JP7376819B2 - Method for manufacturing an image display device - Google Patents

Method for manufacturing an image display device Download PDF

Info

Publication number
JP7376819B2
JP7376819B2 JP2022107839A JP2022107839A JP7376819B2 JP 7376819 B2 JP7376819 B2 JP 7376819B2 JP 2022107839 A JP2022107839 A JP 2022107839A JP 2022107839 A JP2022107839 A JP 2022107839A JP 7376819 B2 JP7376819 B2 JP 7376819B2
Authority
JP
Japan
Prior art keywords
resin composition
light
resin layer
photocurable resin
image display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022107839A
Other languages
Japanese (ja)
Other versions
JP2022130683A (en
Inventor
孝夫 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Dexerials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dexerials Corp filed Critical Dexerials Corp
Publication of JP2022130683A publication Critical patent/JP2022130683A/en
Priority to JP2023175398A priority Critical patent/JP2023175975A/en
Application granted granted Critical
Publication of JP7376819B2 publication Critical patent/JP7376819B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J109/00Adhesives based on homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J123/00Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • C09J175/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
    • C09J4/06Organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond in combination with a macromolecular compound other than an unsaturated polymer of groups C09J159/00 - C09J187/00
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Mathematical Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)
  • Electroluminescent Light Sources (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Description

本発明は、液晶表示パネル等の画像表示部材と、その表面側に配される湾曲した透明保護シート等の光透過性カバー部材とが、光透過性硬化樹脂層を介して積層されている画像表示装置の製造方法に関する。 The present invention provides an image display system in which an image display member such as a liquid crystal display panel and a light-transparent cover member such as a curved transparent protective sheet disposed on the surface side of the image display member are laminated with a light-transparent cured resin layer interposed therebetween. The present invention relates to a method of manufacturing a display device.

カーナビゲーションなどの車載用情報端末に用いられている画像表示装置は、フラットな光透過性カバー部材に光硬化性樹脂組成物を塗布し、紫外線照射により仮硬化させて仮硬化樹脂層を形成した後、仮硬化樹脂層に液晶表示パネルや有機ELパネル等のフラットな画像表示部材を積層し、続いて仮硬化樹脂層に対し紫外線照射を再度行うことにより本硬化させて光硬化樹脂層とすることにより製造されている(特許文献1)。 Image display devices used in in-vehicle information terminals such as car navigation systems are made by applying a photocurable resin composition to a flat light-transmitting cover member and temporarily curing it by irradiating it with ultraviolet rays to form a temporary cured resin layer. After that, a flat image display member such as a liquid crystal display panel or an organic EL panel is laminated on the temporarily cured resin layer, and then the temporary cured resin layer is irradiated with ultraviolet rays again to be fully cured to form a photocured resin layer. (Patent Document 1).

ところで、車載用情報端末用の画像表示装置の意匠性やタッチ感を向上させるために、一方向に湾曲した形状の光透過性カバー部材を用いることが求められるようになっている。このため、このような画像表示装置を特許文献1に記載の製造方法に準じて製造することが試みられている。 Incidentally, in order to improve the design and touch feel of an image display device for an in-vehicle information terminal, it has become necessary to use a light-transmitting cover member having a shape curved in one direction. For this reason, attempts have been made to manufacture such an image display device according to the manufacturing method described in Patent Document 1.

特開2014-119520号公報JP2014-119520A

一般に、光硬化性樹脂組成物を紫外線照射により光硬化させると硬化収縮が生じるが、フラットな光透過性カバー部材にフラットな画像表示部材を積層する特許文献1の製造方法の場合には、面方向の光硬化性樹脂組成物の塗布厚が約150μm程度と薄くしかも均一であるため、光硬化樹脂層が硬化収縮してもボイドが発生し難く、画像品質に対する光硬化樹脂層の残存応力の影響を無視できるものであった。 Generally, curing shrinkage occurs when a photocurable resin composition is photocured by ultraviolet irradiation, but in the case of the manufacturing method of Patent Document 1 in which a flat image display member is laminated on a flat light-transmitting cover member, Since the coating thickness of the photocurable resin composition in the direction is as thin and uniform as about 150 μm, voids are unlikely to occur even when the photocurable resin layer cures and shrinks, and the residual stress of the photocurable resin layer affects image quality. The impact was negligible.

一方、一方向に湾曲した形状の光透過性カバー部材の凹部面に光硬化性樹脂組成物を塗布した場合、湾曲していない辺近傍の光硬化性樹脂組成物の塗布厚は0~500μm程度になるが、凹部面の中央部の光硬化性樹脂組成物の塗布厚は辺近傍の塗布厚より非常に厚くなり、場合により数mm厚程度にまで厚くなる。このため、凹部面の中央部では、光硬化性樹脂組成物の硬化収縮が著しく大きなものとなり、結果的に中央部には凹みが形成され、組み上げた画像表示装置の表示面に空隙が生じる場合があり、また、空隙が生じないまでも、光硬化樹脂層の残留応力により表示に色ムラが生ずるという問題がある。 On the other hand, when a photocurable resin composition is applied to the concave surface of a light-transmitting cover member curved in one direction, the coating thickness of the photocurable resin composition near the non-curved side is approximately 0 to 500 μm. However, the coating thickness of the photocurable resin composition at the center of the recessed surface is much thicker than the coating thickness near the sides, and in some cases can be as thick as several millimeters. For this reason, the curing shrinkage of the photocurable resin composition becomes extremely large in the center of the recessed surface, and as a result, a recess is formed in the center, creating a void in the display surface of the assembled image display device. Furthermore, even if no voids are formed, there is a problem in that color unevenness occurs in the display due to residual stress in the photocurable resin layer.

本発明の目的は、以上の従来の技術の問題点を解決することであり、画像表示部材とその表面側に配される湾曲した光透過性カバー部材とを光硬化性樹脂組成物の硬化樹脂層を介して積層して画像表示装置を製造する際に、組み上げた画像表示装置の表示面に空隙が生じないようにし、また、空隙が生じないまでも、光硬化樹脂層の残留応力により表示に色ムラが生じないようにすることを目的とする。 An object of the present invention is to solve the above-mentioned problems of the conventional technology, and to combine an image display member and a curved light-transmitting cover member disposed on the surface side with a cured resin of a photocurable resin composition. When manufacturing an image display device by laminating layers, it is necessary to prevent gaps from forming on the display surface of the assembled image display device. The purpose is to prevent color unevenness from occurring.

本発明者は、光透過性カバー部材の凹部面に光硬化性樹脂組成物を塗布し、仮硬化処理した後、硬化収縮により生じた仮硬化樹脂層の中央部の凹みに新たに光硬化性樹脂組成物を塗布し、画像表示部材を積層し、本硬化処理を行うことにより、画像表示装置の表示面に空隙が生じないようにでき、また、光硬化樹脂層の残留応力を低減させて表示の色ムラが生じないようにできることを見出し、本発明を完成させるに至った。 The present inventor applied a photocurable resin composition to the concave surface of a light-transmitting cover member, subjected it to temporary curing treatment, and then applied a new photocurable resin composition to the concavity in the center of the temporary cured resin layer caused by curing shrinkage. By applying the resin composition, laminating the image display member, and performing the main curing treatment, it is possible to prevent the formation of voids on the display surface of the image display device, and also to reduce the residual stress in the photocurable resin layer. The inventors have discovered that it is possible to prevent display color unevenness, and have completed the present invention.

即ち、本発明は、画像表示部材と湾曲した光透過性カバー部材とが、光硬化樹脂層を介して積層されている画像表示装置の製造方法において、
以下の工程(A)~(D):
<工程(A)>
光硬化性樹脂組成物を、湾曲した光透過性カバー部材の凹部面に塗布する工程;
<工程(B)>
塗布された光硬化性樹脂組成物に対し紫外線を照射して仮硬化させ、凹部面に光硬化性樹脂組成物の硬化収縮に基づく微少凹みを有する仮硬化樹脂層を形成する工程;
<工程(C)>
仮硬化樹脂層の微少凹みに対応する量の光硬化性樹脂組成物を、仮硬化樹脂層又は画像表示部材に塗布する工程;
<工程(D)>
画像表示部材と光透過性カバー部材とを、仮硬化樹脂層を介して積層する工程; 及び
<工程(E)>
画像表示部材と光透過性カバー部材との間に挟持されている仮硬化樹脂層に紫外線を照射して本硬化させることにより光透過性硬化樹脂層を形成する工程;
を有する製造方法を提供する。
That is, the present invention provides a method for manufacturing an image display device in which an image display member and a curved light-transmitting cover member are laminated with a photocurable resin layer interposed therebetween.
The following steps (A) to (D):
<Process (A)>
a step of applying a photocurable resin composition to the concave surface of the curved light-transmitting cover member;
<Process (B)>
A step of temporarily curing the applied photocurable resin composition by irradiating it with ultraviolet rays to form a temporary cured resin layer having minute dents on the concave surface due to curing shrinkage of the photocurable resin composition;
<Step (C)>
A step of applying a photocurable resin composition in an amount corresponding to the minute dents in the temporarily cured resin layer to the temporarily cured resin layer or the image display member;
<Step (D)>
Step of laminating the image display member and the light-transmitting cover member via a temporarily cured resin layer; and <Step (E)>
forming a light-transmissive cured resin layer by irradiating ultraviolet rays to the temporarily cured resin layer sandwiched between the image display member and the light-transparent cover member to fully cure it;
A manufacturing method is provided.

本発明の画像表示装置の製造方法においては、湾曲した光透過性カバー部材の凹部面に光硬化性樹脂組成物を塗布し、仮硬化処理した後、硬化収縮により生じた仮硬化樹脂層の中央部の凹みに新たに光硬化性樹脂組成物を塗布し、画像表示部材を積層し、本硬化処理を行う。このため、画像表示装置の表示面に空隙が生じないようにでき、また、光硬化樹脂層の残留応力を低減させて表示の色ムラが生じないようにできる。 In the method for manufacturing an image display device of the present invention, a photocurable resin composition is applied to the concave surface of a curved light-transmissive cover member, and after a temporary curing treatment, the center of the temporary cured resin layer generated by curing shrinkage is applied. A photocurable resin composition is newly applied to the recess of the part, an image display member is laminated, and a main curing process is performed. Therefore, it is possible to prevent the formation of voids on the display surface of the image display device, and also to reduce the residual stress in the photocurable resin layer, thereby preventing the occurrence of color unevenness in the display.

図1Aは、本発明の製造方法の工程(A)の説明図である。FIG. 1A is an explanatory diagram of step (A) of the manufacturing method of the present invention. 図1Bは、本発明の製造方法の工程(A)の説明図である。FIG. 1B is an explanatory diagram of step (A) of the manufacturing method of the present invention. 図1Cは、光透過性カバー部材の説明図である。FIG. 1C is an explanatory diagram of a light-transmissive cover member. 図1Dは、光透過性カバー部材の説明図である。FIG. 1D is an explanatory diagram of a light-transmissive cover member. 図1Eは、光透過性カバー部材の説明図である。FIG. 1E is an explanatory diagram of a light-transmissive cover member. 図1Fは、光透過性カバー部材の説明図である。FIG. 1F is an explanatory diagram of a light-transmissive cover member. 図1Gは、光透過性カバー部材の説明図である。FIG. 1G is an explanatory diagram of a light-transmissive cover member. 図2Aは、本発明の製造方法の工程(B)の説明図である。FIG. 2A is an explanatory diagram of step (B) of the manufacturing method of the present invention. 図2Bは、本発明の製造方法の工程(B)の説明図であるる。FIG. 2B is an explanatory diagram of step (B) of the manufacturing method of the present invention. 図3Aは、本発明の製造方法の工程(C)の説明図である。FIG. 3A is an explanatory diagram of step (C) of the manufacturing method of the present invention. 図3Bは、本発明の製造方法の工程(C)の説明図である。FIG. 3B is an explanatory diagram of step (C) of the manufacturing method of the present invention. 図4は、本発明の製造方法の工程(D)の説明図である。FIG. 4 is an explanatory diagram of step (D) of the manufacturing method of the present invention. 図5は、本発明の製造方法の工程(E)の説明図である。FIG. 5 is an explanatory diagram of step (E) of the manufacturing method of the present invention.

本発明は、画像表示部材と湾曲した光透過性カバー部材とが、光硬化樹脂層を介して積層されている画像表示装置の製造方法であり、以下の工程(A)~(E)を有する製造方法である。以下、図面を参照しながら工程毎に詳細に説明する。 The present invention is a method for manufacturing an image display device in which an image display member and a curved light-transmitting cover member are laminated with a photocurable resin layer interposed therebetween, and includes the following steps (A) to (E). This is the manufacturing method. Each step will be described in detail below with reference to the drawings.

<工程(A):塗布工程>
まず、図1Aに示すように湾曲した光透過性カバー部材1を用意し、図1Bに示すように光透過性カバー部材1の凹部面1aに、ディスペンサーD等により光硬化性樹脂組成物2を塗布する。この光硬化性樹脂組成物2の塗布量は、画像表示素子のサイズや形状、用途等により異なるが、通常、45(w)×80(l)×3(t)mm(曲率半径(r):300mm)の湾曲光透過性カバー部材に対し、40(w)×80(l)mmの画像表示部材を光透過性カバー部材の湾曲していない2辺に接触する形で貼合する場合、好ましくは23.44ccで湾曲最深部の厚みが670μmとなるが、より好ましくは23.76ccで光透過性カバー部材の湾曲していない2辺と画像表示部材間に約100μmの隙間を設けることが可能である。この隙間は画像表示装置の設計にもよるが、50μm以上800μm以下が好ましい。また、そのような塗布量を一度の塗布操作で満足させてもよいが、複数回の塗布操作で満足させてもよい。
<Step (A): Coating step>
First, a curved light-transmitting cover member 1 is prepared as shown in FIG. 1A, and a photocurable resin composition 2 is applied to the concave surface 1a of the light-transmitting cover member 1 using a dispenser D or the like as shown in FIG. 1B. Apply. The coating amount of this photocurable resin composition 2 varies depending on the size, shape, application, etc. of the image display element, but is usually 45 (w) x 80 (l) x 3 (t) mm (radius of curvature (r) : 300 mm) to a curved light-transmissive cover member, when an image display member of 40 (w) x 80 (l) mm is laminated in contact with two uncurved sides of the light-transmissive cover member, Preferably, it is 23.44 cc, and the thickness at the deepest curved part is 670 μm, but more preferably, it is 23.76 cc, and a gap of about 100 μm is provided between the two uncurved sides of the light-transmitting cover member and the image display member. It is possible. Although this gap depends on the design of the image display device, it is preferably 50 μm or more and 800 μm or less. Moreover, such a coating amount may be satisfied by one coating operation, or may be satisfied by a plurality of coating operations.

(光透過性カバー部材1)
湾曲した光透過性カバー部材1の具体的な形状としては、一方向に湾曲した形状(例えば、円柱パイプをその中心軸に平行な平面で切断して得られる劣弧側の形状(以下、横樋形状と称する))(図1A)や、X方向とY方向に湾曲した形状(図1C)、360°方向に湾曲した形状(例えば、球をその中心点を含まない平面で切断して得られる劣弧側の形状)(図1D)などが挙げられる。これらの形状の中央部に平坦部1bが形成されていてもよい(例えば、図1E)。
(Light transparent cover member 1)
A specific shape of the curved light-transmitting cover member 1 is a shape curved in one direction (for example, a shape on the side of a lower arc obtained by cutting a cylindrical pipe along a plane parallel to its central axis (hereinafter referred to as a horizontal gutter). shape)) (Fig. 1A), a shape curved in the X and Y directions (Fig. 1C), a shape curved in a 360° direction (for example, obtained by cutting a sphere with a plane that does not include its center point) (Figure 1D). A flat portion 1b may be formed in the center of these shapes (for example, FIG. 1E).

光透過性カバー部材1が横樋形状である場合(図1A)、その両端部1xと1yの内側に、光硬化性樹脂組成物の塗布領域を画する内側ダム材3(図1F)、もしくはその両端部1xと1yの外側に光硬化性樹脂組成物の塗布領域を画する外側ダム材4(図1G)を設けることが好ましい。内側ダム材3及び外側ダム材4としては、塗布された光硬化性樹脂組成物を、それと相溶することなく堰き止めることができ、光硬化性樹脂組成物の仮硬化後に、簡便に除去可能な公知の材料から形成することができる。例えば、内側ダム材3としては、微粘着層を備えた公知の熱可塑性エラストマーテープなどを光透過性カバー部材1の端部内側に土手状に貼りつけたものが挙げられる。外側ダム材4としては、シリコーンシート、フッ素樹脂シート等を挙げることができる。 When the light-transmissive cover member 1 has a horizontal gutter shape (FIG. 1A), an inner dam member 3 (FIG. 1F) that demarcates the application area of the photocurable resin composition or its It is preferable to provide an outer dam member 4 (FIG. 1G) that defines a coating area for the photocurable resin composition on the outside of both ends 1x and 1y. The inner dam material 3 and the outer dam material 4 can block the applied photocurable resin composition without being compatible with it, and can be easily removed after temporary curing of the photocurable resin composition. It can be formed from any known material. For example, the inner dam material 3 may be one in which a known thermoplastic elastomer tape with a slightly adhesive layer is pasted to the inner side of the end portion of the light-transmitting cover member 1 in the shape of a bank. Examples of the outer dam material 4 include silicone sheets, fluororesin sheets, and the like.

なお、光透過性カバー部材1が図1Cや図1Dの態様である場合、ダム材は無くてもよい。また、図1A、1Bの態様の場合であっても、内側ダム材3に対応する光透過性カバー部材1の表面に、光硬化性樹脂組成物の流れを防止するための表面処理(例えば、光硬化性樹脂組成物の特性に応じて粗面化処理、親水化処理、あるいは撥水化処理等)を施してもよい。 Note that when the light-transmissive cover member 1 has the embodiment shown in FIG. 1C or FIG. 1D, the dam material may not be provided. In addition, even in the case of the embodiments shown in FIGS. 1A and 1B, the surface of the light-transmitting cover member 1 corresponding to the inner dam member 3 is subjected to surface treatment (for example, Depending on the characteristics of the photocurable resin composition, surface roughening treatment, hydrophilization treatment, water repellency treatment, etc.) may be performed.

光透過性カバー部材1の材料としては、画像表示部材に形成された画像が視認可能となるような光透過性があればよく、ガラス、アクリル樹脂、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート等の樹脂材料が挙げられる。これらの材料には、片面又は両面ハードコート処理、反射防止処理などを施すことができる。光透過性カバー部材1の湾曲の形状や厚さなどの寸法的な特性、弾性などの部位利敵物性は、使用目的に応じて適宜決定することができる。 The material for the light-transmissive cover member 1 may be any light-transmissive material that allows the image formed on the image display member to be viewed, and may include resins such as glass, acrylic resin, polyethylene terephthalate, polyethylene naphthalate, and polycarbonate. Examples include materials. These materials can be subjected to hard coating treatment, antireflection treatment, etc. on one or both sides. The curved shape, dimensional characteristics such as thickness, and site-specific physical properties such as elasticity of the light-transmitting cover member 1 can be determined as appropriate depending on the purpose of use.

(光硬化性樹脂組成物2)
光透過性カバー部材1の凹部面1aに塗布する光硬化性樹脂組成物2の性状は好ましくは液状である。液状のものを使用すると、光透過性カバー部材1の凹部面1aに光硬化性樹脂組成物2を組成物表面が平坦となるように充填することができる。ここで、液状とは、コーンプレート型粘度計で0.01~100Pa・s(25℃)の粘度を示すものである。
(Photocurable resin composition 2)
The photocurable resin composition 2 applied to the concave surface 1a of the light-transmissive cover member 1 is preferably in a liquid state. When a liquid composition is used, the photocurable resin composition 2 can be filled into the concave surface 1a of the light-transmitting cover member 1 so that the composition surface becomes flat. Here, the liquid state indicates a viscosity of 0.01 to 100 Pa·s (25° C.) as measured by a cone plate viscometer.

このような光硬化性樹脂組成物2は、ベース成分(成分(イ))、アクリル系モノマー成分(成分(ロ))、及び光重合開始剤(成分(ハ))を含有するものを好ましく例示することができる。必要に応じ、更に、可塑剤成分(成分(ニ))を含有することができる。なお、光硬化性樹脂組成物2の最終的な硬化収縮率は3%以上のものである。5%以上であってもよい。 Preferred examples of such photocurable resin composition 2 include those containing a base component (component (a)), an acrylic monomer component (component (b)), and a photopolymerization initiator (component (c)). can do. If necessary, a plasticizer component (component (d)) can be further included. Note that the final curing shrinkage rate of the photocurable resin composition 2 is 3% or more. It may be 5% or more.

ここで、“最終的な硬化収縮率”とは、光硬化性樹脂組成物2を未硬化の状態から完全に硬化させた状態との間で生じた硬化収縮率を意味する。ここで、完全に硬化とは、後述するように硬化率が少なくとも90%となるように硬化した状態を意味する。以下、最終的な硬化収縮率を全硬化収縮率と称する。また、硬化性樹脂組成物を未硬化の状態から仮硬化させた状態との間で生じた硬化収縮率を仮硬化収縮率と称する。更に、本硬化工程において、仮硬化の状態から完全に硬化させた状態との間で生じた硬化収縮率は、本硬化収縮率と称する。 Here, the "final cure shrinkage rate" means the cure shrinkage rate that occurs between the uncured state and the completely cured state of the photocurable resin composition 2. Here, completely cured means a state in which the cure rate is at least 90% as described later. Hereinafter, the final curing shrinkage rate will be referred to as the total curing shrinkage rate. Moreover, the curing shrinkage rate that occurs between the uncured state and the temporarily cured state of the curable resin composition is referred to as the temporary curing shrinkage rate. Furthermore, in the main curing step, the curing shrinkage rate that occurs between the temporary curing state and the completely cured state is referred to as the main curing shrinkage rate.

光硬化性樹脂組成物の全硬化収縮率は、未硬化(換言すれば、硬化前)の組成物と完全硬化後の固体の完全硬化物の比重を電子比重計(アルファーミラージュ(株)製SD-120L)を用いて測定し、両者の比重差から次式により算出することができる。また、光硬化性樹脂組成物の仮硬化樹脂の仮硬化収縮率は、未硬化(換言すれば、硬化前)の組成物と仮硬化後の固体の仮硬化物の比重を電子比重計(アルファーミラージュ(株)製SD-120L)を用いて測定し、両者の比重差から次式により算出することができる。本硬化収縮率は、全硬化収縮率から仮硬化収縮率を減じることにより算出することができる。 The total curing shrinkage rate of a photocurable resin composition is determined by measuring the specific gravity of the uncured (in other words, before curing) composition and the solid completely cured product after complete curing using an electronic hydrometer (SD manufactured by Alpha Mirage Co., Ltd.). -120L), and can be calculated from the difference in specific gravity between the two using the following formula. In addition, the temporary curing shrinkage rate of the temporary curing resin of the photocurable resin composition is determined by measuring the specific gravity of the uncured (in other words, before curing) composition and the solid temporary cured product after temporary curing using an electronic hydrometer (alpha SD-120L (manufactured by Mirage Co., Ltd.), and can be calculated from the difference in specific gravity between the two using the following formula. The main curing shrinkage rate can be calculated by subtracting the temporary curing shrinkage rate from the total curing shrinkage rate.

Figure 0007376819000001
Figure 0007376819000001

成分(イ)のベース成分は、光透過性硬化樹脂層の膜形成成分であり、エラストマー及びアクリル系オリゴマーの少なくともいずれか一方を含有する成分である。両者を成分(イ)として併用してもよい。 The base component of component (a) is a film-forming component of the light-transmissive cured resin layer, and is a component containing at least one of an elastomer and an acrylic oligomer. Both may be used together as component (a).

エラストマーとしては、好ましくはアクリル酸エステルの共重合体からなるアクリル共重合体、ポリブテン、ポリオレフィン等を好ましく挙げることができる。なお、このアクリル酸エステル共重合体の重量平均分子量は、好ましくは5000~500000であり、ポリブテンの繰り返し数nは好ましくは10~10000である。 Preferred examples of the elastomer include acrylic copolymers made of copolymers of acrylic acid esters, polybutenes, polyolefins, and the like. The weight average molecular weight of this acrylic ester copolymer is preferably 5,000 to 500,000, and the repeating number n of polybutene is preferably 10 to 10,000.

他方、アクリル系オリゴマーとしては、好ましくは、ポリイソプレン、ポリウレタン、ポリブタジエン等を骨格に持つ(メタ)アクリレート系オリゴマーを挙げることができる。なお、本明細書において、「(メタ)アクリレート」という用語は、アクリレートとメタクリレートとを包含する。 On the other hand, examples of acrylic oligomers include (meth)acrylate oligomers having skeletons such as polyisoprene, polyurethane, and polybutadiene. In addition, in this specification, the term "(meth)acrylate" includes acrylate and methacrylate.

ポリイソプレン骨格の(メタ)アクリレート系オリゴマーの好ましい具体例としては、ポリイソプレン重合体の無水マレイン酸付加物と2-ヒドロキシエチルメタクリレートとのエステル化物(UC102(ポリスチレン換算分子量17000)、(株)クラレ;UC203(ポリスチレン換算分子量35000)、(株)クラレ;UC-1(分子量約25000)、(株)クラレ)等を挙げることができる。 Preferred specific examples of the (meth)acrylate oligomer having a polyisoprene skeleton include an esterified product of a maleic anhydride adduct of a polyisoprene polymer and 2-hydroxyethyl methacrylate (UC102 (polystyrene equivalent molecular weight 17,000), manufactured by Kuraray Co., Ltd. ; UC203 (polystyrene equivalent molecular weight: 35,000); Kuraray Co., Ltd.; UC-1 (molecular weight: approximately 25,000); Kuraray Co., Ltd.).

また、ポリウレタン骨格を持つ(メタ)アクリレート系オリゴマーの好ましい具体例としては、脂肪族ウレタンアクリレート(EBECRYL230(分子量5000)、ダイセル・オルネクス(株);UA-1、ライトケミカル工業(株))等を挙げることができる。 Preferred specific examples of (meth)acrylate oligomers having a polyurethane skeleton include aliphatic urethane acrylates (EBECRYL230 (molecular weight 5000), Daicel Allnex Corporation; UA-1, Light Chemical Industries, Ltd.). can be mentioned.

ポリブタジエン骨格の(メタ)アクリレート系オリゴマーとしては、公知のものを採用することができる。 As the (meth)acrylate oligomer having a polybutadiene skeleton, known ones can be employed.

成分(ロ)のアクリル系モノマー成分は、画像表示装置の製造工程において、光硬化性樹脂組成物に十分な反応性及び塗布性等を付与するために反応性希釈剤として使用されている。このようなアクリル系モノマーとしては、2-ヒドロキシプロピルメタクリレート、4-ヒドロキシブチルアクリレート、ステアリルアクリレート、ベンジルアクリレート、テトラヒドロフリフリルアクリレート、ジシクロペンテニルアクリレート、ジシクロペンテニルオキシエチルメタクリレート、イソボルニルアクリレート、ジシクロペンタニルアクリレート、ラウリルメタクリレート等を挙げることができる。 The acrylic monomer component (b) is used as a reactive diluent in the manufacturing process of image display devices in order to impart sufficient reactivity, coating properties, etc. to the photocurable resin composition. Examples of such acrylic monomers include 2-hydroxypropyl methacrylate, 4-hydroxybutyl acrylate, stearyl acrylate, benzyl acrylate, tetrahydrofurfuryl acrylate, dicyclopentenyl acrylate, dicyclopentenyloxyethyl methacrylate, isobornyl acrylate, and dicyclopentenyl acrylate. Examples include cyclopentanyl acrylate and lauryl methacrylate.

成分(ハ)の光重合開始剤としては、公知の光ラジカル重合開始剤を使用することができ、例えば、1-ヒドロキシ-シクロへキシルフェニルケトン(Irgacure184、BASFジャパン(株))、2-ヒドロキシ-1-{4-[4-(2一ヒドロキシ-2-メチル-プロピロニル)ベンジル]フェニル}-2-メチル-1-プロパン-1-オン(Irgacure127、BASFジャパン(株))、ベンゾフェノン、アセトフェノン等を挙げることができる。 As the photopolymerization initiator of component (c), known radical photopolymerization initiators can be used, such as 1-hydroxy-cyclohexylphenyl ketone (Irgacure 184, BASF Japan Ltd.), 2-hydroxy -1-{4-[4-(2-hydroxy-2-methyl-propylonyl)benzyl]phenyl}-2-methyl-1-propan-1-one (Irgacure 127, BASF Japan Ltd.), benzophenone, acetophenone, etc. can be mentioned.

このような光重合開始剤は、ベース成分(イ)中のアクリル系オリゴマー及びアクリル系モノマー成分(ロ)の合計100質量部に対し、少なすぎると紫外線照射時に硬化不足となり、多すぎると開裂によるアウトガスが増え発泡不具合の傾向があるので、好ましくは0.1~5質量部、より好ましくは0.2~3質量部である。 If such a photopolymerization initiator is used in too little amount, curing will be insufficient when irradiated with ultraviolet rays, and if it is too much, curing may occur due to cleavage, based on the total of 100 parts by mass of the acrylic oligomer and acrylic monomer component (b) in base component (a). Since outgas tends to increase and foaming problems occur, the amount is preferably 0.1 to 5 parts by mass, more preferably 0.2 to 3 parts by mass.

また、光硬化性樹脂組成物2は、分子量の調整のために連鎖移動剤を含有することができる。例えば、2-メルカプトエタノール、ラウリルメルカプタン、グリシジルメルカプタン、メルカプト酢酸、チオグリコール酸2-エチルヘキシル、2,3-ジメチルカプト-1-プロパノール、α-メチルスチレンダイマーなどが挙げられる。 Moreover, the photocurable resin composition 2 can contain a chain transfer agent for adjusting the molecular weight. Examples include 2-mercaptoethanol, lauryl mercaptan, glycidyl mercaptan, mercaptoacetic acid, 2-ethylhexyl thioglycolate, 2,3-dimethylcapto-1-propanol, and α-methylstyrene dimer.

また、光硬化性樹脂組成物2は、更に、必要に応じて、シランカップリング剤等の接着改善剤、酸化防止剤等の一般的な添加剤を含有することができる。 Moreover, the photocurable resin composition 2 can further contain general additives such as an adhesion improver such as a silane coupling agent, and an antioxidant, if necessary.

光硬化性樹脂組成物2は、後述する仮硬化工程の後の本硬化工程におけるその硬化収縮率が3%未満に抑制されているので、基本的には可塑剤成分を含有することは必須ではないが、硬化樹脂層に緩衝性を付与すると共に、光硬化性樹脂組成物の硬化収縮率を低減させるために、本発明の効果を損なわない範囲で可塑剤成分(成分(ニ))を含有することができる。従って、光硬化性樹脂組成物中に成分(イ)のベース成分と成分(ロ)のアクリル系モノマー成分との合計含有量は好ましくは25~85質量%であるが、成分(ニ)の可塑剤成分の含有量は0~65質量%の範囲である。 Since the curing shrinkage rate of the photocurable resin composition 2 in the main curing process after the temporary curing process described below is suppressed to less than 3%, it is basically not essential to contain a plasticizer component. However, in order to provide buffering properties to the cured resin layer and reduce the curing shrinkage rate of the photocurable resin composition, it contains a plasticizer component (component (d)) within a range that does not impair the effects of the present invention. can do. Therefore, the total content of the base component of component (a) and the acrylic monomer component of component (b) in the photocurable resin composition is preferably 25 to 85% by mass; The content of the agent component is in the range of 0 to 65% by mass.

成分(ニ)の可塑剤成分は、紫外線の照射では成分(イ)のベース成分及び成分(ロ)のアクリル系モノマー成分と反応しないものである。このような可塑剤成分は、固体の粘着付与剤(1)と液状オイル成分(2)とを含有する。 The plasticizer component (d) does not react with the base component (i) and the acrylic monomer component (b) when irradiated with ultraviolet light. Such a plasticizer component contains a solid tackifier (1) and a liquid oil component (2).

固体の粘着付与剤(1)としては、テルペン樹脂、テルペンフェノール樹脂、水素添加テルペン樹脂等のテルペン系樹脂、天然ロジン、重合ロジン、ロジンエステル、水素添加ロジン等のロジン樹脂、テルペン系水素添加樹脂を挙げることができる。また、前述のアクリル系モノマー成分を予め低分子ポリマー化した非反応性のオリゴマーも使用することができ、具体的には、ブチルアクリレートと2-ヘキシルアクリレートおよびアクリル酸の共重合体やシクロヘキシルアクリレートとメタクリル酸の共重合体等を挙げることができる。 Solid tackifiers (1) include terpene resins such as terpene resins, terpene phenol resins, and hydrogenated terpene resins; rosin resins such as natural rosins, polymerized rosins, rosin esters, and hydrogenated rosins; and terpene hydrogenated resins. can be mentioned. In addition, non-reactive oligomers obtained by converting the aforementioned acrylic monomer components into low-molecular-weight polymers can also be used. Specifically, copolymers of butyl acrylate, 2-hexyl acrylate, and acrylic acid, and copolymers of cyclohexyl acrylate and cyclohexyl acrylate can also be used. Examples include copolymers of methacrylic acid.

液状オイル成分(2)としては、ポリプタジエン系オイル、又はポリイソプレン系オイル等を含有することができる。 The liquid oil component (2) may contain polyptadiene oil, polyisoprene oil, or the like.

<工程(B):仮硬化工程>
次に、図2Aに示すように、塗布された光硬化性樹脂組成物2に対し紫外線UVを照射して仮硬化させ、光透過性カバー部材1の凹部面1aに(通常、その中央部に)光硬化性樹脂組成物2の硬化収縮に基づく微少凹み5a(例えば、図2BではX字状の凹みであるが、ライン状等の他の形状の凹みでもよい)を有する仮硬化樹脂層5を形成させる。微少凹み5aにおける“微少”とは、仮硬化収縮による体積変動量を意味している。ここで、仮硬化させるのは、光硬化性樹脂組成物2を流動しない状態にして取り扱い性を向上させるためである。このような仮硬化のレベルは、仮硬化樹脂層5の硬化率(ゲル分率)が好ましくは10~90%、より好ましくは40~90%となるようなレベルである。また、硬化率(ゲル分率)とは、紫外線照射前の光硬化性樹脂組成物2中の(メタ)アクリロイル基の存在量に対する紫外線照射後の(メタ)アクリロイル基の存在量の割合(消費量割合)と定義される数値であり、この数値が大きい程、硬化が進行していることを示す。
<Step (B): Temporary curing step>
Next, as shown in FIG. 2A, the applied photocurable resin composition 2 is irradiated with ultraviolet rays to temporarily cure it, and is applied to the concave surface 1a of the light-transmitting cover member 1 (usually in the center thereof). ) Temporarily cured resin layer 5 having minute depressions 5a based on curing shrinkage of the photocurable resin composition 2 (for example, in FIG. 2B, it is an X-shaped depression, but it may be a depression in other shapes such as a line shape) to form. "Minute" in the minute recess 5a means the amount of volume variation due to temporary curing shrinkage. Here, the reason why the photocurable resin composition 2 is temporarily cured is to make the photocurable resin composition 2 non-flowing and improve its handling properties. The level of such temporary curing is such that the curing rate (gel fraction) of the temporarily cured resin layer 5 is preferably 10 to 90%, more preferably 40 to 90%. In addition, the curing rate (gel fraction) is the ratio (consumption) of the amount of (meth)acryloyl groups present after UV irradiation to the amount of (meth)acryloyl groups present in the photocurable resin composition 2 before UV irradiation. The larger the value, the more the curing progresses.

なお、硬化率(ゲル分率)は、紫外線照射前の樹脂組成物層のFT-IR測定チャートにおけるベースラインからの1640~1620cm-1の吸収ピーク高さ(X)と、紫外線照射後の樹脂組成物層のFT-IR測定チャートにおけるベースラインからの1640~1620cm-1の吸収ピーク高さ(Y)とを、以下の数式に代入することにより算出することができる。 The curing rate (gel fraction) is determined by the absorption peak height (X) of 1640 to 1620 cm −1 from the baseline in the FT-IR measurement chart of the resin composition layer before UV irradiation, and the absorption peak height (X) of the resin composition layer after UV irradiation. It can be calculated by substituting the absorption peak height (Y) of 1640 to 1620 cm −1 from the baseline in the FT-IR measurement chart of the composition layer into the following formula.

Figure 0007376819000002
Figure 0007376819000002

紫外線の照射に関し、硬化率(ゲル分率)が好ましくは10~80%となるように仮硬化させることができる限り、光源の種類、出力、累積光量などは特に制限はなく、公知の紫外線照射による(メタ)アクリレートの光ラジカル重合プロセス条件を採用することができる。 Regarding ultraviolet irradiation, there are no particular restrictions on the type, output, cumulative light amount, etc. of the light source, as long as it can be temporarily cured so that the curing rate (gel fraction) is preferably 10 to 80%. (meth)acrylate photoradical polymerization process conditions can be adopted.

また、紫外線照射条件に関し、上述の硬化率の範囲内において、後述する工程(C)の貼り合わせ操作の際、仮硬化樹脂層5の液だれや変形が生じないような条件を選択することが好ましい。そのような液だれや変形が生じないような条件を粘度で表現すると、20Pa・S以上(コーンプレートレオメーター、25℃、コーン及びプレートC35/2、回転数10rpm)となる。 Regarding the ultraviolet irradiation conditions, it is possible to select conditions within the above-mentioned curing rate range so that dripping or deformation of the temporarily cured resin layer 5 does not occur during the bonding operation in step (C) described later. preferable. Expressing the conditions under which such dripping and deformation do not occur in terms of viscosity, it is 20 Pa·S or more (cone plate rheometer, 25° C., cone and plate C35/2, rotation speed 10 rpm).

仮硬化における硬化のレベルは、後述する本硬化工程において仮硬化樹脂層5から硬化樹脂層への間で生ずる硬化収縮率が3%未満となるように、硬化させるものである。即ち、全硬化収縮率が5%である光硬化性樹脂組成物2の場合には、仮硬化の際に少なくとも2%ほど仮硬化収縮させておくことになる。 The level of curing in the temporary curing is such that the curing shrinkage rate that occurs between the temporarily cured resin layer 5 and the cured resin layer in the main curing step described below is less than 3%. That is, in the case of the photocurable resin composition 2 having a total curing shrinkage rate of 5%, the temporary curing shrinkage should be at least 2% during temporary curing.

なお、工程(A)で内側ダム材3や外側ダム材4を設けた場合、工程(B)の後、工程(C)の前で、内側ダム材3又は外側ダム材4を除去することが好ましい。既に光硬化性樹脂組成物2が仮硬化しており、樹脂流動が生じないからである。 In addition, when the inner dam material 3 or the outer dam material 4 is provided in step (A), the inner dam material 3 or the outer dam material 4 may be removed after step (B) and before step (C). preferable. This is because the photocurable resin composition 2 has already been temporarily cured and no resin flow occurs.

<工程(C):光硬化性樹脂組成物の再充填>
次に、仮硬化樹脂層5の微少凹み5aに対応する量の光硬化性樹脂組成物2を、仮硬化樹脂層5(図3A)又は通常フラットな画像表示部材6(図3B)に塗布する。ここで、微少凹み5aに対応する量は、微少表面形状計測装置(例えば、3D測定レーザー顕微鏡(OLS4000シリーズ)、(株)島津製作所)を使用して微少凹部5aの凹部形状を計測することにより算出することができる。あるいは光硬化性樹脂組成物の仮硬化収縮率と使用量(体積)とにより決定することもできる。
<Step (C): Refilling of photocurable resin composition>
Next, an amount of the photocurable resin composition 2 corresponding to the minute depressions 5a of the temporarily cured resin layer 5 is applied to the temporarily cured resin layer 5 (FIG. 3A) or the normally flat image display member 6 (FIG. 3B). . Here, the amount corresponding to the minute depression 5a can be determined by measuring the shape of the minute depression 5a using a minute surface shape measuring device (for example, 3D measurement laser microscope (OLS4000 series), Shimadzu Corporation). It can be calculated. Alternatively, it can also be determined based on the temporary curing shrinkage rate and usage amount (volume) of the photocurable resin composition.

また、本工程で使用する光硬化性樹脂組成物2は、屈折率の観点から、工程(A)で使用した光硬化性樹脂組成物2と同じのものを使用することが好ましいが、屈折率が略同一であれば異なる組成の光硬化性樹脂組成物を使用してもよい。また、光硬化性樹脂組成物の塗布は、従来公知の手法により微少凹み5aに光硬化性樹脂組成物2が充填されるように行うことが好ましい。例えば、光硬化性樹脂組成物2を仮硬化樹脂層5又は画像表示部材6に塗布する場合、微少凹部5aを埋めるようにライン状(図3A、3B)、X字状、あるいは中央部にドット状に塗布すればよい。 In addition, from the viewpoint of refractive index, it is preferable to use the same photocurable resin composition 2 as the photocurable resin composition 2 used in step (A), but the refractive index Photocurable resin compositions having different compositions may be used as long as they are substantially the same. Further, the application of the photocurable resin composition is preferably performed by a conventionally known method so that the photocurable resin composition 2 is filled into the minute depressions 5a. For example, when applying the photocurable resin composition 2 to the temporarily cured resin layer 5 or the image display member 6, it may be applied in a line shape (FIGS. 3A and 3B), an X shape, or a dot in the center so as to fill the minute recesses 5a. It can be applied in a shape.

なお、光硬化性樹脂組成物2の塗布位置が、微少凹部5aからズレた場合であっても、塗布された光硬化性樹脂組成物2を仮硬化させずに流動性を保持したまま真空貼合を行うため、光硬化性樹脂組成物2を微少凹部5aへ適正に移動させることができる。 In addition, even if the application position of the photocurable resin composition 2 deviates from the minute recess 5a, the applied photocurable resin composition 2 can be vacuum pasted while maintaining its fluidity without being temporarily cured. Therefore, the photocurable resin composition 2 can be appropriately moved to the minute recesses 5a.

画像表示部材6としては、液晶表示パネル、有機EL表示パネル、プラズマ表示パネル、タッチパネル等を挙げることができる。ここで、タッチパネルとは、液晶表示パネルのような表示素子とタッチパッドのような位置入力装置を組み合わせた画像表示・入力パネルを意味する。 Examples of the image display member 6 include a liquid crystal display panel, an organic EL display panel, a plasma display panel, a touch panel, and the like. Here, the touch panel refers to an image display/input panel that combines a display element such as a liquid crystal display panel and a position input device such as a touch pad.

なお、先に説明した工程(B)及び本工程(C)の好ましい態様として、工程(B)において、光透過性カバー部材の凹部面の少なくとも中央部に微小凹みを発生させると共に、工程(C)において微小凹み体積の70%以上に相当する光硬化性樹脂組成物を、対応する仮硬化樹脂層又は画像表示部材に塗布する態様が挙げられる。 In addition, as a preferable embodiment of the step (B) and this step (C) described above, in the step (B), a minute dent is generated at least in the center of the recessed surface of the light-transmitting cover member, and at the same time, in the step (C) ), an embodiment may be mentioned in which a photocurable resin composition corresponding to 70% or more of the volume of the minute depressions is applied to the corresponding temporarily cured resin layer or image display member.

<工程(D):積層工程>
続いて、画像表示部材6と光透過性カバー部材1とを、仮硬化樹脂層5を介して積層する(図4)。積層は、公知の圧着装置を用いて、10℃~80℃で加圧することにより行うことができるが、仮硬化樹脂層5と画像表示部材6又は光透過性カバー部材1との間に気泡が入らないようにするために、いわゆる真空貼合法で積層を行うことが好ましい。
<Step (D): Lamination step>
Subsequently, the image display member 6 and the light-transmitting cover member 1 are laminated with the temporarily cured resin layer 5 interposed therebetween (FIG. 4). Lamination can be performed by applying pressure at 10°C to 80°C using a known pressure bonding device, but if air bubbles are formed between the temporarily cured resin layer 5 and the image display member 6 or the light-transmissive cover member 1. In order to prevent this from occurring, it is preferable to perform the lamination by a so-called vacuum lamination method.

なお、工程(D)の後、工程(E)の前に、積層物に公知の加圧脱泡処理(処理条件例:0.2~0.8MPa、25~60℃、5~20min)を行うことが好ましい。 In addition, after step (D) and before step (E), the laminate is subjected to a known pressure degassing treatment (example of treatment conditions: 0.2 to 0.8 MPa, 25 to 60°C, 5 to 20 min). It is preferable to do so.

<工程(E):本硬化工程)>
続いて、画像表示部材6と光透過性カバー部材1との間に挟持されている仮硬化樹脂層5に紫外線UVを照射して本硬化させることにより光透過性硬化樹脂層7を形成する(図5)。これにより、目的の画像表示装置が得られる。なお、本工程において本硬化させるのは、仮硬化樹脂層5を十分に硬化させて、画像表示部材6と光透過性カバー部材1とを接着し積層するためである。このような本硬化のレベルは、光透過性硬化樹脂層7の硬化率(ゲル分率)が好ましくは90%以上、より好ましくは95%以上となるようなレベルである。
<Step (E): main curing step)>
Subsequently, the temporarily cured resin layer 5 sandwiched between the image display member 6 and the light-transparent cover member 1 is irradiated with ultraviolet rays to be fully cured, thereby forming the light-transparent cured resin layer 7 ( Figure 5). As a result, the desired image display device is obtained. The purpose of main curing in this step is to sufficiently cure the temporarily cured resin layer 5 and to bond and laminate the image display member 6 and the light-transmitting cover member 1. The level of this main curing is such that the curing rate (gel fraction) of the light-transmissive cured resin layer 7 is preferably 90% or more, more preferably 95% or more.

なお、光透過性硬化樹脂層7の光透過性のレベルは、画像表示部材6に形成された画像が視認可能となるような光透過性であればよい。 Note that the light transmittance level of the light transmitting cured resin layer 7 may be such that the image formed on the image display member 6 is visible.

以下、本発明を実施例により具体的に説明する。なお、以下の実施例において、光硬化性樹脂組成物の全硬化収縮率、仮硬化収縮率、本硬化収縮率は、光硬化性樹脂組成物の比重、仮硬化物、完全硬化物のそれぞれの比重を電子比重計(アルファーミラージュ(株)製SD-120L)を用いて測定し、それらの測定結果を次式に当て嵌めて算出した。 Hereinafter, the present invention will be specifically explained with reference to Examples. In addition, in the following examples, the total curing shrinkage rate, temporary curing shrinkage rate, and main curing shrinkage rate of the photocurable resin composition are based on the specific gravity of the photocurable resin composition, the temporarily cured product, and the fully cured product, respectively. The specific gravity was measured using an electronic hydrometer (SD-120L manufactured by Alpha Mirage Co., Ltd.) and calculated by applying the measurement results to the following formula.

Figure 0007376819000003
Figure 0007376819000003

比較例1
(工程(A):塗布工程))
まず、45(w)×80(l)×3(t)mmのサイズの透明樹脂板(ポリエチレンテレフタレート板)を用意し、幅方向に曲率半径(r)が300mmとなるように公知の手法で湾曲させ、湾曲した横樋形状の光透過性カバー部材として樹脂カバー(図1A)を得た。
Comparative example 1
(Process (A): Coating process))
First, prepare a transparent resin plate (polyethylene terephthalate plate) with a size of 45 (w) x 80 (l) x 3 (t) mm, and use a known method to make the radius of curvature (r) 300 mm in the width direction. A resin cover (FIG. 1A) was obtained as a curved gutter-shaped light-transmissive cover member.

別途、ポリブタジエンの骨格を持つ(メタ)アクリル系オリゴマー(TE-2000、日本曹達(株))50質量部、ヒドロキシエチルメタクリレート20質量部、光重合開始剤10質量部(Irgacure184、BASFジャパン(株)社製を3質量部、SpeedCure TPO、DKSHジャパン(株)製を7質量部)を均一に混合して光硬化性樹脂組成物を調製した。この光硬化性樹脂組成物は、硬化率0%から90%までの間で、5.6%の全硬化収縮率を示すものであった。 Separately, 50 parts by mass of a (meth)acrylic oligomer with a polybutadiene skeleton (TE-2000, Nippon Soda Co., Ltd.), 20 parts by mass of hydroxyethyl methacrylate, and 10 parts by mass of a photopolymerization initiator (Irgacure 184, BASF Japan Ltd.) A photocurable resin composition was prepared by uniformly mixing 3 parts by mass of SpeedCure TPO (manufactured by DKSH Japan Co., Ltd.) and 7 parts by mass of SpeedCure TPO (manufactured by DKSH Japan Co., Ltd.). This photocurable resin composition exhibited a total curing shrinkage rate of 5.6% in a curing rate of 0% to 90%.

次に、横樋形状の樹脂カバーの両端を、外側ダム材としてシリコーンラバーシート2枚で挟み込んだ(図1G)。この樹脂カバーの凹部に、調製した光硬化性樹脂組成物を、樹脂用ディスペンサーを用いて、中央部での厚さが880μm厚となるように吐出し光硬化性樹脂組成物膜を形成した。 Next, both ends of the gutter-shaped resin cover were sandwiched between two silicone rubber sheets as outer dam members (FIG. 1G). The prepared photocurable resin composition was discharged into the recessed portion of the resin cover using a resin dispenser so that the thickness at the central portion was 880 μm to form a photocurable resin composition film.

(工程(B):仮硬化工程)
次に、この光硬化性樹脂組成物膜に対して、紫外線照射装置(LC-8、浜松ホトニクス(株))を使って、積算光量が1200mJ/cmとなるように、200mW/cm強度の紫外線を6秒照射することにより光硬化性樹脂組成物膜を仮硬化させて仮硬化樹脂層を形成し、更に外側ダム材を除去した。仮硬化の際に、仮硬化樹脂層の中央部に微少凹部が形成されていることが観察できた(図2B)。なお、仮硬化収縮率は3.8%であった。
(Step (B): temporary curing step)
Next, this photocurable resin composition film was irradiated with ultraviolet light using an ultraviolet irradiation device (LC-8, Hamamatsu Photonics Co., Ltd.) with an intensity of 200 mW/cm 2 so that the cumulative amount of light was 1200 mJ/cm 2 . The photocurable resin composition film was temporarily cured by irradiating it with ultraviolet rays for 6 seconds to form a temporarily cured resin layer, and the outer dam material was further removed. During the temporary curing, it was observed that a minute recess was formed in the center of the temporarily cured resin layer (FIG. 2B). Note that the temporary curing shrinkage rate was 3.8%.

なお、仮硬化樹脂層の硬化率は、FT-IR測定チャートにおけるベースラインからの1640~1620cm-1の吸収ピーク高さを指標として求めたところ、約70%であった。 The curing rate of the temporarily cured resin layer was determined to be about 70% using the absorption peak height of 1640 to 1620 cm −1 from the baseline in the FT-IR measurement chart as an index.

(工程(D):積層工程)
次に、40(W)×80(L)mmのサイズのフラットな液晶表示素子の偏光板が積層された面に、工程(B)で得た光透過性カバー部材をその仮硬化樹脂層側が偏光板側となるように載置し、樹脂カバー側から真空貼合機(真空度50Pa、貼合圧0.07MPa、貼合時間3秒、常温)で貼り付けた(図4)。
(Process (D): Lamination process)
Next, the light-transmitting cover member obtained in step (B) was placed on the surface of a flat liquid crystal display element with a size of 40 (W) x 80 (L) mm on which the polarizing plate was laminated, with the temporarily cured resin layer side facing up. It was placed so that the polarizing plate side was facing, and it was pasted from the resin cover side using a vacuum lamination machine (degree of vacuum 50 Pa, lamination pressure 0.07 MPa, lamination time 3 seconds, room temperature) (FIG. 4).

(工程(E):本硬化工程)
次に、この液晶表示素子に対し、樹脂カバー側から、紫外線照射装置(ECS-03601EG、アイグラフィックス(株))を使って紫外線(200mW/cm)を3000mJ/cmで照射することにより仮硬化樹脂層を完全に硬化させ、光透過性硬化樹脂層を形成した。光透過性硬化樹脂層の硬化率は98%であった。これにより、液晶表示素子に、光透過性カバー部材として湾曲した樹脂カバーが光透過性硬化樹脂層を介して積層された液晶表示装置が得られた。また、本硬化収縮率は1.8%であった。
(Step (E): main curing step)
Next, this liquid crystal display element is irradiated with ultraviolet rays (200 mW/cm 2 ) at 3000 mJ/cm 2 from the resin cover side using an ultraviolet irradiation device (ECS-03601EG, Eye Graphics Co., Ltd.). The temporarily cured resin layer was completely cured to form a light-transmissive cured resin layer. The curing rate of the light-transmissive cured resin layer was 98%. As a result, a liquid crystal display device was obtained in which a curved resin cover as a light-transmissive cover member was laminated on a liquid crystal display element via a light-transparent cured resin layer. Further, the main curing shrinkage rate was 1.8%.

得られた液晶表示装置について、空隙の発生の有無を樹脂カバー側から目視観察したところ、光透過性硬化樹脂層と液晶表示素子との界面の略中央部に気泡状の空隙が生じていた。 When the obtained liquid crystal display device was visually observed from the resin cover side for the presence or absence of voids, bubble-like voids were found approximately at the center of the interface between the light-transmissive cured resin layer and the liquid crystal display element.

比較例2
光硬化性樹脂組成物として、ポリイソプレンの骨格を持つ(メタ)アクリレート系オリゴマー(UC203、(株)クラレ)40質量部、ジシクロペンテニルオキシエチルメタクリレート(FA512M、日立化成(株))20質量部、ヒドロキシプロピルメタクリレート(HPMA、日本化成(株))3質量部、テトラヒドロフルフリルアクリレート(ライトエステルTHF、共栄社化学(株))15質量部、ラウリルアクリレート(ライトエステルL、共栄社化学(株))、ポリブタジエン重合体(Polyoil110、エボニック・ジャパン(株))20質量部、水添テルペン樹脂(P85、ヤスハラケミカル(株))45質量部、光重合開始剤(Irgacure184、BASFジャパン(株))4質量部を均一に配合して調製した光硬化性樹脂組成物(硬化率0%から90%までの間で、3.4%の全硬化収縮率を示す)を使用すること以外、比較例1と同様の操作で液晶表示装置を得た。
Comparative example 2
As a photocurable resin composition, 40 parts by mass of a (meth)acrylate oligomer having a polyisoprene skeleton (UC203, Kuraray Co., Ltd.), 20 parts by mass of dicyclopentenyloxyethyl methacrylate (FA512M, Hitachi Chemical Co., Ltd.) , 3 parts by mass of hydroxypropyl methacrylate (HPMA, Nippon Kasei Co., Ltd.), 15 parts by mass of tetrahydrofurfuryl acrylate (Light Ester THF, Kyoeisha Chemical Co., Ltd.), lauryl acrylate (Light Ester L, Kyoeisha Chemical Co., Ltd.), 20 parts by mass of polybutadiene polymer (Polyoil 110, Evonik Japan Co., Ltd.), 45 parts by mass of hydrogenated terpene resin (P85, Yasuhara Chemical Co., Ltd.), and 4 parts by mass of a photopolymerization initiator (Irgacure 184, BASF Japan Co., Ltd.). The same method as in Comparative Example 1 was used, except that a photocurable resin composition prepared by uniformly blending (showing a total curing shrinkage rate of 3.4% between 0% and 90% curing rate) was used. A liquid crystal display device was obtained by the operation.

得られた液晶表示装置について、空隙の発生の有無を樹脂カバー側から目視観察したところ、液晶表示装置(偏光板)と光透過性硬化樹脂層との界面には空隙は観察されなかったが、表示操作を行ったところ、樹脂カバーの中央の表示に色ムラが観察された。なお、仮硬化収縮率は3.1%であり、本硬化収縮率は0.3%であった。 When the obtained liquid crystal display device was visually observed from the resin cover side for the presence or absence of voids, no voids were observed at the interface between the liquid crystal display device (polarizing plate) and the light-transmitting cured resin layer. When the display was operated, color unevenness was observed in the display at the center of the resin cover. The temporary curing shrinkage rate was 3.1%, and the main curing shrinkage rate was 0.3%.

比較例3
光硬化性樹脂組成物として、光ラジカル重合性ポリ(メタ)アクリレートとしてポリイソプレンメタクリレート(UC102、(株)クラレ)6質量部、反応性希釈剤としてジシクロペンテニルオキシエチルメタクリレート15質量部とラウリルメタクリレート5質量部、可塑剤としてポリブタジエン(Polyvest110、エボニック・ジャパン(株))20質量部、光重合開始剤(Irgacure184、BASFジャパン(株))1質量部、及び粘着付与剤として水素添加テルペン樹脂(クリアロンM105、ヤスハラケミカル(株))53質量部を均一に配合して調製した光硬化性樹脂組成物(硬化率0%から90%までの間で、2.6%の全硬化収縮率を示す)を使用すること以外、比較例1と同様の操作で液晶表示装置を得た。
Comparative example 3
As a photocurable resin composition, 6 parts by mass of polyisoprene methacrylate (UC102, Kuraray Co., Ltd.) as a photoradically polymerizable poly(meth)acrylate, 15 parts by mass of dicyclopentenyloxyethyl methacrylate and lauryl methacrylate as a reactive diluent. 5 parts by mass, 20 parts by mass of polybutadiene (Polyvest 110, Evonik Japan Ltd.) as a plasticizer, 1 part by mass of a photopolymerization initiator (Irgacure 184, BASF Japan Ltd.), and hydrogenated terpene resin (Clearon) as a tackifier. A photocurable resin composition prepared by uniformly blending 53 parts by mass of M105 (produced by Yasuhara Chemical Co., Ltd.) (showing a total curing shrinkage rate of 2.6% from a curing rate of 0% to 90%). A liquid crystal display device was obtained in the same manner as in Comparative Example 1 except for using the same method.

得られた液晶表示装置について、空隙の発生の有無を樹脂カバー側から目視観察したところ、液晶表示装置(偏光板)と光透過性硬化樹脂層との界面には空隙は観察されなかったが、表示操作を行ったところ、樹脂カバーの中央の表示に色ムラが観察された。なお、仮硬化収縮率は2.2%であり、本硬化収縮率は0.4%であった。 When the obtained liquid crystal display device was visually observed from the resin cover side for the presence or absence of voids, no voids were observed at the interface between the liquid crystal display device (polarizing plate) and the light-transmitting cured resin layer. When the display was operated, color unevenness was observed in the display at the center of the resin cover. The temporary curing shrinkage rate was 2.2%, and the main curing shrinkage rate was 0.4%.

実施例1
比較例1における工程(B)と工程(D)との間で、工程(C)として、仮硬化樹脂層の微少凹みに対応する量の光硬化性樹脂組成物(比較例1の工程(A)で使用したものと同じ組成物)を、比較例1でも使用した樹脂用ディスペンサーを使用し、仮硬化樹脂層の中央部にライン状に塗布したこと以外は、比較例1と同様の操作により液晶表示装置を得た。なお、光硬化性樹脂組成物の仮硬化樹脂層の微少凹みに対応する量は光硬化性樹脂組成物の使用量(体積)と仮硬化収縮率により測定し、その量は0.91ccであった。
Example 1
Between step (B) and step (D) in Comparative Example 1, as step (C), a photocurable resin composition (step (A ) was applied in a line in the center of the temporarily cured resin layer using the resin dispenser used in Comparative Example 1. A liquid crystal display device was obtained. The amount of the photocurable resin composition corresponding to the minute dents in the temporarily cured resin layer was measured by the amount (volume) of the photocurable resin composition used and the temporary cure shrinkage rate, and the amount was 0.91 cc. Ta.

得られた液晶表示装置について、空隙の発生の有無を樹脂カバー側から目視観察したところ、樹脂カバーと光透過性硬化樹脂層との界面には空隙は観察されなかった。また、表示操作を行ったところ、樹脂カバーの中央の表示に色ムラが観察されなかった。なお、仮硬化収縮率は3.8%であり、本硬化収縮率は1.8%であった。 When the obtained liquid crystal display device was visually observed from the resin cover side for the presence or absence of voids, no voids were observed at the interface between the resin cover and the light-transmitting cured resin layer. Further, when the display operation was performed, no color unevenness was observed in the display at the center of the resin cover. The temporary curing shrinkage rate was 3.8%, and the main curing shrinkage rate was 1.8%.

実施例2
比較例1における工程(B)と工程(D)との間で、工程(C)として、仮硬化樹脂層の微少凹みに対応する量の光硬化性樹脂組成物(比較例1の工程(A)で使用したものと同じ組成物)を、比較例1でも使用した樹脂用ディスペンサーを使用し、仮硬化樹脂層の中央部にライン状に塗布したこと以外は、比較例1と同様の操作により液晶表示装置を得た。なお、光硬化性樹脂組成物の仮硬化樹脂層の微少凹みに対応する量は、光硬化性樹脂組成物の使用量(体積)と仮硬化収縮率により測定したところ0.91ccであったが、その約70%に該当する0.64ccの光硬化性樹脂組成物を塗布した。
Example 2
Between step (B) and step (D) in Comparative Example 1, as step (C), a photocurable resin composition (step (A ) was applied in a line in the center of the temporarily cured resin layer using the resin dispenser used in Comparative Example 1. A liquid crystal display device was obtained. In addition, the amount corresponding to the minute dents in the temporarily cured resin layer of the photocurable resin composition was 0.91 cc as measured by the amount (volume) of the photocurable resin composition used and the temporary cure shrinkage rate. , 0.64 cc of the photocurable resin composition, which corresponds to about 70% of the amount, was applied.

得られた液晶表示装置について、空隙の発生の有無を樹脂カバー側から目視観察したところ、樹脂カバーと光透過性硬化樹脂層との界面には空隙は、ほとんど観察されなかった。また、表示操作を行ったところ、樹脂カバーの中央の表示に色ムラが観察されなかった。なお、仮硬化収縮率は3.8%であり、本硬化収縮率は1.8%であった。 When the obtained liquid crystal display device was visually observed from the resin cover side for the presence or absence of voids, almost no voids were observed at the interface between the resin cover and the light-transmitting cured resin layer. Further, when the display operation was performed, no color unevenness was observed in the display at the center of the resin cover. The temporary curing shrinkage rate was 3.8%, and the main curing shrinkage rate was 1.8%.

実施例3
比較例2における工程(B)と工程(D)との間で、工程(C)として、仮硬化樹脂層の微少凹みに対応する量の光硬化性樹脂組成物(比較例1の工程(A)で使用したものと同じ組成物)を、比較例1でも使用した樹脂用ディスペンサーを使用し、仮硬化樹脂層の中央部にライン状に塗布したこと以外は、比較例1と同様の操作により液晶表示装置を得た。なお、光硬化性樹脂組成物の仮硬化樹脂層の微少凹みに対応する量は光硬化性樹脂組成物の使用量(体積)と仮硬化収縮率により測定し、その量は約0.74ccであった。
Example 3
Between step (B) and step (D) in Comparative Example 2, as step (C), a photocurable resin composition (step (A ) was applied in a line in the center of the temporarily cured resin layer using the resin dispenser used in Comparative Example 1. A liquid crystal display device was obtained. The amount of the photocurable resin composition corresponding to the minute dents in the temporarily cured resin layer is measured by the amount (volume) of the photocurable resin composition used and the temporary cure shrinkage rate, and the amount is approximately 0.74 cc. there were.

得られた液晶表示装置について、空隙の発生の有無を樹脂カバー側から目視観察したところ、樹脂カバーと光透過性硬化樹脂層との界面には空隙は観察されなかった。また、表示操作を行ったところ、樹脂カバーの中央の表示に色ムラが観察されなかった。なお、仮硬化収縮率は3.1%であり、本硬化収縮率は0.3%であった。 When the obtained liquid crystal display device was visually observed from the resin cover side for the presence or absence of voids, no voids were observed at the interface between the resin cover and the light-transmitting cured resin layer. Further, when the display operation was performed, no color unevenness was observed in the display at the center of the resin cover. The temporary curing shrinkage rate was 3.1%, and the main curing shrinkage rate was 0.3%.

実施例4
比較例3における工程(B)と工程(D)との間で、工程(C)として、仮硬化樹脂層の微少凹みに対応する量の光硬化性樹脂組成物(比較例1の工程(A)で使用したものと同じ組成物)を、比較例1でも使用した樹脂用ディスペンサーを使用し、仮硬化樹脂層の中央部にライン状に対応する箇所の液晶表示素子側に塗布したこと以外は、比較例1と同様の操作により液晶表示装置を得た。なお、光硬化性樹脂組成物の仮硬化樹脂層の微少凹みに対応する量は、光硬化性樹脂組成物の使用量(体積)と仮硬化収縮率により測定し、その量は0.53ccであった。
Example 4
Between step (B) and step (D) in Comparative Example 3, as step (C), a photocurable resin composition (step (A ) was applied to the liquid crystal display element side in a line corresponding to the central part of the temporarily cured resin layer using the resin dispenser used in Comparative Example 1. A liquid crystal display device was obtained by the same operation as in Comparative Example 1. The amount of the photocurable resin composition corresponding to the minute dents in the temporarily cured resin layer is measured by the amount (volume) of the photocurable resin composition used and the temporary cure shrinkage rate, and the amount is 0.53 cc. there were.

得られた液晶表示装置について、空隙の発生の有無を樹脂カバー側から目視観察したところ、樹脂カバーと光透過性硬化樹脂層との界面には空隙は観察されなかった。また、表示操作を行ったところ、樹脂カバーの中央の表示に色ムラが観察されなかった。なお、仮硬化収縮率は2.2%であり、本硬化収縮率は0.4%であった。 When the obtained liquid crystal display device was visually observed from the resin cover side for the presence or absence of voids, no voids were observed at the interface between the resin cover and the light-transmitting cured resin layer. Further, when the display operation was performed, no color unevenness was observed in the display at the center of the resin cover. The temporary curing shrinkage rate was 2.2%, and the main curing shrinkage rate was 0.4%.

本発明の画像表示装置の製造方法は、湾曲した透過性カバー部材の凹部面に光硬化性樹脂組成物を塗布し、仮硬化処理した後、硬化収縮により生じた仮硬化樹脂層の中央部の凹みに新たに光硬化性樹脂組成物を塗布し、画像表示部材を積層し、本硬化処理を行う。このため、画像表示装置の表示面に空隙が生じないようにでき、また、光硬化樹脂層の残留応力を低減させて表示の色ムラが生じないようにできる。従って、本発明の製造方法は、タッチパネルを備えた車載用情報端末の工業的製造に有用である。 In the method for manufacturing an image display device of the present invention, a photocurable resin composition is applied to the concave surface of a curved transparent cover member, and after a temporary curing treatment, the center portion of the temporarily cured resin layer caused by curing shrinkage is removed. A photocurable resin composition is newly applied to the recess, an image display member is laminated, and a main curing process is performed. Therefore, it is possible to prevent the formation of voids on the display surface of the image display device, and also to reduce the residual stress in the photocurable resin layer, thereby preventing the occurrence of color unevenness in the display. Therefore, the manufacturing method of the present invention is useful for industrially manufacturing in-vehicle information terminals equipped with touch panels.

1 光透過性カバー部材
1a 光透過性カバー部材の凹部面
1x、1y 両端部
2 光硬化性樹脂組成物
3 内側ダム材
4 外側ダム材
5 仮硬化樹脂層
5a 微少凹み
6 画像表示部材
7 光透過性硬化樹脂層
D ディスペンサー
1 Light-transmitting cover member 1a Concave surface of light-transmitting cover member 1x, 1y Both ends 2 Photo-curable resin composition 3 Inner dam material 4 Outer dam material 5 Temporarily cured resin layer 5a Slight dent 6 Image display member 7 Light transmission Curing resin layer D Dispenser

Claims (7)

画像表示部材と湾曲した光透過性カバー部材とが、仮硬化収縮率と本硬化収縮率との和である全硬化収縮率が5%以上となる光硬化性樹脂組成物を光硬化させてなる光透過性の光硬化樹脂層を介して積層されている画像表示装置の製造方法において、
以下の工程(A)~(D):
<工程(A)>
光硬化性樹脂組成物を、横樋状に湾曲した光透過性カバー部材の凹部面に、当該光透過性カバー部材の湾曲していない辺近傍の厚みが薄く、湾曲している凹部面の中央部の厚みが厚くなるように塗布する工程;
<工程(B)>
塗布された光硬化性樹脂組成物に対し、その仮硬化率が40~90%となるように且つ仮硬化収縮率が2%以上となるように、紫外線を照射して仮硬化させ、凹部面の中央部に、光硬化性樹脂組成物の硬化収縮に基づくライン状の微小凹みを有する仮硬化樹脂層を形成する工程;
<工程(C)>
仮硬化樹脂層のライン状の微小凹みに対応する量の、工程(A)で用いられた光硬化性樹脂組成物と同じ光硬化性樹脂組成物を、微小凹みを埋めるようにライン状に仮硬化樹脂層又は画像表示部材に塗布する工程;
<工程(D)>
画像表示部材と光透過性カバー部材とを、仮硬化樹脂層を介して真空貼合法で積層する工程; 及び
<工程(E)>
画像表示部材と光透過性カバー部材との間に挟持されている仮硬化樹脂層に紫外線を照射して本硬化させることにより光透過性の光硬化樹脂層を形成する工程;
有する製造方法。
The image display member and the curved light-transmitting cover member are formed by photocuring a photocurable resin composition such that the total curing shrinkage rate, which is the sum of the temporary curing shrinkage rate and the main curing shrinkage rate, is 5% or more. In a method for manufacturing an image display device laminated with a light-transmissive photocuring resin layer interposed therebetween,
The following steps (A) to (D):
<Process (A)>
A photocurable resin composition is applied to the concave surface of a light-transmissive cover member curved in the shape of a gutter , and the thickness near the uncurved sides of the light-transmissive cover member is thinner, and the thickness is thinner in the center of the curved concave surface. The process of applying the coating so that it becomes thicker ;
<Process (B)>
The applied photocurable resin composition is temporarily cured by irradiating ultraviolet rays so that the temporary curing rate is 40 to 90% and the temporary curing shrinkage rate is 2% or more, and the concave surface is a step of forming a temporarily cured resin layer having a line-shaped minute depression based on curing shrinkage of the photocurable resin composition in the central part;
<Step (C)>
An amount of the same photocurable resin composition as that used in step (A) corresponding to the linear minute depressions in the temporarily cured resin layer was temporarily applied in a line shape to fill the minute depressions. A step of applying the cured resin layer or the image display member;
<Step (D)>
A step of laminating an image display member and a light-transmitting cover member via a temporarily cured resin layer by a vacuum bonding method; and <Step (E)>
forming a light-transparent photo-cured resin layer by irradiating the temporary-cured resin layer sandwiched between the image display member and the light-transparent cover member with ultraviolet rays to fully cure it;
A manufacturing method comprising :
工程(C)において微小凹み体積の70%以上に相当する光硬化性樹脂組成物を、対応する仮硬化樹脂層又は画像表示部材に塗布する請求項1記載の製造方法。 2. The manufacturing method according to claim 1, wherein in the step (C), a photocurable resin composition corresponding to 70% or more of the volume of the microscopic depressions is applied to the corresponding temporarily cured resin layer or image display member. 光透過性カバー部材の横樋形状の両端部の内側又は外側に、それぞれ光硬化性樹脂組成物の塗布領域を画する内側ダム材又は外側ダム材が設けられている請求項1又は2記載の製造方法。 The production according to claim 1 or 2, wherein an inner dam member or an outer dam member is provided on the inner side or the outer side of both ends of the horizontal gutter shape of the light-transmissive cover member, respectively, to define an application area of the photocurable resin composition. Method. 工程(B)と工程(C)との間で、内側ダム材又は外側ダム材を除去する請求項3記載の製造方法。 4. The manufacturing method according to claim 3, wherein the inner dam material or the outer dam material is removed between step (B) and step (C). 画像表示部材が、液晶表示パネル、有機EL表示パネル、プラズマ表示パネル又はタッチパネルである請求項1~4のいずれかに記載の製造方法。 5. The manufacturing method according to claim 1, wherein the image display member is a liquid crystal display panel, an organic EL display panel, a plasma display panel, or a touch panel. 工程(E)において、光透過性硬化樹脂層の硬化率が9%以上となるように、仮硬化樹脂層に紫外線を照射して本硬化させる請求項1~のいずれかに記載の製造方法。 The production according to any one of claims 1 to 5 , wherein in step (E), the temporarily cured resin layer is irradiated with ultraviolet rays for main curing so that the cure rate of the light-transmissive cured resin layer is 95 % or more. Method. 光硬化性樹脂組成物が、エラストマー及びアクリル系オリゴマーの少なくとも一方と、アクリル系モノマーと、光重合開始剤とを含有する液状の樹脂組成物であって、
エラストマーが、アクリル共重合体、ポリブテン及びポリオレフィンからなる群から選択される少なくとも一種であり、
アクリル系オリゴマーが、ポリウレタン系(メタ)アクリレート、ポリブタジエン系(メタ)アクリレート及びポリイソプレン系(メタ)アクリレートからなる群から選択される少なくとも一種である請求項1~のいずれかに記載の製造方法。
The photocurable resin composition is a liquid resin composition containing at least one of an elastomer and an acrylic oligomer, an acrylic monomer, and a photopolymerization initiator,
The elastomer is at least one selected from the group consisting of acrylic copolymers, polybutenes, and polyolefins,
The manufacturing method according to any one of claims 1 to 6 , wherein the acrylic oligomer is at least one selected from the group consisting of polyurethane (meth)acrylate, polybutadiene (meth)acrylate, and polyisoprene (meth)acrylate. .
JP2022107839A 2017-02-07 2022-07-04 Method for manufacturing an image display device Active JP7376819B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023175398A JP2023175975A (en) 2017-02-07 2023-10-10 Manufacturing method of image display device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017020485 2017-02-07
JP2017020485 2017-02-07
JP2017243534A JP7270336B2 (en) 2017-02-07 2017-12-20 Method for manufacturing image display device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017243534A Division JP7270336B2 (en) 2017-02-07 2017-12-20 Method for manufacturing image display device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023175398A Division JP2023175975A (en) 2017-02-07 2023-10-10 Manufacturing method of image display device

Publications (2)

Publication Number Publication Date
JP2022130683A JP2022130683A (en) 2022-09-06
JP7376819B2 true JP7376819B2 (en) 2023-11-09

Family

ID=63108290

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2017243534A Active JP7270336B2 (en) 2017-02-07 2017-12-20 Method for manufacturing image display device
JP2022107839A Active JP7376819B2 (en) 2017-02-07 2022-07-04 Method for manufacturing an image display device
JP2023175398A Pending JP2023175975A (en) 2017-02-07 2023-10-10 Manufacturing method of image display device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2017243534A Active JP7270336B2 (en) 2017-02-07 2017-12-20 Method for manufacturing image display device

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023175398A Pending JP2023175975A (en) 2017-02-07 2023-10-10 Manufacturing method of image display device

Country Status (5)

Country Link
JP (3) JP7270336B2 (en)
KR (1) KR102345432B1 (en)
CN (1) CN110199340A (en)
TW (1) TWI750313B (en)
WO (1) WO2018146953A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018155884A (en) * 2017-03-16 2018-10-04 スタンレー電気株式会社 Liquid crystal display
TWI660221B (en) * 2018-04-11 2019-05-21 和碩聯合科技股份有限公司 Curved display apparatus and fabricating method thereof
WO2020203960A1 (en) * 2019-04-03 2020-10-08 三菱電機株式会社 Image display device and method for manufacturing image display device
JP7274966B2 (en) 2019-07-29 2023-05-17 デクセリアルズ株式会社 Optical device manufacturing method
JP7368990B2 (en) * 2019-09-23 2023-10-25 デクセリアルズ株式会社 Method for manufacturing optical devices

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005144717A (en) 2003-11-12 2005-06-09 Ricoh Opt Ind Co Ltd Resin curing method and manufacturing method of resin molded product or the like
JP2006078909A (en) 2004-09-10 2006-03-23 Sharp Corp Device for correcting transparent insulating film, and transparent insulating film correction method
JP2006145658A (en) 2004-11-17 2006-06-08 Sharp Corp Transparent film correction apparatus and transparent film correction method
WO2011148990A1 (en) 2010-05-26 2011-12-01 旭硝子株式会社 Transparent surface material having adhesive layer, display device, and manufacturing method for same
JP2012094618A (en) 2010-10-26 2012-05-17 Konica Minolta Opto Inc Light confining film for solar cell, manufacturing method of the same, and solar cell
JP2013152339A (en) 2012-01-25 2013-08-08 Dexerials Corp Method for manufacturing image display apparatus
JP2014119520A (en) 2012-12-14 2014-06-30 Dexerials Corp Method for manufacturing image display device
US20140211105A1 (en) 2013-01-28 2014-07-31 Samsung Display Co., Ltd. Display device and method for fabricating the same
JP2015200724A (en) 2014-04-07 2015-11-12 三菱電機株式会社 Image display device and method for manufacturing image display device
JP2016210075A (en) 2015-05-07 2016-12-15 信越エンジニアリング株式会社 Method for manufacturing bonded device, and apparatus for manufacturing bonded device
JP2017009780A (en) 2015-06-22 2017-01-12 デクセリアルズ株式会社 Method for manufacturing image display device
JP2017026887A (en) 2015-07-24 2017-02-02 日本写真印刷株式会社 Cover panel, operation panel, and method for manufacturing operation panel

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5343391B2 (en) * 2007-07-17 2013-11-13 デクセリアルズ株式会社 Resin composition and image display device
JP5374858B2 (en) * 2007-10-31 2013-12-25 カシオ計算機株式会社 Method for manufacturing protective plate integrated display module
JP5155826B2 (en) 2007-12-27 2013-03-06 セイコーインスツル株式会社 Manufacturing method of display device
JP2012073533A (en) * 2010-09-29 2012-04-12 Shibaura Mechatronics Corp Sticking device and sticking method
KR20140145933A (en) * 2012-01-25 2014-12-24 데쿠세리아루즈 가부시키가이샤 Method of manufacturing image display device
JP2014024046A (en) * 2012-07-30 2014-02-06 Shibaura Mechatronics Corp Adhesive feeding device and method for feeding adhesive
JP6315630B2 (en) * 2014-03-20 2018-04-25 芝浦メカトロニクス株式会社 Display device member manufacturing apparatus and display device member manufacturing method
JP2017025237A (en) * 2015-07-24 2017-02-02 旭硝子株式会社 Transparent curved surface material with adhesive layer, display device, manufacturing method of transparent curved surface material with adhesive layer, and manufacturing method of display device

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005144717A (en) 2003-11-12 2005-06-09 Ricoh Opt Ind Co Ltd Resin curing method and manufacturing method of resin molded product or the like
JP2006078909A (en) 2004-09-10 2006-03-23 Sharp Corp Device for correcting transparent insulating film, and transparent insulating film correction method
JP2006145658A (en) 2004-11-17 2006-06-08 Sharp Corp Transparent film correction apparatus and transparent film correction method
WO2011148990A1 (en) 2010-05-26 2011-12-01 旭硝子株式会社 Transparent surface material having adhesive layer, display device, and manufacturing method for same
JP2012094618A (en) 2010-10-26 2012-05-17 Konica Minolta Opto Inc Light confining film for solar cell, manufacturing method of the same, and solar cell
JP2013152339A (en) 2012-01-25 2013-08-08 Dexerials Corp Method for manufacturing image display apparatus
JP2014119520A (en) 2012-12-14 2014-06-30 Dexerials Corp Method for manufacturing image display device
US20140211105A1 (en) 2013-01-28 2014-07-31 Samsung Display Co., Ltd. Display device and method for fabricating the same
JP2015200724A (en) 2014-04-07 2015-11-12 三菱電機株式会社 Image display device and method for manufacturing image display device
JP2016210075A (en) 2015-05-07 2016-12-15 信越エンジニアリング株式会社 Method for manufacturing bonded device, and apparatus for manufacturing bonded device
JP2017009780A (en) 2015-06-22 2017-01-12 デクセリアルズ株式会社 Method for manufacturing image display device
JP2017026887A (en) 2015-07-24 2017-02-02 日本写真印刷株式会社 Cover panel, operation panel, and method for manufacturing operation panel

Also Published As

Publication number Publication date
TWI750313B (en) 2021-12-21
CN110199340A (en) 2019-09-03
JP7270336B2 (en) 2023-05-10
KR102345432B1 (en) 2021-12-30
JP2018128668A (en) 2018-08-16
KR20190096405A (en) 2019-08-19
JP2023175975A (en) 2023-12-12
WO2018146953A1 (en) 2018-08-16
TW201840440A (en) 2018-11-16
JP2022130683A (en) 2022-09-06

Similar Documents

Publication Publication Date Title
JP7376819B2 (en) Method for manufacturing an image display device
KR101483385B1 (en) Method of manufacturing image display device
CN105807468B (en) Method for manufacturing image display device
KR101975727B1 (en) Method for producing image display device, resin dispenser
WO2018163820A1 (en) Method for manufacturing image display device
KR20230019176A (en) Image display device and method for manufacturing the same
TW201726876A (en) Photocurable resin composition and method for producing picture display device
KR102435111B1 (en) Assembly processes using uv curable pressure sensitive adhesives (psa) or stageable psa systems
US11846841B2 (en) Method for manufacturing optical device
WO2021020295A1 (en) Optical device production method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220722

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230404

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231009

R150 Certificate of patent or registration of utility model

Ref document number: 7376819

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150