a more reliable plasma device 1 can be realized.
  • the use of the shield ring 55 ensures that the plasma distribution is sufficiently uniform, so that a similar effect can be obtained even when the cavity 62 is not provided in the upper electrode support 23.
  • FIG. 6 is a schematic sectional view showing the periphery of the shield ring 255 according to the present embodiment
  • FIG. 7 is an enlarged view of a portion A in FIG. 6
  • FIG. 8 is a schematic sectional view showing the periphery of the conventional shield ring 155
  • Fig. 9 is an enlarged view of part B in Fig. 8.
  • the conventional shield ring 155 is, for example, when the distance between the wafer W and the electrode plate 23 of the upper electrode is 20 mm, for example, projects downward about 7 mm to generate a step, and the wafer W The distance from the surface was reduced to 13 mm.
  • shield ring 155 will be consumed and the gas pressure on the wafer W will decrease as the time of exposure to the plasma increases. As a result, the etching rate decreases and the removability of the contact hole changes. As shown in Figs. 6 and 7, shield ring 155
  • Fig. 10 shows the rate of decrease in etch rate due to aging
  • Fig. 11 shows a comparison of the amount of change in etch rate within the wafer surface.
  • these are supplied by the upper electrode high-frequency power supply 40, 27,
  • the electrode plate 23 is made of single-crystal silicon, the resistance is 1 to: L 0 ⁇ ⁇ cm, the shield ring 155 (conventional type), and the shield ring 255 (improved type) are both made of quartz and have insulating properties (up to 1016 ⁇ ⁇ cm). The other processing conditions used were optimized for each shield ring.
  • the pressure is 40 mTorr
  • the upper electrode supply power / the lower electrode supply power 2000/1400 W
  • the distance between the electrode plate 23 and the wafer W 17 mm
  • lower electrode temperature Z upper electrode temperature Z processing chamber side wall temperature 1/20 /
  • the pressure was 50 mTorr
  • the upper electrode supply power Z the lower electrode supply power 2000/1400 W
  • the distance between the electrode plate 23 and the wafer W 17 mm
  • wafer center backside cooling gas pressure / wafer edge backside cooling gas pressure 12/25
  • lower electrode temperature Z upper electrode temperature Z processing chamber side wall temperature 0/30 / It is 50 ° C.
  • the horizontal axis represents the plasma processing time
  • the vertical axis represents the rate of change of the etching rate.
  • the vertical axis represents the rate of change of the etching rate after 100 hours of plasma processing at the center, middle, and periphery of the wafer W surface.
  • the amount of change at the center and the middle of the wafer is almost zero, and at the periphery, about 1000 A / mi. , About 50 OA / min.
  • FIG. 12 is a diagram showing pressure aging on a wafer.
  • Figs. 12 (a) and (b) show the initial state using the conventional shield ring 155 and after plasma treatment for 100 hours, respectively, and Figs. (C) and (d) show the improved shield ring 255, respectively.
  • the horizontal axis represents the set pressure
  • the vertical axis represents the difference between the set pressure and the pressure measured at each position (right, top, notch, center) on the wafer.
  • the wear of the shield ring was about 2 mm / 100 hours for both the conventional type and the improved type.
  • the difference between the set pressure and the measured pressure fluctuates before and after the treatment.
  • the absolute value of the pressure difference is larger than that of the improved type.
  • the gas pressure on the wafer is made uniform, and the gas pressure on the wafer changes with time due to the consumption of the shield ring after plasma processing.
  • High-performance film processing that enables finer processing by reducing the etching rate due to aging and reducing the etching rate due to aging, and improving the hole removability and uniformity within the wafer.
  • Equipment can be provided. Of course, it can be used in a plasma processing apparatus together with the upper electrode 21 or 21 according to the first embodiment.
  • the shape of the shield ring is not limited to the example described in the present embodiment, and other shapes may be used as long as the upper electrode and the lower surface are substantially flush.
  • the case where a semiconductor wafer is used as a substrate to be processed and etching is performed on the substrate is shown.
  • the target to be processed may be another substrate such as a liquid crystal display device substrate.
  • Other processing such as C VD may be used.
  • FIG. 14 is a cross-sectional view showing a configuration of a plasma device 100 according to the third embodiment of the present invention.
  • the configuration of the plasma apparatus 100 is substantially the same as that of the plasma processing apparatus 1, and a description thereof will be omitted.
  • FIG. 15 is a cross-sectional view schematically showing the upper electrode 321 according to the present embodiment.
  • the upper electrode 3 21 has an electrode support 3 22, an electrode plate 3 2 3, an insulating film 3 62 and the like.
  • the electrode support 32 2 supports the electrode plate 3 23, transmits high-frequency power, and maintains a constant temperature distribution of the electrode plate 3 2 3 due to its high-level thermal conductivity and increases the temperature. It functions as a cooling material that prevents
  • the electrode plate 322 is detachably fixed to the electrode support 322 by screws 360.
  • the electrode support and the electrode plate were configured to make direct contact in consideration of the etching rate and thermal diffusivity.
  • the electrode support is used.
  • a thin insulating film 362 is formed on at least one of the forces on the boundary surface between the support 3 and the electrode plate 3.
  • a rare earth oxide or an aluminum compound can be used as the material of the insulating film 362.
  • the rare earth oxide for example, Y 2 0 3 sprayed coating, the aluminum compound, for example, anodized aluminum coating, etc.
  • a 1 2 O 3 sprayed coating can be applied.
  • a silicon compound can be used as the material of the insulating film 36 2.
  • the silicon compound is, for example, Si 2 or Si 3 N 4 . This prevents direct contact between the anode of the electrode support 322 and the silicon of the electrode plate 322, so that fusion can be prevented.
  • the thickness of the insulating film 362 may be set to, for example, 5 ⁇ m or less, a sufficient etching rate can be secured without obstructing high-frequency transmission and heat conduction.
  • the cavity 62 according to the first embodiment may be provided in the electrode plate, and the upper electrode 521 may be configured as shown in FIG. The cavity 62 may be provided on the electrode support side. In either case, the material of the electrode plate is prevented from fusing to the electrode support, and a uniform plasma can be formed, thus enabling higher quality plasma processing.
  • the insulating coating may be manufactured by other methods such as CVD and PVD.
  • the material of the insulating film may be any other material as long as it has excellent insulation and corrosion resistance and can be made thin.
  • a processing gas is introduced into a vacuum processing vessel, the plasma is generated, and the plasma is generated.
  • the present invention relates to a plasma processing apparatus that performs processing on a processing body, and an electrode plate, an electrode support, and a shield ring used therein, and is particularly applicable to a manufacturing process of a semiconductor device, a substrate for a liquid crystal display device, and the like.

Abstract

A plasma machining device (1) applying a plasma machining to a machined substrate (W), wherein an upper electrode (21) opposed to a susceptor (5) as a lower electrode comprises an electrode supporter (22) and an electrode plate (23), a hollow (62) having the dimensions determined so as to produce a resonance at the frequency of a supplied high frequency power and to produce, therein, a field orthogonal to the electrode plate (23) is provided in the electrode supporter (22) at the center part of the boundary part between the electrode supporter and the electrode plate, and a shield ring surrounding the electrode plate (23) is formed in a shape having a lower surface flush with the electrode plate (23) with a material hard to be eroded by plasma, whereby the distribution of plasma can be made uniform, deterioration with elapse of time can be reduced, and fine machining can be performed.

Description

明 細 書 プラズマ処理装置およびその電極板, 電極支持体, シールドリング 技術分野  Description Plasma processing equipment and its electrode plate, electrode support, shield ring
本発明はプラズマ処理装置およびその電極, 電極支持体, シールドリングに関 する。 背景技術  The present invention relates to a plasma processing apparatus and its electrodes, electrode supports, and shield rings. Background art
従来から例えば半導体製造プロセスにおいては, 半導体ウェハなどの表面の絶 縁膜をエッチングして, 例えばコンタクトホールを形成するための装置としてプ ラズマ装置が使用されている。 中でもとりわけ処理室内の上下に電極を配置した 平行平板型のプラズマ装置は, 均一性に優れ, 大口径ウェハの処理が可能で, 装 置構成も比較的簡易であることからプラズマ装置の主流となっている。  Conventionally, for example, in a semiconductor manufacturing process, a plasma apparatus has been used as an apparatus for etching an insulating film on a surface of a semiconductor wafer or the like to form a contact hole, for example. Above all, the parallel plate type plasma equipment, in which electrodes are arranged above and below the processing chamber, has become the mainstream of plasma equipment because it has excellent uniformity, can process large-diameter wafers, and has a relatively simple equipment configuration. ing.
従来の平行平板型のエッチング装置は, 例えば特願 2 0 0 0— 1 1 6 3 0 4号 において開示されているように, 処理室内の上下に電極が対向して設けられてお り, 被処理基板である半導体ウェハは下側の電極に载置され, この処理室内にェ ツチングガスを導入すると共に, 高周波電力を下部電極に供給して上下電極間に プラズマを発生させ, エツチングガスの解離によって生じたエツチャント成分に よって, 半導体ウェハの絶縁膜をエッチングするように構成されている。  In a conventional parallel plate type etching apparatus, for example, as disclosed in Japanese Patent Application No. 2000-11616, electrodes are provided on the upper and lower sides of a processing chamber so as to face each other. The semiconductor wafer, which is the processing substrate, is placed on the lower electrode. An etching gas is introduced into the processing chamber, and high-frequency power is supplied to the lower electrode to generate plasma between the upper and lower electrodes, and the etching gas is dissociated. It is configured to etch the insulating film of the semiconductor wafer by the generated etchant component.
図 3は, 特願 2 0 0 0—1 1 6 3 0 4号における, 上部電極おょぴシールドリ ングを模式的に示した図である。 図 3に示すように, 上部電極 1 2 1は, 電極板 1 2 3 , その上部に位置する電極支持体 1 2 2 , および両者の境界部に設けられ た空洞 1 6 2を有する。さらに,上部電極 1 2 1の周囲は,絶縁材 1 2 5により, プラズマ装置の処理室上部に固定される構造になっており, 絶縁材 1 2 5の下部 には, シールドリング 1 5 5が配置されている。 '  Fig. 3 is a diagram schematically showing the upper electrode and shield ring in Japanese Patent Application No. 2000-1116. As shown in FIG. 3, the upper electrode 12 1 has an electrode plate 123, an electrode support 122 located above the electrode plate 123, and a cavity 16 2 provided at the boundary between the two. In addition, the structure surrounding the upper electrode 12 1 is fixed to the upper part of the processing chamber of the plasma device by the insulating material 125, and the shield ring 15 5 is located below the insulating material 125. Are located. '
このように, 処理の微細化, 処理速度の向上, 処理の均一性の要求に対応する ため, 上部電極 1 2 1の周囲に, 上部電極面より下部電極側に突出したシールド リング 1 5 5を設けてプラズマを閉じ込め, さらに, 電極板 1 2 3と電極支持体 1 2 2との境界部に, 空洞 1 6 2を設け, プラズマの均一化を図っている。 In this way, in order to meet the demands for finer processing, improved processing speed, and uniform processing, a shield ring 1555 protruding from the upper electrode surface to the lower electrode side is provided around the upper electrode 121. To confine the plasma, and the electrode plate 1 2 3 and the electrode support A cavity 162 is provided at the boundary with 122 to make the plasma uniform.
しかしながら, 特願 2 0 0 0— 1 1 6 3 0 4号において開示された技術では, プラズマ閉じ込めの役割を果 す下部電極側に突出したシールドリングの凸部が, 経時変化により削れ, プラズマの分布が変化してしまうという問題が生じること がわかった。  However, in the technique disclosed in Japanese Patent Application No. 2000-116, the protruding part of the shield ring protruding toward the lower electrode, which plays the role of confining the plasma, is scraped off over time, and the plasma It turned out that there was a problem that the distribution changed.
また, 図 1 6は, 従来のエッチング装置における, 別の形態の上部電極 4 2 1 を模式的に示した図である。 図 1 6に示すように, 上部電極 4 2 1は, 電極板 4 2 3, その上部に位置する電極支持体 4 2 2を有する。 電極支持体 4 2 2は, 例 えばアルミニウムで構成される。 電極支持体 4 2 2は, 電極板 4 2 3を支持する と共に, 電極板 4 2 3のクーリングプレートとして機能する。 電極板 4 2 3は, ネジ 4 6 0によつて電極支持体 4 2 2に取りはずし可能に設置されており, メイ ンテナンスなどは取り外して行う。 電極板 4 2 3は, 例えばシリコン材等が用い られる。  Fig. 16 is a diagram schematically showing another type of upper electrode 421 in a conventional etching apparatus. As shown in FIG. 16, the upper electrode 4 21 has an electrode plate 4 2 3 and an electrode support 4 2 2 located above the electrode plate 4 2 3. The electrode support 422 is made of, for example, aluminum. The electrode support 422 supports the electrode plate 423 and functions as a cooling plate for the electrode plate 423. The electrode plate 423 is mounted on the electrode support 422 so that it can be removed by screws 460, and maintenance is removed. For the electrode plate 423, for example, a silicon material or the like is used.
従来の上部電極 4 2 1を有するエッチング装置を用いてプラズマ処理を行うと, 高真空にした装置内に処理ガスが導入され, 高周波電力が印加されて処理室内の 温度が上昇するため, 電極支持体 4 2 2のアルミニゥム材と, 電極板 4 2 3のシ リコン材とが両者の境界面で融着を起こすことがあった。  When plasma processing is performed using an etching system with a conventional upper electrode 421, the processing gas is introduced into the high-vacuum system, and high-frequency power is applied to raise the temperature inside the processing chamber. The aluminum material of the body 422 and the silicon material of the electrode plate 423 sometimes fused at the interface between them.
図 1 7は, 従来の上部電極 4 2 1をエッチング処理に使用した後, 融着を起こ した状態を模式的に示した断面図, 図 1 8は, 電極支持体 4 2 2から取り外した 融着を起こした電極板 4 2 3を概念的に示した図である。 図 1 7および図 1 8に 示すように, 電極支持体 4 2 2と電極板 4 2 3の境界面でアルミニウムの食われ 1 6 5およびシリコンの融着 1 6 7などの凹凸が生じ,平面性が損なわれている。 ところが, エッチング装置のクリーニングなどメインテナンスのためにはずさ れた電極板 4 2 3を再び電極支持体 4 2 2に取り付ける際, 凹凸の位置関係は取 り外し前とは異なることが避けられない。 よって, 再装着時にネジ 4 6 0で固定 する際に電極支持体 4 2 2およぴ電極板 4 2 3の凸部に応力が集中し, 電極板 4 2 3が割れを起こすという問題があった。  Fig. 17 is a cross-sectional view schematically showing a state in which the conventional upper electrode 421 has been fused after being used in the etching process. FIG. 4 is a view conceptually showing an electrode plate 4 2 3 on which adhesion has occurred. As shown in Figs. 17 and 18, at the interface between the electrode support 42 and the electrode plate 43, irregularities such as aluminum erosion 165 and silicon fusion 167 occur, resulting in a flat surface. Sex is impaired. However, when the electrode plate 423 removed for maintenance such as cleaning of the etching equipment is attached to the electrode support 422 again, the positional relationship of the unevenness is inevitably different from that before the removal. Therefore, when fixing with the screw 460 at the time of reattachment, stress concentrates on the projections of the electrode support 422 and the electrode plate 423, and the electrode plate 423 may crack. Was.
本発明は, 従来のプラズマ装置が有する上記問題点に鑑みてなされたものであ り, 本発明の目的は, プラズマの分布が均一で, 経時変化による劣ィ匕が少なく, 微細加工の可能な, 新規かつ改良されたプラズマ処理装置およびその電極板, 電 極支持体, シールドリングを提供することである。 The present invention has been made in view of the above-mentioned problems of the conventional plasma apparatus, and an object of the present invention is to provide a plasma having a uniform distribution, less inferiority due to aging, and An object of the present invention is to provide a new and improved plasma processing apparatus capable of fine processing and its electrode plate, electrode support, and shield ring.
また本発明の別の目的は, シリコンおよびアルミニウムの融着を防止して再装 着しても割れの生じなレヽ電極板を有するブラズマ装置おょぴその電極板, 電極支 持体を提供することである。 発明の開示  Another object of the present invention is to provide a plasma apparatus having a laser electrode plate which does not crack even when reattached while preventing fusion of silicon and aluminum, an electrode plate thereof, and an electrode support. That is. Disclosure of the invention
上記課題を解決するため本発明によれば, 処理室と, 処理室内において被処理 体を载置可能な第 1電極と, 処理室内において第 1電極に対向配置された第 2電 極と, 処理室内に処理ガスを導入可能な処理ガス供給系と, 処理室内を真空排気 可能な排気系, 第 1および第 2電極のすくなくともいずれカゝ一方に高周波電力を 印加して処理ガスをプラズマ化し, 被処理体に対して所定のプラズマ処理を施す 高周波電力供給系とを備えたプラズマ処理装置において, 第 2電極は, 第 1電極 に対向するように設けられた導電体または半導体で構成された電極板と, 電極板 の処理室内とは反対側の面に設けられ電極板を支持する導電性の支持体と, 支持 体の中央部に設けられた空洞部とを備えており, 第 2電極の周囲には処理室内側 に電極板と略同一面を有するシールドリングが配されているプラズマ処理装置, および上記シールドリング, 支持体, 電極板が提供される。  According to the present invention, there is provided a processing chamber, a first electrode on which an object to be processed can be placed in the processing chamber, a second electrode disposed opposite to the first electrode in the processing chamber, and a processing chamber. A processing gas supply system capable of introducing a processing gas into the chamber, an exhaust system capable of evacuating the processing chamber, and applying a high-frequency power to at least one of the first and second electrodes to convert the processing gas into plasma, In a plasma processing apparatus provided with a high-frequency power supply system for performing predetermined plasma processing on a processing body, the second electrode is an electrode plate made of a conductor or a semiconductor provided so as to face the first electrode. A conductive support provided on the surface of the electrode plate opposite to the processing chamber for supporting the electrode plate, and a hollow portion provided at the center of the support. The electrode plate inside the processing chamber. A plasma processing apparatus provided with a shield ring having substantially the same surface, and the shield ring, the support, and the electrode plate are provided.
ここでシールドリングの抵抗値は, 電極板の抵抗値よりも低くすることが好ま しい。 例えば, シールドリングの抵抗値は 1〜 1 0 Ω c m, 電極板の抵抗値は, 6 5〜8 5 Ω c mに設定される。 シールドリングと電極板とは, 同一材料から構 成することができる。 その材料にはシリコンを用いることができる。 電極板の外 径は, 第 1電極の外径よりも大きいことが好ましい。 また, 支持体には空洞部を 設けずに, 電極板の支持体側の中央に空洞部を設ける電極板おょぴそれを備えた プラズマ処理装置, または, 空洞を設けない電極体および支持体を備えたプラズ マ処理装置でもよい。  Here, the resistance of the shield ring is preferably lower than the resistance of the electrode plate. For example, the resistance of the shield ring is set to 1 to 10 Ωcm, and the resistance of the electrode plate is set to 65 to 85 Ωcm. The shield ring and the electrode plate can be made of the same material. Silicon can be used as the material. The outer diameter of the electrode plate is preferably larger than the outer diameter of the first electrode. In addition, an electrode plate that has a cavity in the center of the electrode plate on the side of the support without providing a cavity in the support, and a plasma processing apparatus equipped with the electrode plate, or an electrode body and a support that does not have a cavity are used. It may be a plasma processing device provided.
力^ゝる構成によれば, 中央部の電界が強くなることを抑制してプラズマの分布 を均一化し, 電極面と面一なシースレドリングの採用によつて経時変ィ匕による劣ィ匕 が少なく, 微細加工の可能な, 新規かつ改良されたプラズマ処理装置およぴその 電極板, 電極支持体, シールドリングを提供できる。 According to the configuration, the distribution of plasma is made uniform by suppressing the electric field at the center from becoming strong, and the use of a sheath redling that is flush with the electrode surface results in a change over time. New and improved plasma processing equipment with few defects and capable of microfabrication Electrode plates, electrode supports, and shield rings can be provided.
また, 処理室と, 処理室内において被処理体を載置可能な第 1電極と, 処理室 内において第 1電極に対向配置された第 2電極と, 処理室内に処理ガスを導入可 能な処理ガス供給系と, 処理室内を真空排気可能な排気系と, 第 1およぴ第 2電 極のすくなくともいずれ力一方に高周波電力を印加して処理ガスをプラズマ化し 被処理体に対して所定のプラズマ処理を施す高周波電力供給系とを備えたプラズ マ処理装置において, 第 2電極は, 支持体と, 前記被処理体に対する対向面を形 成する電極板とから成り, 支持体と電極板との接触面には少なくともどちらか片 方に絶縁被膜が形成されているプラズマ処理装置, 支持体, および電極板が される。  In addition, a processing chamber, a first electrode on which the object to be processed can be placed in the processing chamber, a second electrode disposed opposite to the first electrode in the processing chamber, and a processing chamber capable of introducing a processing gas into the processing chamber. A gas supply system, an evacuation system capable of evacuating the processing chamber, and a high-frequency power applied to at least one of the first and second electrodes to convert the processing gas into plasma to a predetermined level with respect to the object to be processed. In a plasma processing apparatus provided with a high-frequency power supply system for performing plasma processing, the second electrode includes a support and an electrode plate forming a surface facing the object to be processed. The contact surface is provided with a plasma processing apparatus, a support, and an electrode plate on which an insulating coating is formed on at least one of them.
支持体または電極板に形成される絶縁被膜の厚みは, 5 0 μ m以下好ましくは 1 0〜3 0 であることが好ましレ、。 支持体は, アルミニウムから, 電極板は シリコンから構成することができる。 アルミニウム表面の絶縁被膜は, 希土類酸 化物またはアルミニゥム化合物, シリコン表面の絶縁被膜は, シリコン化合物と することができる。 力かる構成によれば, 再装着しても割れを起こすことのない 電極を有する耐久性に優れたブラズマ処理装置およびその電極板, 電極支持体が 提供される。 図面の簡単な説明  The thickness of the insulating film formed on the support or the electrode plate is preferably 50 μm or less, and more preferably 10 to 30. The support can be composed of aluminum, and the electrode plate can be composed of silicon. The insulating film on the aluminum surface can be a rare earth oxide or aluminum compound, and the insulating film on the silicon surface can be a silicon compound. According to the powerful structure, a durable plasma processing apparatus having electrodes that do not crack even when remounted and an electrode plate and an electrode support thereof are provided. BRIEF DESCRIPTION OF THE FIGURES
図 1は, 本発明の一実施の形態にかかるプラズマ装置 1の構成を示す断面図で ある。  FIG. 1 is a cross-sectional view showing a configuration of a plasma device 1 according to one embodiment of the present invention.
図 2は, 第 1の実施の形態にかかる上部電極 2 1およびシールドリング 5 5を 模式的に示す断面図である。  FIG. 2 is a cross-sectional view schematically showing the upper electrode 21 and the shield ring 55 according to the first embodiment.
図 3は, 従来のプラズマ装置における上部電極およびシールドリングを模式的 に示した断面図である。  Figure 3 is a cross-sectional view schematically showing the upper electrode and shield ring in a conventional plasma device.
図 4は, 従来のシーノレドリング 1 5 5を用いたプラズマ装置におけるエツチン グレートを示す図である。  Figure 4 is a diagram showing the etching rate in a conventional plasma apparatus using a sinor red ring 155.
図 5は, シー ドリング 5 5を用いたプラズマ装置におけるエッチングレート を示す図である。 図 6は, シールドリング 2 5 5周辺を示す概略断面図である。 Fig. 5 is a diagram showing the etching rate in a plasma apparatus using a seedling 55. Figure 6 is a schematic sectional view showing the area around the shield ring 255.
図 7は, 図 6の A部分の拡大図である。  Fig. 7 is an enlarged view of part A in Fig. 6.
図 8は, 従来のシールドリング 1 5 5周辺を示す概略断面図である。  FIG. 8 is a schematic cross-sectional view showing the periphery of a conventional shield ring 1555.
図 9は, 図 8の B部分の拡大図である。  Fig. 9 is an enlarged view of part B in Fig. 8.
図 1 0は, 経時変化によるエッチレート低下率を示す図である。  Figure 10 is a graph showing the rate of decrease in etch rate due to changes over time.
図 1 1は, エッチレート変ィ匕量のウェハ面内での比較を示す図である。  FIG. 11 is a diagram showing a comparison of the etch rate change amount within the wafer surface.
図 1 2は, ウェハ上の圧力経時変化を示した図である。  Figure 12 is a diagram showing the change over time in pressure on the wafer.
図 1 3は, 上部電極 2 2 1およびシールドリング 5 5を示す断面図である。 図 1 4は, 本実施の形態にかかるプラズマ装置 1 0 0の構成を示す断面図であ る。  FIG. 13 is a sectional view showing the upper electrode 22 1 and the shield ring 55. FIG. 14 is a cross-sectional view showing the configuration of the plasma device 100 according to the present embodiment.
図 1 5は, 上部電極 3 2 1を模式的に示す断面図である。  FIG. 15 is a cross-sectional view schematically showing the upper electrode 3 21.
図 1 6は, 従来のプラズマ装置における上部電極 4 2 1を模式的に示した図で ある。  Figure 16 is a diagram schematically showing the upper electrode 421 in a conventional plasma device.
図 1 7は, 従来の上部電極 4 2 1をエッチング処理に使用した後, 融着を起こ した状態を模式的に示した断面図である。  Figure 17 is a cross-sectional view schematically showing a state in which fusion has occurred after the conventional upper electrode 4 21 has been used for etching.
図 1 8は, ·電極支持体 4 2 2から取り外した融着を起こした電極板 4 2 3を概 念的に示した図である。  Fig. 18 is a diagram conceptually showing the fused electrode plate 423 removed from the electrode support 422.
図 1 9は, 上部電極 5 2 1を示す断面図である。 発明を実施するための最良の形態  FIG. 19 is a cross-sectional view showing the upper electrode 521. BEST MODE FOR CARRYING OUT THE INVENTION
以下に添付図面を参照しながら, 本実施の形態にかかるプラズマ処理装置およ びその電極板, 電極支持体, シー/レドリングの好適な実施の形態について詳細に 説明する。  Hereinafter, preferred embodiments of a plasma processing apparatus, an electrode plate, an electrode support, and a sea / red ring according to the present embodiment will be described in detail with reference to the accompanying drawings.
(第 1の実施の形態)  (First Embodiment)
( 1 ) 処理装置の構成  (1) Configuration of processing unit
図 1は, 本実施の形態にかかるプラズマ装置 1の構成を示す断面図である。 プ ラズマ装置 1における処理室 2は, 例えば酸化アルマイト処理されたアルミニゥ ムなどからなる円筒形状の処理容器として形成され, 接地されている。  FIG. 1 is a cross-sectional view illustrating a configuration of a plasma device 1 according to the present embodiment. The processing chamber 2 of the plasma apparatus 1 is formed as a cylindrical processing vessel made of, for example, aluminum that has been subjected to anodizing with alumite and grounded.
処理室 2内の底部にはセラミックなどの絶縁支持板 3が設けられており, この 絶縁支持板 3の上部に, 被処理基板, 例えば直径 8ィンチの半導体ゥェハ Wを載 置するための略円柱状のサセプタ支持台 4が設けられている。 さらにサセプタ支 持台 4の上に, 下部電極を構成するサセプタ 5が設けられており, ハイパスフィ ルター (H P F) 6が接続されている。 An insulating support plate 3 made of ceramic or the like is provided at the bottom of the processing chamber 2. Above the insulating support plate 3, a substantially columnar susceptor support 4 for mounting a substrate to be processed, for example, a semiconductor wafer W having a diameter of 8 inches, is provided. Further, a susceptor 5 constituting a lower electrode is provided on the susceptor support 4, and a high-pass filter (HPF) 6 is connected.
サセプタ支持台 4の内部には熱交換室 7が設けられ, 外部から熱交換媒体が熱 交換媒体導入管 8および熱交換媒体排出管 9を介して循環し, サセプタ 5を介し て半導体ウェハ Wを所定温度に維持することが可能なように構成されている。 ま たかかる温度は, 温度センサ (図示せず), 温度制御機構 (図示せず) によって自 動的に制御される構成となっている。  A heat exchange chamber 7 is provided inside the susceptor support 4, and a heat exchange medium circulates from the outside through a heat exchange medium introduction pipe 8 and a heat exchange medium discharge pipe 9, and the semiconductor wafer W is passed through the susceptor 5. It is configured so that it can be maintained at a predetermined temperature. The temperature is controlled automatically by a temperature sensor (not shown) and a temperature control mechanism (not shown).
またサセプタ 5上には, 半導体ウェハ Wを吸着保持するための静電チャック 1 1が設けられている。 この静電チヤック 1 1は, 例えば導電性の薄膜電極 1 2を ポリイミド系の樹脂によって上下から挟持した構成を有し, 処理室 2の外部に設 置されている直流電源 1 3から例えば 1 . 5 k Vの電圧が電極 1 2に印カ卩される と, そのクーロン力によってウェハ Wは, 静電チャック 1 1の上面に吸着保持さ れるようになっている。 もちろんそのような静電チャックに拠らず, 機械的クラ ンプによってウェハ Wの周縁部を押圧するようにして, サセプタ 5上にウェハ W を保持する糖成としてもよレ、。  On the susceptor 5, an electrostatic chuck 11 for holding the semiconductor wafer W by suction is provided. The electrostatic chuck 11 has a configuration in which, for example, a conductive thin-film electrode 12 is sandwiched between polyimide resins from above and below. When a voltage of 5 kV is applied to the electrode 12, the Coulomb force causes the wafer W to be attracted and held on the upper surface of the electrostatic chuck 11. Of course, instead of using such an electrostatic chuck, the peripheral edge of the wafer W may be pressed by a mechanical clamp to hold the wafer W on the susceptor 5.
さらに, 絶縁板 3, サセプタ支持台 4, サセプタ 5, およぴ静電チャック 1 1 には, 半導体ウェハ Wの裏面に例えば H eガスなどを供給するためのガス通路 1 4が形成されており, この H eガスなどの伝熱媒体を介して半導体ウェハ Wが所 定の? Si に維持される。  Further, the insulating plate 3, the susceptor support 4, the susceptor 5, and the electrostatic chuck 11 are provided with a gas passage 14 for supplying, for example, He gas to the back surface of the semiconductor wafer W. The semiconductor wafer W is maintained at a predetermined temperature through the heat transfer medium such as He gas.
サセプタ 5上の周辺には, 静電チャック 1 1を囲むようにして, 略環状のフォ 一カスリング 1 5が設けられている。 フォーカスリング 1 5は例えば導電性のシ リコンからなり, プラズマ中のイオンを効果的に半導体ウェハ Wに入射させる機 能を有している。  A substantially annular focus ring 15 is provided around the susceptor 5 so as to surround the electrostatic chuck 11. The focus ring 15 is made of, for example, a conductive silicon and has a function of effectively causing ions in the plasma to enter the semiconductor wafer W.
処理室 2内の上部には, 絶縁部材 2 5およびシールドリング 5 5を介して, 上 部電極 2 1が支持されている。 上部電極 2 1は, 例えば表面がアルマイト処理さ れたアルミニウムからなる電極支持体 2 2および, サセプタ 5と TOに対向し, 多数の吐出孔 2 4を備えた電極板 2 3を有している。 サセプタ 5と上部電極 2 1 とは, 例えば 10〜 60 mm程度離間してレヽる。 上部電極 21およびシールドリ ング 55の詳細な構成は後述する。 An upper electrode 21 is supported at an upper portion in the processing chamber 2 via an insulating member 25 and a shield ring 55. The upper electrode 21 has, for example, an electrode support 22 made of aluminum whose surface is anodized and an electrode plate 23 facing the susceptor 5 and the TO and having a large number of discharge holes 24. . Susceptor 5 and upper electrode 2 1 Means, for example, about 10 to 60 mm apart. Detailed configurations of the upper electrode 21 and the shield ring 55 will be described later.
電極支持体 22には, ガス導入口 26が設けられ, ガス供給管 27に接続され ている。 さらに, バルブ 28およびマスフローコントローラ 29を介して処理ガ ス供給源 30に接続され, エッチングガスやその他の処理ガスが処理室 2内に導 入される。  The electrode support 22 is provided with a gas inlet 26 and is connected to a gas supply pipe 27. Further, it is connected to a processing gas supply source 30 via a valve 28 and a mass flow controller 29, and an etching gas and other processing gases are introduced into the processing chamber 2.
処理ガスとしては, 例えば, フロロカーボンガス (CxFy), ハイド口フロロ カーボンガス (CpHqFr) 等の, ハロゲン元素を含有するガスを用いることが できる。 The process gas, for example, may be used a fluorocarbon gas (C x F y), such as Hyde port fluorosilicone carbon gas (C p H q F r) , a gas containing a halogen element.
処理室 2の下部には, 真空ポンプなどの排気装置 35に通ずる排気管 31が接 続されている。 排気装置 35は, ターボ分子ポンプなどの真空ポンプを備えてお り, 処理室 2内は, 例えば 10mTo r r〜1000mTo r rの任意の減圧度 にまで真空引きすることが可能となっている。  The lower part of the processing chamber 2 is connected to an exhaust pipe 31 leading to an exhaust device 35 such as a vacuum pump. The exhaust device 35 is equipped with a vacuum pump such as a turbo-molecular pump, and the inside of the processing chamber 2 can be evacuated to an arbitrary degree of reduced pressure, for example, from 10 mTorr to 1000 mTorr.
処理室 2の側壁には, ゲートバルブ 32が設けられ, ゲートバルブ 32を開に した状態で半導体ウェハ Wを, 隣接するロードロック室 (図示せず) との間で I 送させるようになつている。  A gate valve 32 is provided on the side wall of the processing chamber 2 so that the semiconductor wafer W can be sent to an adjacent load lock chamber (not shown) while the gate valve 32 is open. I have.
次にこのプラズマ装置 1の高周波電力の供給系について説明する。 まず上部電 極 21に対しては, 整合器 41および給電棒 33を介して, 周波数が例えば 27 〜150MHzの周波数の高周波電力を出力する第 1の高周波電源 40からの電 力が供給される構成となっている。 また, 上部電極 21にはローパスフィルター (LPF) 42が接続されている。  Next, a high-frequency power supply system of the plasma device 1 will be described. First, power is supplied to the upper electrode 21 from the first high-frequency power supply 40 that outputs high-frequency power with a frequency of, for example, 27 to 150 MHz, via the matching box 41 and the feed rod 33. It has become. Also, a low-pass filter (LPF) 42 is connected to the upper electrode 21.
このように高レ、周波数を印加することにより, 処理室 2内に, 好ましレ、解離状 態でかつ高密度のブラズマを形成でき,低圧条件下のブラズマ処理が可能となる。 本実施の形態では, 高周波電源 40として, 6 OMH zのものを用いている。 —方下部電極となるサセプタ 5に対しては, 周波数が例えば 800 KH z〜4 MHz程度の高周波電力を出力する高周波電源 50からの電力が, 整合器 51を 介して供給される構成となっている。このような範囲の周波数を印加することで, 半導体ウェハ Wに対してダメージを与えることなく適切なイオン作用を与えるこ とができる。 ( 2 ) 上部電極およびシールドリングの構成 By applying a high frequency and a high frequency in this manner, a high-density plasma can be formed in the processing chamber 2 in a favorable, dissociated state, and plasma processing under low-pressure conditions becomes possible. In the present embodiment, the high-frequency power supply 40 of 6 MHZ is used. The power from the high-frequency power supply 50, which outputs high-frequency power with a frequency of, for example, about 800 KHz to 4 MHz, is supplied to the susceptor 5 serving as the lower electrode through the matching unit 51. I have. By applying a frequency in such a range, an appropriate ion action can be applied without damaging the semiconductor wafer W. (2) Configuration of upper electrode and shield ring
次に,上部電極 2 1およびシールドリング 5 5の構成について詳細に説明する。 図 2は, 上部電極 2 1およぴシールドリング 5 5を模式的に示す断面図である。 図 2に示すように,電極板 2 3の上部に設けられた電極支持体 2 2の中央部に, 電極板 2 3と接するように空洞 6 2が設けられている。 この空洞 6 2は, 上部電 極 2 1に供給される高周波電力の周波数において共振が生じ, カゝっその中に電極 板 2 3に対して直交する電界が生ずるように, すなわち, 電極板 2 3において高 周波電力が供給される部分の電極板表面からの厚さ,すなわち以下の(1 )式で表 されるスキンデフ。ス δ力 S,電極板 2 3の厚さよりも大きくなるように寸法(径と厚 さ) が決定される。 Next, the configurations of the upper electrode 21 and the shield ring 55 will be described in detail. FIG. 2 is a cross-sectional view schematically showing the upper electrode 21 and the shield ring 55. As shown in FIG. 2, a cavity 62 is provided at the center of the electrode support 22 provided above the electrode plate 23 so as to be in contact with the electrode plate 23. The cavity 62 is formed such that resonance occurs at the frequency of the high-frequency power supplied to the upper electrode 21 and an electric field orthogonal to the electrode plate 23 is generated in the gap, that is, the electrode plate 2 The thickness of the part where the high-frequency power is supplied from the surface of the electrode plate in 3, ie the skin differential expressed by the following equation (1). The dimension (diameter and thickness) is determined so as to be larger than the thickness δ force S and the thickness of the electrode plate 23.
Figure imgf000010_0001
Figure imgf000010_0001
ただし, ω:高周波電力の角周波数 (= 2 π f ( f =周波数))) , :電極板の比 抵抗, μ :電極板の透磁率 Where ω: angular frequency of high-frequency power (= 2πf (f = frequency))),: specific resistance of electrode plate, μ: magnetic permeability of electrode plate
このように空洞 6 2に共振が生じて電極板 2 3に対して直交する電界が生じる 場合には, 空洞 6 2の電界と電極板 2 3の電界とが結合し, 空洞 6 2の電界によ つて, 電極板 2 3における空洞 6 2直下の, 電極中心部の電界を制御できる。 よ つて, より均一なプラズマ分布を実現できる。  Thus, when resonance occurs in the cavity 62 and an electric field orthogonal to the electrode plate 23 is generated, the electric field of the cavity 62 and the electric field of the electrode plate 23 are combined, and the electric field of the cavity 62 becomes Thus, the electric field at the center of the electrode just below the cavity 62 in the electrode plate 23 can be controlled. Thus, a more uniform plasma distribution can be realized.
また, 図 3に示すように従来のシールドリング 1 5 5は, 上部電極と半導体ゥ ェハとの間の距離よりも短いギャップを構成してプラズマ閉じ込めの効果を得る ために, 半導体ウェハ側である下部に突出して構成されていた。 また, 通常石英 で形成されており, 下部に突出していることでプラズマによって削られやすかつ た。  In addition, as shown in Fig. 3, the conventional shield ring 155 forms a gap shorter than the distance between the upper electrode and the semiconductor wafer to obtain the effect of plasma confinement. It was configured to protrude at a certain lower part. Also, it is usually made of quartz, and protrudes downward, so that it is easily cut by plasma.
このため, 本実施の形態にかかるシールドリング 5 5は, 図 2に示すように電 極板 2 3と下部が面一に構成されている。 抵抗値は, 電極板 2 3の抵抗値よりも 低く設定し, また, 電極板 2 3と同一材料としてもよい。 電極板 2 3およぴシー ルドリング 5 5に用いる材料としては, シリコンが適用できる。  For this reason, the shield ring 55 according to the present embodiment has the lower part flush with the electrode plate 23 as shown in FIG. The resistance value is set lower than the resistance value of the electrode plate 23, and may be the same material as the electrode plate 23. Silicon can be used as a material for the electrode plate 23 and the shield ring 55.
また, 下部電極および上部電極間の電界分布等を考慮して, シールドリング 5 5および電極板 2 3の抵抗値は, それぞれ 1〜: L O Q c m, 6 5〜8 5 Q c mが 適当である。 図 4は, 従来のシールドリング 1 5 5を用いたプラズマ装置におけるエツチン グレート, 図 5は, 本実施の形態にかかるシールドリング 5 5を用いたプラズマ 装置におけるエッチングレートを示す図である。 In consideration of the electric field distribution between the lower electrode and the upper electrode, the appropriate values of the resistance of the shield ring 55 and the electrode plate 23 are 1 to LOQ cm and 65 to 85 Q cm, respectively. FIG. 4 is a diagram showing an etching rate in a plasma device using the conventional shield ring 155, and FIG. 5 is a diagram showing an etching rate in a plasma device using the shield ring 55 according to the present embodiment.
図 4およぴ図 5は両図とも, シールドリングの材料および構造以外は同一条件 で, 同一時間処理を行った際のエッチングレートの平均(n mZrn i n . ) を, 半 導体ウェハの中心からの距離 (mm) に対して直交する 2方向(Xおよび Y方向) について測定した結果である。ここで,シールドリング 1 5 5は,石英製であり, シーノレドリング 5 5は, 抵抗値が約 2 Ωのシリコン製のものを用いている。  Figures 4 and 5 show the average of the etching rates (nmZrn in.) Obtained by performing the same time treatment under the same conditions except for the material and structure of the shield ring from both centers of the semiconductor wafer. These are the results of measurements in two directions (X and Y directions) orthogonal to the distance (mm). Here, the shield ring 155 is made of quartz, and the sinored ring 555 is made of silicon with a resistance of about 2 Ω.
図 4および 5に示すように, 従来のシールドリング 1 5 5を用いると, 中心か らの距離が 1 0 0 mmを超える範囲で, 明らかにエッチングレートの低下が見ら れる。 一方, 低抵抗のシールドリング 5 5部分に流れる高周波電流は, より抵抗 の高いシーノレドリング 1 5 5を用いた場合に比べ大きくなるので, その部分のプ ラズマ密度が上がり, 半導体ウェハ全面におけるプラズマの均一性を向上させる ことができる。  As shown in Figs. 4 and 5, when the conventional shield ring 155 is used, the etching rate clearly decreases when the distance from the center exceeds 100 mm. On the other hand, the high-frequency current flowing in the low-resistance shield ring 55 becomes larger than when a higher-resistance sinor red ring 155 is used, so that the plasma density in that part increases and the plasma density over the entire surface of the semiconductor wafer increases. It is possible to improve the uniformity of the film.
さらに, 従来のシールドリング 1 5 5の材料おょぴ構成によると, 突出部はプ ラズマに常にさらされ, 削られて経時変化し, 本来のプラズマ閉じ込め効果を発 揮しなくなると考えられる。 複数回の処理を重ねれば, さらにこの傾向は顕著に なることは, 自明である。  Furthermore, according to the material and composition of the conventional shield ring 155, it is considered that the protruding part is always exposed to the plasma, is shaved and changes with time, and does not exhibit the original plasma confinement effect. It is self-evident that this tendency becomes even more pronounced when processing is repeated several times.
また, 本実施の形態にぉレヽては, 支持体 2 2に設けられた電極 2 3上部の空洞 6 2により電界の制御が可能であり, プラズマの分布は十分均一に保たれる。 ま た, この空洞 6 2は, 図 1 3に示した上部電極 2 2 1のように, 電極板 2 2 3に 設けられる構成でも同様の効果を得ることができる。 よって, シールドリング 5 5を合わせて採用することで, より信頼性の高いプラズマ装置 1を実現できる。 逆に, シールドリング 5 5を採用することでプラズマの分布は十分均一に保た れるので, 電極板 2 3上部おょぴ支持体 2 2に空洞 6 2を設けない構造でも同様 の効果を得られる。 さらにプラズマ分布を均一にするため, 電極板 2 3の径を, 下部電極であるサセプタ 5の径ょりも大きく構成することも有用である。  Further, in the present embodiment, the electric field can be controlled by the cavity 62 above the electrode 23 provided in the support 22, and the plasma distribution can be kept sufficiently uniform. The same effect can be obtained even when the cavity 62 is provided in the electrode plate 22 3 as in the upper electrode 22 1 shown in FIG. Therefore, by using the shield ring 55 together, a more reliable plasma device 1 can be realized. Conversely, the use of the shield ring 55 ensures that the plasma distribution is sufficiently uniform, so that a similar effect can be obtained even when the cavity 62 is not provided in the upper electrode support 23. Can be In order to make the plasma distribution uniform, it is also useful to make the diameter of the electrode plate 23 larger than that of the susceptor 5, which is the lower electrode.
(第 2の実施の形態) 次に, 第 2の実施の形態にかかるシールドリングについて説明する。 第 2の実 施の形態にかかるシールドリングが備えられるブラズマ処理装置は, 実質的にプ ラズマ処理装置 1と同様であるので説明を省略する。 (Second embodiment) Next, a shield ring according to a second embodiment will be described. The plasma processing apparatus provided with the shield ring according to the second embodiment is substantially the same as the plasma processing apparatus 1, and a description thereof will be omitted.
図 6は, 本実施の形態にかかるシールドリング 255周辺を示す概略断面図, 図 7は, 図 6の A部分の拡大図, 図 8は, 従来のシールドリング 155周辺を示 す概略断面図, 図 9は, 図 8の B部分の拡大図である。  FIG. 6 is a schematic sectional view showing the periphery of the shield ring 255 according to the present embodiment, FIG. 7 is an enlarged view of a portion A in FIG. 6, FIG. 8 is a schematic sectional view showing the periphery of the conventional shield ring 155, Fig. 9 is an enlarged view of part B in Fig. 8.
図 8および 9に示すように, 従来のシールドリング 155は, 例えばウェハ W と, 上部電極の電極板 23との間隔が 20 mmの場合, 例えば約 7 mm下部に突 出して段差を生じ, ウェハ面との間隔が 13 mmと狭められていた。  As shown in Figs. 8 and 9, the conventional shield ring 155 is, for example, when the distance between the wafer W and the electrode plate 23 of the upper electrode is 20 mm, for example, projects downward about 7 mm to generate a step, and the wafer W The distance from the surface was reduced to 13 mm.
しかしながら, このような段差があると, プラズマに曝される時間が長くなる に従いシールドリング 155表面は消耗し, ウェハ W上のガス圧力が下がる。 こ のため, エッチングレートが下がり, コンタクトホールの抜け性が変化してしま う。 この経時変ィ匕を緩和するため, 図 6および 7に示すように, シールドリング However, if there is such a step, the surface of the shield ring 155 will be consumed and the gas pressure on the wafer W will decrease as the time of exposure to the plasma increases. As a result, the etching rate decreases and the removability of the contact hole changes. As shown in Figs. 6 and 7, shield ring
255は, 電極板 23と面一に構成されている。 255 is flush with the electrode plate 23.
図 10は, 経時変化によるエッチレート低下率を示す図, 図 11は, エツチレ ート変化量のウェハ面内での比較を示す図である。 これらは, 第 1の実施の形態 にかかるプラズマ処理装置 1において, 上部電極用高周波電源 40より, 27, Fig. 10 shows the rate of decrease in etch rate due to aging, and Fig. 11 shows a comparison of the amount of change in etch rate within the wafer surface. In the plasma processing apparatus 1 according to the first embodiment, these are supplied by the upper electrode high-frequency power supply 40, 27,
12MHz, 下部電極用高周波電源 50より 800KHzの電力を供給してプラ ズマ処理を行った結果である。 This is the result of plasma processing performed by supplying 800 KHz power from a 12 MHz, high frequency power supply 50 for the lower electrode.
電極板 23は, 単結晶シリコン製, 抵抗は, 1〜: L 0 Ω · cm, シールドリン グ 155 (従来型), シールドリング 255 (改良型) とも石英製で, 絶縁性 (〜 1016 Ω · cm) である。 その他の処理条件は, それぞれのシールドリングに 対して最適化したものを用いた。  The electrode plate 23 is made of single-crystal silicon, the resistance is 1 to: L 0 Ω · cm, the shield ring 155 (conventional type), and the shield ring 255 (improved type) are both made of quartz and have insulating properties (up to 1016 Ω · cm). The other processing conditions used were optimized for each shield ring.
すなわち, 従来型シールドリング 155に対しては, 圧力 40mTo r r, 上 部電極供給電力/下部電極供給電力 = 2000/1400W, 電極板 23とゥェ ハ Wの間隔 = 17mm, 処理ガス流量 C 4 F 8,A r Ζθ2= 21/510/1 1 s c cm, ウェハセンター裏面冷却ガス圧力 Zウェハエッジ裏面冷却ガス圧力 = 10/35To r r, 下部電極温度 Z上部電極温度 Z処理室側壁温度 =一 20/That is, for the conventional shield ring 155, the pressure is 40 mTorr, the upper electrode supply power / the lower electrode supply power = 2000/1400 W, the distance between the electrode plate 23 and the wafer W = 17 mm, and the processing gas flow rate C 4 F 8 , Ar Aθ 2 = 21/510/1 1 sccm, wafer center backside cooling gas pressure Z Wafer edge backside cooling gas pressure = 10/35 To rr, lower electrode temperature Z upper electrode temperature Z processing chamber side wall temperature = 1/20 /
30/50°Cである。 改良型シールドリング 255に対しては, 圧力 50 mT o r r, 上部電極供給 電力 Z下部電極供給電力 = 2000/1400 W, 電極板 23とウェハ Wの間隔 =1 7mm, 処理ガス流量。4 8/ 02=21/450/10 s c cm, ウェハセンター裏面冷却ガス圧力/ウェハエッジ裏面冷却ガス圧力 = 12/25 To r r, 下部電極温度 Z上部電極温度 Z処理室側壁温度 = 0/30/50°Cで ある。 30/50 ° C. For the improved shield ring 255, the pressure was 50 mTorr, the upper electrode supply power Z the lower electrode supply power = 2000/1400 W, the distance between the electrode plate 23 and the wafer W = 17 mm, and the processing gas flow rate. 4 8/0 2 = 21/450/10 sc cm, wafer center backside cooling gas pressure / wafer edge backside cooling gas pressure = 12/25 To rr, lower electrode temperature Z upper electrode temperature Z processing chamber side wall temperature = 0/30 / It is 50 ° C.
図 10において, 横軸はプラズマ処理時間, 縦軸は, エッチングレートの変化 率を表す。 プラズマ処理時間 100時間後のエッチングレートの低下は, 従来段 差型のシールドリング 155では約 8 %であったものが, 電極板 23との段差を なくした改良フラット型シールドリング 255を用いると, 約 4 %とすることが できた。 '  In Fig. 10, the horizontal axis represents the plasma processing time, and the vertical axis represents the rate of change of the etching rate. The reduction in the etching rate after 100 hours of plasma processing was about 8% in the conventional step-type shield ring 155, but using the improved flat-type shield ring 255 without the step with the electrode plate 23, It was about 4%. '
図 11においては, ウェハ W面上の中心, 中間部, 周縁部における, プラズマ 処理 100時間後のエッチングレート変化率を縦軸に表している。 このように, 改良型シールドリング 255では, ウェハ中央部および中間部での変化量はほぼ ゼロとなり,周縁部では,従来型シールドリング 155で約 1000 A/m i . 変ィ匕していたものが, 約 50 OA/m i n. と低減された。  In FIG. 11, the vertical axis represents the rate of change of the etching rate after 100 hours of plasma processing at the center, middle, and periphery of the wafer W surface. As described above, in the improved shield ring 255, the amount of change at the center and the middle of the wafer is almost zero, and at the periphery, about 1000 A / mi. , About 50 OA / min.
次に, 上記のようにエッチングレート変化率が低減された理由を, 図 12を用 いて説明する。図 12は,ウェハ上の圧力経時変ィ匕を示した図である。図 12(a) および( b )はそれぞれ, 従来型シールドリング 155を用いた初期状態および 1 00時間のプラズマ処理後, 図( c )および ( d ) はそれぞれ, 改良型シールドリ ング 255を用いた初期状態および 100時間のプラズマ処理後である。横軸は, 設定圧力, 縦軸は, ウェハ上のそれぞれの位置 (右, 上, ノッチ, 中心)で測定さ れた圧力と設定圧力との差を表す。  Next, the reason why the rate of change in the etching rate is reduced as described above will be described with reference to FIG. FIG. 12 is a diagram showing pressure aging on a wafer. Figs. 12 (a) and (b) show the initial state using the conventional shield ring 155 and after plasma treatment for 100 hours, respectively, and Figs. (C) and (d) show the improved shield ring 255, respectively. In the initial state and after 100 hours of plasma treatment. The horizontal axis represents the set pressure, and the vertical axis represents the difference between the set pressure and the pressure measured at each position (right, top, notch, center) on the wafer.
シールドリングの消耗は,従来型,改良型共に約 2 mm/ 100時間であった。 しかし, 従来型シールドリング 155においては, 設定圧力と測定された圧力の 差が処理前後で変ィ匕している。 また, その圧力差の絶対値も, 改良型に比べ大き くなっている。  The wear of the shield ring was about 2 mm / 100 hours for both the conventional type and the improved type. However, in the conventional shield ring 155, the difference between the set pressure and the measured pressure fluctuates before and after the treatment. Also, the absolute value of the pressure difference is larger than that of the improved type.
これは, シールドリング 155の段差が圧力変動を起こしているためであると 考えられる。 圧力差がウェハ上の場所によって異なると, コンタクトホーノレの抜 け性が均一でなくなり, 歩留まりを悪化させる危険性がある。 また, 圧力経時変 化により, 上述したエッチレートの低下, および加工ホールの抜け性の変化が生 じることがわかる。 This is thought to be because the step of the shield ring 155 caused pressure fluctuation. If the pressure difference varies depending on the location on the wafer, the contact horn There is a danger that the yieldability will not be uniform and the yield will deteriorate. In addition, it can be seen that the change with time in pressure causes a decrease in the etch rate and a change in the removability of the machined hole.
以上詳細に説明したように,第 2の実施形態にかかるシールドリングによれば, ウェハ上のガス圧力を均一化し, またプラズマ処理後のシールドリングの消耗に よる, ウェハ上のガス圧力の経時変化を緩和して, 経時変化によるエッチングレ ートの低下を低減し, 加工ホールの抜け性およびそのウェハ内での均一性を向上 させることで, より微細な加工の可能な高性能の成膜処理装置を提供できる。 もちろん, 第 1の実施の形態にかかる上部電極 2 1または 2 2 1と共にプラズ マ処理装置に用いることは可能である。  As described above in detail, according to the shield ring according to the second embodiment, the gas pressure on the wafer is made uniform, and the gas pressure on the wafer changes with time due to the consumption of the shield ring after plasma processing. High-performance film processing that enables finer processing by reducing the etching rate due to aging and reducing the etching rate due to aging, and improving the hole removability and uniformity within the wafer. Equipment can be provided. Of course, it can be used in a plasma processing apparatus together with the upper electrode 21 or 21 according to the first embodiment.
また,例えばシールドリングの形状は,本実施の形態で述べた例に限定されず, 上部電極と, 下面が略面一であるものならば, 他の形状でも構わない。 また, 被 処理基板として半導体ウェハを用い, これにエッチングを施す場合について示し たが, 処理対象としては, たとえば液晶表示装置基板等の他の基板でもよく, プ ラズマ処理もエッチングに限らずスパッタリング, C VD等,他の処理でもよい。  Further, for example, the shape of the shield ring is not limited to the example described in the present embodiment, and other shapes may be used as long as the upper electrode and the lower surface are substantially flush. Also, the case where a semiconductor wafer is used as a substrate to be processed and etching is performed on the substrate is shown. However, the target to be processed may be another substrate such as a liquid crystal display device substrate. Other processing such as C VD may be used.
(第 3の実施の形態) (Third embodiment)
図 1 4は, 本発明の第 3の実施形態にかかるプラズマ装置 1 0 0の構成を示す 断面図である。 プラズマ装置 1 0 0の構成は, 実質的にプラズマ処理装置 1と同 様であるので説明を省略する。  FIG. 14 is a cross-sectional view showing a configuration of a plasma device 100 according to the third embodiment of the present invention. The configuration of the plasma apparatus 100 is substantially the same as that of the plasma processing apparatus 1, and a description thereof will be omitted.
次に, 上部電極 3 2 1の構成について詳細に説明する。 図 1 5は, 本実施の形 態にかかる上部電極 3 2 1を模式的に示す断面図である。 上部電極 3 2 1は, 電 極支持体 3 2 2, 電極板 3 2 3および絶縁被膜 3 6 2等を有している。  Next, the configuration of the upper electrode 3221 will be described in detail. FIG. 15 is a cross-sectional view schematically showing the upper electrode 321 according to the present embodiment. The upper electrode 3 21 has an electrode support 3 22, an electrode plate 3 2 3, an insulating film 3 62 and the like.
電極支持体 3 2 2は, 電極板 3 2 3を支持すると共に, 高周波電力を伝達し, またその高レヽ熱伝導性によつて電極板 3 2 3の温度分布を一定に保ち, かつ温度 上昇を防ぐクーリング材として機能する。 電極板 3 2 3は, ネジ 3 6 0によって 取り外し可能に電極支持体 3 2 2に固定される。  The electrode support 32 2 supports the electrode plate 3 23, transmits high-frequency power, and maintains a constant temperature distribution of the electrode plate 3 2 3 due to its high-level thermal conductivity and increases the temperature. It functions as a cooling material that prevents The electrode plate 322 is detachably fixed to the electrode support 322 by screws 360.
従来は,エッチングレートおよび熱拡散性を考慮して,電極支持体と電極板は, 直接接触するように構成されていた。 しカゝし, 本実施の形態においては, 電極支 持体 3 2 2と電極板 3 2 3との境界面の少なくともどちら力片方に, 薄い絶縁被 膜 3 6 2を形成してある。 電極支持体 3 2 2がアルミニウムで構成され, その表 面に絶縁被膜 3 6 2が設けられる場合は, 希土類酸化物またはアルミニウム化合 物などを絶縁被膜 3 6 2の材料として用いることができる。 希土類酸化物とは, 例えば Y 20 3溶射膜, アルミニウム化合物とは, 例えば, アルマイト被膜, A 1 2 O 3溶射膜などが適用できる。 Conventionally, the electrode support and the electrode plate were configured to make direct contact in consideration of the etching rate and thermal diffusivity. In the present embodiment, the electrode support is used. A thin insulating film 362 is formed on at least one of the forces on the boundary surface between the support 3 and the electrode plate 3. When the electrode support 322 is made of aluminum and an insulating film 362 is provided on its surface, a rare earth oxide or an aluminum compound can be used as the material of the insulating film 362. The rare earth oxide, for example, Y 2 0 3 sprayed coating, the aluminum compound, for example, anodized aluminum coating, etc. A 1 2 O 3 sprayed coating can be applied.
また, 電極板 3 2 3がシリコンで構成され, その表面に絶縁被膜 3 6 2が設け られる場合には, シリコン化合物を絶縁被膜 3 6 2の材料として用いることがで きる。 シリコン化合物とは, 例えば, S i〇2, S i 3 N 4などである。 これによ り, 電極支持体 3 2 2のァノレミニゥムと, 電極板 3 2 3のシリコンが直接接触す ることを避けられるので, 融着を防止できる。 また, 絶縁被膜 3 6 2を, 例えば 5 μ m以下の厚さにすることで, 高周波の伝達おょぴ熱伝導を妨げることなく 十分なェツチングレートを確保できる。 . また, 第 1の実施の形態にかかる空洞 6 2を電極板に設け, 図 1 9に示すよう に上部電極 5 2 1を構成することもできる。 この空洞 6 2は, 電極支持体側に設 けてもよレヽ。どちらの場合も,電極板の材料が電極支持体に融着するのをふせぎ, また, 均一なプラズマを形成できるので, より品質の高いプラズマ処理が可能と なる。 When the electrode plate 32 3 is made of silicon and an insulating film 36 2 is provided on the surface thereof, a silicon compound can be used as the material of the insulating film 36 2. The silicon compound is, for example, Si 2 or Si 3 N 4 . This prevents direct contact between the anode of the electrode support 322 and the silicon of the electrode plate 322, so that fusion can be prevented. In addition, by setting the thickness of the insulating film 362 to, for example, 5 μm or less, a sufficient etching rate can be secured without obstructing high-frequency transmission and heat conduction. Further, the cavity 62 according to the first embodiment may be provided in the electrode plate, and the upper electrode 521 may be configured as shown in FIG. The cavity 62 may be provided on the electrode support side. In either case, the material of the electrode plate is prevented from fusing to the electrode support, and a uniform plasma can be formed, thus enabling higher quality plasma processing.
以上, 添付図面を参照しながら本発明にかかるプラズマ処理装置おょぴその電 極板, 電極支持体, シールドリングの好適な実施形態について説明したが, 本発 明はかかる例に限定されない。 当業者であれば, 特許請求の範囲に記載された技 術的思想の範疇内において各種の変更例または修正例に想到し得ることは明らか であり,それらについても当然に本発明の技術的範囲に属するものと了解される。 例えば, 絶縁被膜の製法は, C VDおよび P VDなど, 他の製法によるもので もよい。 また, 絶縁被膜の材料は, 絶縁性および耐食性に優れ, 薄膜化できるも のであれば, 他の材料でもよい。 産業上の利用の可能性  The preferred embodiments of the plasma processing apparatus according to the present invention, the electrode plate, the electrode support, and the shield ring have been described with reference to the accompanying drawings. However, the present invention is not limited to such an example. It is obvious that those skilled in the art can conceive various changes or modifications within the scope of the technical idea described in the claims. It is understood that it belongs to. For example, the insulating coating may be manufactured by other methods such as CVD and PVD. The material of the insulating film may be any other material as long as it has excellent insulation and corrosion resistance and can be made thin. Industrial applicability
本発明は, 真空処理容器内に処理ガスを導入して, そのプラズマを生成して被 処理体に処理を行うプラズマ処理装置, およびそれに用いられる電極板, 電極支 持体, シールドリングに関するものであり, 特に, 半導体装置や液晶表示装置用 基板などの製造工程に適用可能である。 According to the present invention, a processing gas is introduced into a vacuum processing vessel, the plasma is generated, and the plasma is generated. The present invention relates to a plasma processing apparatus that performs processing on a processing body, and an electrode plate, an electrode support, and a shield ring used therein, and is particularly applicable to a manufacturing process of a semiconductor device, a substrate for a liquid crystal display device, and the like.

Claims

請求の範囲 The scope of the claims
( 1 ) 処理室と ;前記処理室内において被処理体を载置可能な第 1電極と ;前 記処理室内において前記第 1電極に対向配置された第 2電極と;前記処理室内に 処理ガスを導入可能な処理ガス供給系と ;前記処理室内を真空排気可能な排気系 と ;前記第 1および第 2電極のすくなくとも 、ずれ力一方に高周波電力を印カロし て前記処理ガスをプラズマ化し前記被処理体に対して所定のブラズマ処理を施す 高周波電力供給系と ;を備えたプラズマ処理装置において: '  (1) a processing chamber; a first electrode on which an object to be processed can be placed in the processing chamber; a second electrode opposed to the first electrode in the processing chamber; and a processing gas in the processing chamber. A process gas supply system capable of being introduced; an exhaust system capable of evacuating the process chamber; and a high-frequency power applied to at least one of the first and second electrodes to convert the process gas into plasma to convert the process gas into plasma. And a high-frequency power supply system for performing a predetermined plasma processing on the processing object.
前記第 2電極は, 前記第 1電極に対向するように設けられた導電体または半導 体で構成された電極板と, 前記電極板の前記処理室内とは反対側の面に設けられ 前記電極板を支持する導電性の支持体と, 前記支持体の中央部に設けられた空洞 部とを備えており ;  The second electrode includes an electrode plate formed of a conductor or a semiconductor provided so as to face the first electrode, and an electrode provided on a surface of the electrode plate opposite to the processing chamber. A conductive support for supporting the plate, and a cavity provided at the center of the support;
前記第 2電極の周囲には前記処理室内側に前記電極板と略同一面を有するシー ルドリングが配されていることを特徴とする, プラズマ処 置。  A plasma processing apparatus, wherein a shield ring having substantially the same surface as the electrode plate is disposed around the second electrode in the processing chamber.
( 2 ) 前記シールドリングの抵抗値は, 前記電極板の抵抗値よりも低いことを 特徴とする, 請求項 1に記載のプラズマ処理装置。  (2) The plasma processing apparatus according to claim 1, wherein a resistance value of the shield ring is lower than a resistance value of the electrode plate.
( 3 ) 前記シールドリングと前記電極板とは, 同一材料から構成されることを 特徴とする, 請求項 2に記載のブラズマ処理装置。  (3) The plasma processing apparatus according to claim 2, wherein the shield ring and the electrode plate are made of the same material.
( 4 ) 前記シールドリングと前記電極板とは, シリコンから構成されることを 特徴とする, 請求項 3に記載のプラズマ処理装置。  (4) The plasma processing apparatus according to claim 3, wherein the shield ring and the electrode plate are made of silicon.
( 5 ) 前記電極板の外径は, 前記第 1電極の外径よりも大きいことを特徴とす る, 請求項 1に記載のプラズマ処理装置。  (5) The plasma processing apparatus according to claim 1, wherein an outer diameter of the electrode plate is larger than an outer diameter of the first electrode.
( 6 ) 処理室と ;前記処理室内におレ、て被処理体を載置可能な第 1電極と ;前 記処理室内において前記第 1電極に対向配置された第 2電極と;前記処理室内に 処理ガスを導入可能な処理ガス供給系と ;前記処理室内を真空排気可能な排気系 と ;前記第 1およぴ第 2電極のすくなくともいずれカ 方に高周波電力を印カロし て前記処理ガスをプラズマ化し前記被処理体に対して所定のプラズマ処理を施す 高周波電力供給系と ;を備えたプラズマ処理装置に用いられるシールドリングで あって: 前記第 2電極の周囲に前記処理室内側に設けられ, 前記第 2電極の前記被処理 体に対向する面と略同一面を有することを特徴とするシールドリング。 (6) a processing chamber; a first electrode on which an object to be processed can be placed in the processing chamber; a second electrode disposed to face the first electrode in the processing chamber; A processing gas supply system capable of introducing a processing gas into the processing chamber; an exhaust system capable of evacuating the processing chamber; and applying a high-frequency power to at least one of the first and second electrodes. And a high-frequency power supply system for performing a predetermined plasma process on the object to be processed into a plasma, and a shield ring used for a plasma processing apparatus comprising: A shield ring provided around the second electrode inside the processing chamber, and having substantially the same surface as the surface of the second electrode facing the object to be processed.
( 7 ) 前記シールドリングは, シリコンから構成されることを特徴とする, 請 求項 6に記載のシールドリング。  (7) The shield ring according to claim 6, wherein the shield ring is made of silicon.
( 8 ) 前記シールドリングの抵抗値は, 1〜: L O Q c mであることを特徴とす る, 請求項 6に記載のシールドリング。  (8) The shield ring according to claim 6, wherein the resistance value of the shield ring is 1 to: L O Q cm.
( 9 ) 処理室と ;前記処理室内におレヽて被処理体を載置可能な第 1電極と ;前 記処理室内において前記第 1電極に対向配置された第 2電極と;前記処理室内に 処理ガスを導入可能な処理ガス供給系と;前記処理室内を真空排気可能な排気系 と;前記第 1ぉょぴ第 2電極のすくなくともレ、ずれか一方に高周波電力を印加し て前記処理ガスをプラズマ化し前記被処理体に対して所定のブラズマ処理を施す 高周波電力供給系と ;を備えたプラズマ処理装置において用いられる電極板であ つて:  (9) a processing chamber; a first electrode on which an object to be processed can be placed in the processing chamber; a second electrode opposed to the first electrode in the processing chamber; A processing gas supply system capable of introducing a processing gas; an exhaust system capable of evacuating the processing chamber; and applying a high-frequency power to at least one of the first and second electrodes and the processing gas. And a high-frequency power supply system for subjecting the object to be treated to a predetermined plasma treatment.
前記第 1電極に対向するように設けられ, 導電体または半導体で構成され, 前 記処理室内とは反対側の面の中央部に設けられた空洞部を備えており, 前記第 2 電極を構成することを特徴とする電極板。  The semiconductor device includes a hollow portion provided opposite to the first electrode and formed of a conductor or a semiconductor, and provided at a central portion of a surface opposite to the processing chamber. An electrode plate characterized in that:
( 1 0 ) 前記電極板は, シリコンから構成されることを特徴とする, 請求項 9 に記載の電極板。  (10) The electrode plate according to claim 9, wherein the electrode plate is made of silicon.
( 1 1 ) 前記電極板の抵抗値は, 6 5〜 8 5 Ω c mであることを特徴とする, 請求項 9に記載の電極扳。  (11) The electrode according to claim 9, wherein the resistance value of the electrode plate is 65 to 85 Ωcm.
( 1 2 ) 処理室と ;前記処理室内において被処理体を載置可能な第 1電極と; 前記処理室内において前記第 1電極に対向配置された第 2電極と ;前記処理室内 に処理ガスを導入可能な処理ガス供給系と ;前記処理室内を真空排気可能な排気 系と;前記第 1および第 2電極のすくなくともいずれか一方に高周波電力を印加 して前記処理ガスをブラズマ化し前記被処理体に対して所定のブラズマ処理を施 す高周波電力供給系と;を備えたプラズマ処理装置において用いられる支持体で あって:  (12) a processing chamber; a first electrode on which an object to be processed can be placed in the processing chamber; a second electrode disposed opposite to the first electrode in the processing chamber; and a processing gas in the processing chamber. A processing gas supply system capable of being introduced; an exhaust system capable of evacuating the processing chamber; and applying a high-frequency power to at least one of the first and second electrodes to plasma-treat the processing gas and convert the processing object into a plasma. And a high-frequency power supply system for performing a predetermined plasma treatment on the plasma processing apparatus.
前記第 1電極に対向するように設けられた導電体または半導体で構成された電 極板と共に前記第 2電極を構成し, 前記電極板の前記処理室内とは反対側の面に 設けられ, 中央部に空洞部を備え, 導電性であることを特徴とする支持体。 The second electrode is formed together with an electrode plate made of a conductor or a semiconductor provided so as to face the first electrode, and the second electrode is formed on a surface of the electrode plate opposite to the processing chamber. A support that is provided, has a hollow portion in the center, and is conductive.
(13) 処理室と ;前記処理室内にぉレヽて被処理体を载置可能な第 1電極と ; 前記処理室内にぉレヽて前記第 1電極に対向配置された第 2電極と ;前記処理室内 に処理ガスを導入可能な処理ガス供給系と ;前記処理室内を真空排気可能な排気 系と ;前記第 1および第 2電極のすくなくともいずれ力一方に高周波電力を印加 して前記処理ガスをプラズマ化し前記被処理体に対して所定のプラズマ処理を施 す高周波電力供給系と;前記を備えたプラズマ処理装置において:  (13) a processing chamber; a first electrode which can be placed in the processing chamber to place the object to be processed; a second electrode which is placed in the processing chamber so as to face the first electrode; A process gas supply system capable of introducing a process gas into a chamber; an exhaust system capable of evacuating the process chamber; applying a high-frequency power to at least one of the first and second electrodes to convert the process gas into a plasma; A high-frequency power supply system for performing predetermined plasma processing on the object to be processed; and a plasma processing apparatus having the above:
前記第 2電極は, 前記第 1電極に対向するように設けられた導電体または半導 体で構成された電極板と, この電極板の前記処理室内とは反対側の面に設けられ 電極板を支持する導電性の支持体とを備えており ; .  The second electrode includes an electrode plate formed of a conductor or a semiconductor provided so as to face the first electrode, and an electrode plate provided on a surface of the electrode plate opposite to the processing chamber. And a conductive support for supporting;
前記第 2電極の周囲には前記処理室内側に前記電極板と略同一面を有するシー ルドリングが配されており, 前記シールドリングの抵抗値は前記電極板の抵抗値 よりも低いことを特徴とする, ブラズマ処理装置。  A shield ring having substantially the same surface as the electrode plate is disposed around the second electrode inside the processing chamber, and a resistance value of the shield ring is lower than a resistance value of the electrode plate. Yes, a plasma processing device.
(14) 前記シールドリングと前記電極板とは, 同一材料から構成されること を特徴とする, 請求項 13に記載のブラズマ処理装置。  (14) The plasma processing apparatus according to (13), wherein the shield ring and the electrode plate are made of the same material.
(15) 前記シールドリングと前記電極板とは, シリコンから構成されること を特徴とする, 請求項 14に記载のプラズマ処理装置。  (15) The plasma processing apparatus according to (14), wherein the shield ring and the electrode plate are made of silicon.
(16) 前記シールドリングの抵抗値は, 1〜 10 Ω c mであることを特徴と する, 請求項 13に記載のプラズマ処理装置。  (16) The plasma processing apparatus according to claim 13, wherein a resistance value of the shield ring is 1 to 10 Ωcm.
(17) 前記電極板の抵抗値は, 65〜85Q cmであることを特徴とする, 請求項 13に記載のプラズマ処理装置。  (17) The plasma processing apparatus according to claim 13, wherein a resistance value of the electrode plate is 65 to 85 Qcm.
(18) 前記電極板の外径は, 前記第 1電極の外径よりも大きいことを特徴と する, 請求項 13に記載のプラズマ処理装置。  (18) The plasma processing apparatus according to claim 13, wherein an outer diameter of the electrode plate is larger than an outer diameter of the first electrode.
(19) 処理室と ;前記処理室内において被処理体を載置可能な第 1電極と ; 前記処理室内におレヽて前記第 1電極に対向配置された第 2電極と ;前記処理室内 に処理ガスを導入可能な処理ガス供給系と ;前記処理室内を真空排気可能な排気 系と ;前記第 1およぴ第 2電極のすくなくともいずれ力一方に高周波電力を印カロ して前記処理ガスをプラズマ化し前記被処理体に対して所定のプラズマ処理を施 す高周波電力供糸合系と ;を備えたプラズマ処理装置において: 前記第 2電極は, 支持体と, 前記被処理体に対する対向面を形成する電極板と から成り, (19) a processing chamber; a first electrode on which an object to be processed can be placed in the processing chamber; a second electrode disposed in the processing chamber so as to face the first electrode; and processing in the processing chamber. A processing gas supply system capable of introducing a gas; an exhaust system capable of evacuating the processing chamber; a high-frequency power applied to at least one of the first and second electrodes to generate a plasma of the processing gas. And a high-frequency power supply combining system for subjecting the object to be processed to a predetermined plasma process. The second electrode includes: a support; and an electrode plate forming a surface facing the object to be processed.
前記支持体と前記電極板との接触面には少なくともどちらカゝ片方に絶縁被膜が 形成されていることを特徴とする, プラズマ処«置。  A plasma treatment apparatus, wherein an insulating coating is formed on at least one of the contact surfaces between the support and the electrode plate.
( 2 0 ) 前記絶縁被膜の厚みは, 5 O z m以下であることを特 ί敷とする, 請求 項 1 9に記載のプラズマ処理装置。  (20) The plasma processing apparatus according to claim 19, wherein the thickness of the insulating film is not more than 5 Ozm.
( 2 1 ) 前記支持体は, アルミニウムからなり, 前記電極板はシリコンカ らな ることを特徴とする請求項 1 9に記載のプラズマ処理装置。  (21) The plasma processing apparatus according to claim 19, wherein the support is made of aluminum, and the electrode plate is made of silicon carbide.
( 2 2 ) 前記絶縁被膜は, 前記アルミニウムの表面に形成されることを特徴と する請求項 2 1に記載のブラズマ処理装置。  (22) The plasma processing apparatus according to claim 21, wherein the insulating film is formed on a surface of the aluminum.
( 2 3 ) 前記絶縁被膜は, 前記シリコンの表面に形成されることを特徴とする 請求項 2 1に記載のブラズマ処理装置。  (23) The plasma processing apparatus according to claim 21, wherein the insulating film is formed on a surface of the silicon.
( 2 4 ) 処理室と;前記処理室内におレ、て被処理体を載置可能な第 1電極と; 前記処理室内において前記第 1電極に対向配置された第 2電極と ;前記処理室内 に処理ガスを導入可能な処理ガス供給系と ;前記処理室内を真空排気可能な排気 系と ;前記第 1および第 2電極のすくなくともいずれ力一方に高周波電力を印カロ して前記処理ガスをプラズマ化し前記被処理体に対して所定のプラズマ処理を施 す高周波電力供給系と;を備えたプラズマ処理装置に用いられる支持体であって: 前記被処理体に対する対向面を形成する電極板と共に前記第 2電極を構成し, 前記電極板との接触面に絶縁被膜が形成されていることを特徴とする支持体。 ( 2 5 ) 前記支持体は, アルミニウムからなることを特徴とする請求項 2 4に 記載の支持体。  (24) a processing chamber; a first electrode on which an object to be processed can be placed in the processing chamber; a second electrode disposed to face the first electrode in the processing chamber; A processing gas supply system capable of introducing a processing gas into the processing chamber; an exhaust system capable of evacuating the processing chamber to a vacuum; And a high-frequency power supply system for performing a predetermined plasma process on the object to be processed. A support comprising a second electrode, wherein an insulating coating is formed on a contact surface with the electrode plate. (25) The support according to claim 24, wherein the support is made of aluminum.
( 2 6 ) 前記アルミニゥム表面の絶縁被膜は, 希土類酸化物またはァノレミニゥ ム化合物であることを特徴とする, 請求項 2 5に記載の支持体。  (26) The support according to claim 25, wherein the insulating film on the aluminum surface is made of a rare earth oxide or an anolemminium compound.
( 2 7 ) 処理室と ;前記処理室内にぉレヽて被処理体を載置可能な第 1電極と; 前記処理室内において前記第 1電極に対向配置された第 2電極と ;前記処理室内 に処理ガスを導入可能な処理ガス供給系と ;前記処理室内を真空 気可能な排気 系と ;前記第 1および第 2電極のすくなくともいずれ力一方に高周波電力を印カロ して前記処理ガスをプラズマ化し前記被処理体に対して所定のプラズマ処理を施 す高周波電力供給系と;を備えたブラズマ処理装置に用いられる電極板であって: 前記支持体と共に前記第 2電極を構成し, (27) a processing chamber; a first electrode on which an object to be processed can be placed in the processing chamber; a second electrode disposed to face the first electrode in the processing chamber; A processing gas supply system capable of introducing a processing gas; an exhaust system capable of evacuating the processing chamber; a high-frequency power applied to at least one of the first and second electrodes to convert the processing gas into plasma. A predetermined plasma process is performed on the object to be processed. An electrode plate for use in a plasma processing apparatus, comprising: a high-frequency power supply system;
前記被処理体に対する対向面を形成し, 前記支持体との接触面には絶縁被膜が 形成されていることを特徴とする電極板。  An electrode plate having a surface facing the object to be processed and an insulating film formed on a surface in contact with the support.
( 2 8 ) 嫌己電極板はシリコンから構成されることを特徴とする請求項 2 7に  (28) The claim 27, wherein the disgusting electrode plate is made of silicon.
( 2 9 ) 前記シリコン表面の絶縁ネ皮膜は, シリコン化合物であることを特徴と する請求項 2 8に記載のプラズマ処理装置。 (29) The plasma processing apparatus according to claim 28, wherein the insulating film on the silicon surface is a silicon compound.
PCT/JP2001/007985 2000-09-14 2001-09-14 Plasma machining device, and electrode plate, electrode supporter, and shield ring of the device WO2002023610A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/383,605 US20030155078A1 (en) 2000-09-14 2003-03-10 Plasma processing apparatus, and electrode plate, electrode supporting body, and shield ring thereof
US12/040,523 US20080156441A1 (en) 2000-09-14 2008-02-29 Plasma processing apparatus and electrode plate, electrode supporting body, and shield ring thereof

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2000279453 2000-09-14
JP2000-279453 2000-09-14
JP2000-291717 2000-09-26
JP2000291717A JP4602528B2 (en) 2000-09-26 2000-09-26 Plasma processing equipment
JP2001-204884 2001-07-05
JP2001204884A JP2002164329A (en) 2000-09-14 2001-07-05 Plasma treatment apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/383,605 Continuation US20030155078A1 (en) 2000-09-14 2003-03-10 Plasma processing apparatus, and electrode plate, electrode supporting body, and shield ring thereof

Publications (1)

Publication Number Publication Date
WO2002023610A1 true WO2002023610A1 (en) 2002-03-21

Family

ID=27344623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/007985 WO2002023610A1 (en) 2000-09-14 2001-09-14 Plasma machining device, and electrode plate, electrode supporter, and shield ring of the device

Country Status (3)

Country Link
US (2) US20030155078A1 (en)
TW (1) TW518690B (en)
WO (1) WO2002023610A1 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4454781B2 (en) * 2000-04-18 2010-04-21 東京エレクトロン株式会社 Plasma processing equipment
KR100465877B1 (en) * 2002-08-23 2005-01-13 삼성전자주식회사 Etching apparatus of semiconductor
JP4472372B2 (en) * 2003-02-03 2010-06-02 株式会社オクテック Plasma processing apparatus and electrode plate for plasma processing apparatus
US20060081337A1 (en) * 2004-03-12 2006-04-20 Shinji Himori Capacitive coupling plasma processing apparatus
US20050241579A1 (en) * 2004-04-30 2005-11-03 Russell Kidd Face shield to improve uniformity of blanket CVD processes
US8349128B2 (en) * 2004-06-30 2013-01-08 Applied Materials, Inc. Method and apparatus for stable plasma processing
US20060288934A1 (en) * 2005-06-22 2006-12-28 Tokyo Electron Limited Electrode assembly and plasma processing apparatus
US9520276B2 (en) 2005-06-22 2016-12-13 Tokyo Electron Limited Electrode assembly and plasma processing apparatus
US8034213B2 (en) * 2006-03-30 2011-10-11 Tokyo Electron Limited Plasma processing apparatus and plasma processing method
KR101840322B1 (en) 2009-12-31 2018-03-20 어플라이드 머티어리얼스, 인코포레이티드 Shadow ring for modifying wafer edge and bevel deposition
JP5650479B2 (en) * 2010-09-27 2015-01-07 東京エレクトロン株式会社 Electrode and plasma processing apparatus
US20120083129A1 (en) 2010-10-05 2012-04-05 Skyworks Solutions, Inc. Apparatus and methods for focusing plasma
US9478428B2 (en) 2010-10-05 2016-10-25 Skyworks Solutions, Inc. Apparatus and methods for shielding a plasma etcher electrode
JP6068849B2 (en) 2012-07-17 2017-01-25 東京エレクトロン株式会社 Upper electrode and plasma processing apparatus
US20140141619A1 (en) * 2012-11-19 2014-05-22 Tokyo Electron Limited Capacitively coupled plasma equipment with uniform plasma density
US20140138030A1 (en) * 2012-11-19 2014-05-22 Tokyo Electron Limited Capacitively coupled plasma equipment with uniform plasma density
US10832931B2 (en) * 2014-05-30 2020-11-10 Applied Materials, Inc. Electrostatic chuck with embossed top plate and cooling channels
KR20170073757A (en) * 2015-12-18 2017-06-29 삼성전자주식회사 Upper electrode for plasma processing apparatus and plasma processing apparatus having the same
JP2019109980A (en) * 2017-12-15 2019-07-04 株式会社日立ハイテクノロジーズ Plasma processing apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0822977A (en) * 1994-07-08 1996-01-23 Sony Corp Plasma processing equipment and plasma processing method using the equipment
JPH11168087A (en) * 1997-12-04 1999-06-22 Nec Corp Parallel and flat type dry etcher
JPH11219935A (en) * 1998-01-30 1999-08-10 Hitachi Chem Co Ltd Electrode for plasma processor and the plasma processor
JP2000306886A (en) * 1999-04-19 2000-11-02 Hitachi Chem Co Ltd Plasma etching electrode
WO2001080297A1 (en) * 2000-04-18 2001-10-25 Tokyo Electron Limited Plasma processing apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0741153Y2 (en) * 1987-10-26 1995-09-20 東京応化工業株式会社 Sample processing electrode
JP3308091B2 (en) * 1994-02-03 2002-07-29 東京エレクトロン株式会社 Surface treatment method and plasma treatment device
JP3582287B2 (en) * 1997-03-26 2004-10-27 株式会社日立製作所 Etching equipment
US6073577A (en) * 1998-06-30 2000-06-13 Lam Research Corporation Electrode for plasma processes and method for manufacture and use thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0822977A (en) * 1994-07-08 1996-01-23 Sony Corp Plasma processing equipment and plasma processing method using the equipment
JPH11168087A (en) * 1997-12-04 1999-06-22 Nec Corp Parallel and flat type dry etcher
JPH11219935A (en) * 1998-01-30 1999-08-10 Hitachi Chem Co Ltd Electrode for plasma processor and the plasma processor
JP2000306886A (en) * 1999-04-19 2000-11-02 Hitachi Chem Co Ltd Plasma etching electrode
WO2001080297A1 (en) * 2000-04-18 2001-10-25 Tokyo Electron Limited Plasma processing apparatus

Also Published As

Publication number Publication date
TW518690B (en) 2003-01-21
US20080156441A1 (en) 2008-07-03
US20030155078A1 (en) 2003-08-21

Similar Documents

Publication Publication Date Title
WO2002023610A1 (en) Plasma machining device, and electrode plate, electrode supporter, and shield ring of the device
TWI234417B (en) Plasma procesor and plasma processing method
JP4612190B2 (en) Low contamination high density plasma etching chamber and method of manufacturing the same
KR100934512B1 (en) Plasma processing equipment
JP3411539B2 (en) Plasma processing apparatus and plasma processing method
JP5125024B2 (en) Mounting table for plasma processing apparatus and plasma processing apparatus
US20040261946A1 (en) Plasma processing apparatus, focus ring, and susceptor
JP5702968B2 (en) Plasma processing apparatus and plasma control method
JP6552346B2 (en) Substrate processing equipment
JP2010232694A (en) Focus ring and plasma processing apparatus
TW200423250A (en) Plasma processing device, electrode plate for the same, and manufacturing method for electrode plate
JPH08264515A (en) Plasma treatment device, processing device and etching device
TW201535581A (en) Plasma processing apparatus and focus ring
JPH01251735A (en) Electrostatic chuck apparatus
JP2009194318A (en) Plasma processing apparatus, plasma processing method and storage medium
US20070256638A1 (en) Electrode plate for use in plasma processing and plasma processing system
US20100078129A1 (en) Mounting table for plasma processing apparatus
JP2008078515A (en) Plasma treatment method
JPS63238288A (en) Dry etching method
JP2001267297A (en) Plasma treatment system
US20100071850A1 (en) Mounting table and plasma processing apparatus
TW201937594A (en) Plasma processing method
JPH10251849A (en) Sputtering device
JP4602528B2 (en) Plasma processing equipment
JP2001267295A (en) Plasma treatment system

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR IT

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10383605

Country of ref document: US

122 Ep: pct application non-entry in european phase