JP6485270B2 - Electrode plate for plasma processing equipment - Google Patents

Electrode plate for plasma processing equipment Download PDF

Info

Publication number
JP6485270B2
JP6485270B2 JP2015148446A JP2015148446A JP6485270B2 JP 6485270 B2 JP6485270 B2 JP 6485270B2 JP 2015148446 A JP2015148446 A JP 2015148446A JP 2015148446 A JP2015148446 A JP 2015148446A JP 6485270 B2 JP6485270 B2 JP 6485270B2
Authority
JP
Japan
Prior art keywords
electrode plate
diameter
circumference
vent holes
plasma processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015148446A
Other languages
Japanese (ja)
Other versions
JP2017028220A (en
Inventor
東 浩司
浩司 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2015148446A priority Critical patent/JP6485270B2/en
Publication of JP2017028220A publication Critical patent/JP2017028220A/en
Application granted granted Critical
Publication of JP6485270B2 publication Critical patent/JP6485270B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Drying Of Semiconductors (AREA)

Description

本発明は、プラズマ処理装置において、プラズマ生成用ガスを厚さ方向に通過させながら放電するプラズマ処理装置用電極板に関する。   The present invention relates to an electrode plate for a plasma processing apparatus that discharges in a plasma processing apparatus while passing a plasma generating gas in the thickness direction.

半導体デバイス製造プロセスに使用されるプラズマエッチング装置やプラズマCVD装置等のプラズマ処理装置は、チャンバ―内に、高周波電源に接続される一対の電極を、例えば上下方向に対向配置し、その下側電極の上に被処理基板を配置した状態として、上部電極に形成した複数の通気孔からエッチングガスを被処理基板に向かって流通させながら高周波電圧を印加することによりプラズマを発生させ、被処理基板にエッチング等の処理を行う構成とされている。   A plasma processing apparatus such as a plasma etching apparatus or a plasma CVD apparatus used in a semiconductor device manufacturing process has a pair of electrodes connected to a high-frequency power source in a chamber, for example, vertically arranged, and the lower electrodes In a state where the substrate to be processed is disposed on the substrate, plasma is generated by applying a high frequency voltage while flowing an etching gas from the plurality of air holes formed in the upper electrode toward the substrate to be processed, and the substrate is processed. It is configured to perform a process such as etching.

このプラズマ処理装置に使用される上部電極として、一般に同径の通気孔が複数形成された電極板が使用される。ところが、電極板は、使用されるにつれて被処理基板側がプラズマにさらされてエッチングされ、また通気孔内にプラズマが回り込むことにより通気孔の内壁がエッチングされる。この際、電極板の外周部よりも中央部がエッチングされやすい。このため、電極板の使用時間が長くなるにつれて各通気孔から流通するエッチングガスの量に偏りが生じ、被処理基板へのプラズマ処理量にも偏りが生じて面内均一な処理を行うことができなくなる。   As an upper electrode used in this plasma processing apparatus, an electrode plate having a plurality of vent holes having the same diameter is generally used. However, as the electrode plate is used, the side of the substrate to be processed is etched by being exposed to plasma, and the inner wall of the vent hole is etched by the plasma flowing into the vent hole. At this time, the central portion is more easily etched than the outer peripheral portion of the electrode plate. For this reason, as the usage time of the electrode plate becomes longer, the amount of etching gas flowing from each vent hole is biased, and the plasma processing amount to the substrate to be processed is also biased to perform in-plane uniform processing. become unable.

この点、特許文献1には、電極板の通気孔(小径孔)が穿設される外周領域と内周領域の、外周領域内の通気孔より内周領域内の通気孔の孔径を大きくすることで、外周領域内の通気孔群から噴出するエッチングガス流量と、内周領域内の通気孔群から噴出するエッチングガス流量とが被処理基板の表面上でほぼ等しくなり、エッチングレートが全表面内で均一に保たれ、均一にエッチングされた半導体ウエハが高歩留まりで得られることが記載されている。また、電極板の通気孔も経時的にエッチングされるが、両領域の通気孔群の孔径差は長時間保持されるので、電極板の交換頻度が減少し、エッチング加工の生産性が向上する。さらに、この特許文献1には、内側領域内の通気孔の最大孔径は、外周領域内の通気孔の最大孔径よりも25μm(0.025mm)以上大きく穿設しておくのがよく、25μm未満では孔径差が小さすぎて、エッチングガス流量の差が大きくなってしまい、均一なエッチングができにくいことが記載されている。   In this regard, Patent Document 1 discloses that the diameter of the air holes in the inner peripheral region is larger than the air holes in the outer peripheral region and the outer peripheral region in which the air hole (small diameter hole) of the electrode plate is formed. Thus, the flow rate of the etching gas ejected from the group of vent holes in the outer peripheral region and the flow rate of the etching gas ejected from the group of vent holes in the inner peripheral region are substantially equal on the surface of the substrate to be processed, and the etching rate is the entire surface. It is described that a semiconductor wafer that is kept uniform and uniformly etched can be obtained with a high yield. Also, although the electrode plate vents are etched over time, the difference in hole diameters between the vent holes in both regions is maintained for a long time, so the electrode plate replacement frequency is reduced and the etching process productivity is improved. . Further, in Patent Document 1, the maximum hole diameter of the vent hole in the inner region is preferably 25 μm (0.025 mm) or more larger than the maximum hole diameter of the vent hole in the outer peripheral region, and less than 25 μm. However, it is described that the difference in the hole diameter is too small and the difference in the flow rate of the etching gas becomes large, so that uniform etching is difficult.

また、特許文献2には、電極板の中心を中心とする3つの円周上に通気孔を等ピッチに形成し、通気孔の径を電極板の中心から離れるにしたがって小さくすることが記載されており、これにより、電極板の外側から流れ出るガスと相俟って反応容器内の下部のガス分布を均等なものとなり、被処理基板(ウエハ)の表面のガス分布が均等となり、安定したエッチング処理が行われることが記載されている。   Patent Document 2 describes that air holes are formed at equal pitches on three circumferences centered on the center of the electrode plate, and the diameter of the air holes is reduced as the distance from the center of the electrode plate increases. As a result, the gas distribution in the lower part of the reaction vessel is made uniform in combination with the gas flowing out from the outside of the electrode plate, the gas distribution on the surface of the substrate to be processed (wafer) is made uniform, and stable etching is performed. It is described that processing is performed.

特開平11‐54488号公報Japanese Patent Laid-Open No. 11-54488 特開昭62‐51223号公報JP-A-62-51223

特許文献1又は特許文献2に記載されるように、従来からプラズマ処理の面内均一性を向上させるために、電極板に対する種々の対策が行われているが、製品の歩留まり向上のために、さらなる改善が求められている。   As described in Patent Document 1 or Patent Document 2, various measures have been taken for the electrode plate in order to improve the in-plane uniformity of the plasma treatment, but in order to improve the yield of the product, Further improvement is required.

本発明は、このような事情に鑑みてなされたもので、被処理基板に面内均一なプラズマ処理を行うことができるプラズマ処理装置用電極板を提供することを目的とする。   The present invention has been made in view of such circumstances, and an object thereof is to provide an electrode plate for a plasma processing apparatus capable of performing in-plane uniform plasma processing on a substrate to be processed.

本発明は、電極板の厚さ方向に貫通する通気孔が複数設けられたプラズマ処理装置用電極板であって、前記通気孔が、前記電極板の中心部から外周部にかけて少なくとも3周以上の同心円の円周上に並べられており、前記電極板の中心部側の最内周上に形成された前記通気孔の平均孔径が直径0.1mm以上直径3.0mm以下とされ、前記最内周上に形成された前記通気孔の平均孔径と最外周上に形成された前記通気孔の平均孔径との内外径差が0.010mm以上0.025mm以下とされ、隣接する円周上の前記通気孔の平均孔径の径差が0.004mm以下で形成され、同径の前記通気孔が3周以上連続することなく、前記中心部から前記外周部にかけて段階的に縮径した前記通気孔が並べられている。   The present invention is an electrode plate for a plasma processing apparatus provided with a plurality of ventilation holes penetrating in the thickness direction of the electrode plate, wherein the ventilation holes have at least three or more rounds from the center to the outer periphery of the electrode plate. Are arranged on the circumference of concentric circles, and the average hole diameter of the air holes formed on the innermost circumference on the center side of the electrode plate is 0.1 mm or more and 3.0 mm or less in diameter. The inner and outer diameter difference between the average hole diameter of the air holes formed on the circumference and the average hole diameter of the air holes formed on the outermost periphery is 0.010 mm or more and 0.025 mm or less. The air hole having a diameter difference of 0.004 mm or less is formed in the air holes, and the air holes having the same diameter are gradually reduced from the central part to the outer peripheral part without continuous three or more rounds. Are lined up.

電極板の中心部から外周部にかけて通気孔の孔径を段階的に、また、同径の通気孔を3周以上連続させることなく緩やかに縮径して形成することで、エッチングガスの流通を中心部から外周部にかけて均一にでき、プラズマ処理の均一性を向上させることができる。
なお、最内周上の通気孔の平均孔径と最外周上の通気孔の平均孔径との内外径差が0.010mm未満では、エッチングガスの流量を中心部から外周部にかけて均一化する十分な効果が得られない。一方、内外径差が0.025mmを超える場合も、エッチングガスの流量を中心部から外周部にかけて均一化することができず、プラズマ処理の均一性が低下する。また、隣接する円周上の通気孔の平均孔径の径差が0.004mmを超える場合や、同径の通気孔を3周以上連続させた場合も、エッチングガスの流量にばらつきが生じ、プラズマ処理の均一性を低下させる。
By forming the hole diameter from the center to the outer periphery of the electrode plate in a stepwise manner and by gradually reducing the diameter of the air holes without continuation of three or more rounds, the flow of the etching gas is central. It can be made uniform from the portion to the outer peripheral portion, and the uniformity of the plasma processing can be improved.
If the difference between the inner and outer diameters of the average hole diameter of the vent holes on the innermost periphery and the average hole diameter of the vent holes on the outermost periphery is less than 0.010 mm, it is sufficient to make the flow rate of the etching gas uniform from the center to the outer periphery. The effect is not obtained. On the other hand, even when the difference between the inner and outer diameters exceeds 0.025 mm, the flow rate of the etching gas cannot be made uniform from the central part to the outer peripheral part, and the uniformity of the plasma processing is lowered. In addition, even when the difference in the average hole diameter between the adjacent holes on the circumference exceeds 0.004 mm, or when the holes having the same diameter are continued three or more times, the flow rate of the etching gas varies, resulting in plasma. Reduce processing uniformity.

本発明によれば、電極板の中心部から外周部にかけてエッチングガスを均一に流通させることができ、被処理基板に面内均一なプラズマ処理を行うことができる。   According to the present invention, the etching gas can be uniformly distributed from the center portion to the outer peripheral portion of the electrode plate, and the in-plane uniform plasma treatment can be performed on the substrate to be processed.

本発明のプラズマ処理装置用電極板の実施形態を示す平面図である。It is a top view which shows embodiment of the electrode plate for plasma processing apparatuses of this invention. 図1に示すプラズマ処理装置用電極板の中心部から外周部にかけての要部断面図である。It is principal part sectional drawing from the center part of the electrode plate for plasma processing apparatuses shown in FIG. 1 to an outer peripheral part. プラズマ処理装置用電極板が用いられるプラズマエッチング装置の一例を示す概略構成図である。It is a schematic block diagram which shows an example of the plasma etching apparatus with which the electrode plate for plasma processing apparatuses is used.

以下、本発明のプラズマ処理装置用電極板の実施形態を、図面を参照しながら説明する。
まず、プラズマ処理装置用電極板1(以下、電極板と称す。)が用いられるプラズマ処理装置として、プラズマエッチング装置について説明する。プラズマエッチング装置100は、図3に示すように、真空チャンバー2内の上側に電極板(上側電極)1が設けられるとともに、下側に上下動可能な架台(下側電極)4が電極板1と相互間隔をおいて平行に設けられる。この場合、上側の電極板1は絶縁体3により真空チャンバー2の壁に対して絶縁状態に支持されているとともに、架台4の上に、静電チャック5と、その周りを囲むシリコン製の支持リング6とが設けられており、静電チャック5上に支持リング6により周縁部を支持した状態でウエハ(被処理基板)7が載置されるようになっている。また、真空チャンバー2の上側には、エッチングガス供給管21が設けられ、このエッチングガス供給管21から送られてきたエッチングガスは、拡散部材8を経由した後、電極板1に設けられた通気孔11を通してウエハ7に向かって流され、真空チャンバー2の側部の排出口22から外部に排出される構成とされる。一方、電極板1と架台4との間には、高周波電源9により高周波電圧が印加されるようになっている。
Hereinafter, embodiments of an electrode plate for a plasma processing apparatus of the present invention will be described with reference to the drawings.
First, a plasma etching apparatus will be described as a plasma processing apparatus in which an electrode plate 1 for plasma processing apparatus (hereinafter referred to as an electrode plate) is used. As shown in FIG. 3, the plasma etching apparatus 100 is provided with an electrode plate (upper electrode) 1 on the upper side in the vacuum chamber 2 and a gantry (lower electrode) 4 that can move up and down on the lower side. And in parallel with each other. In this case, the upper electrode plate 1 is supported in an insulated state with respect to the wall of the vacuum chamber 2 by the insulator 3, and the electrostatic chuck 5 and the silicon support surrounding the periphery are provided on the gantry 4. A ring (6) is provided, and a wafer (substrate to be processed) 7 is placed on the electrostatic chuck (5) with the peripheral edge supported by the support ring (6). Further, an etching gas supply pipe 21 is provided on the upper side of the vacuum chamber 2, and the etching gas sent from the etching gas supply pipe 21 passes through the diffusion member 8 and then passes through the electrode plate 1. It is configured to flow toward the wafer 7 through the pores 11 and to be discharged to the outside from the discharge port 22 on the side of the vacuum chamber 2. On the other hand, a high frequency voltage is applied between the electrode plate 1 and the gantry 4 by a high frequency power source 9.

また、電極板1の背面には、熱伝導性に優れるアルミニウム等からなる冷却板15が固定されている。この冷却板15にも、電極板1の通気孔11に連通するように、通気孔11と同じピッチで貫通孔16が形成されている。そして、電極板1は、背面が冷却板15に接触した状態でねじ止め等によってプラズマエッチング装置100内に固定される。   A cooling plate 15 made of aluminum or the like having excellent heat conductivity is fixed to the back surface of the electrode plate 1. The cooling plate 15 is also formed with through holes 16 at the same pitch as the air holes 11 so as to communicate with the air holes 11 of the electrode plate 1. The electrode plate 1 is fixed in the plasma etching apparatus 100 by screwing or the like with the back surface in contact with the cooling plate 15.

本実施形態の電極板1は、単結晶シリコン、柱状晶シリコン、又は多結晶シリコンにより、例えば厚さt5〜20mm程度、直径100〜600mm程度の円板に形成され、この電極板1には、図1及び図2に示すように、数mm〜10mmのピッチで数百〜3000個程度の通気孔11が厚さ方向に平行に貫通して形成されており、各通気孔11は、電極板1の中心部から外周部にかけて少なくとも3周以上の同心円の円周s1〜s11上に並べられている。また、各通気孔11は、隣接する円周上の通気孔11の平均孔径の径差Δdが0.004mm以下となるように形成され、同径の通気孔11が3周以上連続することなく、電極板1の中心部から外周部にかけて段階的に縮径した通気孔11が並べられている。そして、最も径の大きい電極板1の中心部側の最内周である円周s1上に形成された通気孔11の平均孔径d1が直径0.1mm以上直径3.0mm以下とされ、円周s1上に形成された通気孔11の平均孔径d1と最外周である円周s11上に形成された通気孔11の平均孔径d11との内外径差が0.010mm以上0.025mm以下とされる。   The electrode plate 1 of the present embodiment is formed of a single crystal silicon, columnar crystal silicon, or polycrystalline silicon, for example, into a circular plate having a thickness of about 5 to 20 mm and a diameter of about 100 to 600 mm. As shown in FIGS. 1 and 2, several hundred to 3,000 vent holes 11 are formed in parallel with the thickness direction at a pitch of several mm to 10 mm, and each vent hole 11 is an electrode plate. They are arranged on the circumferences s1 to s11 of concentric circles of at least 3 rounds from the central part of 1 to the outer circumference. In addition, each air hole 11 is formed such that the difference Δd in average diameter between adjacent air holes 11 on the circumference is 0.004 mm or less, and the air holes 11 having the same diameter do not continue three or more times. The vent holes 11 whose diameters are reduced in stages from the center to the outer periphery of the electrode plate 1 are arranged. The average hole diameter d1 of the air holes 11 formed on the circumference s1 that is the innermost circumference on the center side of the electrode plate 1 having the largest diameter is set to a diameter of 0.1 mm or more and 3.0 mm or less. The difference between the inner and outer diameters of the average hole diameter d1 of the vent holes 11 formed on s1 and the average hole diameter d11 of the vent holes 11 formed on the outermost circumference s11 is 0.010 mm or more and 0.025 mm or less. .

なお、平均孔径を具体的に説明すると、例えば、図1に示す電極板1では、円周s1上に通気孔11が4個形成されていることから、円周s1上の通気孔11の平均孔径d1は、これら4個の通気孔11の孔径を平均した値となる。また、円周s5上には通気孔11が32個形成されていることから、円周s5上の通気孔11の平均孔径d5は、これら32個の通気孔11の孔径を平均した値となる。   The average hole diameter will be specifically described. For example, in the electrode plate 1 shown in FIG. 1, since four vent holes 11 are formed on the circumference s1, the average of the vent holes 11 on the circumference s1. The hole diameter d1 is a value obtained by averaging the hole diameters of these four vent holes 11. Since 32 vent holes 11 are formed on the circumference s5, the average hole diameter d5 of the vent holes 11 on the circumference s5 is a value obtained by averaging the diameters of the 32 vent holes 11. .

なお、このように構成される電極板1の各通気孔11は、例えば、電極板1となる素板に、ドリル加工によって厚さ方向に貫通する貫通孔を複数形成し、ドリル加工の後にエッチング処理を施すことにより形成される。ドリル加工による貫通孔の加工は、電極板1の中心部側の円周s1上に貫通孔を加工した後、その円周s1に隣接する円周s2上に貫通孔を加工し、次いで円周s3上に貫通孔を加工するという様に、電極板1の中心部側の最内周の円周s1から外周部側の最外周の円周s11にかけて順に加工を行うとよい。このように、電極板1の中心部側から外周部側にかけて通気孔11となる貫通孔を加工することで、ドリルの刃先の摩耗が伴う場合にも、中心部側から外周部側に向けて縮径した貫通孔を容易に加工することができる。   Each of the air holes 11 of the electrode plate 1 configured as described above is formed by, for example, forming a plurality of through holes penetrating in the thickness direction by drilling in the base plate to be the electrode plate 1 and etching after drilling It is formed by processing. The through hole is formed by drilling after processing the through hole on the circumference s1 on the center side of the electrode plate 1, and then machining the through hole on the circumference s2 adjacent to the circumference s1. Processing is preferably performed in order from the innermost circumference s1 on the center side of the electrode plate 1 to the outermost circumference s11 on the outer circumference side, such as processing a through hole on s3. In this way, by processing the through hole that becomes the air hole 11 from the center side of the electrode plate 1 to the outer peripheral side, even when wear of the cutting edge of the drill is accompanied, from the central side toward the outer peripheral side. The reduced through-hole can be easily processed.

上述したように、電極板1の中心部から外周部にかけて通気孔11の孔径を段階的に、また、同径の通気孔11を3周以上連続させることなく緩やかに縮径して形成することで、エッチングガスの流通を電極板1の中心部から外周部にかけて均一にでき、プラズマ処理の均一性を向上させることができる。
なお、最内周(円周s1)上の通気孔11の平均孔径d1と最外周(円周s11)上の通気孔11の平均孔径d11との内外径差が0.010mm未満では、エッチングガスの流量を電極板1の中心部から外周部にかけて均一化する十分な効果が得られない。一方、内外径差が0.025mmを超える場合も、エッチングガスの流量を電極板1の中心部から外周部にかけて均一化することができず、プラズマ処理の均一性が低下する。また、隣接する円周上の通気孔11の平均孔径の径差Δdが0.004mmを超える場合や、同径の通気孔11を3周以上連続させた場合も、エッチングガスの流量にばらつきが生じ、プラズマ処理の均一性を低下させる。
As described above, the diameter of the air holes 11 is gradually reduced from the center part to the outer peripheral part of the electrode plate 1 and the air holes 11 having the same diameter are gradually reduced in diameter without continuing three or more rounds. Thus, the flow of the etching gas can be made uniform from the center portion of the electrode plate 1 to the outer peripheral portion, and the uniformity of the plasma processing can be improved.
If the difference between the inner and outer diameters of the average hole diameter d1 of the vent holes 11 on the innermost periphery (circumference s1) and the average hole diameter d11 of the vent holes 11 on the outermost periphery (circumference s11) is less than 0.010 mm, the etching gas The sufficient effect of equalizing the flow rate from the center to the outer periphery of the electrode plate 1 cannot be obtained. On the other hand, even when the difference between the inner and outer diameters exceeds 0.025 mm, the flow rate of the etching gas cannot be made uniform from the central portion to the outer peripheral portion of the electrode plate 1, and the uniformity of the plasma processing is lowered. In addition, when the diameter difference Δd of the average hole diameters of the adjacent air holes 11 on the adjacent circumference exceeds 0.004 mm, or when the air holes 11 having the same diameter are continued three or more times, the flow rate of the etching gas varies. Occurs, reducing the uniformity of the plasma treatment.

次に、本発明の効果を確認するために、表1に示すように通気孔の孔径を変更した複数の電極板を作製し、作製した各電極板を用いて、ウエハ(被処理基板)のエッチングを行った。
各電極板は、厚さ10mm、直径400mmの円板状の素板により形成され、この素板の直径300mmの範囲内に、直径0.470mm以上0.510mm以下の孔径の通気孔を形成し、各通気孔は、図1に示すように、円周s1〜s11の11周で構成される同心円の各円周s1〜s11上に並べて形成した。そして、各円周s1〜s11上の通気孔は、それぞれ最内周の円周s1上に4個、円周s2上に10個、円周s3上に16個、円周s4上に24個、円周s5上に32個、円周s6上に40個、円周s7上に48個、円周s8上に60個、円周s9上に72個、円周s10上に80個、そして最外周の円周s11上に100個形成し、電極板ごとに合計486個の通気孔を形成した。各電極板の円周s1〜s11上の通気孔の平均孔径d1〜d11は、表1に示すとおりである。
Next, in order to confirm the effect of the present invention, as shown in Table 1, a plurality of electrode plates in which the diameters of the air holes are changed are prepared, and a wafer (substrate to be processed) is formed using each of the prepared electrode plates. Etching was performed.
Each electrode plate is formed of a disk-shaped base plate having a thickness of 10 mm and a diameter of 400 mm, and a vent hole having a diameter of 0.470 mm or more and 0.510 mm or less is formed within the range of the diameter of the base plate of 300 mm. As shown in FIG. 1, the air holes are formed side by side on the respective concentric circles s <b> 1 to s <b> 11 constituted by 11 circles s <b> 1 to s <b> 11. The number of vent holes on each of the circumferences s1 to s11 is 4 on the innermost circumference s1, 10 on the circumference s2, 16 on the circumference s3, and 24 on the circumference s4. 32 on circumference s5, 40 on circumference s6, 48 on circumference s7, 60 on circumference s8, 72 on circumference s9, 80 on circumference s10, and 100 pieces were formed on the outermost circumference s11, and a total of 486 ventilation holes were formed for each electrode plate. The average hole diameters d1 to d11 of the air holes on the circumferences s1 to s11 of each electrode plate are as shown in Table 1.

なお、表1の「内外径差(d1−d11)」は、最内周の円周s1上の通気孔の平均孔径d1と最外周の円周s11上の通気孔の平均孔径d11との差分(d1−d11)である。また、「最大隣接径差Δdmax」は、隣接する円周上の通気孔の平均孔径の径差Δd、すなわち隣接する円周上の通気孔の平均孔径どうしの差分(d1−d2)、(d2−d3)、(d3−d4)、(d4−d5)、(d5−d6)、(d6−d7)、(d7−d8)、(d8−d9)、(d9−d10)、(d10−d11)のうちの最大値である。   The “inner / outer diameter difference (d1−d11)” in Table 1 is the difference between the average hole diameter d1 of the vent holes on the innermost circumference s1 and the average hole diameter d11 of the vent holes on the outermost circumference s11. (D1-d11). Further, the “maximum adjacent diameter difference Δdmax” is the difference Δd in the average hole diameter of the adjacent vent holes on the circumference, that is, the difference (d1−d2), (d2) between the average hole diameters of the adjacent vent holes on the circumference. -D3), (d3-d4), (d4-d5), (d5-d6), (d6-d7), (d7-d8), (d8-d9), (d9-d10), (d10-d11) ).

そして、各電極板を用いて、CVDによりSiO層を施した直径152mmのウエハに対し、チャンバ―内圧力:10−1Torr、ガス流量比:90sccmCHF+4sccmO+150sccmHe、高周波電力:300W、エッチング時間:1.0min.の条件で、プラズマエッチングを行った。そして、各ウエハのエッチング均一性を測定した。結果を表1に示す。
なお、ウエハのエッチング均一性は、ウエハの最も深くエッチングされた所の深さ:Aを測定し、さらに最も浅くエッチングされた所の深さ:Bを測定し、このA及びBの測定値を((A−B)/B)×100(%)の式に代入し求めた値である。
Then, using each electrode plate, a chamber internal pressure: 10 −1 Torr, a gas flow rate ratio: 90 sccm CHF 3 +4 sccmO 2 +150 sccm He, high frequency power: 300 W, etching on a wafer having a diameter of 152 mm with a SiO 2 layer formed by CVD. Time: 1.0 min. Plasma etching was performed under the conditions described above. Then, the etching uniformity of each wafer was measured. The results are shown in Table 1.
Note that the etching uniformity of the wafer is measured by measuring the depth A at the deepest etched portion of the wafer and measuring the depth B at the shallowest etched portion. This is a value obtained by substituting into the formula of ((A−B) / B) × 100 (%).

Figure 0006485270
Figure 0006485270

表1からわかるように、電極板の中心部から外周部にかけて通気孔の孔径を段階的に、また、同径の通気孔を3周以上連続させることなく緩やかに縮径して形成することで、プラズマ処理のエッチング均一性を向上させることができる。
また、最内周(円周s1)上の通気孔の平均孔径d1と最外周(円周s11)上の通気孔の平均孔径d11との内外径差(d1−d11)が0.010mm未満(従来例1)では、エッチングガスの流量を電極板の中心部から外周部にかけて均一化する十分な効果が得られず、エッチング均一性が低下した。一方、内外径差(d1−d11)が0.025mmを超える場合(比較例1〜4)も、エッチングガスの流量を電極板の中心部から外周部にかけて均一化することができず、エッチング均一性が低下した。また、隣接する円周上の通気孔の平均孔径の径差Δdが0.004mmを超える場合(比較例1〜4)や、同径の通気孔を3周以上連続させた場合(比較例4)も、エッチングガスの流量にばらつきが生じ、エッチング均一性を低下させることがわかった。
As can be seen from Table 1, the diameter of the air holes is gradually reduced from the center part to the outer periphery of the electrode plate, and the air holes having the same diameter are formed by gradually reducing the diameter without continuing three or more rounds. The etching uniformity of the plasma treatment can be improved.
Further, the inner / outer diameter difference (d1−d11) between the average hole diameter d1 of the vent holes on the innermost circumference (circumference s1) and the average hole diameter d11 of the vent holes on the outermost circumference (circumference s11) is less than 0.010 mm ( In Conventional Example 1), a sufficient effect of making the flow rate of the etching gas uniform from the center to the outer periphery of the electrode plate could not be obtained, and the etching uniformity was lowered. On the other hand, even when the inner / outer diameter difference (d1-d11) exceeds 0.025 mm (Comparative Examples 1 to 4), the etching gas flow rate cannot be made uniform from the center to the outer periphery of the electrode plate, and the etching is uniform. Decreased. Moreover, when the diameter difference Δd of the average hole diameters of the adjacent vent holes on the circumference exceeds 0.004 mm (Comparative Examples 1 to 4), or when the vent holes having the same diameter are continued three or more times (Comparative Example 4). However, it was found that the flow rate of the etching gas varies and the etching uniformity is lowered.

なお、本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。   In addition, this invention is not limited to the said embodiment, A various change can be added in the range which does not deviate from the meaning of this invention.

1 電極板(プラズマ処理装置用電極板)
2 真空チャンバー
3 絶縁体
4 架台
5 静電チャック
6 支持リング
7 ウエハ(被処理基板)
8 拡散部材
10 高周波電源
15 冷却板
1 Electrode plate (electrode plate for plasma processing equipment)
2 Vacuum chamber 3 Insulator 4 Base 5 Electrostatic chuck 6 Support ring 7 Wafer (substrate to be processed)
8 Diffusion member 10 High frequency power supply 15 Cooling plate

Claims (1)

電極板の厚さ方向に貫通する通気孔が複数設けられたプラズマ処理装置用電極板であって、
前記通気孔が、前記電極板の中心部から外周部にかけて少なくとも3周以上の同心円の円周上に並べられており、
前記電極板の中心部側の最内周上に形成された前記通気孔の平均孔径が直径0.1mm以上直径3.0mm以下とされ、
前記最内周上に形成された前記通気孔の平均孔径と最外周上に形成された前記通気孔の平均孔径との内外径差が0.010mm以上0.025mm以下とされ、
隣接する円周上の前記通気孔の平均孔径の径差が0.004mm以下で形成され、同径の前記通気孔が3周以上連続することなく、前記中心部から前記外周部にかけて段階的に縮径した前記通気孔が並べられていることを特徴とするプラズマ処理装置用電極板。
An electrode plate for a plasma processing apparatus provided with a plurality of ventilation holes penetrating in the thickness direction of the electrode plate,
The vents are arranged on a circumference of at least three or more concentric circles from the center to the outer periphery of the electrode plate;
The average hole diameter of the air holes formed on the innermost circumference on the center side of the electrode plate is 0.1 mm or more in diameter and 3.0 mm or less in diameter,
The inner and outer diameter difference between the average hole diameter of the vent holes formed on the innermost periphery and the average hole diameter of the vent holes formed on the outermost periphery is 0.010 mm or more and 0.025 mm or less,
The difference between the average hole diameters of the vent holes on adjacent circumferences is 0.004 mm or less, and the vent holes of the same diameter are formed in a stepwise manner from the center to the outer periphery without continuing three or more rounds. An electrode plate for a plasma processing apparatus, wherein the reduced-diameter vent holes are arranged.
JP2015148446A 2015-07-28 2015-07-28 Electrode plate for plasma processing equipment Active JP6485270B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015148446A JP6485270B2 (en) 2015-07-28 2015-07-28 Electrode plate for plasma processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015148446A JP6485270B2 (en) 2015-07-28 2015-07-28 Electrode plate for plasma processing equipment

Publications (2)

Publication Number Publication Date
JP2017028220A JP2017028220A (en) 2017-02-02
JP6485270B2 true JP6485270B2 (en) 2019-03-20

Family

ID=57949983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015148446A Active JP6485270B2 (en) 2015-07-28 2015-07-28 Electrode plate for plasma processing equipment

Country Status (1)

Country Link
JP (1) JP6485270B2 (en)

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6251223A (en) * 1985-08-30 1987-03-05 Hitachi Electronics Eng Co Ltd Dry-etching device
JPS6254442A (en) * 1985-09-03 1987-03-10 Hitachi Electronics Eng Co Ltd Dry etching process
JPS62199019A (en) * 1986-02-27 1987-09-02 Oki Electric Ind Co Ltd Wafer treatment device
JPH01149964A (en) * 1987-12-04 1989-06-13 Furukawa Electric Co Ltd:The Shower electrode for plasma cvd
JPH07161694A (en) * 1993-12-13 1995-06-23 Toppan Printing Co Ltd Dry etching equipment
JP2726005B2 (en) * 1994-07-20 1998-03-11 株式会社ジーティシー Film forming apparatus and film forming method
JPH0845910A (en) * 1994-07-29 1996-02-16 Nippon Steel Corp Plasma treatment device
JPH1154488A (en) * 1997-08-04 1999-02-26 Shin Etsu Chem Co Ltd Electrode plate
JPH11279778A (en) * 1998-03-30 1999-10-12 Seiko Epson Corp Etching apparatus and production of semiconductor device
JP3968869B2 (en) * 1998-05-13 2007-08-29 東京エレクトロン株式会社 Film forming method and film forming apparatus
JP2000183029A (en) * 1998-12-17 2000-06-30 Sony Corp Dry ashing apparatus
JP3898599B2 (en) * 2002-08-27 2007-03-28 京セラ株式会社 Manufacturing method of solar cell
JP4502639B2 (en) * 2003-06-19 2010-07-14 財団法人国際科学振興財団 Shower plate, plasma processing apparatus, and product manufacturing method
JP5119580B2 (en) * 2005-08-26 2013-01-16 パナソニック株式会社 Plasma processing method
JP4865672B2 (en) * 2007-10-22 2012-02-01 シャープ株式会社 Vapor phase growth apparatus and semiconductor device manufacturing method
US8291857B2 (en) * 2008-07-03 2012-10-23 Applied Materials, Inc. Apparatuses and methods for atomic layer deposition

Also Published As

Publication number Publication date
JP2017028220A (en) 2017-02-02

Similar Documents

Publication Publication Date Title
US7691205B2 (en) Substrate-supporting device
US10832931B2 (en) Electrostatic chuck with embossed top plate and cooling channels
KR20220087415A (en) Plasma processing apparatus and focus ring
TW201535581A (en) Plasma processing apparatus and focus ring
JP6173936B2 (en) Mounting table and plasma processing apparatus
JP3913244B2 (en) Substrate processing method
US11133156B2 (en) Electrode plate for plasma processing apparatus and method for regenerating electrode plate for plasma processing apparatus
JP2006120872A (en) Gaseous diffusion plate
JP6485270B2 (en) Electrode plate for plasma processing equipment
JP6570971B2 (en) Plasma processing apparatus and focus ring
TW202132617A (en) Pe-cvd apparatus and method
JP2001007090A (en) Focusing ring for plasma etching apparatus
JP6281276B2 (en) Method for manufacturing electrode plate for plasma processing apparatus
JP5088483B2 (en) Composite silicon ring for plasma etching equipment to support wafer
TWI817102B (en) Faceplate with localized flow control
JP5182136B2 (en) Electrode plate assembly for plasma processing apparatus and plasma processing apparatus
JP2019009271A (en) Electrode plate for plasma processing apparatus and manufacturing method of electrode plate for plasma processing apparatus
JP5742347B2 (en) Electrode plate for plasma processing equipment
JP2012222271A (en) Electrode plate for plasma processing apparatus
JP2012199428A (en) Electrode plate for plasma processing apparatus
JP4517370B2 (en) Silicon ring for plasma etching equipment
JP6287462B2 (en) Electrode plate for plasma processing apparatus and method for manufacturing the same
JP6267989B2 (en) Plasma processing method and capacitively coupled plasma processing apparatus
JP6853456B2 (en) How to regenerate the electrode plate for plasma processing equipment and the electrode plate for plasma processing equipment
TW202350020A (en) Apparatus for generating etchants for remote plasma processes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190204

R150 Certificate of patent or registration of utility model

Ref document number: 6485270

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150