JP7382273B2 - エコー抑圧装置、エコー抑圧方法及びエコー抑圧プログラム - Google Patents

エコー抑圧装置、エコー抑圧方法及びエコー抑圧プログラム Download PDF

Info

Publication number
JP7382273B2
JP7382273B2 JP2020071463A JP2020071463A JP7382273B2 JP 7382273 B2 JP7382273 B2 JP 7382273B2 JP 2020071463 A JP2020071463 A JP 2020071463A JP 2020071463 A JP2020071463 A JP 2020071463A JP 7382273 B2 JP7382273 B2 JP 7382273B2
Authority
JP
Japan
Prior art keywords
mask
signal
input
received signal
microphone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020071463A
Other languages
English (en)
Other versions
JP2021168455A (ja
Inventor
祐樹 里見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Transtron Inc
Original Assignee
Transtron Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Transtron Inc filed Critical Transtron Inc
Priority to JP2020071463A priority Critical patent/JP7382273B2/ja
Priority to CN202180013053.5A priority patent/CN115053460A/zh
Priority to US17/801,955 priority patent/US20230079749A1/en
Priority to EP21788431.1A priority patent/EP4138307A4/en
Priority to PCT/JP2021/014808 priority patent/WO2021210473A1/ja
Publication of JP2021168455A publication Critical patent/JP2021168455A/ja
Application granted granted Critical
Publication of JP7382273B2 publication Critical patent/JP7382273B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • G10L21/0216Noise filtering characterised by the method used for estimating noise
    • G10L21/0232Processing in the frequency domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/60Substation equipment, e.g. for use by subscribers including speech amplifiers
    • H04M1/6008Substation equipment, e.g. for use by subscribers including speech amplifiers in the transmitter circuit
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
    • G10L25/03Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the type of extracted parameters
    • G10L25/18Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the type of extracted parameters the extracted parameters being spectral information of each sub-band
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
    • G10L25/03Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the type of extracted parameters
    • G10L25/21Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the type of extracted parameters the extracted parameters being power information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M9/00Arrangements for interconnection not involving centralised switching
    • H04M9/08Two-way loud-speaking telephone systems with means for conditioning the signal, e.g. for suppressing echoes for one or both directions of traffic
    • H04M9/082Two-way loud-speaking telephone systems with means for conditioning the signal, e.g. for suppressing echoes for one or both directions of traffic using echo cancellers
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • G10L2021/02082Noise filtering the noise being echo, reverberation of the speech
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/02Details
    • H04B3/20Reducing echo effects or singing; Opening or closing transmitting path; Conditioning for transmission in one direction or the other

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Computational Linguistics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Quality & Reliability (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Telephone Function (AREA)

Description

本発明は、エコー抑圧装置、エコー抑圧方法及びエコー抑圧プログラムに関する。
特許文献1には、受話側信号経路を伝送される学習用信号についてのパワースペクトルに基づいたマスクと、マイクロホンから入力された入力信号についてのパワースペクトルの値を周波数帯域毎に比較してダブルトーク状態であるか否かを検知し、送話側信号経路を信号が伝送されておらず、かつ、受話側信号経路を信号が伝送されていることが検知された場合に、エコーサプレッサを用いて入力信号のエコーを抑圧する処理を行うエコー抑圧装置が開示されている。
特開2018-201147号公報
しかしながら、特許文献1に記載の通話信号処理装置では、受話側信号経路の信号が大きい場合を想定してマスクを生成しているため、マイクロホン側にいる利用者(近端話者)の発話が小さく、かつ受話側信号経路を伝送される受話信号が大きい場合には、受話側信号経路を伝送される入力信号にエコーサプレッサが強くかかってしまい、近端話者の声が消えてしまうおそれがある。
本発明はこのような事情に鑑みてなされたもので、発話が小さい場合にも発話を検知し、適切にエコーを抑圧することができるエコー抑圧装置、エコー抑圧方法及びエコー抑圧プログラムを提供することを目的とする。
上記課題を解決するために、本発明に係るエコー抑圧装置は、例えば、スピーカとマイクロホンとを有する近端端末のうちの前記マイクロホンから入力された入力信号を伝送する送話側信号経路に設けられるエコー抑圧装置であって、前記マイクロホンに発話が入力されず、前記スピーカから音が出力されるときに、前記送話側信号経路を伝送される学習用信号に基づいて生成された1又は複数のマスクである基礎マスクを記憶するマスク記憶部と、前記スピーカへ信号を伝送する受話側信号経路を伝送される受話信号のサンプル点が取得される毎に、当該サンプル点が取得された時点以前の所定期間内に取得された前記受話信号に基づいて、前記受話信号の大きさに応じた最適マスクを前記基礎マスクから逐次生成又は選択するマスク選択部と、前記最適マスクが生成又は選択される毎に、前記入力信号と前記最適マスクとを比較した結果に基づいてダブルトーク状態であるか否かを逐次検知するダブルトーク検知部と、前記ダブルトーク検知部により、前記マイクロホンに発話が入力されず、かつ、前記受話信号が発話を含むことが検知された場合に、前記入力信号に対してエコーを抑圧する処理を逐次行うエコーサプレッサと、を備えたことを特徴とする。
本発明に係るエコー抑圧装置によれば、スピーカへ信号を伝送する受話側信号経路を伝送される受話信号のサンプル点が取得される毎に、当該サンプル点が取得された時点以前の所定期間内に取得された受話信号に基づいて、学習用信号に基づいて生成された1又は複数のマスクである基礎マスクから最適マスクを逐次生成又は選択する。最適マスクが選択される毎に、入力信号と最適マスクとを比較した結果に基づいてダブルトーク状態であるか否かを逐次検知し、マイクロホンに発話が入力されず、かつ、受話信号が発話を含むことが検知された場合に、入力信号に対してエコーを抑圧する処理を逐次行う。このように、受話信号の大きさに応じてマスクの大きさを変えることにより、発話が小さい場合にも発話を検知し、適切にエコーを抑圧することができる。
前記学習用信号の大きさを変更して複数のマスクを生成するマスク生成部を備え、前記マスク記憶部は、前記マスク生成部が生成した複数のマスクを前記基礎マスクとして記憶し、前記マスク選択部は、前記入力信号の大きさに基づいて前記基礎マスクの中から前記最適マスクを選択する。これにより、受話レベル毎に残留エコーの周波数特性を正確に記憶し、受話信号の大きさに応じてマスクの大きさを変えることができる。また、エコーサプレッサの効き方を頻繁に変えることなく、安定した通話を確保することができる。
前記学習用信号に基づいて1つのマスクを生成するマスク生成部を備え、前記マスク記憶部は、前記マスク生成部が生成した1つのマスクを前記基礎マスクとして記憶し、前記マスク選択部は、前記入力信号の大きさに基づいて前記基礎マスクに係数を掛け合わせることで前記最適マスクを生成する。これにより、受話レベル毎に残留エコーの周波数特性を正確に記憶し、受話信号の大きさに応じてマスクの大きさを変えることができる。また、複数の基礎マスクを記憶する必要がなく、使用するメモリを減らすことができる。
前記マイクロホンに発話が入力されず前記スピーカから音が出力された状態から、前記マイクロホンに発話が入力されず前記スピーカから音が出力されない状態に移行したときに、前記送話側信号経路を信号が伝送されなくなる時間である第1時間を測定する信号測定部を備え、前記マスク選択部は、前記第1時間を前記所定期間として前記最適マスクを逐次生成又は選択する。これにより、受話信号により発生するエコーの長さに応じて所定期間を定めることができる。
前記入力信号についてのパワースペクトルである入力信号パワースペクトル及び前記学習用信号のパワースペクトルである学習用パワースペクトルを計算する第1パワースペクトル計算部を備え、前記マスクは、一定区間の間に取得された前記学習用パワースペクトルの周波数帯域毎の最大値であり、前記最適マスクは、周波数帯域毎に値を有し、前記ダブルトーク検知部は、前記入力信号パワースペクトルの値と前記最適マスクの値とを周波数帯域毎に比較した結果に基づいてダブルトーク状態であるか否かを検知する。これにより、正確にダブルトーク状態を検知することができる。
前記受話信号についてのパワースペクトルである受話信号パワースペクトルを計算する第2パワースペクトル計算部を備え、前記マスク選択部は、前記受話信号パワースペクトルの最大値と前記最適マスクとを周波数帯域毎に比較して前記最適マスクを生成又は選択する。これにより、受話信号の周波数特性を考慮して最適マスクを適切に生成又は選択ことができる。
前記ダブルトーク検知部は、前記入力信号パワースペクトルと前記最適マスクとを周波数帯域毎に比較し、前記入力信号パワースペクトルが前記最適マスクを上回る周波数帯域数が第1閾値より小さい場合、又は、前記入力信号パワースペクトルが前記最適マスクを上回る領域の積分値が第2閾値より小さい場合には、前記受話側信号経路に信号が伝達されていないことを検知する。これにより、近端発話を正確に検知することができる。
上記課題を解決するために、本発明に係るエコー抑圧方法は、例えば、近端端末のマイクロホンに発話が入力されず、前記近端端末のスピーカから音が出力されるときに、前記マイクロホンから入力された信号を伝送する送話側信号経路を伝送される学習用信号に基づいて1又は複数のマスクである基礎マスクを生成及び記憶するステップと、前記スピーカへ信号を伝送する受話側信号経路を伝送される受話信号のサンプル点が取得されるごとに、当該サンプル点が取得された時点以前の所定期間内に取得された前記受話信号と、前記基礎マスクとに基づいて、前記マイクロホンから入力された入力信号の大きさに応じた大きさのマスクである最適マスクを逐次生成又は選択するステップと、前記最適マスクが選択されたら、前記入力信号と前記最適マスクとを比較した結果に基づいてダブルトーク状態であるか否かを逐次検知するステップと、前記マイクロホンに発話が入力されず、かつ、前記受話信号が発話を含むことが検知された場合に、前記入力信号に対してエコーを抑圧するエコーサプレス処理を行うステップと、を含むことを特徴とする。
上記課題を解決するために、本発明に係るエコー抑圧プログラムは、例えば、スピーカとマイクロホンとを有する近端端末のうちの前記マイクロホンから入力された信号を伝送する送話側信号経路に設けられるエコー抑圧プログラムであって、コンピュータを、前記マイクロホンに発話が入力されず、前記スピーカから音が出力されるときに、前記送話側信号経路を伝送される学習用信号に基づいて生成された1又は複数のマスクである基礎マスクを記憶するマスク記憶部と、前記スピーカへ信号を伝送する受話側信号経路を伝送される受話信号のサンプル点が取得される毎に、当該サンプル点が取得された時点以前の所定期間内に取得された前記受話信号に基づいて、前記受話信号の大きさに応じた最適マスクを前記基礎マスクから逐次生成又は選択するマスク選択部と、前記最適マスクが選択される毎に、前記マイクロホンから入力された入力信号と前記最適マスクとを比較した結果に基づいてダブルトーク状態であるか否かを逐次検知するダブルトーク検知部と、前記ダブルトーク検知部により、前記マイクロホンに発話が入力されず、かつ、前記受話信号が発話を含むことが検知された場合に、前記入力信号に対してエコーを抑圧する処理を逐次行うエコーサプレッサとして機能させることを特徴とする。
本発明によれば、発話が小さい場合にも発話を検知し、適切にエコーを抑圧することができる。
第1の実施の形態に係るエコー抑圧装置1が設けられた音声通信システム100を模式的に示す図である。 エコー抑圧装置1の機能ブロックの概略を示す図である。 エコー抑圧装置1においてマスクを生成するときの機能ブロックの概略を示す図である。 時刻t1における学習用パワースペクトルの一例である。 図4に示す学習用パワースペクトルを含む複数の学習用パワースペクトルが入力されたときのマスクの一例である。 受話レベルが異なる2つのマスクの例を示す図である。 近端発話がないときの受話信号と入力信号との関係を示す図であり、(A)は受話信号を示し、(B)は入力信号を示す。 近端発話がないときの受話信号と入力信号との関係を示す図であり、(A)は受話信号を示し、(B)は入力信号を示す。 サンプル点が取得された時点以前の所定期間内に取得された受話信号の周波数帯域毎の最大値と、最適マスクとの関係を模式的に示す図である。 サンプル点が取得された時点以前の所定期間内に取得された受話信号の周波数帯域毎の最大値と、最適マスクとの関係を模式的に示す図である。 周波数帯域別に求められている受話信号のパワーの総和に基づいて最適マスクを選択する例を模式的に示す図である。 入力信号パワースペクトルの値と、マスクの値とを比較する様子を模式的に示す図である。 入力信号パワースペクトルの値と、マスクの値とを比較する様子を模式的に示す図である。 入力信号パワースペクトルの値と、マスクの値とを比較する様子を模式的に示す図である。 エコー抑圧装置1がエコーを逐次低減する処理の流れを示すフローチャートである。 エコー抑圧装置2の機能ブロックの概略を示す図である。 受話信号の信号レベルが閾値II以上のときの入力信号パワースペクトルの値と、最適マスクの値とを比較する様子を模式的に示す図である。 エコー抑圧装置3の機能ブロックの概略を示す図である。 マスク選択部14Aが最適マスクを生成する処理を模式的に示す図である。 エコー抑圧装置4の機能ブロックの概略を示す図である。 エコー抑圧装置5の機能ブロックの概略を示す図である。 エコー抑圧装置5においてマスクを生成するときの機能ブロックの概略を示す図である。 エコー抑圧装置5がエコーを逐次低減する処理の流れを示すフローチャートである。
以下、本発明に係るエコー抑圧装置の実施形態を、図面を参照して詳細に説明する。エコー抑圧装置は、音声通信システムにおいて、通話の際に発生するエコーを抑圧する装置である。
<第1の実施の形態>
図1は、第1の実施の形態に係るエコー抑圧装置1が設けられた音声通信システム100を模式的に示す図である。音声通信システム100は、主として、マイクロホン51及びスピーカ52を有する端末50と、2台の携帯電話53、54と、スピーカアンプ55と、エコー抑圧装置1とを有する。
音声通信システム100は、端末50(近端端末)を利用する近端話者(近端側にいる利用者A)が、携帯電話54(遠端端末)を利用する遠端話者(遠端側にいる利用者B)と音声通信を行なうシステムである。携帯電話54を介して入力された音声信号をスピーカ52によって拡声出力し、かつ、近端側にいる利用者の発する音声をマイクロホン51により集音して携帯電話54へ伝送することで、利用者Aは、携帯電話53を把持することなく拡声通話(ハンズフリー通話)が可能となる。携帯電話53と携帯電話54とは、一般的な電話回線により接続されている。
エコー抑圧装置1は、マイクロホン51を介して入力された信号を、端末50から携帯電話53へ伝送する送話側信号経路に設けられる。
エコー抑圧装置1は、例えば、音声通信システム100内の通信端末等(例えば、車載装置、会議システム、携帯端末)に搭載される専用ボードとして構築されてもよい。また、エコー抑圧装置1は、例えば、主として、情報処理を実行するためのCPU(Central Processing Unit)などの演算装置、RAM(Random Access Memory)やROM(Read Only Memory)などの記憶装置を含むコンピュータシステム及びソフトウエア(エコー抑圧プログラム)によって構成されてもよい。エコー抑圧プログラムは、コンピュータ等の機器に内蔵されている記憶媒体としてのHDDや、CPUを有するマイクロコンピュータ内のROM等に予め記憶しておき、そこからコンピュータにインストールされてもよい。また、エコー抑圧プログラムは、半導体メモリ、メモリカード、光ディスク、光磁気ディスク、磁気ディスク等のリムーバブル記憶媒体に、一時的あるいは永続的に格納(記憶)しておいてもよい。
図2は、エコー抑圧装置1の機能ブロックの概略を示す図である。エコー抑圧装置1は、機能的には、主として、エコー除去部11と、周波数分析器(FFT部)12、19と、マスク記憶部13と、マスク選択部14と、ダブルトーク検知部15と、エコーサプレッサ16と、復元部(IFFT部)17とを有する。図2において、上側の信号経路は、マイクロホン51から入力された入力信号を伝送する送話側信号経路であり、下側の信号経路は、スピーカ52へ信号を伝送する受話側信号経路である。なお、エコー抑圧装置1の機能構成要素は、処理内容に応じてさらに多くの構成要素に分類されてもよいし、1つの構成要素が複数の構成要素の処理を実行してもよい。
エコー除去部11は、例えば、適応フィルタを用いてエコーを除去する。エコー除去部11は、与えられた手順に従ってフィルタ係数を更新して、受話側信号経路を伝送される信号から擬似エコー信号を生成し、送話側信号経路を伝送される信号から擬似エコー信号を減算することで、エコーを除去するものである。なお、適応フィルタについては既に公知であるため、説明を省略する。
なお、本実施の形態では、エコー除去部11に適応フィルタを適用したが、その他の公知のエコー除去技術をエコー除去部11に適用することもできる。また、エコー除去部11は必須ではないが、エコーの一部が除去された学習用信号を用いてマスクを生成することで、後に詳述するように、マスクの値が小さくなり、入力信号が小さい場合であっても、入力信号についてのパワースペクトル(以下、入力信号パワースペクトルという)の値がマスクの値を超えやすくなり、近端発話(利用者A(図1参照)の発話)があることをより正確に検知することができるため、エコー除去部11を設けることが望ましい。
周波数分析器(FFT部)12、19は、信号に対して高速フーリエ変換(FFT、Fast Fourier Transform)を行う。FFT部12は、送話側信号経路を伝送される信号、ここではエコー除去部11を通過した信号に対して高速フーリエ変換を行い、FFT部19は、受話側信号経路を伝送される受話信号に対して高速フーリエ変換を行う。FFT部12、19は、時間の関数を周波数の関数に変換した結果を周波数帯域i毎のX[i]として求める。
マスク記憶部13は、マスク生成部18(図3参照)により生成されたマスクを記憶する。以下、マスクの生成について詳細に説明する。マスクは、エコー抑圧装置1がエコーを抑圧する処理を行なう前に、前もって生成される。
図3は、エコー抑圧装置1においてマスクを生成するときの機能ブロックの概略を示す図である。エコー抑圧装置1は、マスク生成部18を機能的に有する。マスクの生成処理は、主として、マスク生成部18で行われる。
マスクの生成処理について詳細に説明する。まず、エコー除去部11において十分に適応フィルタの学習を終えた後に、近端発話がない状況下で、スピーカ52から音が出力される遠端側の片側発話(シングルトーク)を繰り返す。そして、シングルトーク時に送話側信号経路を伝送される信号を学習用信号とする。エコー抑圧装置1においては、エコー除去部11によりエコーが除去された信号が学習用信号となる。
学習用信号は、FFT部12に入力される。FFT部12は、学習用信号に対して高速フーリエ変換を行い、マスク生成部18に入力する。マスク生成部18は、学習用信号についてのパワースペクトルを一定区間毎に計算して、複数の学習用パワースペクトルを求める。ここで、一定区間とは、任意に定められた所定の時間領域であり、時刻t1、t2、t3・・・で示す。
なお、パワースペクトルP[i]とは、高速フーリエ変換によって求められた周波数要素i毎のX[i]のパワーを周波数要素の関数として表したものである(数式(1)参照)。
Figure 0007382273000001
・・・(1)
図4は、時刻t1における学習用パワースペクトルの一例である。以下、パワースペクトルにおけるパワー(縦軸の値)を、パワースペクトルの値という。パワースペクトルの横軸は周波数である。マスク生成部18は、一定区間毎に計算された複数の学習用パワースペクトルを記憶する。
マスク生成部18は、周波数帯域毎に、複数の学習用パワースペクトルの値のうちの最大値を取得し、これをマスクとする。図5は、図4に示す学習用パワースペクトルを含む複数の学習用パワースペクトルが入力されたときのマスクの一例である。そして、マスク生成部18は生成したマスクをマスク記憶部13に出力し、マスク記憶部13はマスクを記憶する。
本実施の形態では、マスク生成部18は、学習用信号の大きさ(受話レベル)を変更して複数のマスクを生成する。図6は、受話レベルが異なる2つのマスクの例を示す図である。図6における実線は、受話レベルが大きい場合、すなわちエコーが大きく返り得る場合のマスクであり、図6における破線は、受話レベルが小さい場合のマスクである。このように、マスク生成部18は、学習用信号の大きさを変更してマスクを生成する処理を複数回行い、複数のマスクを生成する。これにより、受話レベル毎に、残留エコーの周波数特性を正確に記憶することができる。
なお、マスク生成部18が生成し、マスク記憶部13が記憶するマスクの数は2つに限られず、3つ以上であってもよい。以下、マスク記憶部13が記憶する複数のマスクを基礎マスクという。
図2の説明に戻る。マスク選択部14には、ダブルトーク検知部15から受話信号についてのパワースペクトル(以下、受話信号パワースペクトルという)が逐次入力される。マスク選択部14は、受話信号パワースペクトルが逐次入力された(サンプル点が取得された)ら、サンプル点が取得された時点以前の所定期間内に取得された受話信号に基づいて、受話信号の大きさに応じたマスク(以下、最適マスクという)を基礎マスクから逐次選択する。
ここで、サンプル点が取得された時点以前の所定期間は、受話信号が0になってから(スピーカ52から音が出力されなくなってから)入力信号の値が0となるまでに要する時間を基準に求められる。この所定時間は、受話信号の大きさによっても変化するが、短い場合で数10m秒~数100m秒程度であり、長い場合で1秒~2秒程度である。
図7、8は、近端発話がない(マイクロホン51に発話が入力されていない)ときの受話信号と入力信号との関係を示す図であり、(A)は受話信号を示し、(B)は入力信号を示す。図7は受話信号のレベルが小さい場合であり、図8は受話信号のレベルが大きい場合を示す。
車内での音の反射や、スピーカ52の振動等がスピーカ52から音になって出力されるため、近端発話が無くてもエコー信号が入力信号として存在する。受話信号のレベルが小さい場合には、受話信号が0になってからも入力信号が略100m秒程度存在し、受話信号のレベルが大きい場合には、受話信号が0になってからも入力信号が略150m秒程度存在する。したがって、本実施の形態では、所定時間を略100m秒~略300m秒とする。
マスク選択部14は、受話信号パワースペクトルのサンプル点が取得された時点以前の略100m秒~略300m秒内に取得された受話信号のパワーの最大値に基づいて最適マスクを選択する。
図9、10は、サンプル点が取得された時点以前の所定期間内に取得された受話信号パワースペクトルの周波数帯域毎の最大値と、最適マスクとの関係を模式的に示す図である。図9、10において、実線は所定期間内に取得された受話信号スペクトルの最大値を示し、点線は基礎マスクを示す。ここでは、3つのマスクが基礎マスクとして記憶されているものとする。マスク選択部14は、受話信号のパワーの最大値と基礎マスクとを周波数帯域毎に比較して、いずれの周波数帯域においても、受話信号の最大値よりもマスクの値が小さくならないように、受話信号に最も近いマスクを最適マスクとして選択する。図9に示す場合には、最も値が大きいマスクが選択され(図9太点線参照)、図10に示す場合には、中間の値のマスクが選択される(図10太点線参照)。これにより、受話信号の周波数特性を考慮して最適マスクを選択することができる。
なお、マスク選択部14は、受話信号パワースペクトルのサンプル点が取得された時点以前の略100m秒~略300m秒内に取得された受話信号のパワーの最大値に基づいて最適マスクを選択するのではなく、受話信号パワースペクトルのサンプル点が取得された時点以前の略100m秒~略300m秒内に取得された受話信号のパワーの総和や平均値に基づいて最適マスクを選択してもよい。
図11は、周波数帯域別に求められている受話信号のパワーの平均値に基づいて最適マスクを選択する例を模式的に示す図である。図11において、実線の細線は受話信号のパワースペクトルの最大値であり、実線の太線は受話信号のパワースペクトルの最大値(図9における細線)を周波数帯域別に足し合わせ(総和)、それを周波数帯域で割った平均値である。つまり、平均値は総和と同義である。また、図11において、点線はマスクである。
マスク選択部14は、受話信号の平均値とマスクとを周波数帯域毎に比較し、受話信号の平均値よりもマスクが小さくならないように、受話信号に最も近いマスクを最適マスクとして選択する。図11においては、最も小さい値のマスクが選択される(図11太点線参照)。
なお、周波数帯域別に求められている受話信号のパワーの総和に基づいて最適マスクを選択する場合には、周波数帯域別に求められている受話信号のパワーの総和と基礎マスクのパワーの総和とを比較し、受話信号のパワーの総和よりもマスクが小さくならないように、受話信号に最も近いマスクを最適マスクとして選択する。このように、受話信号のパワーの総和や平均値に基づいて最適マスクを選択することで、1つの周波数帯域におけるパワーのみが突出した場合にその影響を低減することができる。
図2の説明に戻る。ダブルトーク検知部15は、FFT部12、19から入力されたスペクトル波形に基づいて、それぞれ、入力信号パワースペクトル及び受話信号パワースペクトルを単位時間毎に計算する。なお、FFT部12及びダブルトーク検知部15の一部が本発明の第1パワースペクトル計算部に相当し、FFT部19及びダブルトーク検知部15の一部が本発明の第2パワースペクトル計算部に相当する。
また、ダブルトーク検知部15は、マスク選択部14で最適マスクが選択される毎に、逐次、入力信号パワースペクトルの値と、マスク選択部14で選択された最適マスクの値とを周波数帯域毎に比較する。そして、ダブルトーク検知部15は、比較した結果に基づいて、ダブルトーク状態であるか否かを検知する。ダブルトーク検知部15は、ダブルトーク状態であるか否かを検知する処理を、入力信号パワースペクトルが計算される単位時間毎に行う。
以下、ダブルトーク検知部15において、ダブルトーク状態であるか否かを検知する方法について詳細に説明する。ここで、ダブルトーク状態とは、近端話者(利用者A)及び遠端話者(利用者B)が共に発話している状態である。
まず、ダブルトーク検知部15は、周波数帯域毎に、入力信号パワースペクトルの値と、最適マスクの値とを比較し、入力信号パワースペクトルの値が最適マスクの値を上回る周波数帯域の数(以下、超過数という)を数える。ダブルトーク検知部15は、超過数が予め用意した閾値I(第1閾値に相当)以下であるかを求める。なお、閾値Iは、任意の値に設定することができる。
図12、13は、それぞれ、入力信号パワースペクトルの値と、マスクの値とを比較する様子を模式的に示す図である。図12、13において、実線は入力信号パワースペクトルを示し、破線は受話信号を示し、一点鎖線はマスクを示す。
図12に示す場合は、直近の所定期間内に取得された受話信号が大きく、値が大きいマスクが最適マスクとして選択されている。ダブルトーク検知部15は、超過数が0であり閾値I(例えば、閾値I=3)以下であるため、近端発話無しであることを検知する。
図13に示す場合は、直近の所定期間内に取得された受話信号が小さく、値が小さいマスクが最適マスクとして選択されている。ダブルトーク検知部15は、超過数(図13丸印参照)が閾値I以上であるため、近端発話有りであることを検知する。
また、ダブルトーク検知部15は、携帯電話53から端末50へと送信される受話信号のパワースペクトルを取得し、その信号レベルを求める。受話信号のパワースペクトルは、受話側信号経路からFFT部19を介して取得される。ダブルトーク検知部15は、受話信号の信号レベルと、予め用意した閾値IIIとを比較する。なお、閾値IIIは、任意の値に設定することができる。
ダブルトーク検知部15は、受話信号の信号レベルが予め用意した閾値III以上の場合に、遠端発話(利用者B(図1参照)の発話)があり、受話信号が発話を含むことを検知する。
このように、ダブルトーク検知部15は、閾値I、IIIに基づいて近端発話及び遠端発話の有無を検知することで、近端発話及び遠端発話が有るダブルトーク状態か、近端発話のみのシングルトークであるか、遠端発話のみのシングルトークであるかを検知する。
なお、ダブルトーク検知部15が近端発話の有無を検知する方法は、超過数が閾値I以上か否かに基づいて行う方法に限られない。例えば、ダブルトーク検知部15は、入力信号パワースペクトルの値がマスクの値を上回る部分の総和(積分値)が予め用意した閾値II(第2閾値に相当)以下であるかを求め、この結果に基づいて近端発話の有無を検知してもよい。なお、閾値IIは、任意の値に設定することができる。
図14は、入力信号パワースペクトルの値と、最適マスクの値とを比較する様子を模式的に示す図である。図14において、実線は入力信号パワースペクトルを示し、破線は受話信号を示し、一点鎖線は最適マスクを示す。また、図14において、入力信号パワースペクトルの値がマスクの値を上回る部分には、斜線で網掛け表示している。ダブルトーク検知部15は、網掛け部分の面積を求める。図14では、入力信号パワースペクトルの値がマスクの値を上回る部分の面積が閾値III以上であるため、送話側信号経路を信号が伝送されている(近端発話あり)ことを検知する。
図2の説明に戻る。エコーサプレッサ16は、FFT部12を通過した入力信号に対してエコーサプレス処理(エコーを強く抑圧する処理)を行なう。エコーサプレッサ16は、遠端発話のみのシングルトークである場合には、エコーサプレス処理を有効にし、その他の場合にはエコーサプレス処理を無効にする。エコーサプレス処理は、既に公知であるため、詳細な説明を省略する。
なお、本実施の形態では、エコーサプレッサ16は、遠端発話のみのシングルトーク以外の場合にエコーサプレス処理を無効にしてエコーサプレス処理のON/OFFを切り替えたが、エコーサプレス処理の強弱を切り替えてもよい。例えば、遠端発話のみのシングルトークである場合にはエコーを強く抑圧し、その他の場合にはエコーを弱く抑圧してもよい。
ダブルトーク検知部15からエコーサプレッサ16へは、ダブルトーク状態であるか否かを検知した結果が単位時間毎に入力される。したがって、エコーサプレッサ16は、エコーサプレス処理を有効にするか無効にするかを単位時間毎に切り替える。
IFFT部17は、FFT部12を通過した入力信号に対して逆FFT(IFFT、Inverse FFT)を行う。
図15は、エコー抑圧装置1がエコーを逐次低減する処理の流れを示すフローチャートである。この処理は、受話信号及び入力信号がエコー抑圧装置1に入力される間、所定時間毎に連続して行われる。
まず、エコー除去部11は入力信号からエコーを除去し(ステップS11)、ダブルトーク検知部15はエコーが除去された入力信号のパワースペクトルを算出する(ステップS12)。また、ダブルトーク検知部15は受話信号パワースペクトルを算出し(ステップS13)、マスク選択部14は受話信号パワースペクトルに基づいて基礎マスクから最適マスクを選択する(ステップS14)。なお、ステップS11又はステップS12と、ステップS13とは同時に行なってもよい。
次に、ダブルトーク検知部15は、ステップS12で算出された入力信号パワースペクトル及びステップS13で算出された受話信号パワースペクトルに基づいてダブルトーク状態か否かを検知する(ステップS15)。そして、エコーサプレッサ16は、遠端発話のみのシングルトークであり、ダブルトーク状態でない場合には、ステップS12で算出された入力信号パワースペクトルに対してエコーサプレス処理を行う(ステップS16)。最後に、IFFT部17が入力信号パワースペクトルを時間軸信号に戻す(ステップS17)。
本実施の形態によれば、近端発話による入力信号と、遠端発話の残留エコーとが異なる周波数特性をもつことに着目し、残留エコーの周波数特性をマスクとして記憶しておき、入力信号の周波数特性とマスクとを比較することでダブルトーク状態を正確に検知し、ダブルトーク状態でないときにはエコーサプレス処理を有効にすることで、近端音声(マイクロホン51から入力された音声)を劣化させず、確実にエコーを抑圧することができる。
また、本実施の形態によれば、受話信号の大きさに応じてマスクの大きさを変えるため、発話が小さい場合にも発話を検知し、適切にエコーを抑圧することができる。
例えば、受話信号が大きい時を想定して生成されたマスクのみを用いる場合、マイクロホン側にいる利用者(近端話者)の発話が小さく、かつ受話信号が大きいときには、受話側信号経路を伝送される入力信号にエコーサプレッサが強くかかってしまい、近端話者の声が消えてしまうおそれがある。それに対し、本実施の形態では、学習用信号の大きさを変更して複数のマスクを生成し、その中から受話信号に最も近いマスクを最適マスクとして選択する、すなわち発生し得るエコーの大きさに合わせた最適マスクを用いてダブルトーク状態を正確に検知するため、発話が小さい場合にも発話を検知することができ、かつエコーサプレッサが必要以上に強くかかることを防ぐことができる。
また、例えば、遠端話者(利用者B)がコールセンターである場合には、利用者Bに隣接する話者の声が受話信号に入ってしまうことがある。このような場合には、小さい受話信号が継続するため、受話信号が大きい時を想定して生成されたマスクではダブルトーク状態を適切に検知することができない。それに対し、本実施の形態では、受話信号の大きさに合わせた最適マスクを用いてダブルトーク状態を正確に検知するため、このような状況下においても対応可能である。
また、本実施の形態によれば、マスク選択部14は、受話信号パワースペクトルが逐次入力されたら、サンプル点が取得された時点以前の所定期間内に取得された受話信号に基づいて最適マスクを基礎マスクから逐次選択するため、エコーサプレッサの効き方を頻繁に変えることなく、安定した通話を確保することができる。
携帯電話53と携帯電話54とは一般的な電話回線により接続されているため、通信状態によっては、スピーカ52から出力される音の大きさ(受話信号の大きさ)が頻繁に変わる。サンプル点が取得された時点の受話信号の大きさのみに基づいて最適マスクを選択する場合には、受話信号の大きさが頻繁に変わることでマスクが頻繁に切り替わってしまい、その結果、遠端話者が近端話者の声を聞きとり難くなる恐れがある。それに対し、サンプル点が取得された時点以前の所定期間内に取得された受話信号に基づいて最適マスクを選択することで、マスクが頻繁に切り替わることを防ぐことができ、通話の品質が安定する。
また、受話側から信号が入力されていない場合であっても、車内で音が反射したり、スピーカ52の振動等によりスピーカ52から音が出力されたりすることがある。このような場合には、サンプル点が取得された時点の受話信号の大きさのみに基づいて最適マスクを選択すると、受話信号は0であるため、エコーサプレッサ16が機能せず、エコーを消すことができない。それに対し、サンプル点が取得された時点以前の所定期間内に取得された受話信号に基づいて最適マスクを選択することで、以前の状態を含めて最適マスクを選択することができ、車内での音の反射やスピーカ52の振動等がスピーカ52から音になって出力されることによるエコーを消すことができる。
なお、本発明の形態では、マスク選択部14は、受話信号のサンプル点が取得された時点以前の所定期間内に取得された受話信号に基づいて最適マスクを選択するにあたり、所定期間を予め略100m秒~略300m秒と定めたが、所定期間の値及び所定時間の定め方はこれに限られない。例えば、マスク生成部18は、マスクを生成するときに、受話信号が0になってから入力信号が0になるまでの時間を測定し、当該測定された時間に基づいて所定時間を定めてもよい。これにより、受話信号により発生するエコーの長さに応じて所定期間を定めることができる。
また、本発明の形態では、マスク生成部18は、学習用信号の大きさを変更して複数のマスクを生成したが、マスク生成部18が生成するマスクの種類はこれに限られない。例えば、マスク生成部18は、車内での音の反射やスピーカ52の振動等がスピーカ52から音になって出力されることによるエコー信号のみが入力信号として入力されているときのマスクを生成してもよい。このとき、マスク生成部18は、エコー除去部11において十分に適応フィルタの学習を終えた後に、車内での音の反射やスピーカ52の振動等がスピーカ52から音になって出力されることによるエコー信号のみが発生した状態で送話側信号経路を伝送される信号(図7、8(B)参照)を学習用信号とし、学習用パワースペクトルの値のうちの最大値を周波数帯域毎に取得し、これをマスクとする。
そして、マスク選択部14は、受話信号及び入力信号のパワースペクトルを逐次取得し、それぞれのサンプル点が取得されたら、サンプル点が取得された時点以前の所定期間内に取得された受話信号及び入力信号に基づいて、最適マスクを基礎マスクから逐次選択する。例えば、受話信号が0で入力信号が小さい状態が数ミリ秒継続した場合には、マスク選択部14は、車内での音の反射やスピーカ52の振動等がスピーカ52から音になって出力されることによるエコー信号のみが発生した状態に対応するマスクを最適マスクとして選択する。これにより、車内での音の反射やスピーカ52の振動等がスピーカ52から音になって出力されることによるエコー信号を適切に消すことができる。
<第2の実施の形態>
第2の実施の形態は、周波数帯域毎にダブルトーク状態の検知を行なう形態である。以下、第2の実施の形態に係るエコー抑圧装置2について説明する。なお、第1の実施の形態に係るエコー抑圧装置1と同一の部分については、同一の符号を付し、説明を省略する。
図16は、エコー抑圧装置2の機能ブロックの概略を示す図である。エコー抑圧装置2は、主として、エコー除去部11と、FFT部12、19と、マスク記憶部13と、マスク選択部14と、ダブルトーク検知部15Aと、エコーサプレッサ16Aと、IFFT部17と、マスク生成部18(図示省略)とを有する。
ダブルトーク検知部15Aは、ダブルトーク状態であるか否かを周波数帯域毎に検知する。なお、ダブルトーク検知部15Aは、ダブルトーク状態であるか否かを検知する処理を、入力信号パワースペクトルが計算される単位時間毎に逐次行う。
以下、ダブルトーク検知部15Aにおいて、ダブルトーク状態であるか否かを検知する方法について詳細に説明する。まず、ダブルトーク検知部15Aは、周波数帯域毎に、FFT部12から入力された入力信号パワースペクトルの値と、マスク選択部14で選択された最適マスクの値とを比較する。
また、ダブルトーク検知部15Aは、携帯電話53から端末へと送信される受話信号を取得し、その信号レベルを求める。ダブルトーク検知部15Aは、受話信号の信号レベルと、閾値IIとを比較する。
そして、ダブルトーク検知部15Aは、入力信号パワースペクトルの値が最適マスクの値を上回っていない周波数帯域について、受話信号の信号レベルが閾値II以上である場合には、遠端発話のみのシングルトークであり、ダブルトーク状態ではないことを検知する。
図17は、受話信号の信号レベルが閾値II以上のときの入力信号パワースペクトルの値と、最適マスクの値とを比較する様子を模式的に示す図である。図17において、実線は入力信号パワースペクトルを示し、破線は最適マスクを示す。
図17の実線の丸印で囲んだ周波数帯域は、入力信号パワースペクトルの値が最適マスクの値を上回っている。したがって、この周波数帯域については、ダブルトーク検知部15Aは、遠端発話があり、かつ近端発話がある、すなわちダブルトーク状態であることを検知する。
それに対し、図17の点線の丸印で囲んだ周波数帯域は、入力信号パワースペクトルの値が最適マスクの値を上回っていない。したがって、この周波数帯域については、ダブルトーク検知部15Aは、遠端発話があるが近端発話がない遠端発話のみのシングルトーク、すなわちダブルトーク状態ではないことを検知する。
図16の説明に戻る。エコーサプレッサ16Aは、FFT部12を通過した入力信号に対してエコーサプレス処理を行う。エコーサプレッサ16Aは、遠端発話のみのシングルトークと検知された周波数帯域については、エコーサプレス処理を有効にし、その他の周波数帯域についてはエコーサプレス処理を無効にする。エコーサプレッサ16Aは、エコーサプレス処理を有効にするか無効にするかを単位時間毎に切り替える。
本実施の形態によれば、周波数帯域毎にダブルトーク状態を正確に検知し、周波数帯域毎にエコーサプレス処理を有効にすることができる。
<第3の実施の形態>
第3の実施の形態は、マスク記憶部が1つの基礎マスクを保持し、マスク選択部で最適マスクを生成する形態である。以下、第3の実施の形態に係るエコー抑圧装置3について説明する。なお、第1、2の実施の形態に係るエコー抑圧装置1、2と同一の部分については、同一の符号を付し、説明を省略する。
図18は、エコー抑圧装置3の機能ブロックの概略を示す図である。エコー抑圧装置3は、主として、エコー除去部11と、FFT部12、19と、マスク記憶部13Aと、マスク選択部14Aと、ダブルトーク検知部15と、エコーサプレッサ16と、IFFT部17と、マスク生成部18(図示省略)とを有する。
マスク生成部18は、FFT部12により計算された学習用信号についてのパワースペクトルに基づいてマスクを生成し、生成したマスクを記憶する。マスク生成部18は、受話側信号経路の信号が大きい時を想定して生成されたマスク(図5参照)のみを生成し、当該マスクのみが基礎マスクとしてマスク記憶部13Aに記憶される。
マスク選択部14Aは、受話信号パワースペクトルのサンプル点が取得された時点以前の所定期間内に取得された受話信号のパワーの最大値に基づいて、基礎マスクに係数を掛け合わせることで最適マスクを生成する。
図19は、マスク選択部14Aが最適マスクを生成する処理を模式的に示す図である。図19において、実線は所定期間内に取得された受話信号スペクトルの最大値を示し、点線は基礎マスクを示す。マスク選択部14Aは、受話信号のパワーの最大値と基礎マスクとを周波数帯域毎に比較して、いずれの周波数帯域においても、受話信号の最大値よりも最適マスクの値が小さくならないように、かつ、最適マスクが受話信号の最大値に近接するように、基礎マスクに係数を掛け合わせることで最適マスクを生成する。図18に示す例では、マスク選択部14Aは、基礎マスクの各周波数帯域のパワーに係数0.3をかけて最適マスクを生成する。これにより、受話信号の周波数特性を考慮して最適マスクを生成することができる。
本実施の形態によれば、複数の基礎マスクを記憶する必要がなく、使用するメモリを減らすことができる。本実施の形態は、受話信号の大きさによらずマスクの形状が類似するときに有効である。
なお、本実施の形態では、マスク選択部14Aは、周波数帯域によらず、基礎マスクの各周波数帯域のパワーに任意の係数をかけて最適マスクを生成したが、周波数帯域毎に基礎マスクに掛け合わせる係数を変えてもよい。例えば、周波数帯域が大きくなるにつれて係数を小さくしてもよい。この場合には、周波数帯域の大きさと係数との関係を示す式をマスク記憶部13Aに保持しておき、マスク選択部14Aは、任意の周波数における係数と、周波数帯域の大きさと係数との関係を示す式に基づいて各周波数帯域における係数を求めればよい。これにより、受話信号の周波数特性をより反映した最適マスクを生成することができる。
<第4の実施の形態>
第4の実施の形態は、FFT部19を用いない形態である。以下、第4の実施の形態に係るエコー抑圧装置4について説明する。なお、第1の実施の形態~第3の実施の形態に係るエコー抑圧装置1~3と同一の部分については、同一の符号を付し、説明を省略する。
図20は、エコー抑圧装置4の機能ブロックの概略を示す図である。エコー抑圧装置4は、主として、エコー除去部11と、FFT部12と、マスク記憶部13と、マスク選択部14Bと、ダブルトーク検知部15と、エコーサプレッサ16と、IFFT部17と、マスク生成部18(図示省略)とを有する。
マスク選択部14Bには、受話信号が逐次入力される。マスク選択部14は、受話信号が逐次入力された(サンプル点が取得された)ら、サンプル点が取得された時点以前の所定期間内に取得された受話信号に基づいて、受話信号の大きさに応じたマスク(以下、最適マスクという)を基礎マスクから逐次選択する。
本実施の形態ではFFT部19を用いないため、マスク選択部14Bには、周波数帯域毎に分かれていない受話信号のパワーが入力される。そして、マスク選択部14Aは、一定時間の間に入力された受話信号のパワーの総和と、マスクの周波数帯域毎のパワーの総和とを比較する。そして、マスク選択部14Bは、マスク記憶部13に記憶された基礎マスクのうち、マスクのパワーの総和よりも受話信号のパワーの総和が小さく、かつ、マスクのパワーの総和が受話信号のパワーの総和に最も近いマスクを最適マスクとして選択する。
ダブルトーク検知部15Bは、エコー除去部11から入力された入力信号パワースペクトルと、マスク選択部14Cが選択した最適マスクの値とを比較し、入力信号パワースペクトルの値が最適マスクの値を上回る周波数帯域の数(超過数)を数える。そして、ダブルトーク検知部15Bは、超過数が任意の閾値以下である場合に近端発話無しであることを検知する。
また、ダブルトーク検知部15Bは、受話信号の大きさと、予め用意した閾値とを比較する。ダブルトーク検知部15は、受話信号の大きさが予め用意した閾値以上の場合に、遠端発話(利用者B(図1参照)の発話)があり、受話側信号経路を信号が伝送されていることを検知する。
本実施の形態によれば、マスクの選択処理の演算量を減らすことができる。
<第5の実施の形態>
第5の実施の形態は、FFT部12、19を用いない形態である。以下、第5の実施の形態に係るエコー抑圧装置5について説明する。なお、第1の実施の形態~第4の実施の形態に係るエコー抑圧装置1~4と同一の部分については、同一の符号を付し、説明を省略する。
図21は、エコー抑圧装置5の機能ブロックの概略を示す図である。図22は、エコー抑圧装置5においてマスクを生成するときの機能ブロックの概略を示す図である。エコー抑圧装置5は、主として、エコー除去部11と、マスク記憶部13Bと、マスク選択部14Cと、ダブルトーク検知部15Cと、エコーサプレッサ16Bと、マスク生成部18Aとを有する。
まず、図22を用いてマスクの生成処理について詳細に説明する。まず、エコー除去部11において十分に適応フィルタの学習を終えた後に、マイクロホン51から音が入力されていない状況下で、スピーカ52から音が出力される遠端側の片側発話(シングルトーク)を繰り返す。そして、エコー除去部11によりエコーが除去された信号を学習用信号とする。
一定区間毎に計算された学習用信号のパワー(学習用パワー)は、マスク生成部18Aに入力される。マスク生成部18Aは、入力された複数の学習用パワーを記憶する。マスク生成部18Aは、入力された複数の学習用パワーの値のうちの最大値を取得し、これをマスクとする。したがって、生成されたマスクは値を1つだけ有する。
本実施の形態では、マスク生成部18Aは、学習用信号の大きさ(受話レベル)を変更して複数のマスクを生成する処理を複数回行い、複数のマスクを生成する。これにより、受話レベル毎に、残留エコーの大きさを正確に記憶することができる。
図21の説明に戻る。マスク記憶部13Bは、マスク生成部18Aにより生成された複数のマスクを基礎マスクとして記憶する。
マスク選択部14Cには、受話信号が逐次入力される。マスク選択部14Cは、受話信号パワースペクトルが逐次入力された(サンプル点が取得された)ら、サンプル点が取得された時点以前の所定期間内に取得された受話信号に基づいて、受話信号の大きさに応じたマスク(以下、最適マスクという)を基礎マスクから逐次選択する。
本実施の形態ではFFT部19を用いないため、マスク選択部14Cには、周波数帯域毎に分かれていない受話信号のパワーが入力される。マスク選択部14Cは、一定時間の間に入力された受話信号のパワーの総和と、マスクのパワーとを比較する。そして、マスク選択部14Cは、マスク記憶部13Bに記憶された基礎マスクのうち、マスクのパワーよりも受話信号のパワーの総和が小さく、かつ、マスクのパワーの総和が受話信号のパワーの総和に最も近いマスクを最適マスクとして選択する。
例えば、マスク記憶部13Bに3つのマスク(受話レベルが3のときの第1マスク、受話レベルが6のときの第2マスク、受話レベルが9の時の第3マスク)が記憶されており、マスク選択部14Cに入力された受話信号のパワーが2である場合には、マスク選択部14Cは第1マスクを最適マスクとして選択する。また、例えば、マスク選択部14Cに入力された受話信号のパワーが4である場合には、マスク選択部14Cは第2マスクを最適マスクとして選択する。
ダブルトーク検知部15Cは、エコー除去部11から入力された入力信号の大きさと、マスク選択部14Cが選択した最適マスクの値とを比較し、入力信号の大きさが最適マスクの値より大きい場合には、近端発話ありと検知する。
また、ダブルトーク検知部15Cは、受話信号の大きさと、予め用意した閾値とを比較する。ダブルトーク検知部15Cは、受話信号の大きさが予め用意した閾値以上の場合に、遠端発話有りであることを検知する。
エコーサプレッサ16Bは、遠端発話のみのシングルトークであり、ダブルトーク状態でない場合には、エコー除去部11を通過した入力信号に対してエコーサプレス処理を有効にし、その他の場合にはエコーサプレス処理を無効にする。
図23は、エコー抑圧装置5がエコーを逐次低減する処理の流れを示すフローチャートである。この処理は、受話信号及び入力信号がエコー抑圧装置1に入力される間、所定時間毎に連続して行われる。
まず、エコー除去部11は入力信号からエコー除去し(ステップS11)、マスク選択部14は受話信号のパワーに基づいて基礎マスクから最適マスクを選択する(ステップS18)。
次に、ダブルトーク検知部15は、ステップS11でエコーが除去された入力信号のパワー及び受話信号のパワーに基づいてダブルトーク状態か否かを検知する(ステップS19)。そして、エコーサプレッサ16は、遠端発話のみのシングルトークである場合には、ステップS11でエコーが除去された入力信号に対してエコーサプレス処理を行う(ステップS20)。
本実施の形態によれば、FFT処理及びIFFT処理を行わないため、演算量を削減することができる。
以上、この発明の実施形態を、図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。特に、実施の形態においては、振幅の二乗で表されるパワーに基づいて基礎マスクの生成、最適マスクの生成や選択、ダブルトーク状態の検知等を行ったが、これらの処理は振幅の絶対値に基づいて行ってもよい。
1、2、3、4、5:エコー抑圧装置
11 :エコー除去部
12 :FFT部
13、13A、13B:マスク記憶部
14、14A、14B、14C:マスク選択部
15、15A、15B:ダブルトーク検知部
16、16A、16B:エコーサプレッサ
17 :IFFT部
18、18A:マスク生成部
19 :FFT部
50 :端末
51 :マイクロホン
52 :スピーカ
53、54:携帯電話
55 :スピーカアンプ
100 :音声通信システム

Claims (10)

  1. スピーカとマイクロホンとを有する近端端末のうちの前記マイクロホンから入力された入力信号を伝送する送話側信号経路に設けられるエコー抑圧装置であって、
    前記マイクロホンに発話が入力されず、前記スピーカから音が出力されるときに、前記送話側信号経路を伝送される学習用信号に基づいてマスクを生成するマスク生成部であって、一定区間ごとの複数の前記学習用信号に基づいて前記マスクを生成する処理を前記学習用信号の大きさを変更して複数回行い、複数の前記マスクを生成するマスク生成部と、
    前記マスク生成部により生成された複数の前記マスクを複数の基礎マスクとして記憶するマスク記憶部と、
    前記スピーカへ信号を伝送する受話側信号経路を伝送される受話信号のサンプル点が取得される毎に、当該サンプル点が取得された時点以前の所定期間内に取得された前記受話信号に基づいて、前記受話信号の大きさに応じた最適マスクを前記基礎マスクから逐次選択するマスク選択部であって、複数の前記基礎マスクの中から前記受話信号に最も近いマスクを前記最適マスクとして選択するマスク選択部と、
    前記最適マスクが生成又は選択される毎に、前記入力信号と前記最適マスクとを比較した結果に基づいてダブルトーク状態であるか否かを逐次検知するダブルトーク検知部と、
    前記ダブルトーク検知部により、前記マイクロホンに発話が入力されず、かつ、前記受話信号が発話を含むことが検知された場合に、前記入力信号に対してエコーを抑圧する処理を逐次行うエコーサプレッサと、
    を備えたことを特徴とするエコー抑圧装置。
  2. スピーカとマイクロホンとを有する近端端末のうちの前記マイクロホンから入力された入力信号を伝送する送話側信号経路に設けられるエコー抑圧装置であって、
    前記マイクロホンに発話が入力されず、前記スピーカから音が出力されるときに、前記送話側信号経路を伝送される学習用信号に基づいて1つのマスクを生成するマスク生成部と、
    前記マスク生成部が生成した1つのマスクを基礎マスクとして記憶するマスク記憶部と、
    前記スピーカへ信号を伝送する受話側信号経路を伝送される受話信号のサンプル点が取得される毎に、当該サンプル点が取得された時点以前の所定期間内に取得された前記受話信号に基づいて、前記受話信号の大きさに応じた最適マスクを前記基礎マスクから逐次生成するマスク選択部であって、前記入力信号の大きさに基づいて前記基礎マスクに係数を掛け合わせることで前記最適マスクを生成するマスク選択部と、
    前記最適マスクが生成又は選択される毎に、前記入力信号と前記最適マスクとを比較した結果に基づいてダブルトーク状態であるか否かを逐次検知するダブルトーク検知部と、
    前記ダブルトーク検知部により、前記マイクロホンに発話が入力されず、かつ、前記受話信号が発話を含むことが検知された場合に、前記入力信号に対してエコーを抑圧する処理を逐次行うエコーサプレッサと、
    を備えたことを特徴とするエコー抑圧装置。
  3. 前記マイクロホンに発話が入力されず前記スピーカから音が出力された状態から、前記マイクロホンに発話が入力されず前記スピーカから音が出力されない状態に移行したときに、前記送話側信号経路を信号が伝送されなくなる時間である第1時間を測定する信号測定部を備え、
    前記マスク選択部は、前記第1時間を前記所定期間として前記最適マスクを逐次生成又は選択する
    ことを特徴とする請求項1又は2に記載のエコー抑圧装置。
  4. 前記入力信号についてのパワースペクトルである入力信号パワースペクトル及び前記学習用信号のパワースペクトルである学習用パワースペクトルを計算する第1パワースペクトル計算部を備え、
    前記マスクは、一定区間の間に取得された前記学習用パワースペクトルの周波数帯域毎の最大値であり、
    前記最適マスクは、周波数帯域毎に値を有し、
    前記ダブルトーク検知部は、前記入力信号パワースペクトルの値と前記最適マスクの値とを周波数帯域毎に比較した結果に基づいてダブルトーク状態であるか否かを検知する
    ことを特徴とする請求項1からのいずれか一項に記載のエコー抑圧装置。
  5. 前記受話信号についてのパワースペクトルである受話信号パワースペクトルを計算する第2パワースペクトル計算部を備え、
    前記マスク選択部は、前記受話信号パワースペクトルの最大値と前記最適マスクとを周波数帯域毎に比較して前記最適マスクを生成又は選択する
    ことを特徴とする請求項に記載のエコー抑圧装置。
  6. 前記ダブルトーク検知部は、前記入力信号パワースペクトルと前記最適マスクとを周波数帯域毎に比較し、前記入力信号パワースペクトルが前記最適マスクを上回る周波数帯域数が第1閾値より小さい場合、又は、前記入力信号パワースペクトルが前記最適マスクを上回る領域の積分値が第2閾値より小さい場合には、前記マイクロホンに発話が入力されていないことを検知する
    ことを特徴とする請求項又はに記載のエコー抑圧装置。
  7. 近端端末のマイクロホンに発話が入力されず、前記近端端末のスピーカから音が出力されるときに、前記マイクロホンから入力された信号を伝送する送話側信号経路を伝送される学習用信号に基づいて複数の基礎マスクを生成及び記憶するステップであって、一定区間ごとの複数の前記学習用信号に基づいてマスクを生成する処理を前記学習用信号の大きさを変更して複数回行って複数の前記マスクを生成し、当該生成された複数の前記マスクを複数の前記基礎マスクとして記憶するステップと、
    前記スピーカへ信号を伝送する受話側信号経路を伝送される受話信号のサンプル点が取得されるごとに、当該サンプル点が取得された時点以前の所定期間内に取得された前記受話信号と、複数の前記基礎マスクとに基づいて、前記マイクロホンから入力された入力信号の大きさに応じた大きさのマスクである最適マスクを逐次選択するステップであって、前記基礎マスクの中から前記受話信号に最も近いマスクを前記最適マスクとして選択するステップと、
    前記最適マスクが選択されたら、前記入力信号と前記最適マスクとを比較した結果に基づいてダブルトーク状態であるか否かを逐次検知するステップと、
    前記マイクロホンに発話が入力されず、かつ、前記受話信号が発話を含むことが検知された場合に、前記入力信号に対してエコーを抑圧するエコーサプレス処理を行うステップと、
    を含むことを特徴とするエコー抑圧方法。
  8. 近端端末のマイクロホンに発話が入力されず、前記近端端末のスピーカから音が出力されるときに、前記マイクロホンから入力された信号を伝送する送話側信号経路を伝送される学習用信号に基づいて1つのマスクである基礎マスクを生成及び記憶するステップと、
    前記スピーカへ信号を伝送する受話側信号経路を伝送される受話信号のサンプル点が取得されるごとに、当該サンプル点が取得された時点以前の所定期間内に取得された前記受話信号と、前記基礎マスクとに基づいて、前記マイクロホンから入力された入力信号の大きさに応じた大きさのマスクである最適マスクを逐次生成するステップであって、前記入力信号の大きさに基づいて前記基礎マスクに係数を掛け合わせることで前記最適マスクを生成するステップと、
    前記最適マスクが生成されたら、前記入力信号と前記最適マスクとを比較した結果に基づいてダブルトーク状態であるか否かを逐次検知するステップと、
    前記マイクロホンに発話が入力されず、かつ、前記受話信号が発話を含むことが検知された場合に、前記入力信号に対してエコーを抑圧するエコーサプレス処理を行うステップと、
    を含むことを特徴とするエコー抑圧方法。
  9. スピーカとマイクロホンとを有する近端端末のうちの前記マイクロホンから入力された信号を伝送する送話側信号経路に設けられるエコー抑圧プログラムであって、
    コンピュータを、
    前記マイクロホンに発話が入力されず、前記スピーカから音が出力されるときに、前記送話側信号経路を伝送される学習用信号に基づいてマスクを生成するマスク生成部であって、一定区間ごとの複数の前記学習用信号に基づいて前記マスクを生成する処理を前記学習用信号の大きさを変更して複数回行い、複数の前記マスクを生成するマスク生成部と、
    前記マスク生成部により生成された複数の前記マスクを基礎マスクとして記憶するマスク記憶部と、
    前記スピーカへ信号を伝送する受話側信号経路を伝送される受話信号のサンプル点が取得される毎に、当該サンプル点が取得された時点以前の所定期間内に取得された前記受話信号に基づいて、前記受話信号の大きさに応じた最適マスクを前記基礎マスクから逐次選択するマスク選択部であって、前記基礎マスクの中から前記受話信号に最も近いマスクを前記最適マスクとして選択するマスク選択部と、
    前記最適マスクが選択される毎に、前記マイクロホンから入力された入力信号と前記最適マスクとを比較した結果に基づいてダブルトーク状態であるか否かを逐次検知するダブルトーク検知部と、
    前記ダブルトーク検知部により、前記マイクロホンに発話が入力されず、かつ、前記受話信号が発話を含むことが検知された場合に、前記入力信号に対してエコーを抑圧する処理を逐次行うエコーサプレッサと、
    して機能させることを特徴とするエコー抑圧プログラム。
  10. スピーカとマイクロホンとを有する近端端末のうちの前記マイクロホンから入力された信号を伝送する送話側信号経路に設けられるエコー抑圧プログラムであって、
    コンピュータを、
    前記マイクロホンに発話が入力されず、前記スピーカから音が出力されるときに、前記送話側信号経路を伝送される学習用信号に基づいて1つのマスクを生成するマスク生成部と、
    前記マスク生成部が生成した1つのマスクを基礎マスクとして記憶するマスク記憶部と、
    前記スピーカへ信号を伝送する受話側信号経路を伝送される受話信号のサンプル点が取得される毎に、当該サンプル点が取得された時点以前の所定期間内に取得された前記受話信号に基づいて、前記受話信号の大きさに応じた最適マスクを前記基礎マスクから逐次生成するマスク選択部であって、前記マイクロホンから入力された入力信号の大きさに基づいて前記基礎マスクに係数を掛け合わせることで前記最適マスクを生成するマスク選択部と、
    前記最適マスクが生成される毎に、前記入力信号と前記最適マスクとを比較した結果に基づいてダブルトーク状態であるか否かを逐次検知するダブルトーク検知部と、
    前記ダブルトーク検知部により、前記マイクロホンに発話が入力されず、かつ、前記受話信号が発話を含むことが検知された場合に、前記入力信号に対してエコーを抑圧する処理を逐次行うエコーサプレッサと、
    して機能させることを特徴とするエコー抑圧プログラム。
JP2020071463A 2020-04-13 2020-04-13 エコー抑圧装置、エコー抑圧方法及びエコー抑圧プログラム Active JP7382273B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020071463A JP7382273B2 (ja) 2020-04-13 2020-04-13 エコー抑圧装置、エコー抑圧方法及びエコー抑圧プログラム
CN202180013053.5A CN115053460A (zh) 2020-04-13 2021-04-07 回波抑制装置、回波抑制方法以及回波抑制程序
US17/801,955 US20230079749A1 (en) 2020-04-13 2021-04-07 Echo suppression device, echo suppression method, and echo suppression program
EP21788431.1A EP4138307A4 (en) 2020-04-13 2021-04-07 ECHO CANCELLATION DEVICE, ECHO CANCELLATION METHOD, AND ECHO CANCELLATION PROGRAM
PCT/JP2021/014808 WO2021210473A1 (ja) 2020-04-13 2021-04-07 エコー抑圧装置、エコー抑圧方法及びエコー抑圧プログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020071463A JP7382273B2 (ja) 2020-04-13 2020-04-13 エコー抑圧装置、エコー抑圧方法及びエコー抑圧プログラム

Publications (2)

Publication Number Publication Date
JP2021168455A JP2021168455A (ja) 2021-10-21
JP7382273B2 true JP7382273B2 (ja) 2023-11-16

Family

ID=78079895

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020071463A Active JP7382273B2 (ja) 2020-04-13 2020-04-13 エコー抑圧装置、エコー抑圧方法及びエコー抑圧プログラム

Country Status (5)

Country Link
US (1) US20230079749A1 (ja)
EP (1) EP4138307A4 (ja)
JP (1) JP7382273B2 (ja)
CN (1) CN115053460A (ja)
WO (1) WO2021210473A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006033789A (ja) 2004-06-16 2006-02-02 Nippon Telegr & Teleph Corp <Ntt> 反響路結合量推定方法、反響路結合量推定装置、反響路結合量推定プログラム、エコー抑圧方法、エコー抑圧装置、エコー抑圧プログラム、エコーサプレス方法、エコーサプレッサ、エコーサプレッサプログラム、通信路上の損失量制御方法、通信路上の損失量制御装置、通信路上の損失制御プログラム、多チャネルエコー抑圧方法、多チャネルエコー抑圧装置、多チャネルエコー抑圧プログラム、記録媒体
JP2009021741A (ja) 2007-07-11 2009-01-29 Yamaha Corp エコーキャンセラ
JP2018201147A (ja) 2017-05-29 2018-12-20 株式会社トランストロン エコー抑圧装置、エコー抑圧方法及びエコー抑圧プログラム

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0847180A1 (en) * 1996-11-27 1998-06-10 Nokia Mobile Phones Ltd. Double talk detector
US6434110B1 (en) * 1998-03-20 2002-08-13 Cirrus Logic, Inc. Full-duplex speakerphone circuit including a double-talk detector
US7113491B2 (en) * 2001-07-31 2006-09-26 Conexant, Inc. Method and system for varying an echo canceller filter length based on data rate
AU2002357124A1 (en) * 2001-12-10 2003-06-23 Globespan Virata, Inc. System and method for improving data transmission
GB2397990A (en) * 2003-01-31 2004-08-04 Mitel Networks Corp Echo cancellation/suppression and double-talk detection in communication paths
US8345890B2 (en) * 2006-01-05 2013-01-01 Audience, Inc. System and method for utilizing inter-microphone level differences for speech enhancement
US8744844B2 (en) * 2007-07-06 2014-06-03 Audience, Inc. System and method for adaptive intelligent noise suppression
US8472616B1 (en) * 2009-04-02 2013-06-25 Audience, Inc. Self calibration of envelope-based acoustic echo cancellation
CN107005268B (zh) * 2014-12-15 2020-06-16 三菱电机株式会社 回波消除装置和回波消除方法
JP2018110301A (ja) * 2016-12-28 2018-07-12 富士通株式会社 通話装置、及びエコー抑圧プログラム
CN107610713B (zh) * 2017-10-23 2022-02-01 科大讯飞股份有限公司 基于时延估计的回声消除方法及装置
US11238879B2 (en) * 2017-11-02 2022-02-01 Microsemi Semiconductor (U.S.) Inc. Acoustic delay measurement using adaptive filter with programmable delay buffer
CA3035020C (en) * 2017-11-17 2023-03-07 Huawei Technologies Co., Ltd. System and method for channel measurement and interference measurement in wireless network
WO2019143759A1 (en) * 2018-01-18 2019-07-25 Knowles Electronics, Llc Data driven echo cancellation and suppression
US11380312B1 (en) * 2019-06-20 2022-07-05 Amazon Technologies, Inc. Residual echo suppression for keyword detection
US11189297B1 (en) * 2020-01-10 2021-11-30 Amazon Technologies, Inc. Tunable residual echo suppressor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006033789A (ja) 2004-06-16 2006-02-02 Nippon Telegr & Teleph Corp <Ntt> 反響路結合量推定方法、反響路結合量推定装置、反響路結合量推定プログラム、エコー抑圧方法、エコー抑圧装置、エコー抑圧プログラム、エコーサプレス方法、エコーサプレッサ、エコーサプレッサプログラム、通信路上の損失量制御方法、通信路上の損失量制御装置、通信路上の損失制御プログラム、多チャネルエコー抑圧方法、多チャネルエコー抑圧装置、多チャネルエコー抑圧プログラム、記録媒体
JP2009021741A (ja) 2007-07-11 2009-01-29 Yamaha Corp エコーキャンセラ
JP2018201147A (ja) 2017-05-29 2018-12-20 株式会社トランストロン エコー抑圧装置、エコー抑圧方法及びエコー抑圧プログラム

Also Published As

Publication number Publication date
EP4138307A4 (en) 2023-07-26
US20230079749A1 (en) 2023-03-16
EP4138307A1 (en) 2023-02-22
JP2021168455A (ja) 2021-10-21
CN115053460A (zh) 2022-09-13
WO2021210473A1 (ja) 2021-10-21

Similar Documents

Publication Publication Date Title
US8811601B2 (en) Integrated echo cancellation and noise suppression
JP4624503B2 (ja) 音声源を検出する装置及び方法
EP2348645B1 (en) Method and apparatus for detecting double talk
JP6833616B2 (ja) エコー抑圧装置、エコー抑圧方法及びエコー抑圧プログラム
CN101719969A (zh) 判断双端对话的方法、系统以及消除回声的方法和系统
JP2002501337A (ja) 通信システムのコンフォートノイズ提供方法及び装置
JP4579301B2 (ja) エコー消去装置
EP3796629B1 (en) Double talk detection method, double talk detection device and echo cancellation system
JP2003500936A (ja) エコー抑止システムにおけるニアエンド音声信号の改善
RU2767297C1 (ru) Устройство эхоподавления, способ эхоподавления и программа эхоподавления
US9330677B2 (en) Method and apparatus for generating a noise reduced audio signal using a microphone array
CN101958122B (zh) 一种回声消除的方法和装置
KR20070014980A (ko) 네트워크 종속 신호 처리
CN111524532B (zh) 回声抑制方法、装置、设备及存储介质
CN109215672B (zh) 一种声音信息的处理方法、装置及设备
JP2009094802A (ja) 通信装置
JP7382273B2 (ja) エコー抑圧装置、エコー抑圧方法及びエコー抑圧プログラム
EP3952335A1 (en) Echo suppression device, echo suppression method, and echo suppression program
JPH07288493A (ja) ダブルトーク検出装置
EP4319192A1 (en) Echo suppressing device, echo suppressing method, and echo suppressing program
WO2024009892A1 (ja) エコー抑圧装置、エコー抑圧方法及びエコー抑圧プログラム
JP4534529B2 (ja) ハウリング抑圧方法及び装置
JP2016025471A (ja) エコー抑圧装置、エコー抑圧プログラム、エコー抑圧方法及び通信端末
JP2024139278A (ja) 自動利得制御装置、エコー除去装置、自動利得制御方法及び自動利得制御プログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231106

R150 Certificate of patent or registration of utility model

Ref document number: 7382273

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150