JP7384726B2 - Abrasive composition - Google Patents

Abrasive composition Download PDF

Info

Publication number
JP7384726B2
JP7384726B2 JP2020053679A JP2020053679A JP7384726B2 JP 7384726 B2 JP7384726 B2 JP 7384726B2 JP 2020053679 A JP2020053679 A JP 2020053679A JP 2020053679 A JP2020053679 A JP 2020053679A JP 7384726 B2 JP7384726 B2 JP 7384726B2
Authority
JP
Japan
Prior art keywords
polishing
silica particles
water
acid
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020053679A
Other languages
Japanese (ja)
Other versions
JP2021153160A (en
Inventor
彰裕 川原
健治 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaguchi Seiken Kogyo Co Ltd
Original Assignee
Yamaguchi Seiken Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaguchi Seiken Kogyo Co Ltd filed Critical Yamaguchi Seiken Kogyo Co Ltd
Priority to JP2020053679A priority Critical patent/JP7384726B2/en
Priority to TW110106517A priority patent/TW202142642A/en
Priority to CN202110303581.6A priority patent/CN113444455B/en
Publication of JP2021153160A publication Critical patent/JP2021153160A/en
Application granted granted Critical
Publication of JP7384726B2 publication Critical patent/JP7384726B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Description

本発明は、研磨剤組成物に関する。更に詳しくは、酸化物単結晶であるタンタル酸リチウム単結晶材料やニオブ酸リチウム単結晶材料を被研磨物とする精密研磨加工に用いられる研磨剤組成物に関する。 FIELD OF THE INVENTION The present invention relates to an abrasive composition. More specifically, the present invention relates to an abrasive composition used in precision polishing of lithium tantalate single crystal materials and lithium niobate single crystal materials, which are oxide single crystals, as objects to be polished.

従来、テレビの中間周波数フィルタや共振器等のエレクトロニクス部品として、圧電体における圧電効果により発生する表面弾性波(SAW)を利用した表面弾性波デバイスが広く用いられている。このような表面弾性波デバイスを構成する圧電体素子の材料として、圧電体セラミックス、圧電体薄膜等の各種の圧電性物質の採用が検討されている。特に、近年においては、硬脆材料が優れた特性を有していることから、タンタル酸リチウム単結晶材料やニオブ酸リチウム単結晶材料(以下、「酸化物単結晶材料」と称す。)が広く採用されている。 Conventionally, surface acoustic wave devices that utilize surface acoustic waves (SAW) generated by the piezoelectric effect in piezoelectric materials have been widely used as electronic components such as intermediate frequency filters and resonators for televisions. Various piezoelectric materials such as piezoelectric ceramics and piezoelectric thin films are being considered as materials for the piezoelectric elements constituting such surface acoustic wave devices. In particular, in recent years, since hard and brittle materials have excellent properties, lithium tantalate single crystal materials and lithium niobate single crystal materials (hereinafter referred to as "oxide single crystal materials") have been widely used. It has been adopted.

種々の表面弾性波デバイスの表面には、鏡面を得るためにポリッシング加工が通常施される。ここで、酸化物単結晶材料は、硬度が高く、かつ、化学的に極めて安定な材料であり、研磨速度が遅くなることが知られている。そのため、従来の酸化物単結晶材料の研磨は、工業的には研磨液の供給及び回収を繰り返す循環供給方式が一般的に採用されている。しかしながら、所望の厚さになるまで研磨を行おうとすると、例えば、10時間近い研磨時間が必要となることもあり、製品の生産性や生産効率の点で問題となることがあった。 The surfaces of various surface acoustic wave devices are usually polished to obtain a mirror surface. Here, it is known that the oxide single crystal material has high hardness and is chemically extremely stable, resulting in a slow polishing rate. Therefore, in conventional polishing of oxide single crystal materials, a circulating supply system in which the polishing liquid is repeatedly supplied and recovered is generally adopted industrially. However, polishing to a desired thickness may require polishing time of, for example, nearly 10 hours, which may pose a problem in terms of product productivity and production efficiency.

更に、上記の酸化物単結晶材料を被研磨物として研磨する際に、「キュッキュ」といった独特の摩擦音を発生する所謂“キャリア鳴き”と呼ばれる微細振動を起こしやすいことが知られている。このような微細振動を発生する現象は、酸化物単結晶材料の圧電材料としての特性に起因すると考えられている。そして、かかる微細振動を生じた結果、被研磨物が規定の研磨位置から移動したり、或いは割れたりする等の不具合を生じることがあった。したがって、研磨時における微細振動の抑制が重要な課題となっている。 Furthermore, it is known that when the above-mentioned oxide single crystal material is polished as an object to be polished, it is likely to cause minute vibrations called "carrier squeal" that generate a unique frictional sound such as "squeak". The phenomenon of generating such minute vibrations is thought to be caused by the properties of the oxide single crystal material as a piezoelectric material. As a result of such minute vibrations, problems such as movement of the object to be polished from a specified polishing position or cracking may occur. Therefore, suppression of minute vibrations during polishing has become an important issue.

シリコンウエハの研磨に使用されるコロイダルシリカを主成分として含む研磨剤がタンタル酸リチウム単結晶材料等の酸化物結晶材料の研磨にも採用されている。かかるコロイダルシリカ成分を含有する研磨剤は、表面及び内面に欠陥を生じることなく、研磨面の精度を高度に達成することができる優れた特徴を有する。しかしながら、その一方で、研磨条件等によって、上述したキャリア鳴きと呼ばれる被研磨物の微細振動が発生することがあった。 Polishing agents containing colloidal silica as a main component used for polishing silicon wafers are also used for polishing oxide crystal materials such as lithium tantalate single crystal materials. An abrasive containing such a colloidal silica component has an excellent feature of being able to achieve a high degree of precision on the polished surface without causing defects on the surface or inner surface. However, on the other hand, depending on the polishing conditions and the like, micro vibrations of the object to be polished, called the above-mentioned carrier noise, may occur.

一方、酸化物単結晶材料の研磨速度の向上を目的として、硬脆材料用の精密研磨剤としてBET比表面積が10~60m/g、2次粒子の平均粒子径が0.5~5μmの沈降法微粒子シリカのみを固形成分として含んだ水系スラリー分散液が提案されている(例えば、特許文献1参照)。更に、同じく硬脆材料用の研磨剤として、コロイダルシリカの分散安定性の向上を目的として、グルコン酸ナトリウム等の添加剤を加えることで、研磨速度を向上させるものが既に提案されている(例えば、特許文献2参照)。 On the other hand, for the purpose of improving the polishing rate of oxide single crystal materials, a precision abrasive for hard and brittle materials with a BET specific surface area of 10 to 60 m 2 /g and an average particle diameter of secondary particles of 0.5 to 5 μm is used. An aqueous slurry dispersion containing only precipitated particulate silica as a solid component has been proposed (for example, see Patent Document 1). Furthermore, as abrasives for hard and brittle materials, abrasives have already been proposed that improve the polishing speed by adding additives such as sodium gluconate, with the aim of improving the dispersion stability of colloidal silica (for example, , see Patent Document 2).

この他に、タンタル酸リチウム単結晶材料やニオブ酸リチウム単結晶材料で構成された基板のための基板用研磨剤(例えば、特許文献3参照)や、タンタル酸リチウム単結晶材料等の研磨の際に、キャリア鳴きを抑制する目的で不飽和アミドに由来する構成単位を含有する重合体または共重合体を研磨剤に添加することが既に提案されている(例えば、特許文献4参照)。 In addition, there are also substrate polishing agents for substrates made of lithium tantalate single crystal materials or lithium niobate single crystal materials (for example, see Patent Document 3), and polishing agents for polishing lithium tantalate single crystal materials. In addition, it has already been proposed to add a polymer or copolymer containing a structural unit derived from an unsaturated amide to an abrasive for the purpose of suppressing carrier squeal (see, for example, Patent Document 4).

特開平5-1279号公報Japanese Patent Application Publication No. 5-1279 特開2006-150482号公報Japanese Patent Application Publication No. 2006-150482 特開2002-184726号公報Japanese Patent Application Publication No. 2002-184726 特開2017-218514号公報Japanese Patent Application Publication No. 2017-218514

しかしながら、上述した特許文献1及び特許文献2に示された研磨剤は、圧電材料の研磨におけるキャリア鳴きと呼ばれる微細振動の抑制については何ら開示も示唆もされていない。 However, the abrasives shown in Patent Document 1 and Patent Document 2 described above do not disclose or suggest anything about suppressing minute vibrations called carrier noise in polishing piezoelectric materials.

一方、特許文献3に開示された硬脆材料で構成された基板用の研磨剤の場合、研磨速度が高く、かつ研磨面等の外観を良好に研磨することを主たる目的とするものである。そのため、γ-アルミナ及びシリカを成分として含み、加えて潤滑剤及び分散助剤を多く含んでいる。ここで、γ-アルミナのようなアルミナ成分及びシリカ成分を含むと沈降が生じやすくなり、上述した循環供給方式の研磨には不向きであることが知られている。 On the other hand, in the case of the polishing agent for substrates made of a hard and brittle material disclosed in Patent Document 3, the main purpose is to have a high polishing rate and to polish the appearance of the polished surface etc. well. Therefore, it contains γ-alumina and silica as components, as well as a large amount of lubricant and dispersion aid. Here, it is known that if an alumina component such as γ-alumina and a silica component are included, sedimentation tends to occur, making it unsuitable for polishing using the above-mentioned circulating supply method.

更に、潤滑剤及び分散助剤を多く含むと研磨剤自体の粘度が高くなり、種々の問題が生じやすくなる。また、特許文献3には、キャリア鳴きについても開示も示唆もなされていない。 Furthermore, when a large amount of lubricant and dispersion aid is contained, the viscosity of the abrasive itself becomes high, which tends to cause various problems. Further, Patent Document 3 neither discloses nor suggests carrier squeal.

一方、特許文献4には、タンタル酸リチウム単結晶材料等の酸化物単結晶材料の研磨において、キャリア鳴きを抑制する目的で、不飽和アミドに由来する構成単位を含有する重合体または共重合体を研磨剤中に添加することが提案されている。しかしながら、研磨速度の向上の点においては不十分であることが知られており、より一層の改善や改良する必要があることが認められている。 On the other hand, Patent Document 4 discloses that a polymer or copolymer containing a structural unit derived from an unsaturated amide is used for the purpose of suppressing carrier noise in polishing oxide single crystal materials such as lithium tantalate single crystal materials. has been proposed to be added to the abrasive. However, it is known that it is insufficient in terms of improving the polishing rate, and it is recognized that further improvements and improvements are needed.

そこで、タンタル酸リチウム単結晶材料またはニオブ酸リチウム単結晶材料の酸化物単結晶材料を被研磨物とする研磨加工において、研磨速度の向上を図るとともに、研磨速度が高くなるに連れて発生するキャリア鳴き(微細振動)を抑制し、研磨位置のずれや割れなどの不具合を生じることなく、安定した研磨を行うものが求められている。 Therefore, when polishing a lithium tantalate single-crystal material or a lithium niobate single-crystal oxide single-crystal material as a polishing workpiece, we aim to improve the polishing speed, and at the same time, carriers generated as the polishing speed increases. There is a need for something that suppresses noise (fine vibrations) and performs stable polishing without causing defects such as shifting of the polishing position or cracks.

上記実情に鑑み、本発明は、酸化物単結晶材料(基板)の研磨において、研磨時におけるキャリア鳴きを抑制するとともに、研磨後の研磨表面の平坦性の向上及び研磨速度の向上を図ることが可能な研磨剤組成物の提供を課題とする。 In view of the above circumstances, the present invention aims to suppress carrier noise during polishing, improve the flatness of the polished surface after polishing, and improve the polishing rate when polishing an oxide single crystal material (substrate). The object of the present invention is to provide a polishing agent composition that can be used.

本発明者らは、上記の課題を解決すべく、鋭意検討した結果、平均粒子径の異なる二種類のシリカ粒子と水溶性高分子化合物と水とを含有し、水溶性高分子化合物が不飽和アミドに由来する構成単位を含有する重合体または共重合体であることを特徴とする研磨剤組成物を使用することにより、タンタル酸リチウム単結晶材料またはニオブ酸リチウム単結晶材料の酸化物単結晶基板の研磨において、被研磨物のキャリア鳴きと呼ばれる微細振動を抑制し、研磨速度を向上させ、研磨後の基板の平坦性を向上させることができることを見出し、本発明を完成するに至った。すなわち、本発明によれば、以下に示す研磨剤組成物が提供される。 In order to solve the above-mentioned problems, the present inventors conducted intensive studies and found that the present invention contains two types of silica particles with different average particle diameters, a water-soluble polymer compound, and water, and the water-soluble polymer compound is unsaturated. By using an abrasive composition characterized by being a polymer or copolymer containing a structural unit derived from amide, the oxide single crystal of lithium tantalate single crystal material or lithium niobate single crystal material can be removed. When polishing a substrate, we have discovered that it is possible to suppress minute vibrations called carrier noise of the polished object, improve the polishing rate, and improve the flatness of the substrate after polishing, and have completed the present invention. That is, according to the present invention, the polishing composition shown below is provided.

[1] シリカ粒子、水溶性高分子化合物、及び水を含有し、前記シリカ粒子は、平均粒子径が10~60nmの小粒径シリカ粒子と、平均粒子径が70~200nmの大粒径シリカ粒子とを含み、前記小粒径シリカ粒子及び前記大粒径シリカ粒子の合計質量に対する前記小粒径シリカ粒子の質量の割合が50~95質量%であり、前記水溶性高分子化合物は、不飽和アミドに由来する構成単位を含有する重合体または共重合体で構成され、タンタル酸リチウム単結晶材料またはニオブ酸リチウム単結晶材料を研磨加工するための研磨剤組成物。 [1] Contains silica particles, a water-soluble polymer compound, and water, and the silica particles include small silica particles with an average particle diameter of 10 to 60 nm and large silica particles with an average particle diameter of 70 to 200 nm. The ratio of the mass of the small particle size silica particles to the total mass of the small particle size silica particles and the large particle size silica particles is 50 to 95% by mass, and the water-soluble polymer compound is An abrasive composition for polishing lithium tantalate single crystal material or lithium niobate single crystal material, which is composed of a polymer or copolymer containing a structural unit derived from a saturated amide.

[2] 前記水溶性高分子化合物は、(メタ)アクリルアミド及び/またはN-置換(メタ)アクリルアミドに由来する構成単位を含有する重合体または共重合体である前記[1]に記載の研磨剤組成物。 [2] The polishing agent according to [1] above, wherein the water-soluble polymer compound is a polymer or copolymer containing a structural unit derived from (meth)acrylamide and/or N-substituted (meth)acrylamide. Composition.

[3] 前記水溶性高分子化合物は、(メタ)アクリルアミド及び/またはN-置換(メタ)アクリルアミドに由来する構成単位と、カルボキシル基含有ビニルモノマーに由来する構成単位とを有する共重合体である前記[1]または[2]に記載の研磨剤組成物。 [3] The water-soluble polymer compound is a copolymer having a structural unit derived from (meth)acrylamide and/or N-substituted (meth)acrylamide and a structural unit derived from a carboxyl group-containing vinyl monomer. The polishing composition according to [1] or [2] above.

[4] 無機酸及び/またはその塩、有機酸及び/またはその塩、及び、塩基性化合物の少なくとも一種類を更に含有する前記[1]~[3]のいずれかに記載の研磨剤組成物。 [4] The polishing composition according to any one of [1] to [3] above, further containing at least one of an inorganic acid and/or a salt thereof, an organic acid and/or a salt thereof, and a basic compound. .

[5] 前記有機酸及び/またはその塩は、キレート性化合物である前記[4]に記載の研磨剤組成物。 [5] The polishing composition according to [4] above, wherein the organic acid and/or its salt is a chelating compound.

平均粒子径の異なる二種類のシリカ粒子と、水溶性高分子化合物と、水とを含み、水溶性高分子化合物が不飽和アミドに由来する構成単位を含有する重合体または共重合体であることを特徴とする研磨剤組成物を用い、タンタル酸リチウム単結晶材料またはニオブ酸リチウム単結晶材料の研磨を行うことにより、平坦性の向上、研磨速度の向上、及びキャリア鳴きの抑制を実現することができる。 A polymer or copolymer containing two types of silica particles with different average particle diameters, a water-soluble polymer compound, and water, where the water-soluble polymer compound contains a structural unit derived from an unsaturated amide. By polishing a lithium tantalate single crystal material or a lithium niobate single crystal material using an abrasive composition characterized by Can be done.

以下、本発明の実施の形態について説明する。本発明は、以下の実施形態に限定されるものではなく、発明の範囲を逸脱しない限りにおいて、変更、修正、改良を加え得るものである。 Embodiments of the present invention will be described below. The present invention is not limited to the following embodiments, and changes, modifications, and improvements may be made without departing from the scope of the invention.

1.研磨剤組成物
本発明の一実施形態の研磨剤組成物は、シリカ粒子、水溶性高分子化合物、及び水を含有し、当該シリカ粒子は、平均粒子径の異なる小粒径シリカ粒子及び大粒径シリカ粒子をそれぞれ規定の割合で含み、当該水溶性高分子化合物は、不飽和アミドに由来する構成単位を含有する重合体または共重合体であり、タンタル酸リチウム単結晶材料またはニオブ酸リチウム単結晶材料を研磨加工するためのものである。
1. Abrasive Composition The abrasive composition of one embodiment of the present invention contains silica particles, a water-soluble polymer compound, and water, and the silica particles include small silica particles and large silica particles having different average particle sizes. The water-soluble polymer compound is a polymer or copolymer containing a structural unit derived from an unsaturated amide, and contains silica particles having a specified diameter. This is for polishing crystalline materials.

1.1 シリカ粒子
本実施形態の研磨剤組成物において用いられるシリカ粒子は、コロイダルシリカ、湿式法シリカ(沈降法シリカ、ゲル法シリカ等)、ヒュームドシリカ等を例示することができ、特に、コロイダルシリカを用いることが好適である。コロイダルシリカは、ケイ酸ナトリウム等のアルカリ金属ケイ酸塩を無機酸と反応させて製造される水ガラス法、テトラエトキシシラン等のアルコキシシランを酸またはアルカリで加水分解する方法、金属ケイ素と水とをアルカリ触媒の存在下で反応させる方法等がある。このうち、製造コストの点において水ガラス法を好適に用いることができる。
1.1 Silica Particles Examples of the silica particles used in the polishing composition of this embodiment include colloidal silica, wet process silica (precipitated process silica, gel process silica, etc.), fumed silica, etc. Preference is given to using colloidal silica. Colloidal silica can be produced by the water glass method, which is produced by reacting an alkali metal silicate such as sodium silicate with an inorganic acid, by the method in which alkoxysilane such as tetraethoxysilane is hydrolyzed with acid or alkali, or by the method in which metallic silicon and water are produced. There is a method of reacting in the presence of an alkali catalyst. Among these, the water glass method can be preferably used in terms of manufacturing cost.

シリカ粒子は、平均粒子径が10~60nmの小粒径シリカ粒子と、平均粒子径が70~200nmの大粒径シリカ粒子とを含有し、小粒径シリカ粒子及び大粒径シリカ粒子の合計質量に対する小粒径シリカ粒子の占める割合(=小粒径シリカ粒子の質量/(小粒径シリカ粒子の質量+大粒径シリカ粒子の質量)×100)が50~95質量%の範囲である。かかる小粒径シリカ粒子の占める割合は、好ましくは55~90質量%の範囲であり、更に好ましくは60~85質量%の範囲である。 The silica particles include small silica particles with an average particle size of 10 to 60 nm and large silica particles with an average particle size of 70 to 200 nm, and the sum of the small silica particles and the large silica particles. The ratio of small-sized silica particles to the mass (=mass of small-sized silica particles/(mass of small-sized silica particles + mass of large-sized silica particles) x 100) is in the range of 50 to 95% by mass. . The proportion of such small-sized silica particles is preferably in the range of 55 to 90% by mass, more preferably in the range of 60 to 85% by mass.

更に、小粒径シリカ粒子の平均粒子径は、好ましくは15~55nmの範囲であり、一方、大粒径シリカ粒子の平均粒子径は、好ましくは75~150nmの範囲である。 Furthermore, the average particle size of the small size silica particles is preferably in the range of 15 to 55 nm, while the average particle size of the large size silica particles is preferably in the range of 75 to 150 nm.

更に、小粒径シリカ粒子、大粒径シリカ粒子、及びその他シリカ粒子を含む全シリカ粒子の平均粒子径は、10~150nmの範囲とすることができる。好ましくは20~120nmの範囲とすることができる。ここで、全シリカ粒子の平均粒子径を10nm以上とすることで、研磨加工時における“キャリア鳴き”の発生を抑制する効果が期待される。 Further, the average particle diameter of all silica particles including small-sized silica particles, large-sized silica particles, and other silica particles can be in the range of 10 to 150 nm. Preferably, it can be in the range of 20 to 120 nm. Here, by setting the average particle diameter of all silica particles to 10 nm or more, an effect of suppressing the occurrence of "carrier noise" during polishing is expected.

更に、全シリカ粒子の平均粒子径を150nm以下とすることで、研磨加工時における“研磨速度”の向上を期待することができる。ここで、上記における各シリカ粒子の平均粒子径は、透過型電子顕微鏡(TEM)による観察結果に基づいて解析し、算出されたものである。なお、全シリカ粒子の合計質量に占める小粒径シリカ粒子及び大粒径シリカ粒子の合計質量の割合は、80質量%以上、より好ましくは90質量%以上とすることができる。 Furthermore, by setting the average particle diameter of all silica particles to 150 nm or less, it is possible to expect an improvement in the "polishing rate" during polishing. Here, the average particle diameter of each silica particle mentioned above was calculated by analyzing based on observation results using a transmission electron microscope (TEM). In addition, the ratio of the total mass of small particle size silica particles and large particle size silica particles to the total mass of all silica particles can be 80% by mass or more, more preferably 90% by mass or more.

また、研磨剤組成物中における全シリカ粒子の濃度は、5~50質量%の範囲であることが好ましく、10~40質量%の範囲であることがより好ましい。全シリカ粒子の濃度を5質量%以上とすることにより、シリカ粒子による研磨効果、特に優れた面質を得ることができる。一方、50質量%以下とすることにより、経済性の面で有利となるとともに、シリカ粒子以外の研磨材やその他の配合剤を配合することによる凝集やゲル化等の問題が生じ難くなる。 Further, the concentration of all silica particles in the polishing composition is preferably in the range of 5 to 50% by mass, more preferably in the range of 10 to 40% by mass. By setting the concentration of all silica particles to 5% by mass or more, the polishing effect of the silica particles and particularly excellent surface quality can be obtained. On the other hand, by setting the content to 50% by mass or less, it is advantageous in terms of economy, and problems such as agglomeration and gelation due to blending of abrasives and other compounding agents other than silica particles are less likely to occur.

1.2 水溶性高分子化合物
本実施形態の研磨剤組成物における水溶性高分子化合物は、不飽和アミドに由来する構成単位を含有する重合体または共重合体が用いられる。
1.2 Water-soluble polymer compound As the water-soluble polymer compound in the polishing composition of the present embodiment, a polymer or copolymer containing a structural unit derived from an unsaturated amide is used.

すなわち、(メタ)アクリルアミド及び/またはN-置換(メタ)アクリルアミドに由来する構成単位を含有する重合体または共重合体を好適に使用することできる。更に、(メタ)アクリルアミド及び/またはN-置換(メタ)アクリルアミドに由来する構成単位を含有する重合体と、(メタ)アクリルアミド及び/またはN-置換(メタ)アクリルアミドに由来する構成単位及びカルボキシル基含有ビニルモノマーに由来する構成単位を含有する共重合体を好適に使用することができる。上記において、“(メタ)アクリルアミド”は、アクリルアミド及び/またはメタアクリルアミドを示すものと本明細書において定義する(以下、同じ。)。 That is, a polymer or copolymer containing a structural unit derived from (meth)acrylamide and/or N-substituted (meth)acrylamide can be suitably used. Furthermore, a polymer containing a structural unit derived from (meth)acrylamide and/or N-substituted (meth)acrylamide, a structural unit derived from (meth)acrylamide and/or N-substituted (meth)acrylamide, and a carboxyl group. A copolymer containing a structural unit derived from a vinyl monomer contained therein can be suitably used. In the above, "(meth)acrylamide" is defined herein to mean acrylamide and/or methacrylamide (the same applies hereinafter).

また、N-置換(メタ)アクリルアミドは、
一般式(1):CH=C(R)-CONR(R
(Rは水素原子またはメチル基、Rは水素原子または炭素数1~4の直鎖状または分岐鎖状のアルキル基、Rは炭素数1~4の直鎖状または分岐鎖状のアルキル基を示す。)
で表される化合物である。
In addition, N-substituted (meth)acrylamide is
General formula (1): CH 2 =C(R 1 )-CONR 2 (R 3 )
(R 1 is a hydrogen atom or a methyl group, R 2 is a hydrogen atom or a linear or branched alkyl group having 1 to 4 carbon atoms, and R 3 is a linear or branched alkyl group having 1 to 4 carbon atoms. (Indicates an alkyl group.)
It is a compound represented by

なお、上記一般式(1)におけるRまたはRで示される炭素数1~4の直鎖状または分岐鎖状のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、s-ブチル基、t―ブチル基等を挙げることができる。一方、N-置換(メタ)アクリルアミドの具体例としては、N,N-ジメチル(メタ)アクリルアミド、N-メチル(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド、N-n-プロピル(メタ)アクリルアミド、N-i―プロピル(メタ)アクリルアミド、N-n―ブチル(メタ)アクリルアミド、N-i―ブチル(メタ)アクリルアミド、N-s-ブチル(メタ)アクリルアミド、及びN-t-ブチル(メタ)アクリルアミドを挙げることができる。 In addition, examples of the linear or branched alkyl group having 1 to 4 carbon atoms represented by R 2 or R 3 in the above general formula (1) include methyl group, ethyl group, n-propyl group, i -propyl group, n-butyl group, i-butyl group, s-butyl group, t-butyl group, etc. On the other hand, specific examples of N-substituted (meth)acrylamides include N,N-dimethyl (meth)acrylamide, N-methyl (meth)acrylamide, N-ethyl (meth)acrylamide, and Nn-propyl (meth)acrylamide. , Ni-propyl (meth)acrylamide, N-n-butyl (meth)acrylamide, Ni-butyl (meth)acrylamide, N-s-butyl (meth)acrylamide, and Nt-butyl (meth)acrylamide. Mention may be made of acrylamide.

水溶性高分子化合物が共重合体の場合、(メタ)アクリルアミド及び/またはN-置換(メタ)アクリルアミドの使用割合は、当該共重合体を構成するビニルモノマーの総モル数に対して、5~99モル%の範囲とすることが好適である。更に、この場合において、(メタ)アクリルアミド及び/またはN-置換(メタ)アクリルアミドの使用割合を10~98モル%の範囲とすることがより好適である。 When the water-soluble polymer compound is a copolymer, the ratio of (meth)acrylamide and/or N-substituted (meth)acrylamide to the total number of moles of vinyl monomers constituting the copolymer is 5 to 5. A preferable range is 99 mol%. Furthermore, in this case, it is more preferable that the proportion of (meth)acrylamide and/or N-substituted (meth)acrylamide used is in the range of 10 to 98 mol%.

一方、カルボキシル基含有ビニルモノマーは、(メタ)アクリル酸、クロトン酸、(メタ)アリルカルボン酸等のモノカルボン酸、イタコン酸、マレイン酸、フマル酸等のジカルボン酸、またはこれら各種有機酸のナトリウム塩、カリウム塩等のアルカリ金属塩、アンモニウム塩等が挙げられる。特に、(メタ)アクリル酸またはイタコン酸の使用が好適である。ここで、上記において、(メタ)アクリル酸は、アクリル酸及び/メタクリル酸を示すものと本明細書において定義する(以下、同じ。)。 On the other hand, carboxyl group-containing vinyl monomers include monocarboxylic acids such as (meth)acrylic acid, crotonic acid, and (meth)allylcarboxylic acid, dicarboxylic acids such as itaconic acid, maleic acid, and fumaric acid, or sodium chloride of these various organic acids. Examples include salts, alkali metal salts such as potassium salts, ammonium salts, and the like. Particularly preferred is the use of (meth)acrylic acid or itaconic acid. Here, in the above, (meth)acrylic acid is defined herein to indicate acrylic acid and/methacrylic acid (the same applies hereinafter).

カルボキシル基含有ビニルモノマーの使用割合は、ビニルモノマーの総モル数に対して、1~95モル%の範囲とすることが好適である。更に、この場合において、カルボキシル基含有ビニルモノマーの使用割合を2~90モル%の範囲とすることがより好適である。 The proportion of the carboxyl group-containing vinyl monomer used is preferably in the range of 1 to 95 mol % based on the total number of moles of the vinyl monomer. Furthermore, in this case, it is more preferable that the proportion of the carboxyl group-containing vinyl monomer used is in the range of 2 to 90 mol%.

(メタ)アクリルアミド、N-置換(メタ)アクリルアミド及びカルボキシル基含有ビニルモノマー以外の共重合体を構成するビニルモノマーとしては、従来から周知の種々の化合物を例示することができる。例えば、アニオン性ビニルモノマーとして、ビニルスルホン酸、スチレンスルホン酸、2-アクリルアミド-2-メチルプロパンスルホン酸などの有機スルホン酸、またはこれら各種有機酸のナトリウム塩、カリウム塩等のアルカリ金属塩、アンモニウム塩等が挙げられる。 As vinyl monomers constituting the copolymer other than (meth)acrylamide, N-substituted (meth)acrylamide, and carboxyl group-containing vinyl monomers, various conventionally known compounds can be exemplified. For example, as the anionic vinyl monomer, organic sulfonic acids such as vinyl sulfonic acid, styrene sulfonic acid, 2-acrylamido-2-methylpropanesulfonic acid, alkali metal salts such as sodium salts and potassium salts of these various organic acids, ammonium Examples include salt.

一方、カチオン性ビニルモノマーとして、例えば、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、ジメチルアミノプロピル(メタ)アクリルアミド、ジエチルアミノプロピル(メタ)アクリルアミドなどの第三級アミノ基を有するビニルモノマーまたはそれらの塩酸、硫酸、酢酸などの無機酸若しくは有機酸の塩類、または該第三級アミノ基含有ビニルモノマーとメチルクロライド、ベンジルクロライド、ジメチル硫酸、エピクロルヒドリン等の四級化剤との反応によって得られる第四級アンモニウム塩を含有するビニルモノマー等が挙げられる。 On the other hand, examples of cationic vinyl monomers include vinyl monomers having a tertiary amino group such as dimethylaminoethyl (meth)acrylate, diethylaminoethyl (meth)acrylate, dimethylaminopropyl (meth)acrylamide, and diethylaminopropyl (meth)acrylamide. or their salts of inorganic or organic acids such as hydrochloric acid, sulfuric acid, acetic acid, etc., or by reacting the tertiary amino group-containing vinyl monomer with a quaternizing agent such as methyl chloride, benzyl chloride, dimethyl sulfate, or epichlorohydrin. Examples include vinyl monomers containing quaternary ammonium salts.

また、ノニオン性ビニルモノマーとして、カルボキシル基含有ビニルモノマーまたはアニオン性ビニルモノマーのアルキルエステル(アルキル基の炭素数が1~8もの)、アクリロニトリル、スチレン、ジビニルベンゼン、酢酸ビニル、メチルビニルエーテル、N-ビニルピロリドン等が挙げられる。 In addition, nonionic vinyl monomers include carboxyl group-containing vinyl monomers or alkyl esters of anionic vinyl monomers (alkyl groups having 1 to 8 carbon atoms), acrylonitrile, styrene, divinylbenzene, vinyl acetate, methyl vinyl ether, N-vinyl Examples include pyrrolidone.

なお、(メタ)アクリルアミド及び/またはN-置換(メタ)アクリルアミド、カルボキシル基含有ビニルモノマー、及び更には必要により上記以外のビニルモノマーを共重合してカルボキシル基含有ポリアクリルアミドを製造する方法は、従来から周知の方法を用いて製造することができる。一例を示すと、所定の反応容器の中に上述した各種モノマー及び水を投入し、ラジカル重合開始剤を添加し、所定の回転数で攪拌しながら加温することにより目的とするカルボキシル基含有ポリアクリルアミドを得ることが可能である。 Note that the method for producing carboxyl group-containing polyacrylamide by copolymerizing (meth)acrylamide and/or N-substituted (meth)acrylamide, a carboxyl group-containing vinyl monomer, and further, if necessary, a vinyl monomer other than the above, is conventional. It can be manufactured using a well-known method. For example, the various monomers and water mentioned above are put into a predetermined reaction container, a radical polymerization initiator is added, and the desired carboxyl group-containing polyamide is produced by heating while stirring at a predetermined rotation speed. It is possible to obtain acrylamide.

ラジカル重合開始剤として、過硫酸カリウム、過硫酸アンモニウム等の過硫酸塩、またはこれらと亜硫酸水素ナトリウムのごとき還元剤とを組み合わせた形のレドックス系重合開始剤等の通常のラジカル重合開始剤を使用することができる。また、ラジカル重合開始剤として、アゾ系開始剤を用いるものであっても構わない。かかるラジカル重合開始剤の使用量は、ビニルモノマーの総重量和の0.05~2重量%程度とすることができる。 As a radical polymerization initiator, a normal radical polymerization initiator is used, such as a persulfate such as potassium persulfate or ammonium persulfate, or a redox polymerization initiator in the form of a combination of these and a reducing agent such as sodium bisulfite. be able to. Furthermore, an azo initiator may be used as the radical polymerization initiator. The amount of such a radical polymerization initiator used can be about 0.05 to 2% by weight based on the total weight of vinyl monomers.

水溶性高分子化合物の重量平均分子量は、通常、1,000~10,000,000程度であり、好ましくは5,000~5,000,000であり、更に好ましくは10,000~3,000,000である。ここで、本明細書において重量平均分子量は、GPC(ゲルパーミエーションクロマトグラフィー)を用いて、標準ポリスチレン換算により測定したときの値である。 The weight average molecular weight of the water-soluble polymer compound is usually about 1,000 to 10,000,000, preferably 5,000 to 5,000,000, and more preferably 10,000 to 3,000. ,000. Here, in this specification, the weight average molecular weight is a value measured in terms of standard polystyrene using GPC (gel permeation chromatography).

水溶性高分子化合物の含有量は、0.0001~1.0質量%の範囲であることが好ましく、0.01~0.8質量%の範囲がより好ましい。水溶性高分子化合物の含有量を0.0001質量%以上とすることにより、研磨加工時のキャリア鳴きの抑制が期待される。一方、1.0質量%以下とすることにより、高粘度化による流動性の低下を抑えることができ、作業性を向上させることができる。 The content of the water-soluble polymer compound is preferably in the range of 0.0001 to 1.0% by mass, more preferably in the range of 0.01 to 0.8% by mass. By setting the content of the water-soluble polymer compound to 0.0001% by mass or more, suppression of carrier noise during polishing is expected. On the other hand, by setting the content to 1.0% by mass or less, a decrease in fluidity due to increased viscosity can be suppressed, and workability can be improved.

1.3 その他の添加剤
本実施形態の研磨剤組成物は、pH調整のために、無機酸及び/またはその塩、有機酸及び/またはその塩、及び、塩基性化合物の少なくとも一種類を更に含有することができる。また、有機酸及び/またはその塩としては、キレート性化合物の使用が好適である。
1.3 Other additives The polishing composition of the present embodiment further contains at least one of an inorganic acid and/or a salt thereof, an organic acid and/or a salt thereof, and a basic compound for pH adjustment. It can contain. Further, as the organic acid and/or its salt, it is preferable to use a chelating compound.

更に具体的に説明すると、無機酸としては、硝酸、硫酸、塩酸、リン酸、ホスホン酸、ホスフィン酸、ピロリン酸、及びトリポリリン酸等を例示することができ、これらの塩も使用することが可能である。例えば、塩としては、ナトリウム塩、カリウム塩、及びアンモニウム塩等の使用が好適である。 More specifically, examples of inorganic acids include nitric acid, sulfuric acid, hydrochloric acid, phosphoric acid, phosphonic acid, phosphinic acid, pyrophosphoric acid, and tripolyphosphoric acid, and salts of these can also be used. It is. For example, as the salt, it is preferable to use sodium salt, potassium salt, ammonium salt, and the like.

有機酸としては、ギ酸、酢酸、及びプロピオン酸等のモノカルボン酸、リンゴ酸、マロン酸、マレイン酸、及び酒石酸等のジカルボン酸、クエン酸等のトリカルボン酸、グリシン等のアミノカルボン酸、エチレンジアミン四酢酸等のポリアミノカルボン酸系化合物等を例示することができ、これらの塩も使用することが可能である。例えば、塩としては、ナトリウム塩、カリウム塩、及びアンモニウム塩等の使用が好適である。 Examples of organic acids include monocarboxylic acids such as formic acid, acetic acid, and propionic acid; dicarboxylic acids such as malic acid, malonic acid, maleic acid, and tartaric acid; tricarboxylic acids such as citric acid; aminocarboxylic acids such as glycine; Examples include polyaminocarboxylic acid compounds such as acetic acid, and salts thereof can also be used. For example, as the salt, it is preferable to use sodium salt, potassium salt, ammonium salt, and the like.

塩基性化合物としては、水酸化ナトリウム及び水酸化カリウム等のアルカリ金属水酸化物、水酸化カルシウム及び水酸化マグネシウム等のアルカリ土類金属水酸化物、アンモニア水、及び有機アミン類等を例示することできる。 Examples of basic compounds include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, alkaline earth metal hydroxides such as calcium hydroxide and magnesium hydroxide, aqueous ammonia, and organic amines. can.

更に、本実施形態の研磨剤組成物中における無機酸及び/またはその塩、有機酸及び/またはその塩、及び、塩基性化合物の含有量は、0.05~4質量%の範囲が好ましく、より好ましくは0.1~3質量%の範囲であり、更に好ましくは0.2~2質量%の範囲である。 Furthermore, the content of the inorganic acid and/or its salt, the organic acid and/or its salt, and the basic compound in the polishing composition of the present embodiment is preferably in the range of 0.05 to 4% by mass, It is more preferably in the range of 0.1 to 3% by weight, and still more preferably in the range of 0.2 to 2% by weight.

有機酸及び/またはその塩としては、前述したようにキレート性化合物を使用することが好適であり、ジカルボン酸、トリカルボン酸、アミノカルボン酸、及びポリアミノカルボン酸系化合物等が例示される。更に、ポリアミノカルボン酸系化合物について具体的に示すと、エチレンジアミン四酢酸、ジエチレントリアミン五酢酸、トリエチレンテトラミン六酢酸、ニトリロ三酢酸等、及びこれらのアンモニウム塩、アミン塩、ナトリウム塩、及びカリウム塩等が挙げられる。 As the organic acid and/or its salt, it is preferable to use a chelating compound as described above, and examples include dicarboxylic acid, tricarboxylic acid, aminocarboxylic acid, and polyaminocarboxylic acid compounds. Furthermore, specific examples of polyaminocarboxylic acid compounds include ethylenediaminetetraacetic acid, diethylenetriaminepentaacetic acid, triethylenetetraminehexaacetic acid, nitrilotriacetic acid, and ammonium salts, amine salts, sodium salts, and potassium salts thereof. Can be mentioned.

有機酸及び/またはその塩として、キレート性化合物を用いると、更に研磨速度を向上させることができ、研磨加工時におけるキャリア鳴きの発生を抑制する効果を有している。 When a chelating compound is used as the organic acid and/or its salt, the polishing rate can be further improved and has the effect of suppressing carrier noise during polishing.

本実施形態の研磨剤組成物において、pH値(25℃)を7~11の範囲に調整したものが好ましい。pH値(25℃)が7~11の範囲に調整されると、シリカ粒子の電荷が負に大きくなる傾向が知られている。そのため、シリカ粒子間において働く電気的な反発力が大きくなり、それぞれのシリカ粒子に効果的に作用することで研磨材粒子が均等に分散されるようになる。 In the polishing composition of the present embodiment, it is preferable that the pH value (25° C.) is adjusted to a range of 7 to 11. It is known that when the pH value (25° C.) is adjusted to a range of 7 to 11, the charge of silica particles tends to become more negative. Therefore, the electric repulsive force acting between the silica particles becomes large, and the abrasive particles are evenly dispersed by effectively acting on each silica particle.

これに対し、pH値(25℃)が7未満、特に5~6付近となる場合は、シリカ粒子間の電荷のバランスが崩れ、シリカ粒子の凝集やゲル化が発生しやすくなる。また、pH値(25℃)が11を超える場合、徐々にシリカ粒子の表面が溶解し、研磨剤組成物としての作用効果を発揮することができなくなるおそれがある。 On the other hand, if the pH value (at 25° C.) is less than 7, particularly around 5 to 6, the charge balance between silica particles will be disrupted, and aggregation and gelation of silica particles will likely occur. Further, if the pH value (25° C.) exceeds 11, the surface of the silica particles will gradually dissolve, and there is a possibility that the polishing composition will not be able to exert its effects.

2.研磨方法
本実施形態の研磨剤組成物を用いて、タンタル酸リチウム単結晶材料またはニオブ酸リチウム単結晶材料からなる基板に対して研磨加工を施す際には、従来から周知の種々の研磨手法を適宜選択することができる。例えば、所定量の研磨剤組成物を研磨機に設けられた供給容器に投入する。その後、供給容器からノズルやチューブを介して、研磨機の定盤上に貼付された研磨パッドに対して当該研磨剤組成物を滴下して供給しつつ、被研磨物(タンタル酸リチウム単結晶材料等)の研磨面を研磨パッド面に押圧し、定盤を所定の回転速度にて回転させることにより、被研磨物の表面を研磨する。
2. Polishing Method When polishing a substrate made of lithium tantalate single crystal material or lithium niobate single crystal material using the polishing composition of the present embodiment, various conventionally known polishing methods can be used. It can be selected as appropriate. For example, a predetermined amount of the polishing agent composition is put into a supply container provided in a polishing machine. Thereafter, the abrasive composition is dripped from the supply container through the nozzle or tube onto the polishing pad attached to the surface plate of the polisher, while the object to be polished (lithium tantalate single crystal material etc.) is pressed against the surface of the polishing pad and the surface plate is rotated at a predetermined rotational speed to polish the surface of the object to be polished.

ここで、研磨パッドとしては、従来から周知の不織布、発泡ポリウレタン、多孔質樹脂、及び非多孔質樹脂等からなるものを適宜選択して使用することができる。更に、研磨パッドへの研磨剤組成物の供給を促進し、或いは研磨パッドに当該研磨剤組成物が一定量留まるようにするために、研磨パッドの表面に格子状、同心円状、または螺旋状等の溝加工が施されているものであってもよい。 Here, as the polishing pad, one made of conventionally well-known nonwoven fabric, foamed polyurethane, porous resin, non-porous resin, etc. can be appropriately selected and used. Furthermore, in order to facilitate the supply of the abrasive composition to the polishing pad or to ensure that a certain amount of the abrasive composition remains on the polishing pad, the surface of the polishing pad may have a lattice, concentric, spiral, etc. It may also be provided with grooves.

以下、本発明を実施例に基づいて更に詳細に説明するが、本発明はこれらの実施例に限定されるものではない。また、本発明には、以下の実施例の他にも、本発明の趣旨を逸脱しない限りにおいて、当業者の知識に基づいて種々の変更、改良を加えることができる。 Hereinafter, the present invention will be explained in more detail based on Examples, but the present invention is not limited to these Examples. Furthermore, in addition to the following embodiments, various changes and improvements can be made to the present invention based on the knowledge of those skilled in the art without departing from the spirit of the present invention.

(水溶性高分子化合物の合成)
以下に示す方法で、各実施例及び比較例で使用した水溶性高分子化合物(合成例1~合成例4)を合成した。なお、下記の合成例において、“部”及び“%”は特に断りのない限り、“質量部”または“質量%”を示すものである。
(Synthesis of water-soluble polymer compound)
The water-soluble polymer compounds (Synthesis Examples 1 to 4) used in each Example and Comparative Example were synthesized by the method shown below. In the synthesis examples below, "parts" and "%" indicate "parts by mass" or "% by mass" unless otherwise specified.

(合成例1)
温度計、環流冷却管及び窒素導入管を備えた四つ口フラスコにアクリルアミド100質量部(ビニルモノマーの総モル和に対して95mol%、以下同じ)、アクリル酸5.3質量部(5mol%)、イソプロピルアルコール5.3質量部、及びイオン交換水400質量部を投入し、窒素ガスを導入して反応系内の酸素を除去した。その後、反応系内の温度を40℃に調整し、攪拌を継続しながら重合開始剤として過硫酸アンモニウム0.3質量部及び亜硫酸ナトリウム0.2質量部を投入した。反応系内の発熱により重合反応の開始を確認し、反応系内の液温が90℃に達した後、当該温度で2時間の保温を行った。重合反応の終了後、48%水酸化ナトリウム水溶液を5.5質量部及びイオン交換水11質量部を反応系内に投入し、pH値(25℃)が7.5、ポリマー濃度20%カルボキシル基含有ポリアクリルアミド水溶液である合成例1の水溶性高分子化合物を得た。得られた合成例1の水溶性高分子化合物の組成は、アクリルアミド/アクリル酸=95/5(モル%)、重量平均分子量は、900,000であった。
(Synthesis example 1)
100 parts by mass of acrylamide (95 mol% based on the total molar sum of vinyl monomers, the same applies hereinafter) and 5.3 parts by mass (5 mol%) of acrylic acid in a four-necked flask equipped with a thermometer, a reflux condenser, and a nitrogen introduction tube. , 5.3 parts by mass of isopropyl alcohol, and 400 parts by mass of ion-exchanged water were added, and nitrogen gas was introduced to remove oxygen from the reaction system. Thereafter, the temperature in the reaction system was adjusted to 40° C., and while stirring was continued, 0.3 parts by mass of ammonium persulfate and 0.2 parts by mass of sodium sulfite were added as polymerization initiators. The start of the polymerization reaction was confirmed by heat generation in the reaction system, and after the temperature of the liquid in the reaction system reached 90°C, it was kept at that temperature for 2 hours. After the completion of the polymerization reaction, 5.5 parts by mass of a 48% aqueous sodium hydroxide solution and 11 parts by mass of ion-exchanged water were introduced into the reaction system, and the pH value (at 25°C) was 7.5, and the polymer concentration was 20% carboxyl groups. The water-soluble polymer compound of Synthesis Example 1, which is an aqueous solution containing polyacrylamide, was obtained. The composition of the resulting water-soluble polymer compound of Synthesis Example 1 was acrylamide/acrylic acid = 95/5 (mol %), and the weight average molecular weight was 900,000.

(合成例2)
温度計、還流冷却管及び窒素導入管を備えた四つ口フラスコにアクリルアミド100質量部(ビニルモノマー総モル和に対し95モル%)、メタクリル酸6.3質量部(5モル%)、プロピルアルコール5.3質量部及びイオン交換水400質量部を投入し、窒素ガスを導入して反応系内の酸素を除去した。その後、反応系内の温度を40℃に調整し、攪拌を継続しながら重合開始剤として過硫酸アンモニウム0.3質量部及び亜硫酸水素ナトリウム0.2質量部を投入した。反応系内の発熱により重合反応の開始を確認し、反応境内の液温が90℃に達した後、当該温度で2時間の保温を行った。重合反応の終了後、48%水酸化ナトリウム水溶液を5.5質量部及びイオン交換水11質量部を投入し、pH値(25℃)が7.5、ポリマー濃度20%のカルボキシル基含有ポリアクリルアミド水溶液である合成例2の水溶性高分子化合物を得た。得られた合成例2の水溶性高分子化合物の組成は、アクリルアミド/メタクリル酸=95/5(モル%)、重量平均分子量は、1,400,000であった。
(Synthesis example 2)
In a four-necked flask equipped with a thermometer, reflux condenser, and nitrogen inlet tube, 100 parts by mass of acrylamide (95 mol% based on the total mole of vinyl monomers), 6.3 parts by mass (5 mol%) of methacrylic acid, and propyl alcohol. 5.3 parts by mass and 400 parts by mass of ion-exchanged water were added, and nitrogen gas was introduced to remove oxygen from the reaction system. Thereafter, the temperature in the reaction system was adjusted to 40° C., and while stirring was continued, 0.3 parts by mass of ammonium persulfate and 0.2 parts by mass of sodium bisulfite were added as polymerization initiators. The start of the polymerization reaction was confirmed by heat generation within the reaction system, and after the temperature of the liquid in the reaction area reached 90°C, it was kept at that temperature for 2 hours. After the completion of the polymerization reaction, 5.5 parts by mass of a 48% aqueous sodium hydroxide solution and 11 parts by mass of ion-exchanged water were added to produce carboxyl group-containing polyacrylamide with a pH value (25°C) of 7.5 and a polymer concentration of 20%. The water-soluble polymer compound of Synthesis Example 2 in the form of an aqueous solution was obtained. The composition of the resulting water-soluble polymer compound of Synthesis Example 2 was acrylamide/methacrylic acid=95/5 (mol %), and the weight average molecular weight was 1,400,000.

(合成例3)
上記合成例1において、アクリルアミドをt-ブチルアクリルアミドに変更し、モノマー割合をt-ブチルアクリルアミド/アクリル酸=14/86(モル%)に調整して合成を行い、カルボキシル基含有ポリアクリルアミド水溶液である合成例3の水溶性高分子化合物を得た。得られた合成例3の水溶性高分子化合物の組成は、t-ブチルアクリルアミド/アクリル酸=14/86(モル%)、重量平均分子量は、13,000であった。
(Synthesis example 3)
In the above Synthesis Example 1, the acrylamide was changed to t-butylacrylamide, and the monomer ratio was adjusted to t-butylacrylamide/acrylic acid = 14/86 (mol%) to perform synthesis, resulting in a carboxyl group-containing polyacrylamide aqueous solution. A water-soluble polymer compound of Synthesis Example 3 was obtained. The composition of the resulting water-soluble polymer compound of Synthesis Example 3 was t-butylacrylamide/acrylic acid=14/86 (mol %), and the weight average molecular weight was 13,000.

(合成例4)
上記合成例1において、アクリルアミドをアクリル酸に変更し、アクリル酸の単独重合を行い、合成例4の水溶性高分子化合物を得た。得られた合成例4の水溶性高分子化合物は、アクリル酸単独重合体であり、重量平均分子量は、12,000であった。
(Synthesis example 4)
In Synthesis Example 1, acrylamide was replaced with acrylic acid, and acrylic acid was homopolymerized to obtain a water-soluble polymer compound of Synthesis Example 4. The obtained water-soluble polymer compound of Synthesis Example 4 was an acrylic acid homopolymer and had a weight average molecular weight of 12,000.

合成された上記合成例1~4の水溶性高分子化合物をそれぞれ用い、下記表1または表2の配合割合になるように、以下に示す方法で、実施例1~21及び比較例1~8の研磨剤組成物の調製を行った。なお、比較例1及び比較例4は、合成例1~4の水溶性高分子化合物を含まない研磨剤組成物である。 Examples 1 to 21 and Comparative Examples 1 to 8 were prepared using the synthesized water-soluble polymer compounds of Synthesis Examples 1 to 4, respectively, in the following manner so that the blending ratios are as shown in Table 1 or Table 2 below. A polishing composition was prepared. Note that Comparative Examples 1 and 4 are abrasive compositions that do not contain the water-soluble polymer compounds of Synthesis Examples 1 to 4.

(実施例1)
市販のアルカリ性コロイダルシリカA(平均粒子径20nm、固形分濃度50質量%)と、アルカリ性コロイダルシリカB(平均粒子径100nm、固形分濃度50質量%)を7:3の質量比で固形分として300g、これに上記合成例1で合成された水溶性高分子化合物2gを加えた。更に研磨剤組成物のpH値(25℃)を8.5に調整するための必要量のリン酸が添加された酸性水溶液400gを加え、攪拌することにより、実施例1の研磨剤組成物1kgを得た。
(Example 1)
Commercially available alkaline colloidal silica A (average particle diameter 20 nm, solid content concentration 50% by mass) and alkaline colloidal silica B (average particle diameter 100 nm, solid content concentration 50% by mass) at a mass ratio of 7:3, 300 g as solid content. To this was added 2 g of the water-soluble polymer compound synthesized in Synthesis Example 1 above. Further, 400 g of an acidic aqueous solution containing the necessary amount of phosphoric acid to adjust the pH value (25° C.) of the polishing composition to 8.5 was added and stirred to obtain 1 kg of the polishing composition of Example 1. I got it.

(実施例2)
上記実施例1において、リン酸をマロン酸に変更することにより、実施例2の研磨剤組成物1kgを得た。
(Example 2)
In the above Example 1, 1 kg of the polishing composition of Example 2 was obtained by changing phosphoric acid to malonic acid.

(実施例3)
上記実施例1において、リン酸をクエン酸に変更することにより、実施例3の研磨剤組成物1kgを得た。
(Example 3)
In the above Example 1, 1 kg of the polishing composition of Example 3 was obtained by changing phosphoric acid to citric acid.

(実施例4)
上記実施例1において、合成例1で合成された水溶性高分子化合物を変更し、合成例2で合成された水溶性高分子化合物を用いることにより、実施例4の研磨剤組成物1kgを得た。
(Example 4)
In Example 1 above, 1 kg of the abrasive composition of Example 4 was obtained by changing the water-soluble polymer compound synthesized in Synthesis Example 1 and using the water-soluble polymer compound synthesized in Synthesis Example 2. Ta.

(実施例5)
上記実施例4において、リン酸をマロン酸に変更することにより実施例5の研磨剤組成物1kgを得た。
(Example 5)
In Example 4, 1 kg of the polishing composition of Example 5 was obtained by changing phosphoric acid to malonic acid.

(実施例6)
上記実施例4において、リン酸をクエン酸に変更することにより実施例6の研磨剤組成物1kgを得た。
(Example 6)
In Example 4, 1 kg of the polishing composition of Example 6 was obtained by changing phosphoric acid to citric acid.

(実施例7)
上記実施例1において、合成例1で合成された水溶性高分子化合物を変更し、合成例3で合成された水溶性高分子化合物を用いることにより、実施例7の研磨剤組成物1kgを得た。
(Example 7)
In Example 1 above, 1 kg of the abrasive composition of Example 7 was obtained by changing the water-soluble polymer compound synthesized in Synthesis Example 1 and using the water-soluble polymer compound synthesized in Synthesis Example 3. Ta.

(実施例8)
上記実施例7において、リン酸をマロン酸に変更することにより実施例8の研磨剤組成物1kgを得た。
(Example 8)
In Example 7, 1 kg of the polishing composition of Example 8 was obtained by changing phosphoric acid to malonic acid.

(実施例9)
上記実施例7において、リン酸をクエン酸に変更することにより実施例9の研磨剤組成物1kgを得た。
(Example 9)
In Example 7, 1 kg of the polishing composition of Example 9 was obtained by replacing phosphoric acid with citric acid.

(実施例10)
市販のアルカリ性コロイダルシリカC(平均粒子径40nm、固形分濃度50質量%)と、アルカリ性コロイダルシリカB(平均粒子径100nm、固形分濃度50質量%)を8:2の質量比で固形分として300g、これに上記合成例1で合成された水溶性高分子化合物2gを加えた。更に研磨剤組成物のpH値(25℃)を8.5に調整するための必要量のリン酸が添加された酸性水溶液400gを加え、攪拌することにより、実施例10の研磨剤組成物1kgを得た。
(Example 10)
Commercially available alkaline colloidal silica C (average particle diameter 40 nm, solid content concentration 50 mass%) and alkaline colloidal silica B (average particle diameter 100 nm, solid content concentration 50 mass%) at a mass ratio of 8:2, 300 g as solid content. To this was added 2 g of the water-soluble polymer compound synthesized in Synthesis Example 1 above. Further, 400 g of an acidic aqueous solution containing the necessary amount of phosphoric acid to adjust the pH value (25° C.) of the abrasive composition to 8.5 was added and stirred to obtain 1 kg of the abrasive composition of Example 10. I got it.

(実施例11)
市販のアルカリ性コロイダルシリカD(平均粒子径30nm、固形分濃度50質量%)と、アルカリ性コロイダルシリカE(平均粒子径80nm、固形分濃度50質量%)を7:3の質量比で固形分として300g、これに上記合成例1で合成された水溶性高分子化合物0.2gを加えた。更に研磨剤組成物のpH値(25℃)を8.5に調整するための必要量のリン酸が添加された酸性水溶液400gを加え、攪拌することにより、実施例11の研磨剤組成物1kgを得た。
(Example 11)
Commercially available alkaline colloidal silica D (average particle diameter 30 nm, solid content concentration 50% by mass) and alkaline colloidal silica E (average particle diameter 80 nm, solid content concentration 50% by mass) at a mass ratio of 7:3, 300 g as solid content. To this was added 0.2 g of the water-soluble polymer compound synthesized in Synthesis Example 1 above. Further, 400 g of an acidic aqueous solution containing the necessary amount of phosphoric acid to adjust the pH value (25° C.) of the abrasive composition to 8.5 was added and stirred to obtain 1 kg of the abrasive composition of Example 11. I got it.

(実施例12)
市販のアルカリ性コロイダルシリカD(平均粒子径30nm、固形分濃度50質量%)と、アルカリ性コロイダルシリカE(平均粒子径80nm、固形分濃度50質量%)を9:1の質量比で固形分として300g、これに上記合成例1で合成された水溶性高分子化合物0.2gを加えた。更に研磨剤組成物のpH値(25℃)を8.5に調整するための必要量のリン酸が添加された酸性水溶液400gを加え、攪拌することにより、実施例12の研磨剤組成物1kgを得た。
(Example 12)
Commercially available alkaline colloidal silica D (average particle diameter 30 nm, solid content concentration 50% by mass) and alkaline colloidal silica E (average particle diameter 80 nm, solid content concentration 50% by mass) at a mass ratio of 9:1, 300 g as solid content. To this was added 0.2 g of the water-soluble polymer compound synthesized in Synthesis Example 1 above. Further, 400 g of an acidic aqueous solution containing the necessary amount of phosphoric acid to adjust the pH value (25° C.) of the polishing composition to 8.5 was added and stirred to obtain 1 kg of the polishing composition of Example 12. I got it.

(実施例13~21)
実施例13は実施例1と同様に調製し、実施例14は実施例2と同様に調製し、実施例15は実施例3と同様に調製し、実施例16は実施例4と同様に調製し、実施例17は実施例5と同様に調製し、実施例18は実施例6と同様に調製し、実施例19は実施例7と同様に調製し、実施例20は実施例8と同様に調製し、実施例21は実施例9と同様に調製し、それぞれの研磨剤組成物1kgを得た。
(Examples 13 to 21)
Example 13 was prepared similar to Example 1, Example 14 was prepared similar to Example 2, Example 15 was prepared similar to Example 3, and Example 16 was prepared similar to Example 4. Example 17 was prepared in the same manner as Example 5, Example 18 was prepared in the same manner as Example 6, Example 19 was prepared in the same manner as Example 7, and Example 20 was prepared in the same manner as Example 8. Example 21 was prepared in the same manner as Example 9, and 1 kg of each abrasive composition was obtained.

(比較例1)
上記実施例1において、合成例1で合成された水溶性高分子化合物を添加しないこと以外は同様に調製して、比較例1の研磨剤組成物1kgを得た。
(Comparative example 1)
A polishing agent composition of Comparative Example 1 (1 kg) was prepared in the same manner as in Example 1 except that the water-soluble polymer compound synthesized in Synthesis Example 1 was not added.

(比較例2)
上記実施例1において、合成例1で合成された水溶性高分子化合物を変更し、合成例4で合成された水溶性高分子化合物を用いること以外は同様に調製して、比較例2の研磨剤組成物1kgを得た。
(Comparative example 2)
In Example 1 above, the water-soluble polymer compound synthesized in Synthesis Example 1 was changed and the water-soluble polymer compound synthesized in Synthesis Example 4 was used. 1 kg of the drug composition was obtained.

(比較例3)
市販のアルカリ性コロイダルシリカA(平均粒子径20nm、固形分濃度50質量%)を固形分として300g、これに上記合成例1で合成された水溶性高分子化合物0.2gを加えた。更に研磨剤組成物のpH値(25℃)を8.5に調製するための必要量のリン酸が添加された酸性水溶液400gを加え、攪拌することにより、比較例3の研磨剤組成物1kgを得た。
(Comparative example 3)
0.2 g of the water-soluble polymer compound synthesized in Synthesis Example 1 was added to 300 g of commercially available alkaline colloidal silica A (average particle diameter 20 nm, solid content concentration 50% by mass) as a solid content. Further, 400 g of an acidic aqueous solution containing the required amount of phosphoric acid to adjust the pH value (25° C.) of the abrasive composition to 8.5 was added and stirred to obtain 1 kg of the abrasive composition of Comparative Example 3. I got it.

(比較例4)
市販のアルカリ性コロイダルシリカB(平均粒子径100nm、固形分濃度50質量%)を固形分として300g、これに上記合成例1で合成された水溶性高分子化合物0.2gを加えた。更に研磨剤組成物のpH値(25℃)を8.5に調製するための必要量のリン酸が添加された酸性水溶液400gを加え、攪拌することにより、比較例4の研磨剤組成物1kgを得た。
(Comparative example 4)
300 g of commercially available alkaline colloidal silica B (average particle diameter 100 nm, solid content concentration 50% by mass) was added as a solid content, and 0.2 g of the water-soluble polymer compound synthesized in Synthesis Example 1 above was added thereto. Further, 400 g of an acidic aqueous solution containing the necessary amount of phosphoric acid to adjust the pH value (25° C.) of the abrasive composition to 8.5 was added and stirred to obtain 1 kg of the abrasive composition of Comparative Example 4. I got it.

(比較例5~8)
比較例5は比較例1と同様に調製し、比較例6は比較例2と同様に調製し、比較例7は比較例3と同様に調製し、比較例8は比較例4と同様に調製し、それぞれの研磨剤組成物1kgを得た。
(Comparative Examples 5 to 8)
Comparative Example 5 was prepared in the same manner as Comparative Example 1, Comparative Example 6 was prepared in the same manner as Comparative Example 2, Comparative Example 7 was prepared in the same manner as Comparative Example 3, and Comparative Example 8 was prepared in the same manner as Comparative Example 4. 1 kg of each polishing composition was obtained.

(コロイダルシリカの粒子径)
コロイダルシリカの粒子径(Heywood径)は、透過型電子顕微鏡(TEM)(日本電子(株)製、透過型電子顕微鏡JEM2000FX(200kV))を用いて倍率10万倍の視野の写真を撮影し、この写真を解析ソフト(マウンテック(株)製、Mac-View Ver.4.0)を用いて解析することによりHeywood径(投射面積円相当径)として測定した。コロイダルシリカの平均粒子径は前述の方法で2000個程度のコロイダルシリカ粒子径を解析し、小粒径側からの積算粒径分布(累積体積基準)が50%となる粒径を上記解析ソフト(マウンテック(株)製、Mac-View Ver.4.0)を用いて算出した平均粒子径(D50)である。
(Particle size of colloidal silica)
The particle diameter (Heywood diameter) of colloidal silica was determined by taking a photograph of the field of view at a magnification of 100,000 times using a transmission electron microscope (TEM) (manufactured by JEOL Ltd., transmission electron microscope JEM2000FX (200 kV)). This photograph was analyzed using analysis software (Mac-View Ver. 4.0, manufactured by Mountech Co., Ltd.) to measure the Heywood diameter (diameter equivalent to a circle of projected area). The average particle diameter of colloidal silica can be determined by analyzing the diameters of about 2000 colloidal silica particles using the method described above, and determining the particle diameter at which the cumulative particle size distribution (cumulative volume basis) from the small particle size side is 50% using the above analysis software. This is the average particle diameter (D50) calculated using Mac-View Ver. 4.0 (manufactured by Mountech Co., Ltd.).

(研磨試験)
上記で得られた実施例1~21及び比較例1~8の各1kgの研磨剤組成物を、それぞれ両面研磨機(SPEED FAM社製:6B-5P-II、ポリッシング定盤直径:422mm)に設けられた研磨剤供給容器に導入した後、この研磨機を用いて、タンタル酸リチウム単結晶材料、またはニオブ酸リチウム単結晶材料からなる基板(直径:76mm、厚み0.3mm)の表面に5時間のポリッシングを行った。
(Polishing test)
1 kg of each of the abrasive compositions of Examples 1 to 21 and Comparative Examples 1 to 8 obtained above were placed in a double-sided polisher (manufactured by SPEED FAM: 6B-5P-II, polishing surface plate diameter: 422 mm). After introducing the abrasive into the provided abrasive supply container, use this polisher to polish the surface of a substrate (diameter: 76 mm, thickness 0.3 mm) made of lithium tantalate single crystal material or lithium niobate single crystal material. I did some time polishing.

ポリッシングに際して、定盤の回転速度(回転数)は55rpmに設定され、研磨圧力は300g/cmであった。研磨剤組成物は、チューブポンプを用いて、200ml/minの供給速度にて、定盤上に貼られた研磨布上に供給されるとともに、あふれ出した研磨剤組成物が容器に戻される、いわゆる循環供給方式によって、繰り返し用いられた。 During polishing, the rotational speed (number of revolutions) of the surface plate was set at 55 rpm, and the polishing pressure was 300 g/cm 2 . The abrasive composition is supplied onto the abrasive cloth attached to the surface plate at a supply rate of 200 ml/min using a tube pump, and the overflowing abrasive composition is returned to the container. It was used repeatedly by a so-called circulating supply system.

そして、上述のように基板の表面をポリッシングしつつ、研磨時間が1時間経過するごとに、マイクロメータ(ミツトヨ社製、測定精度:1μm)を用いて基板の厚みを測定し、それにより、1時間ごとの研磨速度(μm/hr)を求めた。表1には実施例1~12及び比較例1~4でのタンタル酸リチウム単結晶材料基板の研磨試験結果を示す。表2には実施例13~21及び比較例5~8でのニオブ酸リチウム単結晶基板の研磨試験結果を示す。 Then, while polishing the surface of the substrate as described above, the thickness of the substrate was measured using a micrometer (manufactured by Mitutoyo, measurement accuracy: 1 μm) every hour after the polishing time elapsed. The polishing rate (μm/hr) for each hour was determined. Table 1 shows the polishing test results of lithium tantalate single crystal material substrates in Examples 1 to 12 and Comparative Examples 1 to 4. Table 2 shows the polishing test results for lithium niobate single crystal substrates in Examples 13 to 21 and Comparative Examples 5 to 8.

Figure 0007384726000001
Figure 0007384726000001

Figure 0007384726000002
Figure 0007384726000002

(キャリア鳴きの判定)
研磨開始直後より研磨終了までの間において、研磨試験機の回転する定盤やキャリア周辺から発生する音を以下に従って評価し、キャリア鳴きの発生の有無を判定した。
〇:研磨時の通常の摺動音が認められる。
△:摺動音ではないキュッキュという摩擦音が認められる。
×:ガリッガリという強い摩擦音が認められる。
(Determination of carrier squeal)
Immediately after the start of polishing until the end of polishing, the sound generated from the rotating surface plate of the polishing testing machine and around the carrier was evaluated according to the following, and the presence or absence of carrier squeal was determined.
○: Normal sliding sound during polishing is observed.
△: A squeaky fricative sound that is not a sliding sound is observed.
×: A strong fricative sound is observed.

(基板の平坦性評価)
基板の中心部及び円周部の4点、計5点の厚みをマイクロメータで測定し、基板の平均厚みを計算する。基板の平均厚みと各点の厚み差を以下の基準で分類し、平坦性を評価した。
〇:基板の平均厚みと各点の厚みの差が1%未満である。
△:基板の平均厚みと各点の厚みの差が1~1.5%の範囲である。
×:基板の平均厚みと各点の厚みの差が1.5%以上である。
(Substrate flatness evaluation)
The thickness of the substrate at 5 points in total, 4 points at the center and the circumference, is measured using a micrometer, and the average thickness of the substrate is calculated. The average thickness of the substrate and the thickness difference at each point were classified based on the following criteria, and the flatness was evaluated.
Good: The difference between the average thickness of the substrate and the thickness at each point is less than 1%.
Δ: The difference between the average thickness of the substrate and the thickness at each point is in the range of 1 to 1.5%.
×: The difference between the average thickness of the substrate and the thickness at each point is 1.5% or more.

(研磨速度の評価)
基板がタンタル酸リチウム単結晶基板の場合、水溶性高分子化合物を用いない比較例1の値を基準として、基板がニオブ酸単結晶基板の場合、水溶性高分子化合物を用いない比較例5の値を基準としてそれぞれ評価した。
○:比較例1(または比較例5)よりも研磨速度が大きい(=研磨速度の向上)。
△:比較例1(または比較例5)と研磨速度が同じ。
×:比較例1(または比較例5)よりも研磨速度が小さい(=研磨速度の低下)。
(Evaluation of polishing speed)
When the substrate is a lithium tantalate single crystal substrate, the value of Comparative Example 1, which does not use a water-soluble polymer compound, is used as the standard, and when the substrate is a niobate single crystal substrate, the value of Comparative Example 5, which does not use a water-soluble polymer compound, is the standard. Each value was evaluated as a standard.
○: Polishing rate is higher than Comparative Example 1 (or Comparative Example 5) (=improvement in polishing rate).
Δ: Same polishing rate as Comparative Example 1 (or Comparative Example 5).
×: Polishing rate is lower than Comparative Example 1 (or Comparative Example 5) (=reduction in polishing rate).

(考察)
表1の結果から、タンタル酸リチウム単結晶基板の研磨において、本発明の効果は明らかである。実施例1、4、7と比較例1、2の対比から、不飽和アミドに由来する構成単位を含有する重合体または共重合体を添加することにより、平坦性が向上し、キャリア鳴きが抑制されることがわかる。具体的には、比較例1の平坦性の評価が“△”及び比較例2の平坦性の評価が“×”であるのに対し、実施例1、4、7はいずれも“○”であり、キャリア鳴きの評価も比較例1が“×”、比較例2が “△”であるのに対し、実施例1、4、7はいずれも“○”であった。また、比較例1の研磨速度が28.6μm/hrであるのに対し、実施例1、4、7の研磨速度はそれぞれ33.8μm/hr、35.1μm/hr、及び30.2μm/hrであり、研磨速度の向上が認められる。
(Consideration)
From the results in Table 1, it is clear that the present invention is effective in polishing lithium tantalate single crystal substrates. From the comparison between Examples 1, 4, and 7 and Comparative Examples 1 and 2, the addition of a polymer or copolymer containing a structural unit derived from unsaturated amide improves flatness and suppresses carrier noise. I know it will happen. Specifically, the flatness evaluation of Comparative Example 1 is “△” and the flatness evaluation of Comparative Example 2 is “×”, whereas Examples 1, 4, and 7 are all “○”. The carrier squeal was evaluated as "x" in Comparative Example 1 and "△" in Comparative Example 2, whereas it was "○" in Examples 1, 4, and 7. Furthermore, while the polishing rate of Comparative Example 1 was 28.6 μm/hr, the polishing rates of Examples 1, 4, and 7 were 33.8 μm/hr, 35.1 μm/hr, and 30.2 μm/hr, respectively. , and an improvement in the polishing rate is recognized.

実施例1と比較例3、4の対比から、小粒径シリカ粒子と大粒径シリカ粒子の組み合わせにすることにより、小粒径シリカ粒子単独あるいは大粒径シリカ粒子単独の場合に比べて研磨速度が向上し、平坦性も向上し、キャリア鳴きも抑制されることがわかる。具体的には、比較例3,4の研磨速度がそれぞれ10.5μm/hr及び17.4μm/hrであるのに対し、実施例1の研磨速度は33.8μm/hrである。更に比較例3の平坦性の評価が“×”、キャリア鳴きの評価が“△”であるのに対し、実施例1の平坦性及びキャリア鳴きの評価が“○”であった。 From the comparison between Example 1 and Comparative Examples 3 and 4, the combination of small-sized silica particles and large-sized silica particles resulted in more polishing than when small-sized silica particles were used alone or large-sized silica particles were used alone. It can be seen that the speed is improved, the flatness is improved, and carrier noise is suppressed. Specifically, the polishing rates of Comparative Examples 3 and 4 are 10.5 μm/hr and 17.4 μm/hr, respectively, while the polishing rate of Example 1 is 33.8 μm/hr. Furthermore, the evaluation of flatness of Comparative Example 3 was "x" and the evaluation of carrier squeal was "△", whereas the evaluation of flatness and carrier squeal of Example 1 was "○".

実施例2、3は実施例1に対して、使用する酸を無機酸からキレート性の有機酸に変更した結果であるが、研磨速度が実施例1よりも向上している。同様のことが実施例5、6と実施例4の対比、及び実施例8、9と実施例7の対比においてもいえる。具体的には、実施例1の研磨速度が33.8μm/hrであるのに対し、実施例2の研磨速度は36.5μm/hr及び実施例3の研磨速度は35.8μm/hrであり、研磨速度の向上が認められる。同様に、実施例4の研磨速度が35.1μm/hrであるのに対し、実施例5の研磨速度は39.2μm/hr及び実施例6の研磨速度は37.3μm/hrであり、更に、実施例7の研磨速度が30.2μm/hrであるのに対し、実施例8の研磨速度は32.5μm/hr及び実施例9の研磨速度が31.3μm/hrであり、キレート性の有機酸の使用により研磨速度の向上が認められる。 In Examples 2 and 3, the acid used in Example 1 was changed from an inorganic acid to a chelating organic acid, but the polishing rate was improved compared to Example 1. The same can be said for the comparison between Examples 5 and 6 and Example 4, and the comparison between Examples 8 and 9 and Example 7. Specifically, the polishing rate of Example 1 was 33.8 μm/hr, whereas the polishing rate of Example 2 was 36.5 μm/hr, and the polishing rate of Example 3 was 35.8 μm/hr. , an improvement in polishing speed was observed. Similarly, the polishing rate of Example 4 was 35.1 μm/hr, whereas the polishing rate of Example 5 was 39.2 μm/hr, and the polishing rate of Example 6 was 37.3 μm/hr, and The polishing rate of Example 7 was 30.2 μm/hr, whereas the polishing rate of Example 8 was 32.5 μm/hr, and the polishing rate of Example 9 was 31.3 μm/hr. It is observed that the polishing rate is improved by using an organic acid.

実施例10~12は、実施例1に対して小粒径シリカ粒子と大粒径シリカ粒子の平均粒子径、及び小粒径シリカ粒子と大粒径シリカ粒子の割合を変化させた場合の結果である。表1に示されるように、本発明において規定された要件を満たす研磨剤組成物は、研磨速度、平坦性、及びキャリア鳴きのいずれにおいても良好な評価を得ることが確認された。 Examples 10 to 12 are results obtained by changing the average particle diameter of small-sized silica particles and large-sized silica particles and the ratio of small-sized silica particles and large-sized silica particles with respect to Example 1. It is. As shown in Table 1, it was confirmed that the abrasive compositions satisfying the requirements specified in the present invention obtained good evaluations in terms of polishing speed, flatness, and carrier noise.

表2の結果からニオブ酸リチウム単結晶基板の研磨においても、本発明の効果は明らかである。実施例13、16、19と比較例5、6の対比から、不飽和アミドに由来する構成単位を含有する重合体または共重合体を添加することにより、平坦性が向上し、キャリア鳴きが抑制されることがわかる。具体的には、比較例5の平坦性の評価が“△”及び比較例6の平坦性の評価が“×”であるのに対し、実施例13、16、19はいずれも“○”であり、キャリア鳴きの評価も比較例5が“×”、比較例6が“△”であるのに対し、実施例13、16、19はいずれも“○”であった。また、比較例5の研磨速度が58.5μm/hrであるのに対し、実施例13、16、19の研磨速度はそれぞれ66.5μm/hr、69.8μm/hr、及び59.0μm/hrであり、研磨速度の向上が認められる。 From the results in Table 2, it is clear that the present invention is effective also in polishing lithium niobate single crystal substrates. From the comparison between Examples 13, 16, and 19 and Comparative Examples 5 and 6, the addition of a polymer or copolymer containing a structural unit derived from unsaturated amide improves flatness and suppresses carrier noise. I know it will happen. Specifically, the flatness evaluation of Comparative Example 5 is “△” and the flatness evaluation of Comparative Example 6 is “×”, whereas Examples 13, 16, and 19 are all “○”. The carrier squeal was evaluated as "x" in Comparative Example 5 and "△" in Comparative Example 6, but "○" in Examples 13, 16, and 19. Furthermore, while the polishing rate of Comparative Example 5 was 58.5 μm/hr, the polishing rates of Examples 13, 16, and 19 were 66.5 μm/hr, 69.8 μm/hr, and 59.0 μm/hr, respectively. , and an improvement in the polishing rate is recognized.

実施例13と比較例7、8の対比から、小粒径シリカ粒子と大粒径シリカ粒子の組み合わせにすることにより、小粒径シリカ粒子単独あるいは大粒径シリカ粒子単独の場合に比べて研磨速度が向上し、平坦性も向上し、キャリア鳴きも抑制されることがわかる。
具体的には、比較例7,8の研磨速度がそれぞれ17.8μm/hr及び32.7μm/hrであるのに対し、実施例13の研磨速度は66.5μm/hrである。更に比較例7の平坦性の評価が“×”、キャリア鳴きの評価が“△”であるのに対し、実施例13の平坦性及びキャリア鳴きの評価が“○”であった。
From the comparison between Example 13 and Comparative Examples 7 and 8, it was found that the combination of small-sized silica particles and large-sized silica particles resulted in more polishing than when small-sized silica particles were used alone or large-sized silica particles were used alone. It can be seen that the speed is improved, the flatness is improved, and carrier noise is suppressed.
Specifically, while the polishing rates of Comparative Examples 7 and 8 are 17.8 μm/hr and 32.7 μm/hr, respectively, the polishing rate of Example 13 is 66.5 μm/hr. Furthermore, the evaluation of flatness of Comparative Example 7 was "x" and the evaluation of carrier squeal was "△", whereas the evaluation of flatness and carrier squeal of Example 13 was "○".

実施例14、15は実施例13に対して、使用する酸を無機酸からキレート性の有機酸に変更した結果であるが、研磨速度が実施例13よりも向上している。同様のことが実施例17、18と実施例16の対比、及び実施例20、21と実施例19の対比においてもいえる。具体的には、実施例13の研磨速度が66.5μm/hrであるのに対し、実施例14の研磨速度は70.0μm/hr及び実施例15の研磨速度は68.7μm/hrであり、研磨速度の向上が認められる。同様に、実施例16の研磨速度が69.8μm/hrであるのに対し、実施例17の研磨速度は74.2μm/hr及び実施例18の研磨速度は72.1μm/hrであり、更に、実施例19の研磨速度が59.0μm/hrであるのに対し、実施例20の研磨速度は62.1μm/hr及び実施例21の研磨速度は60.8μm/hrであり、研磨速度の向上が認められる。 In Examples 14 and 15, the acid used in Example 13 was changed from an inorganic acid to a chelating organic acid, but the polishing rate was improved compared to Example 13. The same can be said for the comparison between Examples 17 and 18 and Example 16, and the comparison between Examples 20 and 21 and Example 19. Specifically, the polishing rate of Example 13 is 66.5 μm/hr, whereas the polishing rate of Example 14 is 70.0 μm/hr, and the polishing rate of Example 15 is 68.7 μm/hr. , an improvement in polishing speed was observed. Similarly, the polishing rate of Example 16 is 69.8 μm/hr, whereas the polishing rate of Example 17 is 74.2 μm/hr, and the polishing rate of Example 18 is 72.1 μm/hr, and , the polishing rate of Example 19 was 59.0 μm/hr, whereas the polishing rate of Example 20 was 62.1 μm/hr, and the polishing rate of Example 21 was 60.8 μm/hr. Improvement is recognized.

以上のことから、平均粒子径の異なる2種類のシリカ粒子と、不飽和アミドに由来する構成単位を含有する重合体または共重合体を含む研磨剤組成物を用いて、タンタル酸リチウム単結晶基板またはニオブ酸リチウム単結晶基板の研磨を行うことにより、基板の平坦性が向上し、研磨速度の向上が図れ、更にキャリア鳴きの抑制が図れることがわかる。 Based on the above, using an abrasive composition containing two types of silica particles with different average particle diameters and a polymer or copolymer containing a structural unit derived from unsaturated amide, a lithium tantalate single crystal substrate It can also be seen that by polishing a lithium niobate single crystal substrate, the flatness of the substrate can be improved, the polishing rate can be improved, and carrier noise can be suppressed.

本発明の研磨剤組成物は、タンタル酸リチウム単結晶材料、ニオブ酸リチウム単結晶材料の研磨に用いることができる。 The polishing composition of the present invention can be used for polishing lithium tantalate single crystal materials and lithium niobate single crystal materials.

Claims (5)

シリカ粒子、水溶性高分子化合物、及び水を含有し、
前記シリカ粒子は、
平均粒子径が10~60nmの小粒径シリカ粒子と、
平均粒子径が70~200nmの大粒径シリカ粒子と
を含み、
前記小粒径シリカ粒子及び前記大粒径シリカ粒子の合計質量に対する前記小粒径シリカ粒子の質量の割合が50~95質量%であり、
前記水溶性高分子化合物は、
不飽和アミドに由来する構成単位を含有する重合体または共重合体で構成され、
タンタル酸リチウム単結晶材料またはニオブ酸リチウム単結晶材料を研磨加工するための研磨剤組成物。
Contains silica particles, a water-soluble polymer compound, and water,
The silica particles are
Small particle size silica particles with an average particle size of 10 to 60 nm,
Large particle size silica particles with an average particle size of 70 to 200 nm,
The ratio of the mass of the small particle size silica particles to the total mass of the small particle size silica particles and the large particle size silica particles is 50 to 95% by mass,
The water-soluble polymer compound is
Consisting of a polymer or copolymer containing structural units derived from unsaturated amide,
An abrasive composition for polishing lithium tantalate single crystal material or lithium niobate single crystal material.
前記水溶性高分子化合物は、
(メタ)アクリルアミド及び/またはN-置換(メタ)アクリルアミドに由来する構成単位を含有する重合体または共重合体である請求項1に記載の研磨剤組成物。
The water-soluble polymer compound is
The polishing composition according to claim 1, which is a polymer or copolymer containing a structural unit derived from (meth)acrylamide and/or N-substituted (meth)acrylamide.
前記水溶性高分子化合物は、
(メタ)アクリルアミド及び/またはN-置換(メタ)アクリルアミドに由来する構成単位と、カルボキシル基含有ビニルモノマーに由来する構成単位とを有する共重合体である請求項1または2に記載の研磨剤組成物。
The water-soluble polymer compound is
The polishing composition according to claim 1 or 2, which is a copolymer having a structural unit derived from (meth)acrylamide and/or N-substituted (meth)acrylamide and a structural unit derived from a carboxyl group-containing vinyl monomer. thing.
無機酸及び/またはその塩、有機酸及び/またはその塩、及び、塩基性化合物の少なくとも一種類を更に含有する請求項1~3のいずれか一項に記載の研磨剤組成物。 The polishing composition according to any one of claims 1 to 3, further comprising at least one of an inorganic acid and/or a salt thereof, an organic acid and/or a salt thereof, and a basic compound. 前記有機酸及び/またはその塩は、
キレート性化合物である請求項4に記載の研磨剤組成物。
The organic acid and/or its salt is
The polishing composition according to claim 4, which is a chelating compound.
JP2020053679A 2020-03-25 2020-03-25 Abrasive composition Active JP7384726B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020053679A JP7384726B2 (en) 2020-03-25 2020-03-25 Abrasive composition
TW110106517A TW202142642A (en) 2020-03-25 2021-02-24 Abrasive composition including silicon dioxide particles, water-soluble polymeric compounds, and water
CN202110303581.6A CN113444455B (en) 2020-03-25 2021-03-22 Abrasive composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020053679A JP7384726B2 (en) 2020-03-25 2020-03-25 Abrasive composition

Publications (2)

Publication Number Publication Date
JP2021153160A JP2021153160A (en) 2021-09-30
JP7384726B2 true JP7384726B2 (en) 2023-11-21

Family

ID=77809156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020053679A Active JP7384726B2 (en) 2020-03-25 2020-03-25 Abrasive composition

Country Status (3)

Country Link
JP (1) JP7384726B2 (en)
CN (1) CN113444455B (en)
TW (1) TW202142642A (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001342455A (en) 2000-05-31 2001-12-14 Yamaguchi Seiken Kogyo Kk Precision polishing composition for hard brittle material
JP2003188121A (en) 2001-12-18 2003-07-04 Kao Corp Polishing liquid composition for oxide single-crystal substrate and polishing method using the same
JP2017043731A (en) 2015-08-28 2017-03-02 住友金属鉱山株式会社 Polishing slurry for oxide single crystal substrate and method for producing the same
JP2017218514A (en) 2016-06-08 2017-12-14 山口精研工業株式会社 Polishing agent composition
US20190010358A1 (en) 2017-07-04 2019-01-10 Yamaguchi Seiken Kogyo Co., Ltd. Polishing composition for magnetic disk substrate
JP2019172902A (en) 2018-03-29 2019-10-10 株式会社フジミインコーポレーテッド Polishing composition, polishing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5822356B2 (en) * 2012-04-17 2015-11-24 花王株式会社 Polishing liquid composition for silicon wafer
JP2016155900A (en) * 2015-02-23 2016-09-01 株式会社フジミインコーポレーテッド Polishing composition, polishing method and method for manufacturing crustaceous material substrate

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001342455A (en) 2000-05-31 2001-12-14 Yamaguchi Seiken Kogyo Kk Precision polishing composition for hard brittle material
JP2003188121A (en) 2001-12-18 2003-07-04 Kao Corp Polishing liquid composition for oxide single-crystal substrate and polishing method using the same
JP2017043731A (en) 2015-08-28 2017-03-02 住友金属鉱山株式会社 Polishing slurry for oxide single crystal substrate and method for producing the same
JP2017218514A (en) 2016-06-08 2017-12-14 山口精研工業株式会社 Polishing agent composition
US20190010358A1 (en) 2017-07-04 2019-01-10 Yamaguchi Seiken Kogyo Co., Ltd. Polishing composition for magnetic disk substrate
JP2019016417A (en) 2017-07-04 2019-01-31 山口精研工業株式会社 Polishing agent composition for magnetic disk substrate
JP2019172902A (en) 2018-03-29 2019-10-10 株式会社フジミインコーポレーテッド Polishing composition, polishing method

Also Published As

Publication number Publication date
CN113444455A (en) 2021-09-28
JP2021153160A (en) 2021-09-30
CN113444455B (en) 2024-04-05
TW202142642A (en) 2021-11-16

Similar Documents

Publication Publication Date Title
JP6706149B2 (en) Abrasive composition
JP2009137791A (en) Non-spherical combined silica sol and method for producing the same
JP5031446B2 (en) Polishing liquid composition for hard disk substrate
JP2011104694A (en) Inorganic oxide particulate dispersion liquid, polishing particle dispersion liquid, and polishing composition
JP2001342455A (en) Precision polishing composition for hard brittle material
JP7384726B2 (en) Abrasive composition
JP2007321159A (en) Precisely abrasive composition for hard and brittle material
JP7122097B2 (en) Abrasive composition for magnetic disk substrate
JP6373069B2 (en) Precision abrasive composition
JP7384725B2 (en) Abrasive composition
JP2019172902A (en) Polishing composition, polishing method
JP7440326B2 (en) Abrasive composition
JP2006326760A (en) Method of continuously manufacturing substrate
JP6734146B2 (en) Abrasive composition for magnetic disk substrate
JP7356864B2 (en) Abrasive composition for magnetic disk substrate and method for polishing magnetic disk substrate
JP2019067471A (en) Polishing method and polishing composition
JP6243713B2 (en) Polishing liquid composition
JP6659449B2 (en) Abrasive composition for electroless nickel-phosphorus plated aluminum magnetic disk substrate
JP2020119619A (en) Polishing agent composition for magnetic disk substrate
JP2021054990A (en) Polishing composition and magnetic disk substrate production method
TW202018053A (en) Polishing composition for magnetic disk substrate
JP2003188121A (en) Polishing liquid composition for oxide single-crystal substrate and polishing method using the same
JP2020071890A (en) Polishing agent composition for magnetic disk substrate
TW202138500A (en) Polishing composition for magnetic disk substrate
TWI820284B (en) Polishing composition for magnetic disk substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231109

R150 Certificate of patent or registration of utility model

Ref document number: 7384726

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150