JP2022130683A - Manufacturing method for image display device - Google Patents

Manufacturing method for image display device Download PDF

Info

Publication number
JP2022130683A
JP2022130683A JP2022107839A JP2022107839A JP2022130683A JP 2022130683 A JP2022130683 A JP 2022130683A JP 2022107839 A JP2022107839 A JP 2022107839A JP 2022107839 A JP2022107839 A JP 2022107839A JP 2022130683 A JP2022130683 A JP 2022130683A
Authority
JP
Japan
Prior art keywords
resin layer
light
resin composition
image display
photocurable resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022107839A
Other languages
Japanese (ja)
Other versions
JP7376819B2 (en
Inventor
孝夫 橋本
Takao Hashimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Dexerials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dexerials Corp filed Critical Dexerials Corp
Publication of JP2022130683A publication Critical patent/JP2022130683A/en
Priority to JP2023175398A priority Critical patent/JP2023175975A/en
Application granted granted Critical
Publication of JP7376819B2 publication Critical patent/JP7376819B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J109/00Adhesives based on homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J123/00Adhesives based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J175/00Adhesives based on polyureas or polyurethanes; Adhesives based on derivatives of such polymers
    • C09J175/04Polyurethanes
    • C09J175/14Polyurethanes having carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J4/00Adhesives based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; adhesives, based on monomers of macromolecular compounds of groups C09J183/00 - C09J183/16
    • C09J4/06Organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond in combination with a macromolecular compound other than an unsaturated polymer of groups C09J159/00 - C09J187/00
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources

Abstract

PROBLEM TO BE SOLVED: To prevent display from having color unevenness or prevent a gap from being formed on a display surface of an image display device when the image display device is manufactured by stacking an image display member and a light-transmitting cover member that is curved and disposed on a front surface side thereof.
SOLUTION: An image display device in which an image display member and a curved light-transmitting cover member are stacked through a light curable resin layer is manufactured in such a manner that: a light curable resin composition is applied on a concave surface of the curved light-transmitting cover member; the applied light curable resin composition is irradiated with UV rays so as to be temporarily cured; a temporarily cured resin layer with a small dent based on the curing shrinkage of the light curable resin composition is formed in a central part of the concave surface; the light curable resin composition, whose amount corresponds to the small dent of the temporarily cured resin layer, is applied to the temporarily cured resin layer or the image display member; the image display member and the light-transmitting cover member are stacked through the temporarily cured resin layer; the temporarily cured resin layer held between the image display member and the light-transmitting cover member is irradiated with UV rays for permanent curing.
SELECTED DRAWING: Figure 1A
COPYRIGHT: (C)2022,JPO&INPIT

Description

本発明は、液晶表示パネル等の画像表示部材と、その表面側に配される湾曲した透明保護シート等の光透過性カバー部材とが、光透過性硬化樹脂層を介して積層されている画像表示装置の製造方法に関する。 The present invention provides an image in which an image display member such as a liquid crystal display panel and a light-transmissive cover member such as a curved transparent protective sheet disposed on the surface side of the image display member are laminated via a light-transmissive cured resin layer. The present invention relates to a method of manufacturing a display device.

カーナビゲーションなどの車載用情報端末に用いられている画像表示装置は、フラットな光透過性カバー部材に光硬化性樹脂組成物を塗布し、紫外線照射により仮硬化させて仮硬化樹脂層を形成した後、仮硬化樹脂層に液晶表示パネルや有機ELパネル等のフラットな画像表示部材を積層し、続いて仮硬化樹脂層に対し紫外線照射を再度行うことにより本硬化させて光硬化樹脂層とすることにより製造されている(特許文献1)。 An image display device used in an in-vehicle information terminal such as a car navigation is formed by applying a photocurable resin composition to a flat light-transmitting cover member and temporarily curing it by irradiating with ultraviolet rays to form a temporary curing resin layer. After that, a flat image display member such as a liquid crystal display panel or an organic EL panel is laminated on the temporary hardened resin layer, and then the temporary hardened resin layer is again irradiated with ultraviolet light to be fully cured to form a photocurable resin layer. (Patent Document 1).

ところで、車載用情報端末用の画像表示装置の意匠性やタッチ感を向上させるために、一方向に湾曲した形状の光透過性カバー部材を用いることが求められるようになっている。このため、このような画像表示装置を特許文献1に記載の製造方法に準じて製造することが試みられている。 By the way, in order to improve the design and touch feeling of an image display device for an in-vehicle information terminal, it is required to use a light-transmissive cover member curved in one direction. Therefore, an attempt has been made to manufacture such an image display device according to the manufacturing method described in Patent Document 1.

特開2014-119520号公報JP 2014-119520 A

一般に、光硬化性樹脂組成物を紫外線照射により光硬化させると硬化収縮が生じるが、フラットな光透過性カバー部材にフラットな画像表示部材を積層する特許文献1の製造方法の場合には、面方向の光硬化性樹脂組成物の塗布厚が約150μm程度と薄くしかも均一であるため、光硬化樹脂層が硬化収縮してもボイドが発生し難く、画像品質に対する光硬化樹脂層の残存応力の影響を無視できるものであった。 In general, curing shrinkage occurs when a photocurable resin composition is photocured by irradiating with ultraviolet rays. Since the coating thickness of the photocurable resin composition in the direction is as thin as about 150 μm and uniform, even if the photocurable resin layer cures and shrinks, voids are unlikely to occur, and the residual stress of the photocurable resin layer with respect to image quality is reduced. The effect was negligible.

一方、一方向に湾曲した形状の光透過性カバー部材の凹部面に光硬化性樹脂組成物を塗布した場合、湾曲していない辺近傍の光硬化性樹脂組成物の塗布厚は0~500μm程度になるが、凹部面の中央部の光硬化性樹脂組成物の塗布厚は辺近傍の塗布厚より非常に厚くなり、場合により数mm厚程度にまで厚くなる。このため、凹部面の中央部では、光硬化性樹脂組成物の硬化収縮が著しく大きなものとなり、結果的に中央部には凹みが形成され、組み上げた画像表示装置の表示面に空隙が生じる場合があり、また、空隙が生じないまでも、光硬化樹脂層の残留応力により表示に色ムラが生ずるという問題がある。 On the other hand, when the photocurable resin composition is applied to the concave surface of the light-transmitting cover member curved in one direction, the coating thickness of the photocurable resin composition near the non-curved side is about 0 to 500 μm. However, the coating thickness of the photocurable resin composition in the central portion of the concave surface is much thicker than the coating thickness in the vicinity of the sides, and in some cases it is as thick as several millimeters. For this reason, in the central portion of the concave surface, the curing shrinkage of the photocurable resin composition becomes extremely large, and as a result, a concave portion is formed in the central portion, and a gap is generated on the display surface of the assembled image display device. In addition, even if voids are not generated, the residual stress of the photocurable resin layer causes color unevenness in the display.

本発明の目的は、以上の従来の技術の問題点を解決することであり、画像表示部材とその表面側に配される湾曲した光透過性カバー部材とを光硬化性樹脂組成物の硬化樹脂層を介して積層して画像表示装置を製造する際に、組み上げた画像表示装置の表示面に空隙が生じないようにし、また、空隙が生じないまでも、光硬化樹脂層の残留応力により表示に色ムラが生じないようにすることを目的とする。 An object of the present invention is to solve the above-mentioned problems of the conventional technology, and an image display member and a curved light-transmitting cover member arranged on the surface side thereof are formed of a cured resin of a photocurable resin composition. When an image display device is manufactured by laminating layers through layers, the display surface of the assembled image display device should be free from voids. The purpose is to prevent color unevenness from occurring.

本発明者は、光透過性カバー部材の凹部面に光硬化性樹脂組成物を塗布し、仮硬化処理した後、硬化収縮により生じた仮硬化樹脂層の中央部の凹みに新たに光硬化性樹脂組成物を塗布し、画像表示部材を積層し、本硬化処理を行うことにより、画像表示装置の表示面に空隙が生じないようにでき、また、光硬化樹脂層の残留応力を低減させて表示の色ムラが生じないようにできることを見出し、本発明を完成させるに至った。 After applying a photocurable resin composition to the recessed surface of the light-transmitting cover member and subjecting it to temporary curing, the present inventor applied a new photocurable resin composition to the recess at the center of the temporary cured resin layer caused by curing shrinkage. By applying the resin composition, laminating the image display member, and performing the main curing treatment, it is possible to prevent the formation of voids on the display surface of the image display device and to reduce the residual stress of the photocurable resin layer. The inventors have found that it is possible to prevent color unevenness in display, and have completed the present invention.

即ち、本発明は、画像表示部材と湾曲した光透過性カバー部材とが、光硬化樹脂層を介して積層されている画像表示装置の製造方法において、
以下の工程(A)~(D):
<工程(A)>
光硬化性樹脂組成物を、湾曲した光透過性カバー部材の凹部面に塗布する工程;
<工程(B)>
塗布された光硬化性樹脂組成物に対し紫外線を照射して仮硬化させ、凹部面に光硬化性樹脂組成物の硬化収縮に基づく微少凹みを有する仮硬化樹脂層を形成する工程;
<工程(C)>
仮硬化樹脂層の微少凹みに対応する量の光硬化性樹脂組成物を、仮硬化樹脂層又は画像表示部材に塗布する工程;
<工程(D)>
画像表示部材と光透過性カバー部材とを、仮硬化樹脂層を介して積層する工程; 及び
<工程(E)>
画像表示部材と光透過性カバー部材との間に挟持されている仮硬化樹脂層に紫外線を照射して本硬化させることにより光透過性硬化樹脂層を形成する工程;
を有する製造方法を提供する。
That is, the present invention provides a method for manufacturing an image display device in which an image display member and a curved light-transmitting cover member are laminated via a photocurable resin layer,
The following steps (A)-(D):
<Step (A)>
applying a photocurable resin composition to the recessed surface of the curved light-transmitting cover member;
<Step (B)>
A step of irradiating the applied photocurable resin composition with ultraviolet rays to temporarily cure it, and forming a temporary cured resin layer having minute recesses based on curing shrinkage of the photocurable resin composition on the concave surface;
<Step (C)>
A step of applying a photocurable resin composition in an amount corresponding to the minute recesses of the temporary cured resin layer to the temporary cured resin layer or the image display member;
<Step (D)>
A step of laminating an image display member and a light-transmitting cover member with a temporary cured resin layer interposed therebetween; and <Step (E)>
A step of forming a light-transmitting cured resin layer by irradiating the temporarily-cured resin layer sandwiched between the image display member and the light-transmitting cover member with ultraviolet rays for full curing;
A manufacturing method is provided.

本発明の画像表示装置の製造方法においては、湾曲した光透過性カバー部材の凹部面に光硬化性樹脂組成物を塗布し、仮硬化処理した後、硬化収縮により生じた仮硬化樹脂層の中央部の凹みに新たに光硬化性樹脂組成物を塗布し、画像表示部材を積層し、本硬化処理を行う。このため、画像表示装置の表示面に空隙が生じないようにでき、また、光硬化樹脂層の残留応力を低減させて表示の色ムラが生じないようにできる。 In the method for manufacturing the image display device of the present invention, the photocurable resin composition is applied to the concave surface of the curved light-transmitting cover member, and after temporary curing treatment, the center of the temporarily cured resin layer caused by curing shrinkage A new photocurable resin composition is applied to the recesses of the part, the image display member is laminated, and the main curing treatment is performed. Therefore, it is possible to prevent the generation of voids on the display surface of the image display device, and to reduce the residual stress of the photocurable resin layer, thereby preventing the occurrence of color unevenness in the display.

図1Aは、本発明の製造方法の工程(A)の説明図である。FIG. 1A is an explanatory diagram of step (A) of the manufacturing method of the present invention. 図1Bは、本発明の製造方法の工程(A)の説明図である。FIG. 1B is an explanatory diagram of step (A) of the manufacturing method of the present invention. 図1Cは、光透過性カバー部材の説明図である。FIG. 1C is an explanatory diagram of a light transmissive cover member. 図1Dは、光透過性カバー部材の説明図である。FIG. 1D is an explanatory diagram of a light transmissive cover member. 図1Eは、光透過性カバー部材の説明図である。FIG. 1E is an explanatory diagram of a light transmissive cover member. 図1Fは、光透過性カバー部材の説明図である。FIG. 1F is an illustration of a light transmissive cover member. 図1Gは、光透過性カバー部材の説明図である。FIG. 1G is an explanatory diagram of a light transmissive cover member. 図2Aは、本発明の製造方法の工程(B)の説明図である。FIG. 2A is an explanatory diagram of step (B) of the manufacturing method of the present invention. 図2Bは、本発明の製造方法の工程(B)の説明図であるる。FIG. 2B is an explanatory diagram of step (B) of the manufacturing method of the present invention. 図3Aは、本発明の製造方法の工程(C)の説明図である。FIG. 3A is an explanatory diagram of step (C) of the manufacturing method of the present invention. 図3Bは、本発明の製造方法の工程(C)の説明図である。FIG. 3B is an explanatory diagram of step (C) of the manufacturing method of the present invention. 図4は、本発明の製造方法の工程(D)の説明図である。FIG. 4 is an explanatory diagram of step (D) of the manufacturing method of the present invention. 図5は、本発明の製造方法の工程(E)の説明図である。FIG. 5 is an explanatory diagram of step (E) of the manufacturing method of the present invention.

本発明は、画像表示部材と湾曲した光透過性カバー部材とが、光硬化樹脂層を介して積層されている画像表示装置の製造方法であり、以下の工程(A)~(E)を有する製造方法である。以下、図面を参照しながら工程毎に詳細に説明する。 The present invention is a method for manufacturing an image display device in which an image display member and a curved light-transmitting cover member are laminated via a photocurable resin layer, and includes the following steps (A) to (E). manufacturing method. Each step will be described in detail below with reference to the drawings.

<工程(A):塗布工程>
まず、図1Aに示すように湾曲した光透過性カバー部材1を用意し、図1Bに示すように光透過性カバー部材1の凹部面1aに、ディスペンサーD等により光硬化性樹脂組成物2を塗布する。この光硬化性樹脂組成物2の塗布量は、画像表示素子のサイズや形状、用途等により異なるが、通常、45(w)×80(l)×3(t)mm(曲率半径(r):300mm)の湾曲光透過性カバー部材に対し、40(w)×80(l)mmの画像表示部材を光透過性カバー部材の湾曲していない2辺に接触する形で貼合する場合、好ましくは23.44ccで湾曲最深部の厚みが670μmとなるが、より好ましくは23.76ccで光透過性カバー部材の湾曲していない2辺と画像表示部材間に約100μmの隙間を設けることが可能である。この隙間は画像表示装置の設計にもよるが、50μm以上800μm以下が好ましい。また、そのような塗布量を一度の塗布操作で満足させてもよいが、複数回の塗布操作で満足させてもよい。
<Step (A): Coating step>
First, as shown in FIG. 1A, a curved light-transmitting cover member 1 is prepared, and as shown in FIG. apply. The amount of the photocurable resin composition 2 applied varies depending on the size and shape of the image display element, the application, etc., but is usually 45 (w) × 80 (l) × 3 (t) mm (radius of curvature (r) : 300 mm), when an image display member of 40 (w) × 80 (l) mm is attached in contact with two non-curved sides of the light-transmitting cover member, Preferably, the thickness is 23.44 cc and the thickness of the deepest part of the curve is 670 μm. It is possible. This gap is preferably 50 μm or more and 800 μm or less, although it depends on the design of the image display device. In addition, such a coating amount may be satisfied by a single coating operation, but may be satisfied by a plurality of coating operations.

(光透過性カバー部材1)
湾曲した光透過性カバー部材1の具体的な形状としては、一方向に湾曲した形状(例えば、円柱パイプをその中心軸に平行な平面で切断して得られる劣弧側の形状(以下、横樋形状と称する))(図1A)や、X方向とY方向に湾曲した形状(図1C)、360°方向に湾曲した形状(例えば、球をその中心点を含まない平面で切断して得られる劣弧側の形状)(図1D)などが挙げられる。これらの形状の中央部に平坦部1bが形成されていてもよい(例えば、図1E)。
(Light transmissive cover member 1)
As a specific shape of the curved light-transmitting cover member 1, there is a shape curved in one direction (for example, a shape on the inferior arc side obtained by cutting a cylindrical pipe along a plane parallel to its central axis (hereinafter referred to as a horizontal gutter). (referred to as shape)) (Fig. 1A), a shape curved in the X and Y directions (Fig. 1C), a shape curved in the 360° direction (e.g. minor arc side) (Fig. 1D). A flat portion 1b may be formed in the central portion of these shapes (eg, FIG. 1E).

光透過性カバー部材1が横樋形状である場合(図1A)、その両端部1xと1yの内側に、光硬化性樹脂組成物の塗布領域を画する内側ダム材3(図1F)、もしくはその両端部1xと1yの外側に光硬化性樹脂組成物の塗布領域を画する外側ダム材4(図1G)を設けることが好ましい。内側ダム材3及び外側ダム材4としては、塗布された光硬化性樹脂組成物を、それと相溶することなく堰き止めることができ、光硬化性樹脂組成物の仮硬化後に、簡便に除去可能な公知の材料から形成することができる。例えば、内側ダム材3としては、微粘着層を備えた公知の熱可塑性エラストマーテープなどを光透過性カバー部材1の端部内側に土手状に貼りつけたものが挙げられる。外側ダム材4としては、シリコーンシート、フッ素樹脂シート等を挙げることができる。 When the light-transmissive cover member 1 has a lateral gutter shape (FIG. 1A), an inner dam member 3 (FIG. 1F) defining a coating region of the photocurable resin composition is provided inside both ends 1x and 1y of the cover member 1 (FIG. 1A). It is preferable to provide an outer dam member 4 (FIG. 1G) that defines the application area of the photocurable resin composition outside both ends 1x and 1y. The inner dam material 3 and the outer dam material 4 can block the applied photocurable resin composition without being compatible with it, and can be easily removed after the temporary curing of the photocurable resin composition. can be formed from any known material. For example, as the inner dam material 3, a known thermoplastic elastomer tape having a slightly adhesive layer or the like is attached to the inside of the end portion of the light-transmissive cover member 1 in the shape of a bank. Examples of the outer dam material 4 include a silicone sheet and a fluororesin sheet.

なお、光透過性カバー部材1が図1Cや図1Dの態様である場合、ダム材は無くてもよい。また、図1A、1Bの態様の場合であっても、内側ダム材3に対応する光透過性カバー部材1の表面に、光硬化性樹脂組成物の流れを防止するための表面処理(例えば、光硬化性樹脂組成物の特性に応じて粗面化処理、親水化処理、あるいは撥水化処理等)を施してもよい。 In addition, when the light-transmitting cover member 1 is in the form of FIG. 1C or FIG. 1D, the dam material may be omitted. 1A and 1B, the surface of the light-transmitting cover member 1 corresponding to the inner dam member 3 is subjected to surface treatment (for example, Depending on the characteristics of the photocurable resin composition, surface roughening treatment, hydrophilic treatment, water repellent treatment, etc.) may be applied.

光透過性カバー部材1の材料としては、画像表示部材に形成された画像が視認可能となるような光透過性があればよく、ガラス、アクリル樹脂、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート等の樹脂材料が挙げられる。これらの材料には、片面又は両面ハードコート処理、反射防止処理などを施すことができる。光透過性カバー部材1の湾曲の形状や厚さなどの寸法的な特性、弾性などの部位利敵物性は、使用目的に応じて適宜決定することができる。 The material of the light-transmitting cover member 1 may be any light-transmitting material such that an image formed on the image display member can be visually recognized. materials. These materials can be subjected to single-sided or double-sided hard coating treatment, antireflection treatment, and the like. Dimensional characteristics such as the curved shape and thickness of the light-transmitting cover member 1, and physical properties such as elasticity can be appropriately determined according to the purpose of use.

(光硬化性樹脂組成物2)
光透過性カバー部材1の凹部面1aに塗布する光硬化性樹脂組成物2の性状は好ましくは液状である。液状のものを使用すると、光透過性カバー部材1の凹部面1aに光硬化性樹脂組成物2を組成物表面が平坦となるように充填することができる。ここで、液状とは、コーンプレート型粘度計で0.01~100Pa・s(25℃)の粘度を示すものである。
(Photocurable resin composition 2)
The property of the photocurable resin composition 2 applied to the recessed surface 1a of the light-transmitting cover member 1 is preferably liquid. If a liquid material is used, the concave surface 1a of the light-transmitting cover member 1 can be filled with the photocurable resin composition 2 so that the composition surface becomes flat. Here, the term “liquid” indicates a viscosity of 0.01 to 100 Pa·s (25° C.) with a cone-plate viscometer.

このような光硬化性樹脂組成物2は、ベース成分(成分(イ))、アクリル系モノマー成分(成分(ロ))、及び光重合開始剤(成分(ハ))を含有するものを好ましく例示することができる。必要に応じ、更に、可塑剤成分(成分(ニ))を含有することができる。なお、光硬化性樹脂組成物2の最終的な硬化収縮率は3%以上のものである。5%以上であってもよい。 Such a photocurable resin composition 2 preferably includes a base component (component (a)), an acrylic monomer component (component (b)), and a photopolymerization initiator (component (c)). can do. If necessary, it may further contain a plasticizer component (component (d)). The final cure shrinkage of the photocurable resin composition 2 is 3% or more. It may be 5% or more.

ここで、“最終的な硬化収縮率”とは、光硬化性樹脂組成物2を未硬化の状態から完全に硬化させた状態との間で生じた硬化収縮率を意味する。ここで、完全に硬化とは、後述するように硬化率が少なくとも90%となるように硬化した状態を意味する。以下、最終的な硬化収縮率を全硬化収縮率と称する。また、硬化性樹脂組成物を未硬化の状態から仮硬化させた状態との間で生じた硬化収縮率を仮硬化収縮率と称する。更に、本硬化工程において、仮硬化の状態から完全に硬化させた状態との間で生じた硬化収縮率は、本硬化収縮率と称する。 Here, the "final cure shrinkage rate" means the cure shrinkage rate generated between the uncured state of the photocurable resin composition 2 and the completely cured state. Here, "completely cured" means a state in which the curing rate is at least 90% as described later. Hereinafter, the final cure shrinkage rate is referred to as the total cure shrinkage rate. In addition, the curing shrinkage rate that occurs between the uncured state and the temporarily cured state of the curable resin composition is referred to as the temporary curing shrinkage rate. Furthermore, in the main curing step, the curing shrinkage rate that occurs between the temporary curing state and the completely cured state is referred to as the main curing shrinkage rate.

光硬化性樹脂組成物の全硬化収縮率は、未硬化(換言すれば、硬化前)の組成物と完全硬化後の固体の完全硬化物の比重を電子比重計(アルファーミラージュ(株)製SD-120L)を用いて測定し、両者の比重差から次式により算出することができる。また、光硬化性樹脂組成物の仮硬化樹脂の仮硬化収縮率は、未硬化(換言すれば、硬化前)の組成物と仮硬化後の固体の仮硬化物の比重を電子比重計(アルファーミラージュ(株)製SD-120L)を用いて測定し、両者の比重差から次式により算出することができる。本硬化収縮率は、全硬化収縮率から仮硬化収縮率を減じることにより算出することができる。 The total curing shrinkage rate of the photocurable resin composition is obtained by measuring the specific gravity of the uncured (in other words, before curing) composition and the solid completely cured product after complete curing with an electronic hydrometer (SD manufactured by Alpha Mirage Co., Ltd.). -120L), and can be calculated by the following formula from the difference in specific gravity between the two. In addition, the temporary curing shrinkage rate of the temporary curing resin of the photocurable resin composition is an electronic hydrometer (alpha SD-120L manufactured by Mirage Co., Ltd.), and can be calculated from the difference in specific gravity between the two by the following formula. The final curing shrinkage rate can be calculated by subtracting the temporary curing shrinkage rate from the total curing shrinkage rate.

Figure 2022130683000002
Figure 2022130683000002

成分(イ)のベース成分は、光透過性硬化樹脂層の膜形成成分であり、エラストマー及びアクリル系オリゴマーの少なくともいずれか一方を含有する成分である。両者を成分(イ)として併用してもよい。 The component (a), the base component, is a film-forming component for the light-transmitting cured resin layer and contains at least one of an elastomer and an acrylic oligomer. Both may be used together as the component (a).

エラストマーとしては、好ましくはアクリル酸エステルの共重合体からなるアクリル共重合体、ポリブテン、ポリオレフィン等を好ましく挙げることができる。なお、このアクリル酸エステル共重合体の重量平均分子量は、好ましくは5000~500000であり、ポリブテンの繰り返し数nは好ましくは10~10000である。 Examples of elastomers include acrylic copolymers, polybutenes, and polyolefins, which are preferably copolymers of acrylic acid esters. The weight average molecular weight of this acrylic acid ester copolymer is preferably 5,000 to 500,000, and the repeating number n of polybutene is preferably 10 to 10,000.

他方、アクリル系オリゴマーとしては、好ましくは、ポリイソプレン、ポリウレタン、ポリブタジエン等を骨格に持つ(メタ)アクリレート系オリゴマーを挙げることができる。なお、本明細書において、「(メタ)アクリレート」という用語は、アクリレートとメタクリレートとを包含する。 On the other hand, acrylic oligomers preferably include (meth)acrylate oligomers having a skeleton of polyisoprene, polyurethane, polybutadiene, or the like. In this specification, the term "(meth)acrylate" includes acrylate and methacrylate.

ポリイソプレン骨格の(メタ)アクリレート系オリゴマーの好ましい具体例としては、ポリイソプレン重合体の無水マレイン酸付加物と2-ヒドロキシエチルメタクリレートとのエステル化物(UC102(ポリスチレン換算分子量17000)、(株)クラレ;UC203(ポリスチレン換算分子量35000)、(株)クラレ;UC-1(分子量約25000)、(株)クラレ)等を挙げることができる。 A preferred specific example of the (meth)acrylate oligomer having a polyisoprene skeleton is an esterified product of a maleic anhydride adduct of a polyisoprene polymer and 2-hydroxyethyl methacrylate (UC102 (polystyrene equivalent molecular weight: 17000), Kuraray Co., Ltd.). UC203 (polystyrene equivalent molecular weight: 35,000), Kuraray Co., Ltd.; UC-1 (molecular weight: about 25,000, Kuraray Co., Ltd.).

また、ポリウレタン骨格を持つ(メタ)アクリレート系オリゴマーの好ましい具体例としては、脂肪族ウレタンアクリレート(EBECRYL230(分子量5000)、ダイセル・オルネクス(株);UA-1、ライトケミカル工業(株))等を挙げることができる。 Further, preferred specific examples of (meth)acrylate oligomers having a polyurethane skeleton include aliphatic urethane acrylates (EBECRYL230 (molecular weight: 5000), Daicel-Ornex Co.; UA-1, Light Chemical Industry Co., Ltd.), and the like. can be mentioned.

ポリブタジエン骨格の(メタ)アクリレート系オリゴマーとしては、公知のものを採用することができる。 As the (meth)acrylate-based oligomer having a polybutadiene skeleton, known ones can be employed.

成分(ロ)のアクリル系モノマー成分は、画像表示装置の製造工程において、光硬化性樹脂組成物に十分な反応性及び塗布性等を付与するために反応性希釈剤として使用されている。このようなアクリル系モノマーとしては、2-ヒドロキシプロピルメタクリレート、4-ヒドロキシブチルアクリレート、ステアリルアクリレート、ベンジルアクリレート、テトラヒドロフリフリルアクリレート、ジシクロペンテニルアクリレート、ジシクロペンテニルオキシエチルメタクリレート、イソボルニルアクリレート、ジシクロペンタニルアクリレート、ラウリルメタクリレート等を挙げることができる。 The acrylic monomer component (b) is used as a reactive diluent in order to impart sufficient reactivity and coatability to the photocurable resin composition in the manufacturing process of image display devices. Examples of such acrylic monomers include 2-hydroxypropyl methacrylate, 4-hydroxybutyl acrylate, stearyl acrylate, benzyl acrylate, tetrahydrofurifyl acrylate, dicyclopentenyl acrylate, dicyclopentenyloxyethyl methacrylate, isobornyl acrylate, di Cyclopentanyl acrylate, lauryl methacrylate and the like can be mentioned.

成分(ハ)の光重合開始剤としては、公知の光ラジカル重合開始剤を使用することができ、例えば、1-ヒドロキシ-シクロへキシルフェニルケトン(Irgacure184、BASFジャパン(株))、2-ヒドロキシ-1-{4-[4-(2一ヒドロキシ-2-メチル-プロピロニル)ベンジル]フェニル}-2-メチル-1-プロパン-1-オン(Irgacure127、BASFジャパン(株))、ベンゾフェノン、アセトフェノン等を挙げることができる。 As the photopolymerization initiator of component (c), known photoradical polymerization initiators can be used, for example, 1-hydroxy-cyclohexylphenyl ketone (Irgacure 184, BASF Japan Ltd.), 2-hydroxy -1-{4-[4-(2-hydroxy-2-methyl-propyronyl)benzyl]phenyl}-2-methyl-1-propan-1-one (Irgacure127, BASF Japan Ltd.), benzophenone, acetophenone, etc. can be mentioned.

このような光重合開始剤は、ベース成分(イ)中のアクリル系オリゴマー及びアクリル系モノマー成分(ロ)の合計100質量部に対し、少なすぎると紫外線照射時に硬化不足となり、多すぎると開裂によるアウトガスが増え発泡不具合の傾向があるので、好ましくは0.1~5質量部、より好ましくは0.2~3質量部である。 If the amount of such a photopolymerization initiator is too small with respect to a total of 100 parts by mass of the acrylic oligomer and acrylic monomer component (b) in the base component (a), curing will be insufficient during ultraviolet irradiation, and if it is too large, cleavage will occur. The amount is preferably 0.1 to 5 parts by mass, more preferably 0.2 to 3 parts by mass, since outgassing increases and foaming problems tend to occur.

また、光硬化性樹脂組成物2は、分子量の調整のために連鎖移動剤を含有することができる。例えば、2-メルカプトエタノール、ラウリルメルカプタン、グリシジルメルカプタン、メルカプト酢酸、チオグリコール酸2-エチルヘキシル、2,3-ジメチルカプト-1-プロパノール、α-メチルスチレンダイマーなどが挙げられる。 Moreover, the photocurable resin composition 2 can contain a chain transfer agent for adjusting the molecular weight. Examples include 2-mercaptoethanol, laurylmercaptan, glycidylmercaptan, mercaptoacetic acid, 2-ethylhexyl thioglycolate, 2,3-dimethylcapto-1-propanol, α-methylstyrene dimer and the like.

また、光硬化性樹脂組成物2は、更に、必要に応じて、シランカップリング剤等の接着改善剤、酸化防止剤等の一般的な添加剤を含有することができる。 Moreover, the photocurable resin composition 2 may further contain general additives such as an adhesion improver such as a silane coupling agent and an antioxidant, if necessary.

光硬化性樹脂組成物2は、後述する仮硬化工程の後の本硬化工程におけるその硬化収縮率が3%未満に抑制されているので、基本的には可塑剤成分を含有することは必須ではないが、硬化樹脂層に緩衝性を付与すると共に、光硬化性樹脂組成物の硬化収縮率を低減させるために、本発明の効果を損なわない範囲で可塑剤成分(成分(ニ))を含有することができる。従って、光硬化性樹脂組成物中に成分(イ)のベース成分と成分(ロ)のアクリル系モノマー成分との合計含有量は好ましくは25~85質量%であるが、成分(ニ)の可塑剤成分の含有量は0~65質量%の範囲である。 The photocurable resin composition 2 has a curing shrinkage rate of less than 3% in the main curing step after the temporary curing step described later, so basically it is not essential to contain a plasticizer component. However, in order to impart cushioning properties to the cured resin layer and reduce the cure shrinkage of the photocurable resin composition, a plasticizer component (component (d)) is contained within a range that does not impair the effects of the present invention. can do. Therefore, the total content of the component (a) base component and the component (b) acrylic monomer component in the photocurable resin composition is preferably 25 to 85% by mass. The content of the agent component is in the range of 0 to 65% by mass.

成分(ニ)の可塑剤成分は、紫外線の照射では成分(イ)のベース成分及び成分(ロ)のアクリル系モノマー成分と反応しないものである。このような可塑剤成分は、固体の粘着付与剤(1)と液状オイル成分(2)とを含有する。 The plasticizer component of component (d) does not react with the base component of component (a) and the acrylic monomer component of component (b) when irradiated with ultraviolet rays. Such plasticizer components include a solid tackifier (1) and a liquid oil component (2).

固体の粘着付与剤(1)としては、テルペン樹脂、テルペンフェノール樹脂、水素添加テルペン樹脂等のテルペン系樹脂、天然ロジン、重合ロジン、ロジンエステル、水素添加ロジン等のロジン樹脂、テルペン系水素添加樹脂を挙げることができる。また、前述のアクリル系モノマー成分を予め低分子ポリマー化した非反応性のオリゴマーも使用することができ、具体的には、ブチルアクリレートと2-ヘキシルアクリレートおよびアクリル酸の共重合体やシクロヘキシルアクリレートとメタクリル酸の共重合体等を挙げることができる。 Examples of the solid tackifier (1) include terpene resins such as terpene resins, terpene phenolic resins and hydrogenated terpene resins, rosin resins such as natural rosin, polymerized rosin, rosin ester, hydrogenated rosin, and terpene hydrogenated resins. can be mentioned. In addition, a non-reactive oligomer obtained by polymerizing the above-mentioned acrylic monomer component into a low-molecular-weight polymer in advance can also be used. Copolymers of methacrylic acid and the like can be mentioned.

液状オイル成分(2)としては、ポリプタジエン系オイル、又はポリイソプレン系オイル等を含有することができる。 The liquid oil component (2) may contain polybutadiene-based oil, polyisoprene-based oil, or the like.

<工程(B):仮硬化工程>
次に、図2Aに示すように、塗布された光硬化性樹脂組成物2に対し紫外線UVを照射して仮硬化させ、光透過性カバー部材1の凹部面1aに(通常、その中央部に)光硬化性樹脂組成物2の硬化収縮に基づく微少凹み5a(例えば、図2BではX字状の凹みであるが、ライン状等の他の形状の凹みでもよい)を有する仮硬化樹脂層5を形成させる。微少凹み5aにおける“微少”とは、仮硬化収縮による体積変動量を意味している。ここで、仮硬化させるのは、光硬化性樹脂組成物2を流動しない状態にして取り扱い性を向上させるためである。このような仮硬化のレベルは、仮硬化樹脂層5の硬化率(ゲル分率)が好ましくは10~90%、より好ましくは40~90%となるようなレベルである。また、硬化率(ゲル分率)とは、紫外線照射前の光硬化性樹脂組成物2中の(メタ)アクリロイル基の存在量に対する紫外線照射後の(メタ)アクリロイル基の存在量の割合(消費量割合)と定義される数値であり、この数値が大きい程、硬化が進行していることを示す。
<Step (B): Temporary curing step>
Next, as shown in FIG. 2A, the applied photocurable resin composition 2 is irradiated with ultraviolet light UV to be temporarily cured, and is applied to the concave surface 1a of the light-transmitting cover member 1 (usually, in the central portion thereof). ) Temporarily cured resin layer 5 having minute recesses 5a based on curing shrinkage of the photocurable resin composition 2 (for example, although the recesses are X-shaped in FIG. 2B, recesses of other shapes such as lines may be used) form. "Very small" in the minute dents 5a means the amount of volume change due to temporary hardening shrinkage. Here, the reason why the photocurable resin composition 2 is temporarily cured is to make the photocurable resin composition 2 in a non-fluid state so as to improve the handleability. The level of such temporary curing is such that the curing rate (gel fraction) of the temporary cured resin layer 5 is preferably 10 to 90%, more preferably 40 to 90%. Further, the curing rate (gel fraction) is the ratio of the amount of (meth)acryloyl groups present after UV irradiation to the amount of (meth)acryloyl groups present in the photocurable resin composition 2 before UV irradiation (consumption Amount ratio), and the larger the value, the more the curing progresses.

なお、硬化率(ゲル分率)は、紫外線照射前の樹脂組成物層のFT-IR測定チャートにおけるベースラインからの1640~1620cm-1の吸収ピーク高さ(X)と、紫外線照射後の樹脂組成物層のFT-IR測定チャートにおけるベースラインからの1640~1620cm-1の吸収ピーク高さ(Y)とを、以下の数式に代入することにより算出することができる。 The curing rate (gel fraction) is the absorption peak height (X) from 1640 to 1620 cm -1 from the baseline in the FT-IR measurement chart of the resin composition layer before UV irradiation, and the resin after UV irradiation. It can be calculated by substituting the absorption peak height (Y) at 1640 to 1620 cm −1 from the baseline in the FT-IR measurement chart of the composition layer into the following formula.

Figure 2022130683000003
Figure 2022130683000003

紫外線の照射に関し、硬化率(ゲル分率)が好ましくは10~80%となるように仮硬化させることができる限り、光源の種類、出力、累積光量などは特に制限はなく、公知の紫外線照射による(メタ)アクリレートの光ラジカル重合プロセス条件を採用することができる。 With respect to ultraviolet irradiation, as long as temporary curing can be performed so that the curing rate (gel fraction) is preferably 10 to 80%, the type of light source, output, cumulative light amount, etc. are not particularly limited, and known ultraviolet irradiation. can adopt the photoradical polymerization process conditions of (meth)acrylates according to.

また、紫外線照射条件に関し、上述の硬化率の範囲内において、後述する工程(C)の貼り合わせ操作の際、仮硬化樹脂層5の液だれや変形が生じないような条件を選択することが好ましい。そのような液だれや変形が生じないような条件を粘度で表現すると、20Pa・S以上(コーンプレートレオメーター、25℃、コーン及びプレートC35/2、回転数10rpm)となる。 In addition, regarding the ultraviolet irradiation conditions, it is possible to select conditions that do not cause dripping or deformation of the temporarily cured resin layer 5 during the bonding operation in the step (C) described later, within the above-described curing rate range. preferable. Expressing the conditions under which such dripping and deformation do not occur in terms of viscosity is 20 Pa·S or more (cone and plate rheometer, 25° C., cone and plate C35/2, rotation speed 10 rpm).

仮硬化における硬化のレベルは、後述する本硬化工程において仮硬化樹脂層5から硬化樹脂層への間で生ずる硬化収縮率が3%未満となるように、硬化させるものである。即ち、全硬化収縮率が5%である光硬化性樹脂組成物2の場合には、仮硬化の際に少なくとも2%ほど仮硬化収縮させておくことになる。 The level of hardening in the temporary hardening is such that the hardening shrinkage rate between the temporary hardened resin layer 5 and the hardened resin layer is less than 3% in the main hardening step described later. That is, in the case of the photocurable resin composition 2 having a total curing shrinkage rate of 5%, the temporary curing shrinkage is at least 2% at the time of temporary curing.

なお、工程(A)で内側ダム材3や外側ダム材4を設けた場合、工程(B)の後、工程(C)の前で、内側ダム材3又は外側ダム材4を除去することが好ましい。既に光硬化性樹脂組成物2が仮硬化しており、樹脂流動が生じないからである。 When the inner dam material 3 and the outer dam material 4 are provided in the process (A), the inner dam material 3 or the outer dam material 4 may be removed after the process (B) and before the process (C). preferable. This is because the photocurable resin composition 2 has already been temporarily cured, and resin flow does not occur.

<工程(C):光硬化性樹脂組成物の再充填>
次に、仮硬化樹脂層5の微少凹み5aに対応する量の光硬化性樹脂組成物2を、仮硬化樹脂層5(図3A)又は通常フラットな画像表示部材6(図3B)に塗布する。ここで、微少凹み5aに対応する量は、微少表面形状計測装置(例えば、3D測定レーザー顕微鏡(OLS4000シリーズ)、(株)島津製作所)を使用して微少凹部5aの凹部形状を計測することにより算出することができる。あるいは光硬化性樹脂組成物の仮硬化収縮率と使用量(体積)とにより決定することもできる。
<Step (C): Refilling of photocurable resin composition>
Next, an amount of the photocurable resin composition 2 corresponding to the minute recesses 5a of the temporary cured resin layer 5 is applied to the temporary cured resin layer 5 (FIG. 3A) or the normally flat image display member 6 (FIG. 3B). . Here, the amount corresponding to the minute recesses 5a is obtained by measuring the recess shape of the minute recesses 5a using a minute surface shape measuring device (eg, 3D measuring laser microscope (OLS4000 series), Shimadzu Corporation). can be calculated. Alternatively, it can be determined by the temporary curing shrinkage rate and the amount (volume) of the photocurable resin composition.

また、本工程で使用する光硬化性樹脂組成物2は、屈折率の観点から、工程(A)で使用した光硬化性樹脂組成物2と同じのものを使用することが好ましいが、屈折率が略同一であれば異なる組成の光硬化性樹脂組成物を使用してもよい。また、光硬化性樹脂組成物の塗布は、従来公知の手法により微少凹み5aに光硬化性樹脂組成物2が充填されるように行うことが好ましい。例えば、光硬化性樹脂組成物2を仮硬化樹脂層5又は画像表示部材6に塗布する場合、微少凹部5aを埋めるようにライン状(図3A、3B)、X字状、あるいは中央部にドット状に塗布すればよい。 In addition, the photocurable resin composition 2 used in this step is preferably the same as the photocurable resin composition 2 used in step (A) from the viewpoint of the refractive index, but the refractive index are substantially the same, photocurable resin compositions having different compositions may be used. Further, the application of the photocurable resin composition is preferably carried out by a conventionally known technique so that the fine recesses 5a are filled with the photocurable resin composition 2 . For example, when the photocurable resin composition 2 is applied to the temporary curing resin layer 5 or the image display member 6, a line shape (FIGS. 3A and 3B), an X shape, or a dot in the center so as to fill the minute concave portion 5a It should be applied in a shape.

なお、光硬化性樹脂組成物2の塗布位置が、微少凹部5aからズレた場合であっても、塗布された光硬化性樹脂組成物2を仮硬化させずに流動性を保持したまま真空貼合を行うため、光硬化性樹脂組成物2を微少凹部5aへ適正に移動させることができる。 In addition, even if the application position of the photocurable resin composition 2 is displaced from the minute concave portion 5a, the applied photocurable resin composition 2 is vacuum-bonded while maintaining fluidity without being temporarily cured. As a result, the photocurable resin composition 2 can be appropriately moved to the minute recesses 5a.

画像表示部材6としては、液晶表示パネル、有機EL表示パネル、プラズマ表示パネル、タッチパネル等を挙げることができる。ここで、タッチパネルとは、液晶表示パネルのような表示素子とタッチパッドのような位置入力装置を組み合わせた画像表示・入力パネルを意味する。 Examples of the image display member 6 include a liquid crystal display panel, an organic EL display panel, a plasma display panel, a touch panel, and the like. Here, the touch panel means an image display/input panel in which a display element such as a liquid crystal display panel and a position input device such as a touch pad are combined.

なお、先に説明した工程(B)及び本工程(C)の好ましい態様として、工程(B)において、光透過性カバー部材の凹部面の少なくとも中央部に微小凹みを発生させると共に、工程(C)において微小凹み体積の70%以上に相当する光硬化性樹脂組成物を、対応する仮硬化樹脂層又は画像表示部材に塗布する態様が挙げられる。 As a preferred embodiment of the step (B) and the present step (C) described above, in the step (B), at least the central portion of the recessed surface of the light-transmitting cover member is formed with minute recesses, and the step (C) ), the photocurable resin composition corresponding to 70% or more of the volume of the microrecesses is applied to the corresponding temporary cured resin layer or image display member.

<工程(D):積層工程>
続いて、画像表示部材6と光透過性カバー部材1とを、仮硬化樹脂層5を介して積層する(図4)。積層は、公知の圧着装置を用いて、10℃~80℃で加圧することにより行うことができるが、仮硬化樹脂層5と画像表示部材6又は光透過性カバー部材1との間に気泡が入らないようにするために、いわゆる真空貼合法で積層を行うことが好ましい。
<Step (D): Lamination step>
Subsequently, the image display member 6 and the light transmissive cover member 1 are laminated via the temporary hardening resin layer 5 (FIG. 4). Lamination can be performed by applying pressure at 10° C. to 80° C. using a known crimping device. It is preferable to perform lamination by a so-called vacuum lamination method in order to prevent entrapment.

なお、工程(D)の後、工程(E)の前に、積層物に公知の加圧脱泡処理(処理条件例:0.2~0.8MPa、25~60℃、5~20min)を行うことが好ましい。 After the step (D) and before the step (E), the laminate is subjected to a known pressure defoaming treatment (treatment condition example: 0.2 to 0.8 MPa, 25 to 60 ° C., 5 to 20 min). preferably.

<工程(E):本硬化工程)>
続いて、画像表示部材6と光透過性カバー部材1との間に挟持されている仮硬化樹脂層5に紫外線UVを照射して本硬化させることにより光透過性硬化樹脂層7を形成する(図5)。これにより、目的の画像表示装置が得られる。なお、本工程において本硬化させるのは、仮硬化樹脂層5を十分に硬化させて、画像表示部材6と光透過性カバー部材1とを接着し積層するためである。このような本硬化のレベルは、光透過性硬化樹脂層7の硬化率(ゲル分率)が好ましくは90%以上、より好ましくは95%以上となるようなレベルである。
<Step (E): main curing step)>
Subsequently, the temporarily cured resin layer 5 sandwiched between the image display member 6 and the light-transmitting cover member 1 is irradiated with UV rays to be fully cured, thereby forming the light-transmitting cured resin layer 7 ( Figure 5). As a result, the desired image display device is obtained. The main curing in this step is to sufficiently cure the temporarily cured resin layer 5 to adhere and laminate the image display member 6 and the light-transmissive cover member 1 . Such a main curing level is such that the curing rate (gel fraction) of the light-transmitting cured resin layer 7 is preferably 90% or more, more preferably 95% or more.

なお、光透過性硬化樹脂層7の光透過性のレベルは、画像表示部材6に形成された画像が視認可能となるような光透過性であればよい。 The light transmittance level of the light transmittance cured resin layer 7 may be such that an image formed on the image display member 6 can be visually recognized.

以下、本発明を実施例により具体的に説明する。なお、以下の実施例において、光硬化性樹脂組成物の全硬化収縮率、仮硬化収縮率、本硬化収縮率は、光硬化性樹脂組成物の比重、仮硬化物、完全硬化物のそれぞれの比重を電子比重計(アルファーミラージュ(株)製SD-120L)を用いて測定し、それらの測定結果を次式に当て嵌めて算出した。 EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples. In the following examples, the total curing shrinkage rate, temporary curing shrinkage rate, and main curing shrinkage rate of the photocurable resin composition are the specific gravity of the photocurable resin composition, the temporary cured product, and the completely cured product. The specific gravity was measured using an electronic hydrometer (SD-120L, manufactured by Alpha Mirage Co., Ltd.), and the measurement results were applied to the following formula for calculation.

Figure 2022130683000004
Figure 2022130683000004

比較例1
(工程(A):塗布工程))
まず、45(w)×80(l)×3(t)mmのサイズの透明樹脂板(ポリエチレンテレフタレート板)を用意し、幅方向に曲率半径(r)が300mmとなるように公知の手法で湾曲させ、湾曲した横樋形状の光透過性カバー部材として樹脂カバー(図1A)を得た。
Comparative example 1
(Step (A): coating step))
First, a transparent resin plate (polyethylene terephthalate plate) having a size of 45 (w) × 80 (l) × 3 (t) mm was prepared, and the radius of curvature (r) in the width direction was adjusted to 300 mm by a known method. A resin cover (FIG. 1A) was obtained as a curved lateral gutter-shaped light-transmitting cover member.

別途、ポリブタジエンの骨格を持つ(メタ)アクリル系オリゴマー(TE-2000、日本曹達(株))50質量部、ヒドロキシエチルメタクリレート20質量部、光重合開始剤10質量部(Irgacure184、BASFジャパン(株)社製を3質量部、SpeedCure TPO、DKSHジャパン(株)製を7質量部)を均一に混合して光硬化性樹脂組成物を調製した。この光硬化性樹脂組成物は、硬化率0%から90%までの間で、5.6%の全硬化収縮率を示すものであった。 Separately, (meth)acrylic oligomer having a polybutadiene skeleton (TE-2000, Nippon Soda Co., Ltd.) 50 parts by weight, hydroxyethyl methacrylate 20 parts by weight, photopolymerization initiator 10 parts by weight (Irgacure 184, BASF Japan Co., Ltd.) and 7 parts by mass of SpeedCure TPO (manufactured by DKSH Japan Co., Ltd.) were uniformly mixed to prepare a photocurable resin composition. This photocurable resin composition exhibited a total cure shrinkage of 5.6% at a cure rate of 0% to 90%.

次に、横樋形状の樹脂カバーの両端を、外側ダム材としてシリコーンラバーシート2枚で挟み込んだ(図1G)。この樹脂カバーの凹部に、調製した光硬化性樹脂組成物を、樹脂用ディスペンサーを用いて、中央部での厚さが880μm厚となるように吐出し光硬化性樹脂組成物膜を形成した。 Next, both ends of the lateral gutter-shaped resin cover were sandwiched between two silicone rubber sheets as outer dam materials (FIG. 1G). A photocurable resin composition film was formed by discharging the prepared photocurable resin composition into the concave portion of the resin cover using a resin dispenser so that the thickness at the central portion was 880 μm.

(工程(B):仮硬化工程)
次に、この光硬化性樹脂組成物膜に対して、紫外線照射装置(LC-8、浜松ホトニクス(株))を使って、積算光量が1200mJ/cmとなるように、200mW/cm強度の紫外線を6秒照射することにより光硬化性樹脂組成物膜を仮硬化させて仮硬化樹脂層を形成し、更に外側ダム材を除去した。仮硬化の際に、仮硬化樹脂層の中央部に微少凹部が形成されていることが観察できた(図2B)。なお、仮硬化収縮率は3.8%であった。
(Step (B): Temporary curing step)
Next, the photocurable resin composition film was irradiated with an ultraviolet irradiation device (LC-8, Hamamatsu Photonics Co., Ltd.) with an intensity of 200 mW/cm 2 so that the integrated amount of light was 1200 mJ/cm 2 . was irradiated with UV rays for 6 seconds to temporarily cure the photocurable resin composition film to form a temporarily cured resin layer, and then the outer dam material was removed. During temporary curing, it was observed that a minute concave portion was formed in the central portion of the temporarily cured resin layer (Fig. 2B). The temporary curing shrinkage rate was 3.8%.

なお、仮硬化樹脂層の硬化率は、FT-IR測定チャートにおけるベースラインからの1640~1620cm-1の吸収ピーク高さを指標として求めたところ、約70%であった。 The curing rate of the temporarily cured resin layer was about 70% when the absorption peak height at 1640 to 1620 cm −1 from the baseline in the FT-IR measurement chart was used as an indicator.

(工程(D):積層工程)
次に、40(W)×80(L)mmのサイズのフラットな液晶表示素子の偏光板が積層された面に、工程(B)で得た光透過性カバー部材をその仮硬化樹脂層側が偏光板側となるように載置し、樹脂カバー側から真空貼合機(真空度50Pa、貼合圧0.07MPa、貼合時間3秒、常温)で貼り付けた(図4)。
(Step (D): Lamination step)
Next, the light-transmitting cover member obtained in the step (B) was placed on the surface of the flat liquid crystal display element having a size of 40 (W) × 80 (L) mm on which the polarizing plates were laminated. It was placed so as to face the polarizing plate, and was bonded from the resin cover side by a vacuum bonding machine (degree of vacuum: 50 Pa, bonding pressure: 0.07 MPa, bonding time: 3 seconds, room temperature) (Fig. 4).

(工程(E):本硬化工程)
次に、この液晶表示素子に対し、樹脂カバー側から、紫外線照射装置(ECS-03601EG、アイグラフィックス(株))を使って紫外線(200mW/cm)を3000mJ/cmで照射することにより仮硬化樹脂層を完全に硬化させ、光透過性硬化樹脂層を形成した。光透過性硬化樹脂層の硬化率は98%であった。これにより、液晶表示素子に、光透過性カバー部材として湾曲した樹脂カバーが光透過性硬化樹脂層を介して積層された液晶表示装置が得られた。また、本硬化収縮率は1.8%であった。
(Step (E): main curing step)
Next, this liquid crystal display element is irradiated with ultraviolet rays (200 mW/cm 2 ) at 3000 mJ/cm 2 from the resin cover side using an ultraviolet irradiation device (ECS-03601EG, Eye Graphics Co., Ltd.). The temporarily cured resin layer was completely cured to form a light-transmitting cured resin layer. The curing rate of the light-transmitting cured resin layer was 98%. As a result, a liquid crystal display device was obtained in which a curved resin cover as a light-transmitting cover member was laminated on the liquid crystal display element via a light-transmitting cured resin layer. Moreover, the main cure shrinkage rate was 1.8%.

得られた液晶表示装置について、空隙の発生の有無を樹脂カバー側から目視観察したところ、光透過性硬化樹脂層と液晶表示素子との界面の略中央部に気泡状の空隙が生じていた。 When the presence or absence of voids in the obtained liquid crystal display device was visually observed from the side of the resin cover, it was found that a bubble-like void was generated in the substantially central portion of the interface between the light-transmitting cured resin layer and the liquid crystal display element.

比較例2
光硬化性樹脂組成物として、ポリイソプレンの骨格を持つ(メタ)アクリレート系オリゴマー(UC203、(株)クラレ)40質量部、ジシクロペンテニルオキシエチルメタクリレート(FA512M、日立化成(株))20質量部、ヒドロキシプロピルメタクリレート(HPMA、日本化成(株))3質量部、テトラヒドロフルフリルアクリレート(ライトエステルTHF、共栄社化学(株))15質量部、ラウリルアクリレート(ライトエステルL、共栄社化学(株))、ポリブタジエン重合体(Polyoil110、エボニック・ジャパン(株))20質量部、水添テルペン樹脂(P85、ヤスハラケミカル(株))45質量部、光重合開始剤(Irgacure184、BASFジャパン(株))4質量部を均一に配合して調製した光硬化性樹脂組成物(硬化率0%から90%までの間で、3.4%の全硬化収縮率を示す)を使用すること以外、比較例1と同様の操作で液晶表示装置を得た。
Comparative example 2
As the photocurable resin composition, (meth)acrylate oligomer having a polyisoprene skeleton (UC203, Kuraray Co., Ltd.) 40 parts by mass, dicyclopentenyloxyethyl methacrylate (FA512M, Hitachi Chemical Co., Ltd.) 20 parts by mass , hydroxypropyl methacrylate (HPMA, Nippon Kasei Co., Ltd.) 3 parts by mass, tetrahydrofurfuryl acrylate (Light Ester THF, Kyoeisha Chemical Co., Ltd.) 15 parts by mass, lauryl acrylate (Light Ester L, Kyoeisha Chemical Co., Ltd.), Polybutadiene polymer (Polyoil 110, Evonik Japan Co., Ltd.) 20 parts by mass, hydrogenated terpene resin (P85, Yasuhara Chemical Co., Ltd.) 45 parts by mass, photopolymerization initiator (Irgacure 184, BASF Japan Co., Ltd.) 4 parts by mass The same as in Comparative Example 1 except that a photocurable resin composition prepared by uniformly blending (curing rate between 0% and 90%, showing a total cure shrinkage of 3.4%) is used. A liquid crystal display device was obtained by the operation.

得られた液晶表示装置について、空隙の発生の有無を樹脂カバー側から目視観察したところ、液晶表示装置(偏光板)と光透過性硬化樹脂層との界面には空隙は観察されなかったが、表示操作を行ったところ、樹脂カバーの中央の表示に色ムラが観察された。なお、仮硬化収縮率は3.1%であり、本硬化収縮率は0.3%であった。 When the presence or absence of voids in the resulting liquid crystal display device was visually observed from the resin cover side, no voids were observed at the interface between the liquid crystal display device (polarizing plate) and the light-transmitting cured resin layer. When the display operation was performed, color unevenness was observed in the display at the center of the resin cover. The temporary curing shrinkage rate was 3.1%, and the final curing shrinkage rate was 0.3%.

比較例3
光硬化性樹脂組成物として、光ラジカル重合性ポリ(メタ)アクリレートとしてポリイソプレンメタクリレート(UC102、(株)クラレ)6質量部、反応性希釈剤としてジシクロペンテニルオキシエチルメタクリレート15質量部とラウリルメタクリレート5質量部、可塑剤としてポリブタジエン(Polyvest110、エボニック・ジャパン(株))20質量部、光重合開始剤(Irgacure184、BASFジャパン(株))1質量部、及び粘着付与剤として水素添加テルペン樹脂(クリアロンM105、ヤスハラケミカル(株))53質量部を均一に配合して調製した光硬化性樹脂組成物(硬化率0%から90%までの間で、2.6%の全硬化収縮率を示す)を使用すること以外、比較例1と同様の操作で液晶表示装置を得た。
Comparative example 3
As a photocurable resin composition, 6 parts by mass of polyisoprene methacrylate (UC102, Kuraray Co., Ltd.) as a photoradical polymerizable poly(meth)acrylate, 15 parts by mass of dicyclopentenyloxyethyl methacrylate and lauryl methacrylate as reactive diluents 5 parts by mass, 20 parts by mass of polybutadiene (Polyvest 110, Evonik Japan Co., Ltd.) as a plasticizer, 1 part by mass of a photopolymerization initiator (Irgacure 184, BASF Japan Co., Ltd.), and a hydrogenated terpene resin (Clearon A photocurable resin composition prepared by uniformly blending 53 parts by mass of M105 and Yasuhara Chemical Co., Ltd. (hardening rate between 0% and 90%, showing a total curing shrinkage rate of 2.6%). A liquid crystal display device was obtained in the same manner as in Comparative Example 1, except that it was used.

得られた液晶表示装置について、空隙の発生の有無を樹脂カバー側から目視観察したところ、液晶表示装置(偏光板)と光透過性硬化樹脂層との界面には空隙は観察されなかったが、表示操作を行ったところ、樹脂カバーの中央の表示に色ムラが観察された。なお、仮硬化収縮率は2.2%であり、本硬化収縮率は0.4%であった。 When the presence or absence of voids in the resulting liquid crystal display device was visually observed from the resin cover side, no voids were observed at the interface between the liquid crystal display device (polarizing plate) and the light-transmitting cured resin layer. When the display operation was performed, color unevenness was observed in the display at the center of the resin cover. The temporary curing shrinkage rate was 2.2%, and the final curing shrinkage rate was 0.4%.

実施例1
比較例1における工程(B)と工程(D)との間で、工程(C)として、仮硬化樹脂層の微少凹みに対応する量の光硬化性樹脂組成物(比較例1の工程(A)で使用したものと同じ組成物)を、比較例1でも使用した樹脂用ディスペンサーを使用し、仮硬化樹脂層の中央部にライン状に塗布したこと以外は、比較例1と同様の操作により液晶表示装置を得た。なお、光硬化性樹脂組成物の仮硬化樹脂層の微少凹みに対応する量は光硬化性樹脂組成物の使用量(体積)と仮硬化収縮率により測定し、その量は0.91ccであった。
Example 1
Between the step (B) and the step (D) in Comparative Example 1, as the step (C), an amount of the photocurable resin composition corresponding to the minute recesses of the temporary cured resin layer (step (A ) The same composition as used in Comparative Example 1) was applied in a line to the central part of the temporarily cured resin layer using the resin dispenser used in Comparative Example 1. By the same operation as in Comparative Example 1. A liquid crystal display was obtained. The amount of the photocurable resin composition corresponding to the minute dents in the temporary cured resin layer was measured by the amount (volume) of the photocurable resin composition used and the temporary curing shrinkage rate, and the amount was 0.91 cc. rice field.

得られた液晶表示装置について、空隙の発生の有無を樹脂カバー側から目視観察したところ、樹脂カバーと光透過性硬化樹脂層との界面には空隙は観察されなかった。また、表示操作を行ったところ、樹脂カバーの中央の表示に色ムラが観察されなかった。なお、仮硬化収縮率は3.8%であり、本硬化収縮率は1.8%であった。 When the presence or absence of voids in the resulting liquid crystal display device was visually observed from the resin cover side, no voids were observed at the interface between the resin cover and the light-transmitting cured resin layer. Further, when the display operation was performed, no color unevenness was observed in the display at the center of the resin cover. The temporary curing shrinkage rate was 3.8%, and the final curing shrinkage rate was 1.8%.

実施例2
比較例1における工程(B)と工程(D)との間で、工程(C)として、仮硬化樹脂層の微少凹みに対応する量の光硬化性樹脂組成物(比較例1の工程(A)で使用したものと同じ組成物)を、比較例1でも使用した樹脂用ディスペンサーを使用し、仮硬化樹脂層の中央部にライン状に塗布したこと以外は、比較例1と同様の操作により液晶表示装置を得た。なお、光硬化性樹脂組成物の仮硬化樹脂層の微少凹みに対応する量は、光硬化性樹脂組成物の使用量(体積)と仮硬化収縮率により測定したところ0.91ccであったが、その約70%に該当する0.64ccの光硬化性樹脂組成物を塗布した。
Example 2
Between the step (B) and the step (D) in Comparative Example 1, as the step (C), an amount of the photocurable resin composition corresponding to the minute recesses of the temporary cured resin layer (step (A ) The same composition as used in Comparative Example 1) was applied in a line to the central part of the temporarily cured resin layer using the resin dispenser used in Comparative Example 1. By the same operation as in Comparative Example 1. A liquid crystal display was obtained. The amount of the photocurable resin composition corresponding to the minute dents in the temporary cured resin layer was 0.91 cc when measured from the amount (volume) of the photocurable resin composition used and the temporary curing shrinkage rate. , 0.64 cc of the photocurable resin composition corresponding to about 70% thereof was applied.

得られた液晶表示装置について、空隙の発生の有無を樹脂カバー側から目視観察したところ、樹脂カバーと光透過性硬化樹脂層との界面には空隙は、ほとんど観察されなかった。また、表示操作を行ったところ、樹脂カバーの中央の表示に色ムラが観察されなかった。なお、仮硬化収縮率は3.8%であり、本硬化収縮率は1.8%であった。 When the presence or absence of voids in the resulting liquid crystal display device was visually observed from the resin cover side, almost no voids were observed at the interface between the resin cover and the light-transmitting cured resin layer. Further, when the display operation was performed, no color unevenness was observed in the display at the center of the resin cover. The temporary curing shrinkage rate was 3.8%, and the final curing shrinkage rate was 1.8%.

実施例3
比較例2における工程(B)と工程(D)との間で、工程(C)として、仮硬化樹脂層の微少凹みに対応する量の光硬化性樹脂組成物(比較例1の工程(A)で使用したものと同じ組成物)を、比較例1でも使用した樹脂用ディスペンサーを使用し、仮硬化樹脂層の中央部にライン状に塗布したこと以外は、比較例1と同様の操作により液晶表示装置を得た。なお、光硬化性樹脂組成物の仮硬化樹脂層の微少凹みに対応する量は光硬化性樹脂組成物の使用量(体積)と仮硬化収縮率により測定し、その量は約0.74ccであった。
Example 3
Between the step (B) and the step (D) in Comparative Example 2, as the step (C), an amount of the photocurable resin composition corresponding to the minute recesses of the temporary cured resin layer (the step (A ) The same composition as used in Comparative Example 1) was applied in a line to the central part of the temporarily cured resin layer using the resin dispenser used in Comparative Example 1. By the same operation as in Comparative Example 1. A liquid crystal display was obtained. The amount of the photocurable resin composition corresponding to the minute dents in the temporary cured resin layer is measured by the amount (volume) of the photocurable resin composition used and the temporary curing shrinkage rate, and the amount is about 0.74 cc. there were.

得られた液晶表示装置について、空隙の発生の有無を樹脂カバー側から目視観察したところ、樹脂カバーと光透過性硬化樹脂層との界面には空隙は観察されなかった。また、表示操作を行ったところ、樹脂カバーの中央の表示に色ムラが観察されなかった。なお、仮硬化収縮率は3.1%であり、本硬化収縮率は0.3%であった。 When the presence or absence of voids in the resulting liquid crystal display device was visually observed from the resin cover side, no voids were observed at the interface between the resin cover and the light-transmitting cured resin layer. Further, when the display operation was performed, no color unevenness was observed in the display at the center of the resin cover. The temporary curing shrinkage rate was 3.1%, and the final curing shrinkage rate was 0.3%.

実施例4
比較例3における工程(B)と工程(D)との間で、工程(C)として、仮硬化樹脂層の微少凹みに対応する量の光硬化性樹脂組成物(比較例1の工程(A)で使用したものと同じ組成物)を、比較例1でも使用した樹脂用ディスペンサーを使用し、仮硬化樹脂層の中央部にライン状に対応する箇所の液晶表示素子側に塗布したこと以外は、比較例1と同様の操作により液晶表示装置を得た。なお、光硬化性樹脂組成物の仮硬化樹脂層の微少凹みに対応する量は、光硬化性樹脂組成物の使用量(体積)と仮硬化収縮率により測定し、その量は0.53ccであった。
Example 4
Between the step (B) and the step (D) in Comparative Example 3, as the step (C), an amount of the photocurable resin composition corresponding to the minute recesses of the temporary cured resin layer (step (A ) The same composition as used in Comparative Example 1), using the resin dispenser used in Comparative Example 1, except that it was applied to the liquid crystal display element side of the location corresponding to the line in the central part of the temporary cured resin layer. A liquid crystal display device was obtained by the same operation as in Comparative Example 1. The amount of the photocurable resin composition corresponding to the minute dents in the temporary cured resin layer is measured by the amount (volume) of the photocurable resin composition used and the temporary curing shrinkage rate, and the amount is 0.53 cc. there were.

得られた液晶表示装置について、空隙の発生の有無を樹脂カバー側から目視観察したところ、樹脂カバーと光透過性硬化樹脂層との界面には空隙は観察されなかった。また、表示操作を行ったところ、樹脂カバーの中央の表示に色ムラが観察されなかった。なお、仮硬化収縮率は2.2%であり、本硬化収縮率は0.4%であった。 When the presence or absence of voids in the resulting liquid crystal display device was visually observed from the resin cover side, no voids were observed at the interface between the resin cover and the light-transmitting cured resin layer. Further, when the display operation was performed, no color unevenness was observed in the display at the center of the resin cover. The temporary curing shrinkage rate was 2.2%, and the final curing shrinkage rate was 0.4%.

本発明の画像表示装置の製造方法は、湾曲した透過性カバー部材の凹部面に光硬化性樹脂組成物を塗布し、仮硬化処理した後、硬化収縮により生じた仮硬化樹脂層の中央部の凹みに新たに光硬化性樹脂組成物を塗布し、画像表示部材を積層し、本硬化処理を行う。このため、画像表示装置の表示面に空隙が生じないようにでき、また、光硬化樹脂層の残留応力を低減させて表示の色ムラが生じないようにできる。従って、本発明の製造方法は、タッチパネルを備えた車載用情報端末の工業的製造に有用である。 In the method for manufacturing an image display device of the present invention, a photocurable resin composition is applied to the recessed surface of a curved transparent cover member, and after temporary curing treatment, the central portion of the temporary cured resin layer caused by curing shrinkage. A new photocurable resin composition is applied to the recesses, an image display member is laminated, and main curing treatment is performed. Therefore, it is possible to prevent the generation of voids on the display surface of the image display device, and to reduce the residual stress of the photocurable resin layer, thereby preventing the occurrence of color unevenness in the display. Therefore, the production method of the present invention is useful for industrial production of an in-vehicle information terminal equipped with a touch panel.

1 光透過性カバー部材
1a 光透過性カバー部材の凹部面
1x、1y 両端部
2 光硬化性樹脂組成物
3 内側ダム材
4 外側ダム材
5 仮硬化樹脂層
5a 微少凹み
6 画像表示部材
7 光透過性硬化樹脂層
D ディスペンサー
REFERENCE SIGNS LIST 1 light-transmitting cover member 1a recessed surface of light-transmitting cover member 1x, 1y both ends 2 photocurable resin composition 3 inner dam member 4 outer dam member 5 temporary cured resin layer 5a minute recess 6 image display member 7 light transmission curable resin layer D dispenser

Claims (11)

画像表示部材と湾曲した光透過性カバー部材とが、光硬化樹脂層を介して積層されている画像表示装置の製造方法において、
以下の工程(A)~(D):
<工程(A)>
光硬化性樹脂組成物を、湾曲した光透過性カバー部材の凹部面に塗布する工程;
<工程(B)>
塗布された光硬化性樹脂組成物に対し紫外線を照射して仮硬化させ、凹部面に光硬化性樹脂組成物の硬化収縮に基づく微少凹みを有する仮硬化樹脂層を形成する工程;
<工程(C)>
仮硬化樹脂層の微少凹みに対応する量の光硬化性樹脂組成物を、仮硬化樹脂層又は画像表示部材に塗布する工程;
<工程(D)>
画像表示部材と光透過性カバー部材とを、仮硬化樹脂層を介して積層する工程; 及び
<工程(E)>
画像表示部材と光透過性カバー部材との間に挟持されている仮硬化樹脂層に紫外線を照射して本硬化させることにより光透過性硬化樹脂層を形成する工程;
を有する製造方法。
In a method for manufacturing an image display device in which an image display member and a curved light-transmitting cover member are laminated via a photocurable resin layer,
The following steps (A)-(D):
<Step (A)>
applying a photocurable resin composition to the recessed surface of the curved light-transmitting cover member;
<Step (B)>
A step of irradiating the applied photocurable resin composition with ultraviolet rays to temporarily cure it, and forming a temporary cured resin layer having minute recesses based on curing shrinkage of the photocurable resin composition on the concave surface;
<Step (C)>
A step of applying a photocurable resin composition in an amount corresponding to the minute recesses of the temporary cured resin layer to the temporary cured resin layer or the image display member;
<Step (D)>
A step of laminating an image display member and a light-transmitting cover member with a temporary cured resin layer interposed therebetween; and <Step (E)>
A step of forming a light-transmitting cured resin layer by irradiating the temporarily-cured resin layer sandwiched between the image display member and the light-transmitting cover member with ultraviolet rays for full curing;
A manufacturing method having
工程(A)で使用する光透過性カバー部材が、横樋形状を有する請求項1記載の製造方法。 2. The manufacturing method according to claim 1, wherein the light-transmitting cover member used in step (A) has a lateral gutter shape. 工程(B)において、光透過性カバー部材の凹部面の少なくとも中央部に微小凹みを発生させると共に、工程(C)において微小凹み体積の70%以上に相当する光硬化性樹脂組成物を、対応する仮硬化樹脂層又は画像表示部材に塗布する請求項1又は2記載の製造方法。 In the step (B), micro-recesses are generated at least in the central portion of the recessed surface of the light-transmitting cover member, and in the step (C), the photocurable resin composition corresponding to 70% or more of the volume of the micro-recesses is applied. 3. The manufacturing method according to claim 1 or 2, wherein the temporary curing resin layer or the image display member is coated. 光透過性カバー部材の横樋形状の両端部の内側又は外側に、それぞれ光硬化性樹脂組成物の塗布領域を画する内側ダム材又は外側ダム材が設けられている請求項2又は3記載の製造方法。 4. The manufacture according to claim 2 or 3, wherein an inner dam member or an outer dam member is provided on the inside or outside of both lateral gutter-shaped end portions of the light-transmitting cover member, respectively, to define the application area of the photocurable resin composition. Method. 工程(B)と工程(C)との間で、内側ダム材又は外側ダム材を除去する請求項4記載の製造方法。 5. The manufacturing method according to claim 4, wherein the inner dam material or the outer dam material is removed between step (B) and step (C). 工程(D)の積層を、真空貼合法で行う請求項1~5のいずれかに記載の製造方法。 The manufacturing method according to any one of claims 1 to 5, wherein the lamination in step (D) is performed by a vacuum bonding method. 工程(D)と工程(E)との間で、加圧脱泡処理を行う請求項1~6のいずれかに記載の製造方法。 The production method according to any one of claims 1 to 6, wherein a pressure defoaming treatment is performed between step (D) and step (E). 画像表示部材が、液晶表示パネル、有機EL表示パネル、プラズマ表示パネル又はタッチパネルである請求項1~7のいずれかに記載の製造方法。 The manufacturing method according to any one of claims 1 to 7, wherein the image display member is a liquid crystal display panel, an organic EL display panel, a plasma display panel or a touch panel. 工程(B)において、仮硬化樹脂層の硬化率が10~90%となるように、光硬化性樹脂組成物に紫外線を照射して仮硬化させる請求項1~8のいずれかに記載の製造方法。 The production according to any one of claims 1 to 8, wherein in the step (B), the photocurable resin composition is temporarily cured by irradiating ultraviolet rays so that the curing rate of the temporary cured resin layer is 10 to 90%. Method. 工程(E)において、光透過性硬化樹脂層の硬化率が90%以上となるように、仮硬化樹脂層に紫外線を照射して本硬化させる請求項1~9のいずれかに記載の製造方法。 10. The production method according to any one of claims 1 to 9, wherein in the step (E), the temporarily cured resin layer is irradiated with ultraviolet rays to be fully cured so that the curing rate of the light-transmitting cured resin layer is 90% or more. . 光硬化性樹脂組成物が、エラストマー及びアクリル系オリゴマーの少なくとも一方と、アクリル系モノマーと、光重合開始剤とを含有する液状の樹脂組成物であって、
エラストマーが、アクリル共重合体、ポリブテン及びポリオレフィンからなる群から選択される少なくとも一種であり、
アクリル系オリゴマーが、ポリウレタン系(メタ)アクリレート、ポリブタジエン系(メタ)アクリレート及びポリイソプレン系(メタ)アクリレートからなる群から選択される少なくとも一種である請求項1~10のいずれかに記載の製造方法。
The photocurable resin composition is a liquid resin composition containing at least one of an elastomer and an acrylic oligomer, an acrylic monomer, and a photopolymerization initiator,
The elastomer is at least one selected from the group consisting of acrylic copolymers, polybutenes and polyolefins,
The production method according to any one of claims 1 to 10, wherein the acrylic oligomer is at least one selected from the group consisting of polyurethane-based (meth)acrylates, polybutadiene-based (meth)acrylates and polyisoprene-based (meth)acrylates. .
JP2022107839A 2017-02-07 2022-07-04 Method for manufacturing an image display device Active JP7376819B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023175398A JP2023175975A (en) 2017-02-07 2023-10-10 Manufacturing method of image display device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017020485 2017-02-07
JP2017020485 2017-02-07
JP2017243534A JP7270336B2 (en) 2017-02-07 2017-12-20 Method for manufacturing image display device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017243534A Division JP7270336B2 (en) 2017-02-07 2017-12-20 Method for manufacturing image display device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023175398A Division JP2023175975A (en) 2017-02-07 2023-10-10 Manufacturing method of image display device

Publications (2)

Publication Number Publication Date
JP2022130683A true JP2022130683A (en) 2022-09-06
JP7376819B2 JP7376819B2 (en) 2023-11-09

Family

ID=63108290

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2017243534A Active JP7270336B2 (en) 2017-02-07 2017-12-20 Method for manufacturing image display device
JP2022107839A Active JP7376819B2 (en) 2017-02-07 2022-07-04 Method for manufacturing an image display device
JP2023175398A Pending JP2023175975A (en) 2017-02-07 2023-10-10 Manufacturing method of image display device

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2017243534A Active JP7270336B2 (en) 2017-02-07 2017-12-20 Method for manufacturing image display device

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023175398A Pending JP2023175975A (en) 2017-02-07 2023-10-10 Manufacturing method of image display device

Country Status (5)

Country Link
JP (3) JP7270336B2 (en)
KR (1) KR102345432B1 (en)
CN (1) CN110199340A (en)
TW (1) TWI750313B (en)
WO (1) WO2018146953A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018155884A (en) * 2017-03-16 2018-10-04 スタンレー電気株式会社 Liquid crystal display
TWI660221B (en) 2018-04-11 2019-05-21 和碩聯合科技股份有限公司 Curved display apparatus and fabricating method thereof
WO2020203960A1 (en) * 2019-04-03 2020-10-08 三菱電機株式会社 Image display device and method for manufacturing image display device
JP7274966B2 (en) * 2019-07-29 2023-05-17 デクセリアルズ株式会社 Optical device manufacturing method
JP7368990B2 (en) * 2019-09-23 2023-10-25 デクセリアルズ株式会社 Method for manufacturing optical devices

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005144717A (en) * 2003-11-12 2005-06-09 Ricoh Opt Ind Co Ltd Resin curing method and manufacturing method of resin molded product or the like
JP2006078909A (en) * 2004-09-10 2006-03-23 Sharp Corp Device for correcting transparent insulating film, and transparent insulating film correction method
JP2006145658A (en) * 2004-11-17 2006-06-08 Sharp Corp Transparent film correction apparatus and transparent film correction method
WO2011148990A1 (en) * 2010-05-26 2011-12-01 旭硝子株式会社 Transparent surface material having adhesive layer, display device, and manufacturing method for same
JP2012094618A (en) * 2010-10-26 2012-05-17 Konica Minolta Opto Inc Light confining film for solar cell, manufacturing method of the same, and solar cell
JP2013152339A (en) * 2012-01-25 2013-08-08 Dexerials Corp Method for manufacturing image display apparatus
JP2014119520A (en) * 2012-12-14 2014-06-30 Dexerials Corp Method for manufacturing image display device
US20140211105A1 (en) * 2013-01-28 2014-07-31 Samsung Display Co., Ltd. Display device and method for fabricating the same
JP2015200724A (en) * 2014-04-07 2015-11-12 三菱電機株式会社 Image display device and method for manufacturing image display device
JP2016210075A (en) * 2015-05-07 2016-12-15 信越エンジニアリング株式会社 Method for manufacturing bonded device, and apparatus for manufacturing bonded device
JP2017009780A (en) * 2015-06-22 2017-01-12 デクセリアルズ株式会社 Method for manufacturing image display device
JP2017026887A (en) * 2015-07-24 2017-02-02 日本写真印刷株式会社 Cover panel, operation panel, and method for manufacturing operation panel

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5343391B2 (en) * 2007-07-17 2013-11-13 デクセリアルズ株式会社 Resin composition and image display device
JP5374858B2 (en) 2007-10-31 2013-12-25 カシオ計算機株式会社 Method for manufacturing protective plate integrated display module
JP5155826B2 (en) * 2007-12-27 2013-03-06 セイコーインスツル株式会社 Manufacturing method of display device
JP2012073533A (en) * 2010-09-29 2012-04-12 Shibaura Mechatronics Corp Sticking device and sticking method
KR20230114333A (en) * 2012-01-25 2023-08-01 데쿠세리아루즈 가부시키가이샤 Method of manufacturing image display device
JP2014024046A (en) * 2012-07-30 2014-02-06 Shibaura Mechatronics Corp Adhesive feeding device and method for feeding adhesive
CN106104659A (en) * 2014-03-20 2016-11-09 芝浦机械电子装置株式会社 The manufacture method manufacturing device and display device component of display device component
JP2017025237A (en) * 2015-07-24 2017-02-02 旭硝子株式会社 Transparent curved surface material with adhesive layer, display device, manufacturing method of transparent curved surface material with adhesive layer, and manufacturing method of display device

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005144717A (en) * 2003-11-12 2005-06-09 Ricoh Opt Ind Co Ltd Resin curing method and manufacturing method of resin molded product or the like
JP2006078909A (en) * 2004-09-10 2006-03-23 Sharp Corp Device for correcting transparent insulating film, and transparent insulating film correction method
JP2006145658A (en) * 2004-11-17 2006-06-08 Sharp Corp Transparent film correction apparatus and transparent film correction method
WO2011148990A1 (en) * 2010-05-26 2011-12-01 旭硝子株式会社 Transparent surface material having adhesive layer, display device, and manufacturing method for same
JP2012094618A (en) * 2010-10-26 2012-05-17 Konica Minolta Opto Inc Light confining film for solar cell, manufacturing method of the same, and solar cell
JP2013152339A (en) * 2012-01-25 2013-08-08 Dexerials Corp Method for manufacturing image display apparatus
JP2014119520A (en) * 2012-12-14 2014-06-30 Dexerials Corp Method for manufacturing image display device
US20140211105A1 (en) * 2013-01-28 2014-07-31 Samsung Display Co., Ltd. Display device and method for fabricating the same
JP2015200724A (en) * 2014-04-07 2015-11-12 三菱電機株式会社 Image display device and method for manufacturing image display device
JP2016210075A (en) * 2015-05-07 2016-12-15 信越エンジニアリング株式会社 Method for manufacturing bonded device, and apparatus for manufacturing bonded device
JP2017009780A (en) * 2015-06-22 2017-01-12 デクセリアルズ株式会社 Method for manufacturing image display device
JP2017026887A (en) * 2015-07-24 2017-02-02 日本写真印刷株式会社 Cover panel, operation panel, and method for manufacturing operation panel

Also Published As

Publication number Publication date
TWI750313B (en) 2021-12-21
WO2018146953A1 (en) 2018-08-16
CN110199340A (en) 2019-09-03
JP7376819B2 (en) 2023-11-09
JP7270336B2 (en) 2023-05-10
KR102345432B1 (en) 2021-12-30
JP2023175975A (en) 2023-12-12
TW201840440A (en) 2018-11-16
JP2018128668A (en) 2018-08-16
KR20190096405A (en) 2019-08-19

Similar Documents

Publication Publication Date Title
JP7270336B2 (en) Method for manufacturing image display device
US20210141254A1 (en) Method of manufacturing image display device
CN105807468B (en) Method for manufacturing image display device
EP3594927B1 (en) Method for manufacturing image display device
JP7192915B2 (en) Image display device and its manufacturing method
JP2017048358A (en) Photocurable resin composition and method for producing picture display device
JP6904161B2 (en) Manufacturing method of image display device
KR102435111B1 (en) Assembly processes using uv curable pressure sensitive adhesives (psa) or stageable psa systems
TWI833689B (en) Image display device and method for manufacturing the same
US11846841B2 (en) Method for manufacturing optical device
WO2021020295A1 (en) Optical device production method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220722

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230404

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20230605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231009

R150 Certificate of patent or registration of utility model

Ref document number: 7376819

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150