JP7391370B2 - Water plasma generator, current-carrying member used therein, and water plasma generation method - Google Patents

Water plasma generator, current-carrying member used therein, and water plasma generation method Download PDF

Info

Publication number
JP7391370B2
JP7391370B2 JP2020011171A JP2020011171A JP7391370B2 JP 7391370 B2 JP7391370 B2 JP 7391370B2 JP 2020011171 A JP2020011171 A JP 2020011171A JP 2020011171 A JP2020011171 A JP 2020011171A JP 7391370 B2 JP7391370 B2 JP 7391370B2
Authority
JP
Japan
Prior art keywords
anode
cathode
current
water
carrying member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020011171A
Other languages
Japanese (ja)
Other versions
JP2021118112A (en
Inventor
博文 矢口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HELIX CO., LTD.
Original Assignee
HELIX CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HELIX CO., LTD. filed Critical HELIX CO., LTD.
Priority to JP2020011171A priority Critical patent/JP7391370B2/en
Publication of JP2021118112A publication Critical patent/JP2021118112A/en
Priority to JP2023194039A priority patent/JP7557903B2/en
Application granted granted Critical
Publication of JP7391370B2 publication Critical patent/JP7391370B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Plasma Technology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

本発明は、陰極と陽極との間で発生するアーク放電により水プラズマを噴射して分解対象物を分解処理する水プラズマ発生装置及びこれに用いられる通電部材、水プラズマ発生方法に関する。 The present invention relates to a water plasma generation device that decomposes an object to be decomposed by injecting water plasma using an arc discharge generated between a cathode and an anode, a current-carrying member used in the same, and a water plasma generation method.

水プラズマを利用して廃棄物を処理する装置として、特許文献1に記載された装置が知られている。特許文献1の装置では、プラズマ安定化媒体として水を用い、アーク放電により発生される水プラズマジェット気流に焼却灰を供給して当該焼却灰を溶解している。水プラズマジェット気流は水プラズマバーナより噴射され、この水プラズマバーナは、アーク放電を発生させるための陰極及び陽極と、陰極の端部側に配置されて渦水流を形成するチャンバとを備えている。 2. Description of the Related Art As an apparatus for treating waste using water plasma, an apparatus described in Patent Document 1 is known. In the apparatus of Patent Document 1, water is used as a plasma stabilizing medium, and the incinerated ash is supplied to a water plasma jet stream generated by arc discharge to dissolve the incinerated ash. The water plasma jet stream is injected by a water plasma burner, which includes a cathode and an anode for generating arc discharge, and a chamber disposed at the end of the cathode to form a swirling water stream. .

特許第3408779号公報Patent No. 3408779

前記水プラズマバーナでは、渦水流の中心の空洞を通じて陰極と陽極との間でアーク放電が行われることで水プラズマが噴射される。従って、アーク放電が発生されないと水プラズマを噴射できなくなる。ところが、水プラズマバーナでは、陰極のアーク発生側がチャンバの内部にある一方、陽極がチャンバの外部にあり、それらの距離が長くなるので、アーク放電の最初の発生(きっかけ、点火)を生じさせることが困難になる。この点において、本発明者は、試行錯誤を繰り返しながら鋭意研究を積み重ね、水プラズマ噴射でのアーク放電のきっかけを容易に生じさせるための構成及び方法を見出した。 In the water plasma burner, water plasma is injected by arc discharge between a cathode and an anode through a central cavity of a vortex water flow. Therefore, water plasma cannot be injected unless arc discharge is generated. However, in a water plasma burner, the arc-generating side of the cathode is inside the chamber, while the anode is outside the chamber, and the distance between them is long, so it is difficult to cause the first occurrence (trigger, ignition) of arc discharge. becomes difficult. In this regard, the present inventor has conducted extensive research through repeated trial and error, and has discovered a configuration and method for easily triggering arc discharge in water plasma injection.

本発明はかかる点に鑑みてなされたものであり、水プラズマを噴射するために陽極と陰極との間にアーク放電のきっかけを容易に発生させることができる水プラズマ発生装置及びこれに用いられる通電部材、水プラズマ発生方法を提供することを目的とする。 The present invention has been made in view of these points, and provides a water plasma generating device that can easily generate an arc discharge between an anode and a cathode to inject water plasma, and an energizing device used therein. The purpose of the present invention is to provide a member and a water plasma generation method.

本発明の水プラズマ発生装置は、渦水流の内部にアーク放電を通過させて水プラズマを噴射する水プラズマ発生装置であって、前記渦水流が内部で形成されて噴射口から前記水プラズマを噴射するチャンバと、前記チャンバの外側における前記噴射口の近傍位置に設けられた陽極と、前記チャンバ内に一端側が挿入され、前記陽極との間に前記渦水流を通過するアーク放電を発生させる陰極とを備え、前記チャンバの外周側には前記陽極と電気的に並列に接続される補助陽極部が設けられ、該補助陽極部は、前記陰極の一端に接触して前記噴射口を通過する通電部材を保持して該通電部材と通電可能に設けられ、前記補助陽極部は、前記チャンバの外周側に取り付けられるベースと、該ベースと前記通電部材を挟み込む挟持部材と、該挟持部材を前記ベース側に押さえる力を加える弾性部材とを備えていることを特徴とする。 The water plasma generating device of the present invention is a water plasma generating device that injects water plasma by passing an arc discharge inside a vortex water flow, wherein the vortex water flow is formed inside and the water plasma is injected from an injection port. an anode provided outside the chamber near the injection port; and a cathode having one end inserted into the chamber and generating an arc discharge passing through the vortex water flow between the anode and the anode. An auxiliary anode section is provided on the outer peripheral side of the chamber and is electrically connected in parallel with the anode, and the auxiliary anode section includes an energizing member that contacts one end of the cathode and passes through the injection port. The auxiliary anode section is provided so as to be able to conduct electricity with the current-carrying member while holding the base, and the auxiliary anode portion includes a base attached to the outer peripheral side of the chamber, a clamping member that sandwiches the base and the current-carrying member, and a clamping member that holds the clamping member on the base side. and an elastic member that applies a pressing force to the body .

この構成によれば、通電部材を陰極に接触させた状態で補助陽極部によって保持してから、陽極、補助陽極部及び陰極に電圧を加えて通電部材に通電させることで、かかる通電の発熱により通電部材を気化することができる。そして、この気化の直後または略同時に、通電部材に流れた電流によって陽極及び陰極の間にアーク放電を発生させることができる。言い換えると、通電によって気化される通電部材をアーク放電のきっかけにすることができ、該きっかけを容易且つ安定して発生させることができる。 According to this configuration, the current-carrying member is held in contact with the cathode by the auxiliary anode section, and then a voltage is applied to the anode, the auxiliary anode section, and the cathode to energize the current-carrying member. The current-carrying member can be vaporized. Immediately after or substantially simultaneously with this vaporization, arc discharge can be generated between the anode and the cathode by the current flowing through the current-carrying member. In other words, the current-carrying member that is vaporized by energization can be used as a trigger for arc discharge, and the trigger can be generated easily and stably.

また、本発明の水プラズマ発生装置に用いられる通電部材は、前記陰極の一端に接触して前記噴射口を通過する挿入軸部と、前記補助陽極部に保持される保持軸部と、前記挿入軸部及び前記保持軸部を連結する連結軸部とを備えた軸状体によって形成されることを特徴とする。 Further, the current-carrying member used in the water plasma generator of the present invention includes an insertion shaft portion that contacts one end of the cathode and passes through the injection port, a holding shaft portion that is held by the auxiliary anode portion, and the insertion shaft portion that is held by the auxiliary anode portion. It is characterized in that it is formed by a shaft-shaped body including a shaft portion and a connecting shaft portion that connects the holding shaft portion.

また、本発明の水プラズマ発生方法は、前記水プラズマ発生装置を用いた水プラズマ発生方法であって、前記通電部材を前記噴射口に通過させて前記陰極の一端に接触させた状態で、該通電部材を前記補助陽極部に保持させる保持工程と、前記保持工程と前後して、前記チャンバの内部に前記渦水流を形成させる渦水流形成工程と、前記渦水流形成工程後、前記陽極、前記補助陽極部及び前記陰極に電圧を加えて前記通電部材に通電させ、該通電の発熱にて前記通電部材を気化して前記陽極及び前記陰極の間にアーク放電を発生させ、該アーク放電を前記渦水流の内部に通過させて前記水プラズマを噴射する噴射工程とを行うことを特徴とする。 Further, the water plasma generation method of the present invention is a water plasma generation method using the water plasma generation device, in which the current-carrying member is passed through the injection port and brought into contact with one end of the cathode. a holding step in which the current-carrying member is held in the auxiliary anode section; a vortex water flow forming step in which the vortex water flow is formed inside the chamber before and after the holding step; and after the vortex water flow formation step, the anode, the A voltage is applied to the auxiliary anode and the cathode to energize the current-carrying member, and the heat generated by the energization vaporizes the current-carrying member to generate an arc discharge between the anode and the cathode. and an injection step of injecting the water plasma by passing it through a vortex water flow.

本発明によれば、水プラズマを噴射するために陽極と陰極との間にアーク放電のきっかけを容易に発生させることができる。 According to the present invention, an arc discharge trigger can be easily generated between an anode and a cathode to inject water plasma.

実施の形態に係る水プラズマ発生装置及びその周辺装置の説明図である。FIG. 1 is an explanatory diagram of a water plasma generator and its peripheral devices according to an embodiment. チャンバ及び補助陽極部の側断面図である。FIG. 3 is a side sectional view of the chamber and the auxiliary anode section. チャンバの平面断面図である。FIG. 3 is a plan cross-sectional view of the chamber. チャンバの縦断面図である。FIG. 3 is a longitudinal cross-sectional view of the chamber. アーク放電及び水プラズマが発生した状態の説明図である。It is an explanatory view of a state where arc discharge and water plasma are generated. チャンバ及び補助陽極部の概略斜視図である。It is a schematic perspective view of a chamber and an auxiliary anode part. 図7A及び図7Bは水プラズマ発生装置の回路図である。7A and 7B are circuit diagrams of a water plasma generator. 治具を用いた位置決め方法の説明図である。FIG. 3 is an explanatory diagram of a positioning method using a jig.

以下、本発明の実施の形態について添付図面を参照して詳細に説明する。なお、実施の形態に係る各構成は、以下に示す構成に限定されず、適宜変更が可能である。また、以下の図においては、説明の便宜上、一部の構成を省略することがある。 Embodiments of the present invention will be described in detail below with reference to the accompanying drawings. Note that each configuration according to the embodiment is not limited to the configuration shown below, and can be modified as appropriate. Further, in the following figures, some configurations may be omitted for convenience of explanation.

図1は、実施の形態に係る水プラズマ発生装置及びその周辺装置の説明図である。なお、以下の説明において、特に明示しない限り、「上」、「下」、「左」、「右」、「前」、「後」は、各図において矢印で示した方向を基準として用いる。なお、図1では、紙面手前側が「左」、奥行側が「右」となる。但し、以下の実施の形態での各構成の向きは、一例にすぎず、任意の向きに変更することができる。 FIG. 1 is an explanatory diagram of a water plasma generator and its peripheral devices according to an embodiment. In the following description, unless otherwise specified, "top", "bottom", "left", "right", "front", and "back" are used with reference to the direction indicated by the arrow in each figure. In FIG. 1, the front side of the page is the "left" and the depth side is the "right." However, the orientation of each component in the following embodiments is only an example, and can be changed to any orientation.

図1は、本実施の形態に係る水プラズマ発生装置及びその周辺装置の説明図である。図1に示すように、水プラズマ発生装置12は、前後に延びる陰極16と、陰極16の前端側(一端側)が挿入されるチャンバ17と、チャンバ17の外側であって斜め下前方に設けられる鉄製円板状の陽極18と、陽極18を支持する陽極支持部19とを備えて構成されている。また、水プラズマ発生装置12は、チャンバ17に設けられる補助陽極部40を備えているが、補助陽極部40の詳細な構成については後述する。 FIG. 1 is an explanatory diagram of a water plasma generator and its peripheral devices according to the present embodiment. As shown in FIG. 1, the water plasma generator 12 includes a cathode 16 extending back and forth, a chamber 17 into which the front end side (one end side) of the cathode 16 is inserted, and a chamber 17 provided outside the chamber 17 and diagonally downward and forward. The anode 18 is configured to include an anode 18 in the shape of an iron disc, and an anode support portion 19 that supports the anode 18. Further, the water plasma generator 12 includes an auxiliary anode section 40 provided in the chamber 17, and the detailed configuration of the auxiliary anode section 40 will be described later.

陰極16は、炭素からなる丸棒によって形成され、送りねじ軸機構21を介して前後方向に変位してチャンバ17への挿入量を調整可能となっている。チャンバ17は、陽極支持部19の上方に支持板22を介して支持されている。陽極支持部19の後端には、前後に延びる延長筒体23が連結され、延長筒体23の後端にはモータ24が設けられている。モータ24の駆動力は、延長筒体23及び陽極支持部19を通じて陽極18に伝達され、陽極18が回転可能に設けられている。 The cathode 16 is formed of a round rod made of carbon, and can be displaced in the front-rear direction via a feed screw shaft mechanism 21 to adjust the amount of insertion into the chamber 17. The chamber 17 is supported above the anode support portion 19 via a support plate 22 . An extension cylinder 23 extending back and forth is connected to the rear end of the anode support part 19, and a motor 24 is provided at the rear end of the extension cylinder 23. The driving force of the motor 24 is transmitted to the anode 18 through the extension cylinder 23 and the anode support 19, and the anode 18 is rotatably provided.

チャンバ17には、供給ポンプ26を介して冷却水が供給され、また、高圧ポンプ27を介してプラズマ用水が供給される。プラズマ用水の一部は、チャンバ17の前端側から水プラズマのジェット気流として噴射される。チャンバ17に供給された冷却水と、噴射されなかったプラズマ用水とは、真空ポンプ28を介して吸引される。陽極支持部19においても、陽極18の内部を流す冷却水が供給ポンプ26を介して供給され、陽極18にて吸熱を行った冷却水が真空ポンプ28を介して吸引される。チャンバ17の詳細な構成については後述する。 Cooling water is supplied to the chamber 17 via a supply pump 26 , and plasma water is also supplied via a high-pressure pump 27 . A portion of the plasma water is injected from the front end side of the chamber 17 as a jet stream of water plasma. The cooling water supplied to the chamber 17 and the plasma water that was not injected are sucked through the vacuum pump 28. Also in the anode support section 19 , cooling water flowing inside the anode 18 is supplied via the supply pump 26 , and the cooling water that has absorbed heat at the anode 18 is sucked via the vacuum pump 28 . The detailed configuration of the chamber 17 will be described later.

水プラズマ発生装置12の前方には、供給装置30を構成するノズル31が設けられている。ノズル31は、不図示の配管を介して送出装置32に接続されており、送出装置32から粒状や粉状、液状の分解対象物が送出される。ノズル31は、送出される分解対象物を水プラズマ発生装置12から噴射される水プラズマのジェット気流に投入(供給)する。かかる供給装置30及び水プラズマ発生装置12に加え、水プラズマによって分解処理された分解対象物を含む高温のガスを冷却してから中和反応等によって安全な排気ガスに処理するガス処理装置(不図示)を設けることで、分解処理装置を構成することができる。該分解処理装置においては、上述した各装置を貨物輸送用のコンテナ(筐体)に収容した構成としたり、トラックの荷台等に搭載した構成としたりしてもよい。 A nozzle 31 constituting a supply device 30 is provided in front of the water plasma generator 12 . The nozzle 31 is connected to a delivery device 32 via a pipe (not shown), and granular, powdery, or liquid decomposition targets are delivered from the delivery device 32. The nozzle 31 injects (supplies) the delivered decomposition target into a jet stream of water plasma ejected from the water plasma generator 12 . In addition to the supply device 30 and the water plasma generator 12, there is also a gas treatment device (inorganic) that cools high-temperature gas containing substances to be decomposed by water plasma and then processes it into safe exhaust gas by neutralization reaction or the like. ), a decomposition treatment apparatus can be configured. The decomposition processing apparatus may have a structure in which each of the above-mentioned devices is housed in a container (housing) for transporting cargo, or may be mounted on a truck bed or the like.

次いで、チャンバ17の内部構造について図2ないし図4を参照して説明する。図2は、チャンバ及び補助陽極部の側断面図、図3は、チャンバの平面断面図、図4は、チャンバの縦断面図である。図5は、アーク放電及び水プラズマが発生した状態の説明図である。 Next, the internal structure of the chamber 17 will be explained with reference to FIGS. 2 to 4. FIG. 2 is a side sectional view of the chamber and the auxiliary anode section, FIG. 3 is a plan sectional view of the chamber, and FIG. 4 is a longitudinal sectional view of the chamber. FIG. 5 is an explanatory diagram of a state in which arc discharge and water plasma are generated.

図2及び図3に示すように、水プラズマ発生装置12を構成するチャンバ17は、前後方向に延びる円筒内周面を形成するチャンバ本体70と、チャンバ本体70の前方に装着された前壁部71とを備え、それらの内側に水プラズマを発生させるための内部空間72を形成している。前壁部71には内部空間72に連通する開口が形成され、この開口を前方から塞ぐように噴射口形成板74が取り付けられている。噴射口形成板74には水プラズマを噴射する噴射口75が形成されている。 As shown in FIGS. 2 and 3, the chamber 17 constituting the water plasma generator 12 includes a chamber body 70 forming a cylindrical inner peripheral surface extending in the front-rear direction, and a front wall portion attached to the front of the chamber body 70. 71, and an internal space 72 for generating water plasma is formed inside them. An opening communicating with the internal space 72 is formed in the front wall portion 71, and an injection port forming plate 74 is attached so as to close this opening from the front. A jet port 75 for jetting water plasma is formed in the jet port forming plate 74 .

チャンバ本体70の内部には、前方寄りの位置に周方向に延びるリブ70aが形成され、このリブ70aより前側にプラズマ用水供給路77が形成されている。また、前壁部71には、その開口内に流れ込むプラズマ用水を排出するプラズマ用水排出路78が形成されている。プラズマ用水供給路77には、高圧ポンプ27から高圧なプラズマ用水が供給され、プラズマ用水排出路78からは真空ポンプ28の負圧によってプラズマ用水が吸引される。 Inside the chamber body 70, a circumferentially extending rib 70a is formed near the front, and a plasma water supply path 77 is formed in front of the rib 70a. Further, a plasma water discharge passage 78 is formed in the front wall portion 71 to discharge plasma water flowing into the opening thereof. High-pressure plasma water is supplied from the high-pressure pump 27 to the plasma water supply path 77 , and plasma water is sucked from the plasma water discharge path 78 by the negative pressure of the vacuum pump 28 .

チャンバ本体70のリブ70aより後側には冷却水供給路80及び冷却水排出路81(図3では不図示)が形成されている。冷却水供給路80には、供給ポンプ26から冷却水が供給され、冷却水排出路81からは真空ポンプ28の負圧によって冷却水が吸引される。プラズマ用水供給路77、冷却水供給路80及び冷却水排出路81は、円筒内周面となる丸穴状に形成されている。 A cooling water supply path 80 and a cooling water discharge path 81 (not shown in FIG. 3) are formed behind the rib 70a of the chamber body 70. Cooling water is supplied to the cooling water supply path 80 from the supply pump 26 , and cooling water is sucked from the cooling water discharge path 81 by negative pressure of the vacuum pump 28 . The plasma water supply path 77, the cooling water supply path 80, and the cooling water discharge path 81 are formed in the shape of a round hole that forms the inner peripheral surface of the cylinder.

図4に示すように、プラズマ用水供給路77は、縦断面視で円形となる内部空間72の下部で連通して左右方向に延出している。具体的には、内部空間72の下部接線方向にプラズマ用水供給路77が延在している。これにより、プラズマ用水供給路77から流れ込むプラズマ用水が内部空間72の周方向に沿って滑らかに流れる。 As shown in FIG. 4, the plasma water supply path 77 communicates with the lower part of the internal space 72, which is circular in longitudinal cross-sectional view, and extends in the left-right direction. Specifically, a plasma water supply path 77 extends in the lower tangential direction of the internal space 72 . Thereby, the plasma water flowing from the plasma water supply path 77 flows smoothly along the circumferential direction of the internal space 72.

水プラズマ発生装置12は、チャンバ17内に収容される概略筒状の渦水流発生器90を備えている。渦水流発生器90は、内部空間72と中心軸線位置C1が一致するように配置されている。なお、この中心軸線位置C1は、上述した噴射口75の中心軸線位置と一致する。縦断面視で内部空間72は、その内周面と渦水流発生器90の外周面との間で円状の空間を形成し、上述のように内部空間72に流れ込んだプラズマ用水は、円状の空間を旋回するように流れる。 The water plasma generator 12 includes a generally cylindrical vortex water flow generator 90 housed within the chamber 17 . The vortex water flow generator 90 is arranged so that the inner space 72 and the center axis position C1 coincide with each other. Note that this central axis position C1 coincides with the central axis position of the injection port 75 described above. In a vertical cross-sectional view, the internal space 72 forms a circular space between its inner circumferential surface and the outer circumferential surface of the vortex water flow generator 90, and the plasma water flowing into the internal space 72 as described above forms a circular space. It flows in a swirling manner through the space.

渦水流発生器90には、内外で連通するように貫通する複数の通路91が形成されている。通路91は、渦水流発生器90の周方向に等角度毎(本実施の形態では120°毎)に形成されている。また、通路91は、前後方向に所定間隔毎に形成されている(図2及び図3参照)。各通路91は、渦水流発生器90の厚さ方向に対して傾斜する方向に延出している。具体的には、各通路91は、連通位置における渦水流発生器90の内周接線方向に延在している。また、通路91の外部から内部にプラズマ用水が流れる方向と、渦水流発生器90の外部でプラズマ用水が旋回して流れる方向とでなす角度θは鋭角となっている。 A plurality of passages 91 are formed in the vortex water flow generator 90 so as to communicate between the inside and the outside. The passages 91 are formed at equal angles in the circumferential direction of the eddy water flow generator 90 (every 120 degrees in this embodiment). Further, the passages 91 are formed at predetermined intervals in the front-rear direction (see FIGS. 2 and 3). Each passage 91 extends in a direction oblique to the thickness direction of the vortex generator 90 . Specifically, each passage 91 extends in a tangential direction to the inner circumference of the vortex water flow generator 90 at the communication position. Further, the angle θ formed between the direction in which the plasma water flows from the outside to the inside of the passage 91 and the direction in which the plasma water swirls and flows outside the vortex water flow generator 90 is an acute angle.

上記のように通路91を形成したので、渦水流発生器90の外部でチャンバ本体70の内周面に沿って流れるプラズマ用水は、通路91を通過して渦水流発生器90の内部に流れ込む。そして、プラズマ用水が渦水流発生器90の内周面に沿って滑らかに流れるようになり、縦断面視で中心軸線位置C1に空洞を形成するように円状に旋回する渦水流が形成される。 Since the passage 91 is formed as described above, the plasma water flowing along the inner peripheral surface of the chamber body 70 outside the vortex water flow generator 90 passes through the passage 91 and flows into the inside of the vortex water flow generator 90. Then, the plasma water flows smoothly along the inner peripheral surface of the vortex water flow generator 90, and a vortex water flow is formed that swirls in a circular shape so as to form a cavity at the central axis position C1 in a longitudinal section view. .

このように渦水流が形成された状態で、陰極16及び陽極18に直流電力が供給されると、該渦水流に形成された空洞の内部を通過するよう、図5に示すように、陽極18と陰極16との間でアーク放電ARが発生するようになる。このアーク放電ARの発生によって、渦水流を形成するプラズマ用水が解離、電離されて高エネルギーとなる水プラズマのジェット気流Jが噴射口75から噴射される。ここで、陽極18は、その上端がチャンバ17の外側における噴射口75の斜め下前方の近傍に位置するように設けられる。 When DC power is supplied to the cathode 16 and the anode 18 with the vortex water flow formed in this way, the anode 18 is caused to pass through the cavity formed in the vortex water flow, as shown in FIG. Arc discharge AR begins to occur between the electrode 16 and the cathode 16. Due to the generation of this arc discharge AR, the plasma water forming the eddy water flow is dissociated and ionized, and a jet stream J of water plasma having high energy is injected from the injection port 75. Here, the anode 18 is provided such that its upper end is located near the diagonally lower front of the injection port 75 on the outside of the chamber 17 .

噴射口75から噴射される水プラズマのジェット気流Jは極めて高温で超高速な流体となり、各ノズル31の先端から分解対象物を投入すると、その分解対象物は分解される。ここで、分解対象物を有害廃棄物とする場合には、PCB、硫酸ピッチ、アスベスト、フロン、ハロン、タイヤ、各種ゴミ等を例示することができ、粒状や粉状、液状として供給装置30を介して供給される。このような有害廃棄物を投入しても、無害化した廃棄物に分解することができる。 The jet stream J of water plasma injected from the injection port 75 becomes an extremely high-temperature and ultra-high-speed fluid, and when the object to be decomposed is introduced from the tip of each nozzle 31, the object to be decomposed is decomposed. Here, when the substance to be decomposed is hazardous waste, examples thereof include PCBs, sulfuric acid pitch, asbestos, fluorocarbons, halons, tires, various types of garbage, etc. Supplied via Even if such hazardous waste is input, it can be decomposed into harmless waste.

ここで、本実施の形態の水プラズマ発生装置12は、上述したように渦水流を形成してからアーク放電ARのきっかけを生じさせる構成として補助陽極部40を備えている。図6は、チャンバ、補助陽極部及び治具の概略斜視図である。図2及び図6に示すように、補助陽極部40は、チャンバ17の外周側に設けられており、補助陽極部40によって通電部材60が保持されている。 Here, the water plasma generator 12 of the present embodiment includes the auxiliary anode section 40 as a configuration that generates the arc discharge AR after forming the vortex water flow as described above. FIG. 6 is a schematic perspective view of the chamber, the auxiliary anode section, and the jig. As shown in FIGS. 2 and 6, the auxiliary anode section 40 is provided on the outer peripheral side of the chamber 17, and the current-carrying member 60 is held by the auxiliary anode section 40.

補助陽極部40は、チャンバ本体70の上面70bに取り付けられる板状のベース41と、ベース41と共に通電部材60を挟み込む挟持部材42と、挟持部材42をベース41側に押さえる力を加える弾性部材43とを備えている。 The auxiliary anode section 40 includes a plate-shaped base 41 attached to the upper surface 70b of the chamber body 70, a clamping member 42 that clamps the current-carrying member 60 together with the base 41, and an elastic member 43 that applies force to press the clamping member 42 toward the base 41. It is equipped with

ベース41は、銅等の導電体からなる金属板によって構成され、コネクタ等を介して直流電源と通電するための配線(何れも不図示)が接続される。弾性部材43は、前後方向に沿って延びる帯状の板ばねによって形成される。弾性部材43の後端側(一端側)は、ねじ(締結部材)45を介してベース41に連結される。弾性部材43の前端側(他端側)は挟持部材42に連結される。 The base 41 is constituted by a metal plate made of a conductor such as copper, and is connected to a DC power supply and wiring (none of which are shown) for energization via a connector or the like. The elastic member 43 is formed by a band-shaped leaf spring extending in the front-rear direction. The rear end side (one end side) of the elastic member 43 is connected to the base 41 via a screw (fastening member) 45. The front end side (other end side) of the elastic member 43 is connected to the clamping member 42 .

挟持部材42は、弾性部材43の前端に連結されて前方に延びる連結部42aと、連結部42aの前端からベース41の上面に向かって斜め前方に延びる間隔形成部42bとを備えている。また、挟持部材42は、間隔形成部42bの下端からベース41の上面に沿って平行となる前方に延びる接触片部42cと、接触片部42cの前端(弾性部材43と反対側)から斜め上前方に立ち上がる立ち上がり部42dとを備えている。 The holding member 42 includes a connecting portion 42a that is connected to the front end of the elastic member 43 and extends forward, and a gap forming portion 42b that extends diagonally forward toward the upper surface of the base 41 from the front end of the connecting portion 42a. Furthermore, the holding member 42 has a contact piece part 42c extending parallel to the front along the upper surface of the base 41 from the lower end of the interval forming part 42b, and a contact piece part 42c extending diagonally upward from the front end (on the opposite side of the elastic member 43) of the contact piece part 42c. It is provided with a rising portion 42d rising forward.

挟持部材42は、間隔形成部42bが形成されることで、連結部42a及び弾性部材43の前端側がベース41の上面から所定距離離れた位置に配置される。従って、無負荷状態で平坦な板ばねとなる弾性部材43は、前方に向かうに従ってベース41の上面から離れるように弾性変形し、弾性部材43の前端側を下方向に押さえ付ける弾性力を発揮する。よって、弾性部材43は、挟持部材42をベース41側に押さえる力を加えている。 In the holding member 42, the space forming part 42b is formed, so that the front end sides of the connecting part 42a and the elastic member 43 are arranged at a position separated from the upper surface of the base 41 by a predetermined distance. Therefore, the elastic member 43, which becomes a flat leaf spring in an unloaded state, elastically deforms away from the upper surface of the base 41 toward the front, and exerts an elastic force that presses the front end side of the elastic member 43 downward. . Therefore, the elastic member 43 applies a force that presses the holding member 42 toward the base 41 side.

立ち上がり部42dは、接触片部42cの前端からベース41と交差する方向に延出しており、接触片部42cとベース41との間に通電部材60を挿入する際、作業者の指先による掴み代として用いることができる。 The rising portion 42d extends from the front end of the contact piece portion 42c in a direction intersecting the base 41, and when inserting the current-carrying member 60 between the contact piece portion 42c and the base 41, the rising portion 42d is provided with a grip margin by the operator's fingertips. It can be used as

図7Aは、上記水プラズマ発生装置の回路図である。補助陽極部40は、陽極18と電気的に並列に接続される。そして、補助陽極部40及び陽極18は、直流発電機等の直流電源47の正極側に接続される。陰極16は、スイッチ48を介して直流電源47の陰極側に接続される。 FIG. 7A is a circuit diagram of the water plasma generator. The auxiliary anode section 40 is electrically connected in parallel with the anode 18. The auxiliary anode section 40 and the anode 18 are connected to the positive electrode side of a DC power source 47 such as a DC generator. Cathode 16 is connected to the cathode side of DC power supply 47 via switch 48 .

図2及び図6に戻り、通電部材60は、1本の軸状体における2箇所位置を略直角に屈曲させて形成され、チャンバ17の噴射口75を通過しつつ、補助陽極部40によって保持される。通電部材60は、前後方向に延びて噴射口75を通過する挿入軸部61と、挿入軸部61の前端に連なって上方に延びる連結軸部62と、連結軸部62の上端に連なって後方に延びる保持軸部63とを備えている。連結軸部62は、挿入軸部61の前端及び保持軸部63の前端を連結している。通電部材60は、本実施の形態ではアルミニウムを含む合金とされる。 Returning to FIGS. 2 and 6, the current-carrying member 60 is formed by bending two positions of one shaft-like body at approximately right angles, and is held by the auxiliary anode part 40 while passing through the injection port 75 of the chamber 17. be done. The current-carrying member 60 includes an insertion shaft portion 61 that extends in the front-rear direction and passes through the injection port 75, a connecting shaft portion 62 that extends upwardly following the front end of the insertion shaft portion 61, and a connecting shaft portion 62 that extends rearwardly and continues from the upper end of the connecting shaft portion 62. The holding shaft portion 63 is provided. The connecting shaft portion 62 connects the front end of the insertion shaft portion 61 and the front end of the holding shaft portion 63. In this embodiment, the current-carrying member 60 is made of an alloy containing aluminum.

挿入軸部61は、その後端が陰極16の前端(一端)に接触した状態で噴射口75を通過し、後端(他端)側がチャンバ17における噴射口形成板74の前方に突出する長さに設けられる。また、挿入軸部61の後端が陰極16の前端に接触した状態で、連結軸部62がチャンバ17の前面となる噴射口形成板74から前方に離れ、保持軸部63が補助陽極部40においてベース41と挟持部材42とで上下方向から挟まれて保持される。 The insertion shaft portion 61 passes through the injection port 75 with its rear end in contact with the front end (one end) of the cathode 16 , and has a length such that its rear end (other end) side protrudes forward of the injection port forming plate 74 in the chamber 17 . established in Further, with the rear end of the insertion shaft 61 in contact with the front end of the cathode 16, the connecting shaft 62 moves forward away from the injection port forming plate 74, which is the front surface of the chamber 17, and the holding shaft 63 moves toward the auxiliary anode 40. In this case, the base 41 and the holding member 42 sandwich and hold it from above and below.

次に、本実施の形態の水プラズマ発生装置12における陰極16及び陽極18の位置決め方法について説明する。かかる位置決め方法においては、図8に示す水プラズマ発生装置用治具100(以下、「治具100」とする。)が用いられる。図8は、治具を用いた位置決め方法の説明図である。図8に示すように、治具100は、太さ(延出方向に直交する断面形状)が段階的に異なる軸状体によって形成される。治具100は、陰極位置調整部101、陽極位置調整部102及び把持部103を備えている。本実施の形態では、陰極位置調整部101、陽極位置調整部102及び把持部103はそれぞれ断面形状が円形となる丸棒状に延出して形成され、それぞれの中心軸位置が同一に配置される。 Next, a method for positioning the cathode 16 and the anode 18 in the water plasma generator 12 of this embodiment will be explained. In this positioning method, a water plasma generator jig 100 (hereinafter referred to as "jig 100") shown in FIG. 8 is used. FIG. 8 is an explanatory diagram of a positioning method using a jig. As shown in FIG. 8, the jig 100 is formed of a shaft-like body whose thickness (cross-sectional shape perpendicular to the extending direction) varies in stages. The jig 100 includes a cathode position adjustment section 101, an anode position adjustment section 102, and a grip section 103. In this embodiment, the cathode position adjustment section 101, the anode position adjustment section 102, and the grip section 103 are each formed in an extending round bar shape with a circular cross-sectional shape, and their central axes are arranged at the same position.

陰極位置調整部101は、延出方向に直交する断面形状が噴射口75の開口形状と概略同一または若干小さい形状に形成されている。本実施の形態では、噴射口75が丸穴状に形成され、陰極位置調整部101が丸棒状に形成されるので、それらの径寸法が概略同一または陰極位置調整部101の方が若干小さい径寸法に形成されている。これにより、陰極位置調整部101を噴射口75に挿入可能となり、該挿入した状態にて、噴射口75に挿入される陰極位置調整部101が延出方向に交差する前後方向や左右方向にがたつきが生じることが抑制される。 The cathode position adjustment section 101 has a cross-sectional shape perpendicular to the extending direction that is approximately the same as or slightly smaller than the opening shape of the injection port 75 . In this embodiment, the injection port 75 is formed in the shape of a round hole, and the cathode position adjustment section 101 is formed in the shape of a round rod. formed to the dimensions. As a result, the cathode position adjusting section 101 can be inserted into the injection port 75, and in the inserted state, the cathode position adjustment section 101 inserted into the injection port 75 can be inserted in the front-rear direction and the left-right direction intersecting the extending direction. The occurrence of sagging is suppressed.

陰極位置調整部101は、陽極位置調整部102側(図8では前側)を基端、その反対側(図8では後側)を先端として所定方向に直線的に延出している。陰極位置調整部101の延出方向長さは、チャンバ17の噴射口75近傍となる噴射口形成板74の前方外面から、適正な前後位置となる陰極16の前端(一端)までの間の前後長さと同一とされる。よって、陰極位置調整部101の基端を噴射口形成板74の前方外面に揃え、陰極位置調整部101の先端に陰極16の前端を接触した状態で、陰極16が適正な前後位置となる。 The cathode position adjustment section 101 extends linearly in a predetermined direction, with the anode position adjustment section 102 side (front side in FIG. 8) as a base end and the opposite side (rear side in FIG. 8) as a tip. The length of the cathode position adjustment section 101 in the extending direction is defined as the length from the front outer surface of the injection port forming plate 74 near the injection port 75 of the chamber 17 to the front end (one end) of the cathode 16 at the appropriate longitudinal position. It is assumed to be the same as the length. Therefore, with the base end of the cathode position adjustment section 101 aligned with the front outer surface of the injection port forming plate 74 and the front end of the cathode 16 in contact with the tip of the cathode position adjustment section 101, the cathode 16 is at an appropriate front-rear position.

陽極位置調整部102は、陰極位置調整部101の基端に連なって設けられる。陽極位置調整部102は、陰極位置調整部101及び噴射口75の開口径より大径に形成されている。言い換えると、陽極位置調整部102は、延出方向に直交(交差)する方向にて陰極位置調整部101の外周面からはみ出す形状に設けられている。これにより、陰極位置調整部101を噴射口75に挿入していくと、噴射口形成板74の前方外面に陽極位置調整部102が接触可能となり、該接触によって治具100全体の後方への移動規制するストッパとして機能する。 The anode position adjustment section 102 is provided continuously from the base end of the cathode position adjustment section 101 . The anode position adjustment section 102 is formed to have a larger diameter than the opening diameters of the cathode position adjustment section 101 and the injection port 75 . In other words, the anode position adjustment section 102 is provided in a shape that protrudes from the outer peripheral surface of the cathode position adjustment section 101 in a direction perpendicular to (crosses) the extension direction. As a result, when the cathode position adjustment section 101 is inserted into the injection port 75, the anode position adjustment section 102 can come into contact with the front outer surface of the injection port formation plate 74, and this contact causes the entire jig 100 to move rearward. Functions as a regulating stopper.

陽極位置調整部102の径寸法は、陰極位置調整部101を噴射口75に挿入した状態で、適正な上下位置となる陽極18の上端面(噴射口75側の端面)に陽極位置調整部102の最下端が接触する位置とされる。よって、陰極位置調整部101を噴射口75に挿入し、チャンバ17の外側にて陽極位置調整部102の最下端を陽極18の上端面を接触した状態で、陽極18が適正な上下位置となる。 The diameter of the anode position adjustment section 102 is such that when the cathode position adjustment section 101 is inserted into the injection port 75, the anode position adjustment section 102 is placed on the upper end surface (the end surface on the injection port 75 side) of the anode 18, which is in the appropriate vertical position. This is the position where the lowest end of the Therefore, when the cathode position adjustment section 101 is inserted into the injection port 75 and the lowermost end of the anode position adjustment section 102 is in contact with the upper end surface of the anode 18 outside the chamber 17, the anode 18 is placed in the appropriate vertical position. .

把持部103は、陽極位置調整部102における陰極位置調整部101と反対側となる位置に設けられている。把持部103は、陽極位置調整部102より大径に形成したり、表面に凹凸を形成したりすることによって、作業者が把持し易いように形成される。 The grip section 103 is provided at a position opposite to the cathode position adjustment section 101 in the anode position adjustment section 102 . The gripping part 103 is formed to have a larger diameter than the anode position adjustment part 102, or has an uneven surface, so that it can be easily gripped by an operator.

治具100を用いて陰極16を位置決めする場合、噴射口75に陰極位置調整部101を挿入し、噴射口形成板74の前方外面に陽極位置調整部102の端面を接触する。これにより、噴射口形成板74の前方外面と、陰極位置調整部101の基端との前後位置が一致する。この状態で、陰極16を前後方向に変位し、陰極位置調整部101の先端に陰極16の前端を接触することで、陰極16を適正な前後位置に位置決めできる。 When positioning the cathode 16 using the jig 100, the cathode position adjustment section 101 is inserted into the injection port 75, and the end surface of the anode position adjustment section 102 is brought into contact with the front outer surface of the injection port formation plate 74. As a result, the forward and backward positions of the front outer surface of the injection port forming plate 74 and the base end of the cathode position adjusting section 101 are aligned. In this state, by displacing the cathode 16 in the front-rear direction and bringing the front end of the cathode 16 into contact with the tip of the cathode position adjustment section 101, the cathode 16 can be positioned at an appropriate front-rear position.

そして、噴射口75に陰極位置調整部101を挿入した状態を維持しつつ、陽極18を上下方向に変位し、陽極位置調整部102の最下端に陽極18の上端面を接触することで、陽極18を適正な前後位置に位置決めできる。 Then, while maintaining the state in which the cathode position adjustment section 101 is inserted into the injection port 75, the anode 18 is displaced in the vertical direction, and the upper end surface of the anode 18 is brought into contact with the lowest end of the anode position adjustment section 102. 18 can be positioned at appropriate front and rear positions.

このように、本実施の形態の治具100を用いることで、陰極16のアーク放電ARの発生側となる前端と、陽極18のアーク放電ARの発生側となる上部位置とを適正な位置に位置決めすることができる。かかる位置決めでは、作業者の目視による位置決めに比べ、作業を簡単化しつつ位置精度向上を図ることができ、アーク放電ARの出力の安定化を図ることができる。また、定規や目盛を用いた位置決めに比べても、作業を簡単にして短時間で行うことができる。 As described above, by using the jig 100 of the present embodiment, the front end of the cathode 16 on the side where arc discharge AR is generated and the upper position of the anode 18 on the side where arc discharge AR is generated can be placed in appropriate positions. Can be positioned. In such positioning, compared to positioning by visual inspection by an operator, it is possible to simplify the work and improve positional accuracy, and it is possible to stabilize the output of the arc discharge AR. Furthermore, compared to positioning using a ruler or scale, the work can be done more easily and in a shorter time.

続いて、本実施の形態の水プラズマ発生装置12による水プラズマの発生方法について説明する。かかる発生方法は、以下に述べる保持工程、渦水流形成工程、噴射工程の順に実施される。 Next, a method for generating water plasma using the water plasma generator 12 of this embodiment will be described. This generation method is carried out in the order of a holding step, a swirling water flow forming step, and an injection step, which will be described below.

先ず、保持工程では、通電部材60の挿入軸部61を噴射口75に通過させて挿入し、挿入軸部61の後端(通電部材60の一端)を陰極16の前端(一端)に接触した状態とする。このとき、通電部材60の保持軸部63をチャンバ本体70の上方に配置し、保持軸部63の後端(通電部材60の他端)を補助陽極部40に向けた状態とする。かかる状態にて、弾性部材43の弾性力に抗して挟持部材42を指先等で持ち上げた後、挟持部材42の接触片部42cとベース41との間に保持軸部63の後端を配置する。この状態から挟持部材42の持ち上げを解除し、弾性部材43の弾性力によって接触片部42cとベース41とにより保持軸部63を挟み込んで保持する。これにより、通電部材60が補助陽極部40に保持される。 First, in the holding step, the insertion shaft portion 61 of the current-carrying member 60 was inserted through the injection port 75, and the rear end of the insertion shaft portion 61 (one end of the current-carrying member 60) was brought into contact with the front end (one end) of the cathode 16. state. At this time, the holding shaft portion 63 of the current-carrying member 60 is placed above the chamber body 70, with the rear end of the holding shaft portion 63 (the other end of the current-carrying member 60) facing the auxiliary anode portion 40. In this state, after lifting the holding member 42 with fingertips or the like against the elastic force of the elastic member 43, the rear end of the holding shaft portion 63 is placed between the contact piece portion 42c of the holding member 42 and the base 41. do. From this state, the lifting of the holding member 42 is released, and the holding shaft portion 63 is held between the contact piece portion 42c and the base 41 by the elastic force of the elastic member 43. Thereby, the current-carrying member 60 is held by the auxiliary anode section 40.

保持工程の実施後、渦水流形成工程では、チャンバ17の内部に渦水流を形成する。かかる渦水流の形成については、上記にて説明したので、ここでの記載を省略する。 After carrying out the holding process, a whirlpool water flow is formed inside the chamber 17 in the whirlpool water flow formation process. Since the formation of such a whirlpool water flow has been explained above, the description thereof will be omitted here.

渦水流形成工程の実施後、噴射工程では、渦水流の形成を維持しつつ図7Aに示すスイッチ48をオンにし、陽極18、補助陽極部40及び陰極16に直流電源47からの電圧を加える。すると、補助陽極部40及び陰極16を接続する通電部材60に瞬間的に通電し、該通電による発熱によって通電部材60が瞬時に気化(蒸発)する。このように気化することで、補助陽極部40と陰極16との間の電流を、陽極18と陰極16との間に誘導でき、図7Bに示すように、陽極18及び陰極16にアーク放電AR(図5参照)が発生する。アーク放電ARは渦水流に形成された空洞の内部を通過するので、渦水流を形成するプラズマ用水が解離、電離されて高エネルギーとなる水プラズマのジェット気流Jが噴射口75から噴射される。 After performing the vortex water flow formation step, in the injection step, the switch 48 shown in FIG. 7A is turned on while maintaining the formation of the vortex water flow, and voltage from the DC power source 47 is applied to the anode 18, the auxiliary anode section 40, and the cathode 16. Then, the current-carrying member 60 connecting the auxiliary anode section 40 and the cathode 16 is instantaneously energized, and the current-carrying member 60 is instantaneously vaporized (evaporated) due to the heat generated by the energization. By vaporizing in this way, a current between the auxiliary anode section 40 and the cathode 16 can be induced between the anode 18 and the cathode 16, and as shown in FIG. (See FIG. 5) occurs. Since the arc discharge AR passes through the cavity formed in the vortex water flow, the plasma water forming the vortex water flow is dissociated and ionized, and a jet stream J of water plasma that becomes high energy is injected from the injection port 75.

上記実施の形態によれば、補助陽極部40及び通電部材60を上記のように利用することで、通電部材60の気化の直後または略同時に、通電部材60に流れた電流によって陽極18及び陰極16の間にアーク放電ARを発生させることができる。言い換えると、通電によって気化される通電部材60をアーク放電ARのきっかけにすることができる。これにより、水プラズマ発生装置12のように陽極18と陰極16とが離れていても、アーク放電ARのきっかけを容易且つ安定して発生させ、水プラズマ発生装置12の起動準備時間の短縮化、起動作業の容易化を図ることができる。 According to the embodiment described above, by using the auxiliary anode section 40 and the current-carrying member 60 as described above, the anode 18 and the cathode 16 are heated by the current flowing through the current-carrying member 60 immediately or substantially simultaneously after the vaporization of the current-carrying member 60. An arc discharge AR can be generated during this period. In other words, the energizing member 60 that is vaporized by energization can be used as a trigger for arc discharge AR. As a result, even if the anode 18 and cathode 16 are separated as in the water plasma generator 12, the trigger for arc discharge AR can be easily and stably generated, and the startup preparation time of the water plasma generator 12 can be shortened. The startup work can be made easier.

また、通電部材60を上述した形状の軸状体としたので、一端(挿入軸部61の後端)で陰極16に接触しつつ他端(保持軸部63の後端)が補助陽極部40で保持できるようになり、補助陽極部40と陰極16とを電気的に接続することができる。 Further, since the current-carrying member 60 is formed into a shaft-like body having the above-described shape, one end (the rear end of the insertion shaft portion 61) contacts the cathode 16, while the other end (the rear end of the holding shaft portion 63) contacts the auxiliary anode portion 40. The auxiliary anode section 40 and the cathode 16 can be electrically connected.

また、補助陽極部40が弾性部材43を有するので、ベース41と挟持部材42とで挟み込まれる通電部材60の位置ずれを回避して通電部材60における電気的な接続の安定化を図ることができる。 Furthermore, since the auxiliary anode section 40 includes the elastic member 43, it is possible to avoid misalignment of the current-carrying member 60 that is sandwiched between the base 41 and the holding member 42, thereby stabilizing the electrical connection in the current-carrying member 60. .

また、挟持部材42が立ち上がり部42dを有するので、挟持部材42を持ち上げ操作する際に立ち上がり部42dを指先での掴み代として利用することができる。 In addition, since the holding member 42 has the rising portion 42d, the rising portion 42d can be used as a grip area for fingertips when lifting the holding member 42.

また、上述のように治具100を用いることで陰極16と陽極18との両方を容易に位置決めできるので、陰極16に挿入軸部61を接触させる通電部材60の位置も一定になり、アーク放電ARのきっかけ発生の安定化に寄与することができる。 In addition, since both the cathode 16 and the anode 18 can be easily positioned by using the jig 100 as described above, the position of the current-carrying member 60 that brings the insertion shaft portion 61 into contact with the cathode 16 is also constant, and arc discharge It can contribute to stabilizing the occurrence of AR triggers.

なお、本発明は上記実施の形態に限定されず、種々変更して実施することが可能である。上記実施の形態において、添付図面に図示されている大きさや形状、方向などについては、これに限定されず、本発明の効果を発揮する範囲内で適宜変更することが可能である。その他、本発明の目的の範囲を逸脱しない限りにおいて適宜変更して実施することが可能である。 Note that the present invention is not limited to the above embodiments, and can be implemented with various modifications. In the embodiments described above, the size, shape, direction, etc. illustrated in the accompanying drawings are not limited to these, and can be changed as appropriate within the scope of achieving the effects of the present invention. Other changes can be made as appropriate without departing from the scope of the invention.

例えば、上記実施の形態の水プラズマの発生方法では、保持工程を渦水流形成工程の後に実施したが、渦水流形成工程の前に実施してもよい。 For example, in the water plasma generation method of the above embodiment, the holding step was performed after the whirlpool water flow formation step, but it may be performed before the whirlpool water flow formation step.

また、通電部材60の材質は、アーク放電ARの発生前に気化可能であれば、上述したアルミニウムを含む合金以外の金属や合金としてもよく、例えばタングステン又はタングステンを含む合金等としてもよい。 Further, the material of the current-carrying member 60 may be a metal or alloy other than the above-mentioned aluminum-containing alloy, as long as it can be vaporized before the arc discharge AR occurs, such as tungsten or a tungsten-containing alloy.

また、水プラズマ発生装置12は、廃棄物等の分解処理に利用することに限定されるものでなく、溶射等の水プラズマを利用した任意の処理に利用することができる。 Further, the water plasma generator 12 is not limited to being used for decomposition treatment of waste, etc., but can be used for any treatment using water plasma such as thermal spraying.

本発明は、水プラズマを噴射するために陽極と陰極との間にアーク放電のきっかけを容易に発生できる、という効果を得る。 The present invention has the advantage that an arc discharge trigger can be easily generated between an anode and a cathode to inject water plasma.

12 水プラズマ発生装置
16 陰極
17 チャンバ
18 陽極
40 補助陽極部
41 ベース
42 挟持部材
42c 接触片部
42d 立ち上がり部
43 弾性部材
60 通電部材
61 挿入軸部
62 連結軸部
63 保持軸部
75 噴射口
AR アーク放電
12 Water plasma generator 16 Cathode 17 Chamber 18 Anode 40 Auxiliary anode part 41 Base 42 Holding member 42c Contact piece part 42d Standing part 43 Elastic member 60 Current-carrying member 61 Insertion shaft part 62 Connection shaft part 63 Holding shaft part 75 Injection port AR Arc discharge

Claims (4)

渦水流の内部にアーク放電を通過させて水プラズマを噴射する水プラズマ発生装置であって、
前記渦水流が内部で形成されて噴射口から前記水プラズマを噴射するチャンバと、
前記チャンバの外側における前記噴射口の近傍位置に設けられた陽極と、
前記チャンバ内に一端側が挿入され、前記陽極との間に前記渦水流を通過するアーク放電を発生させる陰極とを備え、
前記チャンバの外周側には前記陽極と電気的に並列に接続される補助陽極部が設けられ、該補助陽極部は、前記陰極の一端に接触して前記噴射口を通過する通電部材を保持して該通電部材と通電可能に設けられ
前記補助陽極部は、前記チャンバの外周側に取り付けられるベースと、該ベースと前記通電部材を挟み込む挟持部材と、該挟持部材を前記ベース側に押さえる力を加える弾性部材とを備えていることを特徴とする水プラズマ発生装置。
A water plasma generating device that injects water plasma by passing an arc discharge inside a vortex water flow,
a chamber in which the vortex water flow is formed and the water plasma is ejected from an injection port;
an anode provided outside the chamber near the injection port;
a cathode having one end inserted into the chamber and generating an arc discharge passing through the vortex water flow between the cathode and the anode;
An auxiliary anode portion electrically connected in parallel with the anode is provided on the outer circumferential side of the chamber, and the auxiliary anode portion holds a current-carrying member that contacts one end of the cathode and passes through the injection port. is provided so as to be able to conduct electricity with the current-carrying member ;
The auxiliary anode section includes a base attached to the outer circumferential side of the chamber, a clamping member that clamps the base and the current-carrying member, and an elastic member that applies a force to press the clamping member toward the base. Characteristic water plasma generator.
前記弾性部材は、帯状の板ばねによって形成されて一端が前記ベースに、他端が前記挟持部材に連結され、
前記挟持部材は、前記ベースに沿って平行に設けられる接触片部と、該接触片部における前記弾性部材と反対側から前記ベースと交差する方向に延出する立ち上がり部とを備えていることを特徴とする請求項に記載の水プラズマ発生装置。
The elastic member is formed by a band-shaped leaf spring, and one end is connected to the base and the other end is connected to the holding member,
The holding member includes a contact piece portion provided in parallel along the base, and a rising portion extending from the opposite side of the contact piece portion to the direction intersecting the base. The water plasma generator according to claim 1 .
前記請求項1または請求項2に記載の水プラズマ発生装置に用いられる通電部材であって、
前記陰極の一端に接触して前記噴射口を通過する挿入軸部と、
前記補助陽極部に保持される保持軸部と、
前記挿入軸部及び前記保持軸部を連結する連結軸部とを備えた軸状体によって形成されることを特徴とする水プラズマ発生装置に用いられる通電部材。
A current-carrying member used in the water plasma generator according to claim 1 or claim 2 ,
an insertion shaft portion that contacts one end of the cathode and passes through the injection port;
a holding shaft portion held by the auxiliary anode portion;
A current-carrying member used in a water plasma generator, characterized in that it is formed by a shaft-shaped body including a connecting shaft portion that connects the insertion shaft portion and the holding shaft portion.
前記請求項1または請求項2に記載の水プラズマ発生装置を用いた水プラズマ発生方法であって、
前記通電部材を前記噴射口に通過させて前記陰極の一端に接触させた状態で、該通電部材を前記補助陽極部に保持させる保持工程と、
前記保持工程と前後して、前記チャンバの内部に前記渦水流を形成させる渦水流形成工程と、
前記渦水流形成工程後、前記陽極、前記補助陽極部及び前記陰極に電圧を加えて前記通電部材に通電させ、該通電の発熱にて前記通電部材を気化して前記陽極及び前記陰極の間にアーク放電を発生させ、該アーク放電を前記渦水流の内部に通過させて前記水プラズマを噴射する噴射工程とを行うことを特徴とする水プラズマ発生方法。
A water plasma generation method using the water plasma generation device according to claim 1 or 2 , comprising:
a holding step of holding the current-carrying member in the auxiliary anode section while passing the current-carrying member through the injection port and contacting one end of the cathode;
A vortex water flow forming step of forming the vortex water flow inside the chamber before and after the holding step;
After the vortex water flow forming step, a voltage is applied to the anode, the auxiliary anode, and the cathode to energize the current-carrying member, and the heat generated by the energization vaporizes the current-carrying member to form a gap between the anode and the cathode. A method for generating water plasma, comprising: generating an arc discharge, and passing the arc discharge through the inside of the vortex water flow to inject the water plasma.
JP2020011171A 2020-01-27 2020-01-27 Water plasma generator, current-carrying member used therein, and water plasma generation method Active JP7391370B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020011171A JP7391370B2 (en) 2020-01-27 2020-01-27 Water plasma generator, current-carrying member used therein, and water plasma generation method
JP2023194039A JP7557903B2 (en) 2020-01-27 2023-11-15 Water plasma generating device, current-carrying member used therein, and water plasma generating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020011171A JP7391370B2 (en) 2020-01-27 2020-01-27 Water plasma generator, current-carrying member used therein, and water plasma generation method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023194039A Division JP7557903B2 (en) 2020-01-27 2023-11-15 Water plasma generating device, current-carrying member used therein, and water plasma generating method

Publications (2)

Publication Number Publication Date
JP2021118112A JP2021118112A (en) 2021-08-10
JP7391370B2 true JP7391370B2 (en) 2023-12-05

Family

ID=77175730

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2020011171A Active JP7391370B2 (en) 2020-01-27 2020-01-27 Water plasma generator, current-carrying member used therein, and water plasma generation method
JP2023194039A Active JP7557903B2 (en) 2020-01-27 2023-11-15 Water plasma generating device, current-carrying member used therein, and water plasma generating method

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023194039A Active JP7557903B2 (en) 2020-01-27 2023-11-15 Water plasma generating device, current-carrying member used therein, and water plasma generating method

Country Status (1)

Country Link
JP (2) JP7391370B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004111137A (en) 2002-09-17 2004-04-08 Fujimura Tadamasa Manufacturing method and manufacturing device of hydrogen by plasma reaction method
JP2005267909A (en) 2004-03-16 2005-09-29 Hiroshi Takigawa Plasma generation device
JP2017121599A (en) 2016-01-05 2017-07-13 株式会社Helix Vortex water flow generator, water plasma generator, decomposition-treating device, vehicle loaded with the device, and decomposition-treating method
US20190241447A1 (en) 2014-09-15 2019-08-08 Energy Onvector, LLC System and Method for Plasma Discharge in Liquid

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4791268A (en) * 1987-01-30 1988-12-13 Hypertherm, Inc. Arc plasma torch and method using contact starting
US5124525A (en) * 1991-08-27 1992-06-23 Esab Welding Products, Inc. Plasma arc torch having improved nozzle assembly
JPH0857655A (en) * 1994-08-18 1996-03-05 Nippon Steel Weld Prod & Eng Co Ltd Plasma torch device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004111137A (en) 2002-09-17 2004-04-08 Fujimura Tadamasa Manufacturing method and manufacturing device of hydrogen by plasma reaction method
JP2005267909A (en) 2004-03-16 2005-09-29 Hiroshi Takigawa Plasma generation device
US20190241447A1 (en) 2014-09-15 2019-08-08 Energy Onvector, LLC System and Method for Plasma Discharge in Liquid
JP2017121599A (en) 2016-01-05 2017-07-13 株式会社Helix Vortex water flow generator, water plasma generator, decomposition-treating device, vehicle loaded with the device, and decomposition-treating method

Also Published As

Publication number Publication date
JP2021118112A (en) 2021-08-10
JP7557903B2 (en) 2024-09-30
JP2024012593A (en) 2024-01-30

Similar Documents

Publication Publication Date Title
JP5226536B2 (en) Transfer arc type plasma torch
US6410880B1 (en) Induction plasma torch liquid waste injector
JP7420197B2 (en) Decomposition processing equipment
RU2008118730A (en) METHOD AND INSTALLATION OF GAS ENVIRONMENT ACTIVATION
JP2007522935A5 (en)
JP7391370B2 (en) Water plasma generator, current-carrying member used therein, and water plasma generation method
US6392188B1 (en) Apparatus for production of nanosized particulate matter by vaporization of solid materials
JPS63274762A (en) Device for forming reaction vapor-deposited film
JP6035438B1 (en) Eddy water flow generator, water plasma generator, decomposition treatment apparatus, vehicle equipped with the decomposition treatment apparatus, and decomposition treatment method
JP2011523162A (en) Equipment for processing the inner surface of workpieces
US11065491B2 (en) Vortex water flow generator, water plasma generator, decomposition processor, decomposition processor mounted vehicle, and decomposition method
JP2021118113A (en) Jig for water plasma generation device and positioning method used for the same
JP2009087697A (en) Plasma generator
JP2011060688A (en) Plasma surface treatment device
JP2006009703A (en) Fuel or reducing agent adding device and method, and plasma torch
KR100860599B1 (en) Device burning noxious gas using a plasma torch
WO2012169588A1 (en) Gas for plasma generation, plasma generation method, and atmospheric pressure plasma generated thereby
WO2005076814A3 (en) Injector for plasma mass filter
JP2017121621A (en) Decomposition treatment device, vehicle mounted with decomposition treatment device and decomposition treatment method
CN201291350Y (en) Portable plasma cutting-welding machine
US6756560B2 (en) Plasma enhanced circuit component attach method and device
JP2021157931A (en) Water plasma generation device and negative electrode holding unit used therefor
KR101557147B1 (en) Plasma electrode
KR20090096884A (en) Laser-plasma hybrid welding method and system for zinc galvanizing sheet steel
US6696661B2 (en) Plasma enhanced circuit packaging method and device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231011

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20231011

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231115

R150 Certificate of patent or registration of utility model

Ref document number: 7391370

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150