JP7390237B2 - Anisotropically conductive resin composition, anisotropically conductive adhesive film, and micro LED display device - Google Patents

Anisotropically conductive resin composition, anisotropically conductive adhesive film, and micro LED display device Download PDF

Info

Publication number
JP7390237B2
JP7390237B2 JP2020065121A JP2020065121A JP7390237B2 JP 7390237 B2 JP7390237 B2 JP 7390237B2 JP 2020065121 A JP2020065121 A JP 2020065121A JP 2020065121 A JP2020065121 A JP 2020065121A JP 7390237 B2 JP7390237 B2 JP 7390237B2
Authority
JP
Japan
Prior art keywords
resin composition
anisotropically conductive
group
conductive resin
vinyl ether
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020065121A
Other languages
Japanese (ja)
Other versions
JP2021161282A (en
Inventor
正和 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2020065121A priority Critical patent/JP7390237B2/en
Priority to CN202110304100.3A priority patent/CN113462122B/en
Publication of JP2021161282A publication Critical patent/JP2021161282A/en
Application granted granted Critical
Publication of JP7390237B2 publication Critical patent/JP7390237B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/38Polysiloxanes modified by chemical after-treatment
    • C08G77/382Polysiloxanes modified by chemical after-treatment containing atoms other than carbon, hydrogen, oxygen or silicon
    • C08G77/388Polysiloxanes modified by chemical after-treatment containing atoms other than carbon, hydrogen, oxygen or silicon containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/442Block-or graft-polymers containing polysiloxane sequences containing vinyl polymer sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/10Block- or graft-copolymers containing polysiloxane sequences
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/10Block or graft copolymers containing polysiloxane sequences
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • C09J7/22Plastics; Metallised plastics
    • C09J7/24Plastics; Metallised plastics based on macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C09J7/241Polyolefin, e.g.rubber
    • C09J7/243Ethylene or propylene polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0831Gold
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2423/00Presence of polyolefin
    • C09J2423/10Presence of homo or copolymers of propene
    • C09J2423/106Presence of homo or copolymers of propene in the substrate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2463/00Presence of epoxy resin
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2483/00Presence of polysiloxane

Description

本発明は、異方導電性樹脂組成物、異方導電性接着フィルム、及びマイクロLEDディスプレイ装置に関する。 The present invention relates to an anisotropically conductive resin composition, an anisotropically conductive adhesive film, and a micro LED display device.

近年、液晶表示素子、有機エレクトロルミネッセンス素子に次ぐ表示素子として、小型のLED(Light Emitting Diode)を用いた、いわゆるマイクロLEDが注目されている。マイクロLEDは有機エレクトロルミネッセンス素子と同様、発光素子であり、当該発光素子を用いたアクティブマトリクス型表示装置が知られている(特許文献1及び特許文献2)。
また、従来から、表示素子に駆動回路を実装する方法として、異方性導電膜(ACF:Anisotropic Conductive Film)(以下、「異方導電性接着剤」ということがある。)を介して、表示素子の取り出し電極部と駆動回路基板上の接続端子とを電気的に接続することが行われている(特許文献3)。
BACKGROUND ART In recent years, so-called micro-LEDs using small LEDs (Light Emitting Diodes) have been attracting attention as a display element following liquid crystal display elements and organic electroluminescent elements. Like organic electroluminescent elements, micro LEDs are light emitting elements, and active matrix display devices using such light emitting elements are known (Patent Document 1 and Patent Document 2).
In addition, conventionally, as a method of mounting a drive circuit on a display element, display is carried out via an anisotropic conductive film (ACF) (hereinafter sometimes referred to as "anisotropic conductive adhesive"). Electrical connection between an extraction electrode portion of an element and a connection terminal on a drive circuit board has been carried out (Patent Document 3).

WO2019/220267号公報WO2019/220267 publication 特開2007-123861号公報Japanese Patent Application Publication No. 2007-123861 特開2010-192802号公報Japanese Patent Application Publication No. 2010-192802

しかしながら、マイクロLEDに用いる小型のLEDチップの実装やそれらのリペアの際に、位置出し用のアライメントマークを照合する場合がある。例えば、異方導電性接着剤を介して、実装基板に小型のLEDチップを実装する際に、実装基板の所定の位置に精度良く実装するために、実装基板上に形成された位置出し用のアライメントマークを、撮像素子を含むカメラ等により認識する必要がある。このような場合、認識エラーを回避するために、光学的に透過度が高く、耐変色性に優れた異方導電性樹脂組成物からなる異方導電性接着剤が求められることがある。 However, when mounting small LED chips used in micro LEDs or repairing them, alignment marks for positioning may be checked. For example, when mounting a small LED chip on a mounting board using an anisotropic conductive adhesive, in order to accurately mount a small LED chip at a predetermined position on the mounting board, a positioning mark is formed on the mounting board. It is necessary to recognize the alignment mark using a camera or the like including an image sensor. In such cases, in order to avoid recognition errors, an anisotropically conductive adhesive made of an anisotropically conductive resin composition that has high optical transparency and excellent discoloration resistance may be required.

本発明は、このような実情に鑑みなされたものであり、光透過性に優れた異方導電性樹脂組成物を提供することを課題とする。 The present invention was made in view of the above circumstances, and an object of the present invention is to provide an anisotropically conductive resin composition having excellent light transmittance.

本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、特定の構造を有するシリコーン変性エポキシ樹脂、硬化剤、導電性粒子及び特定の含フッ素重合体を含む異方導電性樹脂組成物が、例えば、表示素子等を有する基板上の電極等と駆動回路基板の接続端子等との電気的接続、また、小型のLEDチップ等の実装時の電気的接続を、容易に精度良く行う接着剤に適した硬化物を与えることを見出し、本発明を完成した。
すなわち、本発明は、以下の(1)~(7)を提供するものである。
(1)(A)シリコーン変性エポキシ樹脂と、(B)硬化剤と、(C)導電性粒子と、(D)含フッ素重合体と、を含む異方導電性樹脂組成物であって、前記(A)シリコーン変性エポキシ樹脂が、下記一般式(1)で表される構造を有する、異方導電性樹脂組成物。

[式(1)中、Rはそれぞれ独立に1価の有機基を示し、Rはそれぞれ独立に炭素数1~10の鎖状の脂肪族炭化水素基、炭素数3~10の環状の脂肪族炭化水素基及びフェニル基から選ばれる基を示し、Yは環状エーテル基を含有する有機基を示す。Xはそれぞれ同一であっても異なってもよい。aとbは正の数であってa+b=1かつ0.3≦a<1であり、nは1~25である。]
(2)前記(D)含フッ素重合体が、フルオロオレフィンに基づく重合単位(a)と、アルキルビニルエーテルに基づく重合単位(b)及び/又はカルボン酸ビニルエステルに基づく重合単位(c)と、を含む、含フッ素共重合体である、上記(1)に記載の異方導電性樹脂組成物。
(3)前記(D)含フッ素重合体が、CTFE(クロロトリフルオロエチレン)と、ヒドロキシブチルビニルエーテルと、前記CTFE及び前記ヒドロキシブチルビニルエーテルと共重合可能な単量体と、を含む、上記(1)又は(2)に記載の異方導電性樹脂組成物。(4)前記共重合可能な単量体が、α-オレフィン類、ハロオレフィン類、カルボン酸アリル類、アリルエーテル類、及び(メタ)アクリル酸エステル類から選択される少なくとも一種である、上記(3)に記載の異方導電性樹脂組成物。
(5)前記(C)導電性粒子の平均粒径が0.5~10μmである、上記(1)~(4)のいずれかに記載の異方導電性樹脂組成物。
(6)上記(1)~(5)のいずれかに記載の異方導電性樹脂組成物をシート状に形成してなる、異方導電性接着フィルム。
(7)上記(6)に記載の異方導電性接着フィルムを用いて、基板上にマイクロLEDをアレイ状に並べて実装してなる、マイクロLEDディスプレイ装置。
As a result of extensive studies to solve the above problems, the present inventors have discovered an anisotropic conductive resin composition containing a silicone-modified epoxy resin having a specific structure, a curing agent, conductive particles, and a specific fluoropolymer. For example, electrical connections between electrodes, etc. on a substrate having a display element, etc. and connection terminals, etc. of a drive circuit board, or electrical connections when mounting a small LED chip, etc., can be easily and precisely performed. The present invention was completed by discovering that a cured product suitable for adhesives can be obtained.
That is, the present invention provides the following (1) to (7).
(1) An anisotropic conductive resin composition comprising (A) a silicone-modified epoxy resin, (B) a curing agent, (C) conductive particles, and (D) a fluorine-containing polymer, (A) An anisotropically conductive resin composition in which a silicone-modified epoxy resin has a structure represented by the following general formula (1).

[In formula (1), R 1 each independently represents a monovalent organic group, R 2 each independently represents a chain aliphatic hydrocarbon group having 1 to 10 carbon atoms, or a cyclic aliphatic hydrocarbon group having 3 to 10 carbon atoms. It represents a group selected from an aliphatic hydrocarbon group and a phenyl group, and Y represents an organic group containing a cyclic ether group. X may be the same or different. a and b are positive numbers, a+b=1 and 0.3≦a<1, and n is 1 to 25. ]
(2) The fluoropolymer (D) comprises a polymerized unit (a) based on a fluoroolefin, a polymerized unit (b) based on an alkyl vinyl ether, and/or a polymerized unit (c) based on a carboxylic acid vinyl ester. The anisotropically conductive resin composition according to (1) above, which is a fluorine-containing copolymer.
(3) The fluorine-containing polymer (D) contains CTFE (chlorotrifluoroethylene), hydroxybutyl vinyl ether, and a monomer copolymerizable with the CTFE and the hydroxybutyl vinyl ether. ) or the anisotropically conductive resin composition according to (2). (4) The copolymerizable monomer is at least one selected from α-olefins, haloolefins, allyl carboxylates, allyl ethers, and (meth)acrylic esters ( 3) The anisotropically conductive resin composition according to item 3).
(5) The anisotropic conductive resin composition according to any one of (1) to (4) above, wherein the conductive particles (C) have an average particle size of 0.5 to 10 μm.
(6) An anisotropically conductive adhesive film formed by forming the anisotropically conductive resin composition according to any one of (1) to (5) above into a sheet shape.
(7) A micro LED display device in which micro LEDs are arranged and mounted in an array on a substrate using the anisotropically conductive adhesive film described in (6) above.

本発明によれば、光透過性に優れた異方導電性樹脂組成物を提供することができる。 According to the present invention, it is possible to provide an anisotropically conductive resin composition with excellent light transmittance.

[異方導電性樹脂組成物]
(A)シリコーン変性エポキシ樹脂と、(B)硬化剤と、(C)導電性粒子と、(D)含フッ素重合体と、を含む異方導電性樹脂組成物であって、前記(A)シリコーン変性エポキシ樹脂が、下記一般式(1)で表される構造を有する、異方導電性樹脂組成物。

[式(1)中、Rはそれぞれ独立に1価の有機基を示し、Rはそれぞれ独立に炭素数1~10の鎖状の脂肪族炭化水素基、炭素数3~10の環状の脂肪族炭化水素基及びフェニル基から選ばれる基を示し、Yは環状エーテル基を含有する有機基を示す。Xはそれぞれ同一であっても異なってもよい。aとbは正の数であってa+b=1かつ0.3≦a<1であり、nは1~25である。]
[Anisotropic conductive resin composition]
An anisotropically conductive resin composition comprising (A) a silicone-modified epoxy resin, (B) a curing agent, (C) conductive particles, and (D) a fluorine-containing polymer, the composition comprising: An anisotropically conductive resin composition in which a silicone-modified epoxy resin has a structure represented by the following general formula (1).

[In formula (1), R 1 each independently represents a monovalent organic group, R 2 each independently represents a chain aliphatic hydrocarbon group having 1 to 10 carbon atoms, or a cyclic aliphatic hydrocarbon group having 3 to 10 carbon atoms. It represents a group selected from an aliphatic hydrocarbon group and a phenyl group, and Y represents an organic group containing a cyclic ether group. X may be the same or different. a and b are positive numbers, a+b=1 and 0.3≦a<1, and n is 1 to 25. ]

[(A)シリコーン変性エポキシ樹脂]
本発明の異方導電性樹脂組成物には、下記一般式(1)で表される構造を有するシリコーン変性エポキシ樹脂を必須成分として含む。
[(A) Silicone modified epoxy resin]
The anisotropically conductive resin composition of the present invention contains as an essential component a silicone-modified epoxy resin having a structure represented by the following general formula (1).

式(1)中、Rはそれぞれ独立に1価の有機基を示し、Rはそれぞれ独立に炭素数1~10の鎖状の脂肪族炭化水素基、炭素数3~10の環状の脂肪族炭化水素基及びフェニル基から選ばれる基を示し、Yは環状エーテル基を含有する有機基を示す。Xはそれぞれ同一であっても異なってもよい。aとbは正の数であってa+b=1かつ0.3≦a<1であり、nは1~25である。
の1価の有機基として、ヒドロキシ基を有する1価の有機基、直鎖または分岐のアルキル基、アルコキシ基、アリール基等が挙げられる。
の炭素数1~10の鎖状の脂肪族炭化水素基として、メチル基、エチル基、プロピル基、n-ブチル基、n-ペンチル基、又はn-へキシル基等が挙げられる。
の炭素数3~10の環状の脂肪族炭化水素基として、シクロプロピル基、シクロプチル基、シクロペンチル基、シクロヘキシル基、又はシクロオクチル基等が挙げられる。
Yの環状エーテル基を含有する有機基として、3~6員環の構造を有する環状エーテル基が挙げられ、特に環歪みエネルギーが大きく、反応性の高い3員環又は4員環の環状エーテル基が好ましく、3員環のエーテル基がより好ましい。β-グリシドキシエチル基、γ-グリシドキシプロピル基、β-(3,4-エポキシシクロヘキシル)エチル基等の炭素数1~3のアルキル基にオキシグリシジル基が結合したグリシドキシアルキル基、オキシラン基を持った炭素数5~8のシクロアルキル基で置換された炭素数3以下のアルキル基が好ましい。
In formula (1), R 1 each independently represents a monovalent organic group, R 2 each independently represents a chain aliphatic hydrocarbon group having 1 to 10 carbon atoms, or a cyclic aliphatic group having 3 to 10 carbon atoms. Y represents a group selected from group hydrocarbon groups and phenyl groups, and Y represents an organic group containing a cyclic ether group. X may be the same or different. a and b are positive numbers, a+b=1 and 0.3≦a<1, and n is 1 to 25.
Examples of the monovalent organic group for R 1 include a monovalent organic group having a hydroxy group, a linear or branched alkyl group, an alkoxy group, and an aryl group.
Examples of the chain aliphatic hydrocarbon group having 1 to 10 carbon atoms for R 2 include a methyl group, ethyl group, propyl group, n-butyl group, n-pentyl group, and n-hexyl group.
Examples of the cyclic aliphatic hydrocarbon group having 3 to 10 carbon atoms for R 2 include a cyclopropyl group, a cycloptyl group, a cyclopentyl group, a cyclohexyl group, and a cyclooctyl group.
Examples of the organic group containing a cyclic ether group in Y include cyclic ether groups having a 3- to 6-membered ring structure, particularly 3- or 4-membered cyclic ether groups with large ring strain energy and high reactivity. is preferable, and a three-membered ring ether group is more preferable. Glycidoxyalkyl group in which an oxyglycidyl group is bonded to an alkyl group having 1 to 3 carbon atoms such as β-glycidoxyethyl group, γ-glycidoxypropyl group, β-(3,4-epoxycyclohexyl)ethyl group , an alkyl group having 3 or less carbon atoms substituted with a cycloalkyl group having 5 to 8 carbon atoms and having an oxirane group is preferable.

本実施形態において、シリコーン変性エポキシ樹脂は、異方導電性樹脂組成物の全質量100質量部に対して、好ましくは30~80質量部であり、より好ましくは40~70質量部であり、45~60質量部であることがさらに好ましい。
シリコーン変性エポキシ樹脂の質量部がこの範囲にあると、耐熱性、耐光性、及び耐マイグレーション性を有しやすくなる。
なお、前記シリコーン変性エポキシ樹脂は、例えば、特開2012-241136に記載されている。
In this embodiment, the silicone-modified epoxy resin is preferably 30 to 80 parts by mass, more preferably 40 to 70 parts by mass, and 45 to 80 parts by mass, more preferably 40 to 70 parts by mass, based on 100 parts by mass of the anisotropically conductive resin composition. More preferably, the amount is 60 parts by mass.
When the mass part of the silicone-modified epoxy resin is within this range, it will tend to have heat resistance, light resistance, and migration resistance.
Note that the silicone-modified epoxy resin is described, for example, in JP-A No. 2012-241136.

[(B)硬化剤]
本発明の異方導電性樹脂組成物には、(B)硬化剤を必須成分として含む。
(B)硬化剤としては、前記(A)シリコーン変性エポキシ樹脂がエポキシ基を有するため、例えば、熱硬化では、一般的に使用されるアミン系硬化剤、酸無水物硬化剤が挙げられる。この中で、光透過性、耐熱性等の観点から、酸無水物硬化剤を用いることが好ましい。
酸無水物硬化剤としては、例えば、無水コハク酸、無水フタル酸、無水マレイン酸、無水トリメリット酸、無水ピロメリット酸、ヘキサヒドロ無水フタル酸、3-メチル-ヘキサヒドロ無水フタル酸、4-メチル-ヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、メチル-テトラヒドロ無水フタル酸、無水ナジック酸、無水メチルナジック酸、ノルボルナン-2,3-ジカルボン酸無水物、メチルノルボルナン-2,3-ジカルボン酸無水物及びメチルシクロヘキセンジカルボン酸無水物等が挙げられる。これらの中で、光透過性の観点から、4-メチル-ヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、無水ナジック酸、又はメチルシクロヘキセンジカルボン酸無水物が好ましい。
これらは単独、もしくは2種類以上混合して使用することができる。
[(B) Curing agent]
The anisotropically conductive resin composition of the present invention contains (B) a curing agent as an essential component.
As the curing agent (B), since the silicone-modified epoxy resin (A) has an epoxy group, examples of the curing agent include commonly used amine curing agents and acid anhydride curing agents in thermal curing. Among these, it is preferable to use an acid anhydride curing agent from the viewpoint of light transmittance, heat resistance, etc.
Examples of acid anhydride curing agents include succinic anhydride, phthalic anhydride, maleic anhydride, trimellitic anhydride, pyromellitic anhydride, hexahydrophthalic anhydride, 3-methyl-hexahydrophthalic anhydride, 4-methyl- Hexahydrophthalic anhydride, tetrahydrophthalic anhydride, methyl-tetrahydrophthalic anhydride, nadic anhydride, methyl nadic anhydride, norbornane-2,3-dicarboxylic anhydride, methylnorbornane-2,3-dicarboxylic anhydride and methyl Examples include cyclohexenedicarboxylic anhydride. Among these, 4-methyl-hexahydrophthalic anhydride, tetrahydrophthalic anhydride, nadic anhydride, or methylcyclohexenedicarboxylic anhydride is preferred from the viewpoint of light transparency.
These can be used alone or in combination of two or more.

本実施形態において、硬化剤は、良好な硬化性や硬化物特性が得られるという観点から、異方導電性樹脂組成物の全質量100質量部に対して、好ましくは4~70質量部であり、より好ましくは10~50質量部であり、15~35質量部であることがさらに好ましい。 In this embodiment, the curing agent is preferably used in an amount of 4 to 70 parts by mass based on 100 parts by mass of the total mass of the anisotropically conductive resin composition, from the viewpoint of obtaining good curability and properties of the cured product. , more preferably 10 to 50 parts by weight, and even more preferably 15 to 35 parts by weight.

さらに、前記硬化剤との反応に有効な硬化促進剤、硬化触媒を併用して使用することができる。
前記硬化促進剤としては、例えば、トリフェニルホスフィン、トリブチルホスフィン等の有機リン化合物;エチルトリフェニルホスフォニウムブロマイド、メチルトリフェニルホスホニウムリン酸ジエチル、テトラ-n-ブチルホスホニウム-O,O’-ジエチルホスホロジチオネート等の第4級ホスフォニウム塩;1,8-ジアザビシクロ(5,4,0)ウンデカン-7-エン、1,8-ジアザビシクロ(5,4,0)ウンデカン-7-エンとオクチル酸の塩、オクチル酸亜鉛、テトラブチルアンモニウムブロミド等の第4級アンモニウム塩が挙げられる。これらの中で、密着性の観点から、テトラ-n-ブチルホスホニウム-O,O’-ジエチルホスホロジチオネート、4ヒドロキシ2(トリフェニルホスホニウム)フェノラトが好ましい。
これらは単独、もしくは2種類以上混合して使用することができる。
Furthermore, a curing accelerator and a curing catalyst that are effective in reacting with the curing agent can be used in combination.
Examples of the curing accelerator include organic phosphorus compounds such as triphenylphosphine and tributylphosphine; ethyltriphenylphosphonium bromide, methyltriphenylphosphonium diethyl phosphate, and tetra-n-butylphosphonium-O,O'-diethyl. Quaternary phosphonium salts such as phosphorodithionate; 1,8-diazabicyclo(5,4,0)undecane-7-ene, 1,8-diazabicyclo(5,4,0)undecane-7-ene and octylic acid Examples include quaternary ammonium salts such as zinc octylate, tetrabutylammonium bromide, and the like. Among these, from the viewpoint of adhesion, tetra-n-butylphosphonium-O,O'-diethylphosphorodithionate and 4hydroxy 2(triphenylphosphonium)phenolate are preferred.
These can be used alone or in combination of two or more.

上記硬化触媒としては、例えば、トリフェニルフォスフィン及びジフェニルフォスフィン等の有機フォスフィン系硬化触媒;1,8-ジアザビシクロ(5,4,0)ウンデセン-7、トリエタノールアミン及びベンジルジメチルアミン等の三級アミン系硬化触媒;2-メチルイミダゾール及び2-フェニル-4-メチルイミダゾール等のイミダゾール類等が挙げられる。
これらは単独、もしくは2種類以上混合して使用することができる。
Examples of the curing catalyst include organic phosphine-based curing catalysts such as triphenylphosphine and diphenylphosphine; Examples include imidazoles such as 2-methylimidazole and 2-phenyl-4-methylimidazole.
These can be used alone or in combination of two or more.

また、熱カチオン硬化触媒や光カチオン硬化触媒を添加して熱硬化、光硬化とすることができる。
上記熱カチオン硬化触媒として、例えば、ベンジルスルホニウム塩、チオフェニウム塩、チオラニウム塩、ベンジルアンモニウム、ピリジニウム塩、ヒドラジニウム塩、カルボン酸エステル、スルホン酸エステル及びアミンイミド等が挙げられる。
これらは単独、もしくは2種類以上混合して使用することができる。
上記光カチオン硬化触媒としては、例えば、スルホニウム塩系やヨウドニウム塩系が挙げられる。スルホニウム塩系の例としては、例えば、トリフェニルスルホニウムヘキサフルオロホスフェート及びトリフェニルスルホニウムヘキサフルオロアンチモネート等が挙げられ、ヨードニウム塩系の例として、例えば、ジフェニルヨードニウムテトラキス(ペンタフルオロフェニル)ボレート及びジフェニルヨードニウムヘキサフルオロホスフェート等が挙げられる。
これらは単独、もしくは2種類以上混合して使用することができる。
Furthermore, thermal curing or photocuring can be achieved by adding a thermal cation curing catalyst or a photo cation curing catalyst.
Examples of the thermal cation curing catalyst include benzylsulfonium salts, thiophenium salts, thiolanium salts, benzylammonium salts, pyridinium salts, hydrazinium salts, carboxylic acid esters, sulfonic acid esters, and amine imides.
These can be used alone or in combination of two or more.
Examples of the photocationic curing catalyst include sulfonium salts and iodonium salts. Examples of sulfonium salts include triphenylsulfonium hexafluorophosphate and triphenylsulfonium hexafluoroantimonate, and examples of iodonium salts include diphenyliodonium tetrakis(pentafluorophenyl)borate and diphenyliodonium. Examples include hexafluorophosphate.
These can be used alone or in combination of two or more.

[(C)導電性粒子]
本発明の異方導電性樹脂組成物には、(C)導電性粒子を必須成分として含む。
(C)導電性粒子としては、例えば、金属及びカーボンが挙げられる。前記金属としては、例えば、ニッケル(Ni)、銅(Cu)等の遷移金属;金(Au)、銀(Ag)、白金族金属等の貴金属;及びはんだ等の合金が挙げられる。
導電性粒子は、核となる粒子を上記金属又はカーボンで被覆した被覆粒子であることが好ましい。
導電性粒子の最外層は、充分なポットライフが得られ易い観点から、Au、Ag、白金族金属等の貴金属を含むことが好ましく、Auを含むことがより好ましい。
導電性粒子は、例えば、Ni等の遷移金属を核として、その表面をAu等の貴金属で被覆したものであってもよく、非導電性のガラス、セラミック、プラスチック等を核として、その表面に前記金属等の導通層を被覆等により形成したものであってもよい。前記導通層は、単一の層であってもよく、複数の層であってもよいが、最外層は貴金属層であることが好ましい。
[(C) Conductive particles]
The anisotropically conductive resin composition of the present invention contains (C) conductive particles as an essential component.
(C) Examples of the conductive particles include metals and carbon. Examples of the metal include transition metals such as nickel (Ni) and copper (Cu); noble metals such as gold (Au), silver (Ag), and platinum group metals; and alloys such as solder.
The conductive particles are preferably coated particles in which core particles are coated with the metal or carbon.
From the viewpoint of easily obtaining a sufficient pot life, the outermost layer of the conductive particles preferably contains a noble metal such as Au, Ag, or a platinum group metal, and more preferably contains Au.
The conductive particles may have, for example, a core made of a transition metal such as Ni, and the surface coated with a noble metal such as Au, or a core made of non-conductive glass, ceramic, plastic, etc., and the surface coated with a noble metal such as Au. The conductive layer of the metal or the like may be formed by coating or the like. The conductive layer may be a single layer or a plurality of layers, but the outermost layer is preferably a noble metal layer.

被覆粒子(例えば、プラスチックを核とする導電性粒子)又は熱溶融金属粒子は、加熱及び加圧による変形性を付与し得ることから、接続時に回路電極等の高さのばらつきを解消すること及び回路電極等との接触面積を増大させることが容易であり、これにより信頼性がさらに向上すると考えられる。 Coated particles (for example, conductive particles with plastic cores) or heat-melting metal particles can be deformed by heating and pressure, so they can be used to eliminate variations in the height of circuit electrodes, etc. during connection. It is easy to increase the contact area with circuit electrodes and the like, which is thought to further improve reliability.

導電性粒子の最外層が貴金属層である場合、該貴金属層の厚みは、接続される回路間の抵抗を充分に低減し易い観点から、通常、10nm以上である。ただし、貴金属層が、Ni等の遷移金属の上に設けられる場合、例えば、導電性粒子の混合分散時に、貴金属層が欠損すること等により、Ni等の遷移金属が異方導電性樹脂組成物中に露出し、当該遷移金属による酸化還元作用により遊離ラジカルが発生することがあり、該遊離ラジカルは、異方導電性樹脂組成物の保存安定性を低下させるおそれがある。このため、前記貴金属層の厚みは、好ましくは30nm以上であり、より好ましくは60nm以上であり、100nm以上がさらに好ましい。
前記貴金属層の厚みの上限は、特に制限はないが、製造コストの観点から、通常、1μm以下である。
When the outermost layer of the conductive particles is a noble metal layer, the thickness of the noble metal layer is usually 10 nm or more from the viewpoint of sufficiently reducing the resistance between connected circuits. However, when a noble metal layer is provided on a transition metal such as Ni, for example, when the conductive particles are mixed and dispersed, the noble metal layer may be damaged, and the transition metal such as Ni may be formed in the anisotropically conductive resin composition. Free radicals may be generated due to the oxidation-reduction action of the transition metal, and the free radicals may reduce the storage stability of the anisotropically conductive resin composition. Therefore, the thickness of the noble metal layer is preferably 30 nm or more, more preferably 60 nm or more, and even more preferably 100 nm or more.
The upper limit of the thickness of the noble metal layer is not particularly limited, but from the viewpoint of manufacturing cost, it is usually 1 μm or less.

導電性粒子の平均粒径は、回路電極の高さのばらつきに対応し易く、回路電極間の導電性が低下し難い観点から、好ましくは0.5μm以上、より好ましくは1μm以上である。導電性粒子の平均粒径は、隣接する回路電極間の絶縁性が低下し難い観点から、好ましくは10μm以下、より好ましくは5μm以下である。これらの観点から、導電性粒子の平均粒径は、好ましくは0.5~10μmであり、より好ましくは1~5μmであり、1.5~4.5μmであることがさらに好ましい。前記導電性粒子の平均粒子径は、任意の100個の導電性粒子を顕微鏡で観察することにより測定することができる。 The average particle diameter of the conductive particles is preferably 0.5 μm or more, more preferably 1 μm or more, from the viewpoint of easily responding to variations in the height of the circuit electrodes and preventing the conductivity between the circuit electrodes from decreasing. The average particle diameter of the conductive particles is preferably 10 μm or less, more preferably 5 μm or less, from the viewpoint of preventing the insulation between adjacent circuit electrodes from decreasing. From these viewpoints, the average particle size of the conductive particles is preferably 0.5 to 10 μm, more preferably 1 to 5 μm, and even more preferably 1.5 to 4.5 μm. The average particle diameter of the conductive particles can be measured by observing 100 arbitrary conductive particles with a microscope.

導電性粒子の含有量は、導電性に優れる観点から、異方導電性樹脂組成物の全質量100質量部に対して、好ましくは0.1質量部以上である。導電性粒子の含有量は、隣接回路の短絡等を抑制し易い観点から、異方導電性樹脂組成物の全質量100質量部に対して、好ましくは50質量部以下、より好ましくは40質量部以下である。これらの観点から、導電性粒子の含有量は、異方導電性樹脂組成物の全質量100質量部に対して、好ましくは0.1~50質量部であり、より好ましくは0.1~40質量部であり、0.1~30質量部であることがさらに好ましい。
導電性粒子は、異方導電性樹脂組成物が加圧加熱された後に異方導電性接着剤としての機能を発揮することができるような密度で、異方導電性組成物中に分散されている。具体的には、水平投影面積当たり導電性粒子が好ましくは15~60%、より好ましくは25~60%を占める。また、単位面積当たりの個数は、平均粒子径に大きく依存するが、導電性の観点から、好ましくは10,000~100,000個/mm2であり、より好ましくは20,000~70,000個/mm2であり、30,000~60,000個/mm2であることがさらに好ましい。
The content of the conductive particles is preferably 0.1 part by mass or more based on 100 parts by mass of the total mass of the anisotropically conductive resin composition from the viewpoint of excellent conductivity. The content of the conductive particles is preferably 50 parts by mass or less, more preferably 40 parts by mass, based on 100 parts by mass of the total mass of the anisotropic conductive resin composition, from the viewpoint of easily suppressing short circuits in adjacent circuits. It is as follows. From these viewpoints, the content of the conductive particles is preferably 0.1 to 50 parts by mass, more preferably 0.1 to 40 parts by mass, based on 100 parts by mass of the total mass of the anisotropically conductive resin composition. Parts by weight, more preferably 0.1 to 30 parts by weight.
The conductive particles are dispersed in the anisotropically conductive composition at a density such that the anisotropically conductive resin composition can function as an anisotropically conductive adhesive after the anisotropically conductive resin composition is pressurized and heated. There is. Specifically, the conductive particles preferably account for 15 to 60%, more preferably 25 to 60%, per horizontal projected area. The number of particles per unit area largely depends on the average particle diameter, but from the viewpoint of conductivity, it is preferably 10,000 to 100,000 particles/mm 2 , more preferably 20,000 to 70,000 particles/mm 2 It is more preferably 30,000 to 60,000 pieces/mm 2 .

[(D)含フッ素重合体]
本発明の異方導電性樹脂組成物には、(D)含フッ素重合体を必須成分として含む。
本発明において、含フッ素重合体は、分子中にフッ素原子を有する高分子化合物を意味する。
含フッ素重合体は、フルオロオレフィンとフッ素原子を有さない単量体との共重合体を含むことが好ましい。
[(D) Fluorine-containing polymer]
The anisotropically conductive resin composition of the present invention contains (D) a fluoropolymer as an essential component.
In the present invention, the fluorine-containing polymer refers to a polymer compound having a fluorine atom in its molecule.
The fluorine-containing polymer preferably includes a copolymer of a fluoroolefin and a monomer that does not have a fluorine atom.

フルオロオレフィンとしては、テトラフルオロエチレン、クロロトリフルオロエチレン、トリフルオロエチレン、フッ化ビニリデン、ヘキサフルオロプロピレン、ペンタフルオロプロピレン等の炭素数2~3のフルオロオレフィン類、又は炭素数4以上のフルオロオレフィン類が挙げられる。この中で、好ましくはテトラフルオロエチレン、クロロトリフルオロエチレン、トリフルオロエチレン、フッ化ビニリデンであり、より好ましくはテトラフルオロエチレン、クロロトリフルオロエチレンである。これらのフルオロオレフィンは、1種単独で用いてもよく、2種以上を併用してもよい。 Examples of the fluoroolefins include fluoroolefins having 2 to 3 carbon atoms, such as tetrafluoroethylene, chlorotrifluoroethylene, trifluoroethylene, vinylidene fluoride, hexafluoropropylene, and pentafluoropropylene, or fluoroolefins having 4 or more carbon atoms. can be mentioned. Among these, preferred are tetrafluoroethylene, chlorotrifluoroethylene, trifluoroethylene, and vinylidene fluoride, and more preferred are tetrafluoroethylene and chlorotrifluoroethylene. These fluoroolefins may be used alone or in combination of two or more.

フルオロオレフィン単独重合体及び2種以上のフルオロオレフィンの共重合体としては、ポリフッ化ビニリデン、フッ化ビニリデン-テトラフルオロエチレン-ヘキサフルオロプロピレン系共重合体、フッ化ビニリデン-クロロトリフルオロエチレン-ヘキサフルオロプロピレン系共重合体等が挙げられる。 Examples of fluoroolefin homopolymers and copolymers of two or more fluoroolefins include polyvinylidene fluoride, vinylidene fluoride-tetrafluoroethylene-hexafluoropropylene copolymers, vinylidene fluoride-chlorotrifluoroethylene-hexafluoro Examples include propylene copolymers.

フッ素原子を有さない単量体としては、ビニルエーテル、イソプロペニルエーテル、カルボン酸ビニルエステル等のビニル系単量体が好ましい。 As the monomer having no fluorine atom, vinyl monomers such as vinyl ether, isopropenyl ether, and carboxylic acid vinyl ester are preferred.

ビニルエーテルとしては、メチルビニルエーテル、エチルビニルエーテル、n-プロピルビニルエーテル、イソプロピルビニルエーテル、n-ブチルビニルエーテル、シクロヘキシルビニルエーテル、tert-ブチルビニルエーテル、オクチルビニルエーテル、ネオペンチルビニルエーテル等のアルキルビニルエーテル類;フェニルビニルエーテル、ベンジルビニルエーテル、ナフチルビニルエーテル等の芳香族ビニルエーテル類;2-ヒドロキシエチルビニルエーテル、3-ヒドロキシプロピルビニルエーテル、4-ヒドロキシブチルビニルエーテル、9-ヒドロキシノニルビニルエーテル、1-ヒドロキシメチル-4-ビニロキシメチルシクロヘキサン、3-クロロ-2-ヒドロキシプロピルビニルエーテル等のヒドロキシアルキルビニルエーテル類が挙げられる。
これらの中で、透明性の観点から、アルキルビニルエーテル類又はヒドロキシアルキルビニルエーテル類が好ましい。
Examples of vinyl ethers include alkyl vinyl ethers such as methyl vinyl ether, ethyl vinyl ether, n-propyl vinyl ether, isopropyl vinyl ether, n-butyl vinyl ether, cyclohexyl vinyl ether, tert-butyl vinyl ether, octyl vinyl ether, neopentyl vinyl ether; phenyl vinyl ether, benzyl vinyl ether, naphthyl Aromatic vinyl ethers such as vinyl ether; 2-hydroxyethyl vinyl ether, 3-hydroxypropyl vinyl ether, 4-hydroxybutyl vinyl ether, 9-hydroxynonyl vinyl ether, 1-hydroxymethyl-4-vinyloxymethylcyclohexane, 3-chloro-2- Examples include hydroxyalkyl vinyl ethers such as hydroxypropyl vinyl ether.
Among these, alkyl vinyl ethers or hydroxyalkyl vinyl ethers are preferred from the viewpoint of transparency.

イソプロペニルエーテルとしては、メチルイソプロペニルエーテル、エチルイソプロペニルエーテル、プロピルイソプロペニルエーテル、ブチルイソプロペニルエーテル、シクロヘキシルイソプロペニルエーテル等のイソプロペニルエーテル類;2-ヒドロキシエチルイソプロペニルエーテル、3-ヒドロキシプロピルイソプロペニルエーテル、4-ヒドロキシブチルイソプロペニルエーテル、9-ヒドロキシノニルイソプロペニルエーテル、1-ヒドロキシメチル-4-イソプロペニルオキシメチルシクロヘキサン、3-ヒドロキシ-2-クロロプロピルイソプロペニルエーテル等のヒドロキシアルキルイソプロペニルエーテル類が挙げられる。 Isopropenyl ethers include isopropenyl ethers such as methyl isopropenyl ether, ethyl isopropenyl ether, propyl isopropenyl ether, butyl isopropenyl ether, and cyclohexyl isopropenyl ether; 2-hydroxyethyl isopropenyl ether, 3-hydroxypropyl iso Hydroxyalkyl isopropenyl ethers such as propenyl ether, 4-hydroxybutyl isopropenyl ether, 9-hydroxynonyl isopropenyl ether, 1-hydroxymethyl-4-isopropenyloxymethylcyclohexane, 3-hydroxy-2-chloropropyl isopropenyl ether, etc. Examples include:

カルボン酸ビニルエステルとしては、分岐状のアルキル基を有するベオバ-10(商品名、シェル化学社製)、酢酸ビニル、酪酸ビニル、ピバリン酸ビニル、安息香酸ビニル、バーサチック酸ビニル等のカルボン酸ビニル類が挙げられる。
これらのフッ素を含有しない単量体についても、1種単独で用いてもよく、2種以上を併用してもよい。
Examples of carboxylic acid vinyl esters include vinyl carboxylates such as Beoba-10 (trade name, manufactured by Shell Chemical Co., Ltd.) having a branched alkyl group, vinyl acetate, vinyl butyrate, vinyl pivalate, vinyl benzoate, and vinyl versatate. can be mentioned.
These fluorine-free monomers may be used alone or in combination of two or more.

また、フッ素原子を有さない他の共重合可能な単量体としては、エチレン、プロピレン、イソブチレン等のα-オレフィン類、塩化ビニル、塩化ビニリデン等のハロオレフィン類(ただし、フルオロオレフィンを除く。)、ギ酸アリル、酪酸アリル、安息香酸アリル、シクロヘキサンカルボン酸アリル、プロピオン酸アリル等のカルボン酸アリル類、エチルアリルエーテル、シクロヘキシルアリルエーテル、アリルフェニルエーテル等のアリルエーテル類、アクリル酸エチル、メタクリル酸メチル、メタクリル酸ブチル等の(メタ)アクリル酸エステル類等が挙げられる。
これらの他の共重合可能な単量体についても、1種単独で用いてもよく、2種以上を併用してもよい。例えば、テトラフルオロエチレン、エチレン、プロピレンを主成分とする共重合体、又は、この共重合体にアクリル樹脂成分をシード重合等により複合化したもの等が、好ましい。
Other copolymerizable monomers that do not have a fluorine atom include α-olefins such as ethylene, propylene, and isobutylene, and haloolefins such as vinyl chloride and vinylidene chloride (excluding fluoroolefins). ), allyl carboxylates such as allyl formate, allyl butyrate, allyl benzoate, allyl cyclohexanecarboxylate, allyl propionate, allyl ethers such as ethyl allyl ether, cyclohexyl allyl ether, allyl phenyl ether, ethyl acrylate, methacrylic acid Examples include (meth)acrylic esters such as methyl and butyl methacrylate.
These other copolymerizable monomers may be used alone or in combination of two or more. For example, a copolymer containing tetrafluoroethylene, ethylene, or propylene as a main component, or a composite of this copolymer with an acrylic resin component by seed polymerization or the like is preferable.

本発明において、(D)含フッ素重合体は、フルオロオレフィンに基づく重合単位(a)と、アルキルビニルエーテルに基づく重合単位(b)及び/又はカルボン酸ビニルエステルに基づく重合単位(c)とを含む、含フッ素共重合体であることがより好ましい。 In the present invention, the fluoropolymer (D) includes a polymerized unit (a) based on a fluoroolefin, a polymerized unit (b) based on an alkyl vinyl ether, and/or a polymerized unit (c) based on a carboxylic acid vinyl ester. , a fluorine-containing copolymer is more preferable.

また、一態様として、例えば、(D)含フッ素重合体が、CTFE(クロロトリフルオロエチレン)と、ヒドロキシブチルビニルエーテルと、前記CTFE及び前記ヒドロキシブチルビニルエーテルと共重合可能な単量体と、を含むことがさらに好ましい。
前記共重合可能な単量体としては、前述したフッ素原子を有さない他の共重合可能な単量体等が挙げられる。
このような、硬化性官能基を有するCTFE系ポリマーの共重合体としては、例えば、AGCコーテック社製の“オブリガード”(登録商標)、旭硝子社製の“ルミフロン”(登録商標)、DIC社製の“フルオネート”(登録商標)、セントラル硝子社製の“セフラルコート”(登録商標)等が挙げられる。
Further, in one embodiment, for example, the fluorine-containing polymer (D) includes CTFE (chlorotrifluoroethylene), hydroxybutyl vinyl ether, and a monomer copolymerizable with the CTFE and the hydroxybutyl vinyl ether. It is even more preferable.
Examples of the copolymerizable monomer include the aforementioned other copolymerizable monomers that do not have a fluorine atom.
Examples of copolymers of CTFE-based polymers having a curable functional group include "Obrigade" (registered trademark) manufactured by AGC Cortech, "Lumiflon" (registered trademark) manufactured by Asahi Glass Co., Ltd., and "Lumiflon" (registered trademark) manufactured by DIC Corporation. Examples include "Fluonate" (registered trademark) manufactured by Co., Ltd., and "Cepural Coat" (registered trademark) manufactured by Central Glass Co., Ltd.

また、適正なフィルムを得る観点から、好ましくは数平均分子量2,000~100,0000であり、より好ましくは5,000~50,000である。数平均分子量が2,000未満であると、フィルム基材の強度低下のおそれがあり、また数平均分子量100,000超であると、フィルム形成性に劣るおそれがある。 Further, from the viewpoint of obtaining a suitable film, the number average molecular weight is preferably 2,000 to 100,0000, more preferably 5,000 to 50,000. If the number average molecular weight is less than 2,000, the strength of the film base material may be lowered, and if the number average molecular weight exceeds 100,000, the film forming properties may be poor.

本発明において、含フッ素重合体は、異方導電性樹脂組成物の全質量100質量部に対して、好ましくは5~40質量部であり、より好ましくは10~30質量部であり、さらに好ましくは12~25質量部である。 In the present invention, the fluoropolymer is preferably used in an amount of 5 to 40 parts by weight, more preferably 10 to 30 parts by weight, and even more preferably is 12 to 25 parts by mass.

(その他成分)
本発明の異方導電性樹脂組成物には、カップリング剤を添加してもよい。カップリング剤としては、この種の樹脂組成物に配合される公知のカップリング剤であれば特に限定されないが、例えば、シランカップリング剤およびチタネート系カップリング剤が挙げられる。シランカップリング剤としては、通常、エポキシシラン系、アミノシラン系、カチオニックシラン系、ビニルシラン系、アクリルシラン系、メルカプトシラン系、及びこれらの複合系が挙げられ、任意の添加量で用いることができる。また、チタネート系カップリング剤としては、通常、少なくとも炭素数1~60のアルキレート基を有するチタネート系カップリング剤、アルキルホスファイト基を有するチタネート系カップリング剤、アルキルホスフェート基を有するチタネート系カップリング剤もしくはアルキルパイロホスフェート基を有するチタネート系カップリング剤、及びこれらの複合系カップリング剤が挙げられ、任意の添加量で用いることができる。
なお、カップリング剤の配合量は、典型的には異方導電性樹脂組成物100質量%に対して5質量%以下である。
(Other ingredients)
A coupling agent may be added to the anisotropically conductive resin composition of the present invention. The coupling agent is not particularly limited as long as it is a known coupling agent that can be blended into this type of resin composition, and examples thereof include silane coupling agents and titanate coupling agents. Silane coupling agents typically include epoxysilanes, aminosilanes, cationic silanes, vinylsilanes, acrylicsilanes, mercaptosilanes, and composites thereof, and can be used in any desired amount. . In addition, the titanate coupling agent is usually a titanate coupling agent having an alkylate group having at least 1 to 60 carbon atoms, a titanate coupling agent having an alkyl phosphite group, or a titanate cup having an alkyl phosphate group. Examples include a ring agent, a titanate coupling agent having an alkyl pyrophosphate group, and a composite coupling agent thereof, which can be used in any desired amount.
Note that the amount of the coupling agent blended is typically 5% by mass or less based on 100% by mass of the anisotropically conductive resin composition.

また、本発明の異方導電性樹脂組成物には、必要に応じて、酸化防止剤、離型剤、イオン捕捉剤等の添加剤を添加してもよい。 Moreover, additives such as an antioxidant, a mold release agent, an ion trapping agent, etc. may be added to the anisotropically conductive resin composition of the present invention, if necessary.

[異方導電性接着フィルムの製造方法]
本発明の異方導電性樹脂組成物は、公知の方法を適用して製造することができる。
例えば、前記(A)~(D)成分、及び、必要に応じて配合される各種成分を、ポットミル、ボールミル、ビーズミル、ロールミル、ホモジナイザー、スーパーミル、ライカイ機等の公知の混練機を用いて、室温あるいは加熱下において混練した後、必要に応じて溶剤希釈して、異方導電性樹脂組成物を得ることにより製造することができる。
溶剤希釈して得られる異方導電性樹脂組成物の典型的な望ましい粘度は、0.5~2Pa・s程度である。
[Method for producing anisotropically conductive adhesive film]
The anisotropic conductive resin composition of the present invention can be manufactured by applying a known method.
For example, the above-mentioned components (A) to (D) and various components to be blended as necessary are mixed using a known kneading machine such as a pot mill, a ball mill, a bead mill, a roll mill, a homogenizer, a super mill, and a Raikai machine. The anisotropically conductive resin composition can be produced by kneading at room temperature or under heating, followed by dilution with a solvent if necessary.
The typical desirable viscosity of the anisotropically conductive resin composition obtained by diluting with a solvent is about 0.5 to 2 Pa·s.

本発明の異方導電性接着フィルムは、上記したように溶剤希釈して得られる異方導電性樹脂組成物を支持フィルム上に公知の方法により塗布し、乾燥させることにより得られる。
具体的には、支持フィルム上に、バーコート法、ナイフコート法、ロールコート法、ブレードコート法、ダイコート法、グラビアコート法等の公知の塗布方法により塗布し、乾燥処理し、半硬化状態とすることにより得られる。乾燥温度は、70℃~180℃であってもよく、80℃~150℃であってもよい。乾燥温度が70℃以上であるとシート中に残る溶剤分が少なく、前記異方導電性樹脂組成物を硬化させる際のボイドの発生が抑制され、150℃以下であると成膜性が高く、ハンドリングしやすくなる。塗工装置の具体例としては、(株)康井精機製のμコート350が挙げられる。
The anisotropically conductive adhesive film of the present invention can be obtained by applying the anisotropically conductive resin composition obtained by diluting it with a solvent onto a support film by a known method and drying it.
Specifically, it is applied onto a support film by a known coating method such as a bar coating method, a knife coating method, a roll coating method, a blade coating method, a die coating method, a gravure coating method, etc., and is dried to a semi-cured state. It can be obtained by The drying temperature may be 70°C to 180°C, or 80°C to 150°C. When the drying temperature is 70°C or higher, the amount of solvent remaining in the sheet is small, and the generation of voids when curing the anisotropically conductive resin composition is suppressed, and when the drying temperature is 150°C or lower, film formability is high, Easier to handle. A specific example of the coating device is μ Coat 350 manufactured by Yasui Seiki Co., Ltd.

[マイクロLEDアレイディスプレイ装置の製造方法]
本発明のマイクロLEDアレイディスプレイ装置の製造方法は、ロール等公知の手段で前記異方導電性接着フィルムを仮付けし、基板上に70℃~180℃、0.1~5MPa、0.1~1分で固定した後、長辺が50~200μm、短辺が10~50μmのマイクロLEDを所定の間隔で実装し、150~200℃、1~10MPa、0.1~2時間で加熱硬化することによりマイクロLEDをアレイ状に基板に接合することで得られる。
アレイ状とは、特に限定されないが、例えば、マイクロLEDをM行N列に配置することを意味する。ただし、ここでM及びNは整数であり、MとNとの少なくともいずれかは2以上である。
[Method for manufacturing micro LED array display device]
The method for manufacturing a micro LED array display device of the present invention includes temporarily attaching the anisotropically conductive adhesive film onto a substrate using a known means such as a roll, and placing the anisotropically conductive adhesive film on a substrate at 70° C. to 180° C., 0.1 to 5 MPa, and 0.1 to 100° C. After fixing for 1 minute, micro LEDs with long sides of 50 to 200 μm and short sides of 10 to 50 μm are mounted at predetermined intervals, and heated and cured at 150 to 200°C, 1 to 10 MPa, and 0.1 to 2 hours. This can be obtained by bonding micro-LEDs in an array to a substrate.
Although not particularly limited, the term array means, for example, that the micro LEDs are arranged in M rows and N columns. However, M and N are integers here, and at least one of M and N is 2 or more.

次に実施例により、本発明を具体的に説明するが、本発明は、これらの例によってなんら限定されるものではない。 EXAMPLES Next, the present invention will be specifically explained with reference to Examples, but the present invention is not limited to these Examples in any way.

[合成例1]
(A)シリコーン変性エポキシ樹脂の合成
温度計、冷却管、窒素導入管、撹拌翼のついた500mlの4つ口セパラブルフラスコに、ハイドロジェンポリジメチルシロキサン〔商品名:DMS-H03、Gelest,Inc.社製〕を85.0質量部、トルエンを100質量部投入し、常温で撹拌した。そこへ白金ジビニルテトラメチルジシロキサン錯体キシレン溶液〔商品名:SIP6831.2、Gelest,Inc.社製〕を0.075質量部添加し、マントルヒーターを用いて60℃に加温した。そこへモノアリルグリシジルイソシアヌル酸〔商品名:MADGIC、四国化成工業株式会社製〕を53.1質量部投入し、溶解させた。その後、110℃まで上昇し、そのまま4時間撹拌した。
次いで、トルエン50質量部に溶解させた液状ポリブタジエン〔商品名:NISSO PB G-1000、日本曹達株式会社製〕11.9質量部を30分かけて反応溶液中に滴下し、さらに110℃で4時間撹拌した。得られた反応混合物の溶剤を減圧下で留去することにより、シリコーン変性エポキシ樹脂を得た。
[Synthesis example 1]
(A) Synthesis of silicone-modified epoxy resin Hydrogenpolydimethylsiloxane [Product name: DMS-H03, Gelest, Inc. .. 85.0 parts by mass of 100% of toluene and 100 parts of toluene were added, and the mixture was stirred at room temperature. Platinum divinyltetramethyldisiloxane complex xylene solution [trade name: SIP6831.2, Gelest, Inc. 0.075 parts by mass] was added, and the mixture was heated to 60° C. using a mantle heater. 53.1 parts by mass of monoallyl glycidyl isocyanuric acid [trade name: MADGIC, manufactured by Shikoku Kasei Kogyo Co., Ltd.] was added thereto and dissolved. Thereafter, the temperature was raised to 110°C, and the mixture was stirred for 4 hours.
Next, 11.9 parts by mass of liquid polybutadiene [trade name: NISSO PB G-1000, manufactured by Nippon Soda Co., Ltd.] dissolved in 50 parts by mass of toluene was added dropwise to the reaction solution over 30 minutes, and further heated at 110°C for 4 hours. Stir for hours. A silicone-modified epoxy resin was obtained by distilling off the solvent of the obtained reaction mixture under reduced pressure.

[実施例1、2、比較例1~3]
表1に示した配合比で各成分を混合し、異方導電性樹脂組成物を得た。
得られた異方導電性樹脂組成物を、厚さ40μmのポリプロピレンフィルムに、ロールコーターで乾燥後の厚さが5μmになるように塗布し、80℃、1分で乾燥して、異方導電性接着フィルムを得た。
得られた異方導電性接着フィルムを後述の方法で評価した。その結果を表1に併せて示す。なお、実施例及び比較例で用いた材料は、下記の特性を有するものを使用した。
[Examples 1 and 2, Comparative Examples 1 to 3]
Each component was mixed at the blending ratio shown in Table 1 to obtain an anisotropically conductive resin composition.
The obtained anisotropically conductive resin composition was applied to a polypropylene film with a thickness of 40 μm using a roll coater so that the thickness after drying was 5 μm, and dried at 80° C. for 1 minute to form an anisotropically conductive resin composition. A adhesive film was obtained.
The obtained anisotropically conductive adhesive film was evaluated by the method described below. The results are also shown in Table 1. The materials used in Examples and Comparative Examples had the following characteristics.

(A)シリコーン変性エポキシ樹脂:合成例1
その他の樹脂
・シリコーン樹脂(信越化学工業社製、商品名:KER-3000-M2)
・イソシアヌル酸構造を有するエポキシ樹脂(日産化学社製、商品名:TEPIC-FL)
(A) Silicone modified epoxy resin: Synthesis example 1
Other resins/silicone resins (manufactured by Shin-Etsu Chemical Co., Ltd., product name: KER-3000-M2)
・Epoxy resin with isocyanuric acid structure (manufactured by Nissan Chemical Co., Ltd., product name: TEPIC-FL)

(B)硬化剤
・(B1)4-メチル-ヘキサヒドロ無水フタル酸(新日本理化社製、商品名:リカシッドMH)
・(B2)イソシアネート系硬化剤(東ソー社製、商品名:コロネートHX)
(B) Curing agent/(B1) 4-methyl-hexahydrophthalic anhydride (manufactured by Shin Nihon Rika Co., Ltd., trade name: Rikacid MH)
・(B2) Isocyanate curing agent (manufactured by Tosoh Corporation, product name: Coronate HX)

・硬化促進剤:テトラ-n-ブチルホスホニウム-O,O’-ジエチルホスホロジチオネート(日本化学工業社製、商品名:PX-4ET) ・Curing accelerator: Tetra-n-butylphosphonium-O,O'-diethylphosphorodithionate (manufactured by Nihon Kagaku Kogyo Co., Ltd., trade name: PX-4ET)

(C)導電性粒子
・金メッキ樹脂粒子(積水化学社製、商品名:ミクロパールAU、平均粒子径:5μm)
(C) Conductive particles/gold-plated resin particles (manufactured by Sekisui Chemical Co., Ltd., product name: Micropearl AU, average particle size: 5 μm)

(D)含フッ素重合体
・(D1)水酸基含有CTFE系共重合体(AGC旭硝子社製、商品名:ルミフロンLF-400、水酸基価47mgKOH/g、酸価5mgKOH/g)
・(D2)水酸基含有CTFE系共重合体(AGC旭硝子社製、商品名:ルミフロンLF-552、水酸基価21mgKOH/g、酸価1.5~2.5mgKOH/g)
(D) Fluorine-containing polymer/(D1) Hydroxyl group-containing CTFE copolymer (manufactured by AGC Asahi Glass Co., Ltd., product name: Lumiflon LF-400, hydroxyl value 47 mgKOH/g, acid value 5 mgKOH/g)
・(D2) Hydroxyl group-containing CTFE copolymer (manufactured by AGC Asahi Glass Co., Ltd., product name: Lumiflon LF-552, hydroxyl value 21 mgKOH/g, acid value 1.5 to 2.5 mgKOH/g)

その他成分
・シランカップリング剤(信越シリコーン社製、商品名:KBM-303)
Other ingredients: Silane coupling agent (manufactured by Shin-Etsu Silicone Co., Ltd., product name: KBM-303)

<評価方法>
(1)密着性
異方導電性接着剤を印刷評価基板に塗布し、さらに50μm×50μmのLEDを実装し、200℃で1時間加熱して接合した後、接着強度測定装置(西進商事社製、型名:SS-30WD)を用いて25℃及び260℃の環境下での接着強度を測定し、25℃での接着強度に対する260℃の接着強度の変化率(低下率)を算出した。評価基準は次の通りである。
[評価基準]
○:10%未満
△:10%以上20%未満
×:20%以上
<Evaluation method>
(1) Adhesion After applying an anisotropic conductive adhesive to a printed evaluation board, mounting a 50 μm x 50 μm LED, and bonding by heating at 200°C for 1 hour, use an adhesive strength measuring device (manufactured by Seishin Shoji Co., Ltd.). , model name: SS-30WD) in an environment of 25°C and 260°C, and the rate of change (rate of decrease) in the adhesive strength at 260°C with respect to the adhesive strength at 25°C was calculated. The evaluation criteria are as follows.
[Evaluation criteria]
○: Less than 10% △: 10% or more and less than 20% ×: 20% or more

(2)初期透過率
2枚のガラス板に厚さ0.5mmのシリコーンゴムシートをスペーサーとして挟み込んで作製したセルに、上記異方導電性接着フィルムを100枚重ね合わせ、120℃で2時間、150℃で5時間の加熱を行い硬化して、厚さ0.5mmの板状硬化物を作成した。
紫外可視分光光度計(日本分光社製、製品名:V-570)を用いて、加熱硬化後の板状硬化物の波長460nmにおける光透過率を測定した。評価基準は次の通りである。
[評価基準]
○:90%以上
△:80%以上90%未満
×:80%未満
(2) Initial transmittance 100 sheets of the above anisotropically conductive adhesive film were stacked on a cell made by sandwiching a 0.5 mm thick silicone rubber sheet as a spacer between two glass plates, and the film was heated at 120°C for 2 hours. It was cured by heating at 150° C. for 5 hours to create a plate-shaped cured product with a thickness of 0.5 mm.
Using an ultraviolet-visible spectrophotometer (manufactured by JASCO Corporation, product name: V-570), the light transmittance at a wavelength of 460 nm of the plate-shaped cured product after heat curing was measured. The evaluation criteria are as follows.
[Evaluation criteria]
○: 90% or more △: 80% or more and less than 90% ×: less than 80%

(3)耐熱性試験(1)
前記(2)で得られた加熱硬化後の板状硬化物に対し、150℃の大気オーブンにて24時間加熱処理した。また、この加熱処理後の板状硬化物の460nmにおける光透過率を測定し、その変化率を算出した。評価基準は次の通りである。
[評価基準]
○:90%以上
△:80%以上90%未満
×:80%未満
(3) Heat resistance test (1)
The heat-cured plate-shaped cured product obtained in (2) above was heat-treated in an atmospheric oven at 150° C. for 24 hours. Further, the light transmittance at 460 nm of the plate-shaped cured product after this heat treatment was measured, and the rate of change was calculated. The evaluation criteria are as follows.
[Evaluation criteria]
○: 90% or more △: 80% or more and less than 90% ×: less than 80%

(4)耐熱性試験(2)
前記(2)で得られた加熱硬化後の板状硬化物に対し、150℃の大気オーブンにて1000時間加熱処理した。また、この加熱処理後の板状硬化物の460nmにおける光透過率を測定し、その変化率を算出した。評価基準は次の通りである。
[評価基準]
○:90%以上
△:80%以上90%未満
×:80%未満
(4) Heat resistance test (2)
The heat-cured plate-shaped cured product obtained in (2) above was heat-treated in an atmospheric oven at 150° C. for 1000 hours. Further, the light transmittance at 460 nm of the plate-shaped cured product after this heat treatment was measured, and the rate of change was calculated. The evaluation criteria are as follows.
[Evaluation criteria]
○: 90% or more △: 80% or more and less than 90% ×: less than 80%

(5)耐光性試験(1)
前記(2)で得られた加熱硬化後の板状硬化物に対し、UV照射装置(オーク製作所製、製品名:UV-300、高圧水銀灯、400nm以下の波長カットフィルター使用)を用い、24時間UV照射処理した。また、この照射処理後の板状硬化物の460nmにおける光透過率を測定し、その変化率を算出した。評価基準は次の通りである。
[評価基準]
○:90%以上
△:80%以上90%未満
×:80%未満
(5) Light resistance test (1)
The heat-cured plate-shaped cured product obtained in (2) above was heated for 24 hours using a UV irradiation device (manufactured by Oak Seisakusho, product name: UV-300, high-pressure mercury lamp, using a wavelength cut filter of 400 nm or less). Treated with UV irradiation. Further, the light transmittance at 460 nm of the plate-shaped cured product after the irradiation treatment was measured, and the rate of change was calculated. The evaluation criteria are as follows.
[Evaluation criteria]
○: 90% or more △: 80% or more and less than 90% ×: less than 80%

(6)耐光性試験(2)
前記(2)で得られた加熱硬化後の板状硬化物に対し、UV照射装置(オーク製作所製、製品名:UV-300、高圧水銀灯、400nm以下の波長カットフィルター使用)を用い、1000時間UV照射処理した。次いで、照射処理後の板状硬化物の460nmにおける光透過率を測定し、その変化率を算出した。評価基準は次の通りである。
[評価基準]
○:90%以上
△:80%以上90%未満
×:80%未満
(6) Light resistance test (2)
The heat-cured plate-shaped cured product obtained in (2) above was heated for 1000 hours using a UV irradiation device (manufactured by Oak Seisakusho, product name: UV-300, high-pressure mercury lamp, using a wavelength cut filter of 400 nm or less). Treated with UV irradiation. Next, the light transmittance at 460 nm of the plate-shaped cured product after the irradiation treatment was measured, and the rate of change thereof was calculated. The evaluation criteria are as follows.
[Evaluation criteria]
○: 90% or more △: 80% or more and less than 90% ×: less than 80%

(7)耐マイグレーション性
くし型パターン基板(基板材料:窒化アルミ、電極材料:Cu、0.1mm間隔で5本)に実施例で得られた異方導電性接着フィルムを200℃、1MPaで60分間、熱圧着したサンプル(50×50mm、厚さ:0.1mm)に対し、85℃、湿度85%RHの環境下で電極に100Vの電圧を1000時間印加しマイグレーション性試験を行うことにより、耐マイグレーション性を評価した。評価基準は次の通りである。
[評価基準]
○:マイグレーション発生なし
×:マイグレーション発生
(7) Migration resistance The anisotropically conductive adhesive film obtained in the example was applied to a comb-shaped patterned substrate (substrate material: aluminum nitride, electrode material: Cu, 5 pieces at 0.1 mm intervals) at 200°C and 1 MPa at 60°C. By applying a voltage of 100V to the electrodes for 1000 hours in an environment of 85°C and 85% RH to perform a migration property test on a sample (50 x 50mm, thickness: 0.1mm) that was thermocompressed for 10 minutes, Migration resistance was evaluated. The evaluation criteria are as follows.
[Evaluation criteria]
○: No migration occurs ×: Migration occurs

樹脂として、シリコーン変成エポキシ樹脂及び含フッ素重合体を用いた実施例1、2は、エポキシ樹脂のみを用いた比較例2(耐光性が悪い)、シリコーン樹脂のみを用いた比較例3(密着性、耐マイグレーション性が悪い)、また、樹脂として、含フッ素重合体のみを用いた比較例1(密着性が悪い)に比べ、密着性、光透過性、耐熱性、耐光性及び耐マイグレーション性のすべてが同時に満たされていることがわかる。 Examples 1 and 2 in which a silicone-modified epoxy resin and a fluoropolymer were used as resins were compared to Comparative Example 2 in which only an epoxy resin was used (poor light resistance), and Comparative Example 3 in which only a silicone resin was used (poor adhesion). In addition, compared to Comparative Example 1 (poor adhesion) in which only a fluorine-containing polymer was used as the resin, adhesion, light transmittance, heat resistance, light resistance, and migration resistance were improved. You can see that everything is fulfilled at the same time.

Claims (6)

(A)シリコーン変性エポキシ樹脂と、(B)硬化剤と、(C)導電性粒子と、(D)含フッ素重合体と、を含む異方導電性樹脂組成物であって、
前記(A)シリコーン変性エポキシ樹脂が、下記一般式(1)で表される構造を有
前記(D)含フッ素重合体が、フルオロオレフィンに基づく重合単位(a)と、アルキルビニルエーテルに基づく重合単位(b)及び/又はカルボン酸ビニルエステルに基づく重合単位(c)と、を含む、含フッ素共重合体である、
異方導電性樹脂組成物。

[式(1)中、Rはそれぞれ独立に1価の有機基を示し、Rはそれぞれ独立に炭素数1~10の鎖状の脂肪族炭化水素基、炭素数3~10の環状の脂肪族炭化水素基及びフェニル基から選ばれる基を示し、Yは環状エーテル基を含有する有機基を示す。Xはそれぞれ同一であっても異なってもよい。aとbは正の数であってa+b=1かつ0.3≦a<1であり、nは1~25である。]
An anisotropically conductive resin composition comprising (A) a silicone-modified epoxy resin, (B) a curing agent, (C) conductive particles, and (D) a fluoropolymer,
The silicone-modified epoxy resin (A) has a structure represented by the following general formula (1),
The fluoropolymer (D) contains a polymerized unit (a) based on a fluoroolefin, a polymerized unit (b) based on an alkyl vinyl ether, and/or a polymerized unit (c) based on a carboxylic acid vinyl ester. is a fluorine copolymer,
Anisotropic conductive resin composition.

[In formula (1), R 1 each independently represents a monovalent organic group, R 2 each independently represents a chain aliphatic hydrocarbon group having 1 to 10 carbon atoms, or a cyclic aliphatic hydrocarbon group having 3 to 10 carbon atoms. It represents a group selected from an aliphatic hydrocarbon group and a phenyl group, and Y represents an organic group containing a cyclic ether group. X may be the same or different. a and b are positive numbers, a+b=1 and 0.3≦a<1, and n is 1 to 25. ]
前記(D)含フッ素重合体が、CTFE(クロロトリフルオロエチレン)と、ヒドロキシブチルビニルエーテルと、前記CTFE及び前記ヒドロキシブチルビニルエーテルと共重合可能な単量体と、を含む、請求項1に記載の異方導電性樹脂組成物。 2. The fluorine-containing polymer (D) includes CTFE (chlorotrifluoroethylene), hydroxybutyl vinyl ether, and a monomer copolymerizable with the CTFE and the hydroxybutyl vinyl ether . Anisotropic conductive resin composition. 前記共重合可能な単量体が、α-オレフィン類、ハロオレフィン類、カルボン酸アリル類、アリルエーテル類、及び(メタ)アクリル酸エステル類から選択される少なくとも一種である、請求項に記載の異方導電性樹脂組成物。 3. The copolymerizable monomer is at least one selected from α-olefins, haloolefins, allyl carboxylates, allyl ethers, and (meth)acrylic esters. anisotropically conductive resin composition. 前記(C)導電性粒子の平均粒径が0.5~10μmである、請求項1~のいずれか1項に記載の異方導電性樹脂組成物。 The anisotropic conductive resin composition according to any one of claims 1 to 3 , wherein the conductive particles (C) have an average particle size of 0.5 to 10 μm. 請求項1~のいずれか1項に記載の異方導電性樹脂組成物をシート状に形成してなる、異方導電性接着フィルム。 An anisotropically conductive adhesive film obtained by forming the anisotropically conductive resin composition according to any one of claims 1 to 4 into a sheet shape. 請求項に記載の異方導電性接着フィルムを用いて、基板上にマイクロLEDをアレイ状に並べて実装してなる、マイクロLEDディスプレイ装置。 A micro LED display device comprising micro LEDs arranged and mounted in an array on a substrate using the anisotropically conductive adhesive film according to claim 5 .
JP2020065121A 2020-03-31 2020-03-31 Anisotropically conductive resin composition, anisotropically conductive adhesive film, and micro LED display device Active JP7390237B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020065121A JP7390237B2 (en) 2020-03-31 2020-03-31 Anisotropically conductive resin composition, anisotropically conductive adhesive film, and micro LED display device
CN202110304100.3A CN113462122B (en) 2020-03-31 2021-03-22 Anisotropic conductive resin composition, anisotropic conductive adhesive film, and micro-LED display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020065121A JP7390237B2 (en) 2020-03-31 2020-03-31 Anisotropically conductive resin composition, anisotropically conductive adhesive film, and micro LED display device

Publications (2)

Publication Number Publication Date
JP2021161282A JP2021161282A (en) 2021-10-11
JP7390237B2 true JP7390237B2 (en) 2023-12-01

Family

ID=77868315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020065121A Active JP7390237B2 (en) 2020-03-31 2020-03-31 Anisotropically conductive resin composition, anisotropically conductive adhesive film, and micro LED display device

Country Status (2)

Country Link
JP (1) JP7390237B2 (en)
CN (1) CN113462122B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000345010A (en) 1999-04-01 2000-12-12 Mitsui Chemicals Inc Anisotropically conductive paste
JP2004083823A (en) 2002-08-29 2004-03-18 Otsuka Chemical Holdings Co Ltd Epoxy resin, flame retardant, flame-retardant resin composition and flame-retardant resin molded article
JP2006299025A (en) 2005-04-19 2006-11-02 Sumitomo Electric Ind Ltd Epoxy resin composition
JP2012241136A (en) 2011-05-20 2012-12-10 Kyocera Chemical Corp Silicone-modified epoxy resin composition, photosemiconductor sealing composition and photosemiconductor element adhesive containing the resin composition
JP2015137338A (en) 2014-01-23 2015-07-30 株式会社ダイセル Curable composition containing conductive fiber coated particle
JP2019140101A (en) 2018-02-07 2019-08-22 積水化学工業株式会社 Conductive material, connection structure and method for producing connection structure

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009234048A (en) * 2008-03-27 2009-10-15 Asahi Glass Co Ltd Film and manufacturing method of the same
JP5164676B2 (en) * 2008-06-09 2013-03-21 株式会社ダイセル Copolymer and curable resin composition
KR101914320B1 (en) * 2011-07-20 2018-11-01 주식회사 다이셀 Curable epoxy resin composition
JP5983629B2 (en) * 2011-12-28 2016-09-06 旭硝子株式会社 Photocurable fluorine-containing copolymer composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000345010A (en) 1999-04-01 2000-12-12 Mitsui Chemicals Inc Anisotropically conductive paste
JP2004083823A (en) 2002-08-29 2004-03-18 Otsuka Chemical Holdings Co Ltd Epoxy resin, flame retardant, flame-retardant resin composition and flame-retardant resin molded article
JP2006299025A (en) 2005-04-19 2006-11-02 Sumitomo Electric Ind Ltd Epoxy resin composition
JP2012241136A (en) 2011-05-20 2012-12-10 Kyocera Chemical Corp Silicone-modified epoxy resin composition, photosemiconductor sealing composition and photosemiconductor element adhesive containing the resin composition
JP2015137338A (en) 2014-01-23 2015-07-30 株式会社ダイセル Curable composition containing conductive fiber coated particle
JP2019140101A (en) 2018-02-07 2019-08-22 積水化学工業株式会社 Conductive material, connection structure and method for producing connection structure

Also Published As

Publication number Publication date
CN113462122B (en) 2024-03-22
CN113462122A (en) 2021-10-01
JP2021161282A (en) 2021-10-11

Similar Documents

Publication Publication Date Title
KR102167312B1 (en) Curable composition and connection structure
JP6672837B2 (en) Anisotropic conductive adhesive composition, film adhesive, connection structure, and semiconductor device
JP2024038074A (en) Resin particles, conductive particles, conductive materials and connected structures
JP6434428B2 (en) Film adhesive containing conductive fiber coated particles
TW202224942A (en) Circuit-connection adhesive film and method for producing same, and circuit connection structure and method for producing same
JP7390237B2 (en) Anisotropically conductive resin composition, anisotropically conductive adhesive film, and micro LED display device
WO2013157378A1 (en) Circuit connection material, and manufacturing method for assembly using same
TW201217482A (en) Adhesive film, and connection structure and connecting method for circuit member
KR101982885B1 (en) Adhesive composition, film-like adhesive and circuit connecting material using same adhesive composition, connection structure for circuit member and manufacturing method for same
JP6518100B2 (en) PHOTO-CURABLE CONDUCTIVE MATERIAL, CONNECTION STRUCTURE, AND METHOD FOR MANUFACTURING CONNECTION STRUCTURE
JP7210846B2 (en) Adhesive film for circuit connection, manufacturing method thereof, manufacturing method of circuit connection structure, and adhesive film housing set
JP2019140101A (en) Conductive material, connection structure and method for producing connection structure
US20130160841A1 (en) Adhesive composition, film-like adhesive and circuit connecting material using the same, connecting structure of circuit member and manufacturing method thereof
JP7390236B2 (en) Anisotropic conductive resin composition and micro LED display device
JP6518101B2 (en) PHOTO-CURABLE CONDUCTIVE MATERIAL, CONNECTION STRUCTURE, AND METHOD FOR MANUFACTURING CONNECTION STRUCTURE
JP7308028B2 (en) Anisotropic conductive film, cured product thereof, and method for producing anisotropic conductive film
JP6894221B2 (en) Anisotropic conductive films, laminated films containing them, and methods for manufacturing them.
KR20220047252A (en) Resin particle, electroconductive particle, an electrically-conductive material, and bonded structure
WO2018181536A1 (en) Adhesive composition and structural body
JP6438305B2 (en) Photocurable conductive material, connection structure, and method of manufacturing connection structure
WO2022113946A1 (en) Adhesive film for circuit connection, and circuit connection structure and production method therefor
WO2023136286A1 (en) Adhesive composition, adhesive film for circuit connection, and method for producing connection structure
WO2014156685A1 (en) Anisotropic conductive film
JP2015144120A (en) Conductive material and connection structure
JP2017020029A (en) Anisotropic conductive film, and method for producing mounted body using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231120

R150 Certificate of patent or registration of utility model

Ref document number: 7390237

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150