JP7376771B2 - High-strength hot-rolled steel sheet and its manufacturing method - Google Patents

High-strength hot-rolled steel sheet and its manufacturing method Download PDF

Info

Publication number
JP7376771B2
JP7376771B2 JP2019150342A JP2019150342A JP7376771B2 JP 7376771 B2 JP7376771 B2 JP 7376771B2 JP 2019150342 A JP2019150342 A JP 2019150342A JP 2019150342 A JP2019150342 A JP 2019150342A JP 7376771 B2 JP7376771 B2 JP 7376771B2
Authority
JP
Japan
Prior art keywords
less
phase
rolling
cooling
steel sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019150342A
Other languages
Japanese (ja)
Other versions
JP2021031700A (en
Inventor
貴之 大塚
透 明石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2019150342A priority Critical patent/JP7376771B2/en
Publication of JP2021031700A publication Critical patent/JP2021031700A/en
Application granted granted Critical
Publication of JP7376771B2 publication Critical patent/JP7376771B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、加工性と冷間圧延性に優れた高強度熱延鋼板、並びにその製造方法に関するものである。 The present invention relates to a high-strength hot-rolled steel sheet with excellent workability and cold rollability, and a method for manufacturing the same.

自動車部材などに用いられる鋼板の強度は近年益々高まってきている。例えば骨格部材では、引張強さが590MPaや780MPaの鋼板はごく当たり前に使用され、980MPaやそれを上回る高強度鋼板の適用も一部では始まっている。
こうした高強度鋼板を製造するには、固溶強化、析出強化、更には変態組織強化など複数の強化機構(手段)を組み合わせることが必要であり、必然的に添加される元素の濃度が高くなって来ている。
The strength of steel plates used for automobile parts and the like has been increasing in recent years. For example, steel plates with a tensile strength of 590 MPa or 780 MPa are commonly used in frame members, and high-strength steel plates with a tensile strength of 980 MPa or higher have begun to be used in some areas.
In order to manufacture such high-strength steel sheets, it is necessary to combine multiple strengthening mechanisms (methods) such as solid solution strengthening, precipitation strengthening, and even transformation structure strengthening, which inevitably increases the concentration of added elements. It's coming.

その結果、低強度鋼と同様条件で製造すると、熱延鋼板として部品に加工する場合には成形(例えばプレス)に要する荷重が高まって成形工程数が増して生産性が低下したり、成型可能な形状が制約されたりするという問題点が生じる。
また、熱延鋼板を更に冷間圧延して冷延鋼板として使用する場合には、冷間圧延に必要な荷重が高まるので、冷間圧延率に制約が生じたり、中間焼鈍を挟んで再度冷間圧延を行ったりしなくてはならないような事態も散見される。
As a result, when manufactured under the same conditions as low-strength steel, when processed into parts as hot-rolled steel sheets, the load required for forming (for example, press) increases, the number of forming steps increases, and productivity decreases, or it becomes difficult to form. A problem arises in that the shape is restricted.
In addition, when hot-rolled steel sheets are further cold-rolled and used as cold-rolled steel sheets, the load required for cold rolling increases, resulting in restrictions on the cold-rolling rate, or after intermediate annealing and then re-cooling. Occasionally, there are situations where it is necessary to perform inter-rolling.

こうした事態への対処方法の一つとして、熱間圧延後の冷却を緩冷却とし、加えて巻き取り温度を高めに設定することが考えられる。こうすることで、軟質なフェライト相(以下、F相と記載)と硬質組織(パーライト、以下、P組織と記載)から成るミクロ組織が得られ、プレス成型や冷間圧延は相対的には容易になる。 One possible way to deal with this situation is to perform slow cooling after hot rolling, and to set the winding temperature higher. By doing this, a microstructure consisting of a soft ferrite phase (hereinafter referred to as F phase) and a hard structure (pearlite, hereinafter referred to as P structure) is obtained, and press forming and cold rolling are relatively easy. become.

ところが、上記のようなF相とP組織で構成される鋼板では、本来の目的であった成型品や冷延鋼板を均一に高強度化するということが容易ではないという別の課題が残る。
そもそも熱延鋼板の強度が成形性や冷間圧延性に影響するほど添加元素濃度を高めたのは、特に変態組織強化を活用するためである。
However, with a steel sheet composed of the F phase and P structure as described above, another problem remains that it is not easy to uniformly increase the strength of molded products and cold rolled steel sheets, which was the original purpose.
In the first place, the reason why the concentration of added elements was increased to the extent that the strength of the hot-rolled steel sheet affected the formability and cold rollability was specifically to take advantage of transformation structure reinforcement.

変態組織強化を活用するためには、熱延鋼板として使用する場合には成形後の熱処理時に、また高強度の冷延鋼板とする場合には冷延後の熱処理工程において、P組織を含む炭化物を出来るだけ溶解させてオーステナイト相(以下、A相と記載)中の炭素濃度を高める必要があるが、その達成はそれほど容易ではない。加熱する温度を高くするか、その上で長時間保持する必要があるが、設備上の制約や生産性を確保する必要から、加熱温度や保持時間の自由度はそれほど広くない。また仮に、制約なく処理して炭化物を十分に溶解させることが出来たとしても、加熱前にF相であった領域と、P組織や炭化物であった領域との炭素濃度差が大きく、濃度差を減らして均一化を図るためにはかなり長時間の拡散処理を要するので現実的には選択されていない。 In order to utilize transformation structure strengthening, carbides containing P structure must be removed during heat treatment after forming when used as a hot-rolled steel sheet, and during heat treatment after cold rolling when used as a high-strength cold-rolled steel sheet. It is necessary to increase the carbon concentration in the austenite phase (hereinafter referred to as phase A) by dissolving as much as possible, but this is not so easy to achieve. It is necessary to either raise the heating temperature or hold it for a long time, but due to equipment constraints and the need to ensure productivity, there is not much flexibility in heating temperature and holding time. Furthermore, even if it were possible to sufficiently dissolve carbides by processing without restrictions, there would be a large difference in carbon concentration between the region that was in the F phase before heating and the region that was in the P structure or carbide. In order to reduce and achieve uniformity, a considerably long diffusion process is required, so this is not realistically selected.

一方、炭素濃度の均一化や炭化物の寸法を相対的に小さくして溶解し易くすることを優先して熱延鋼板を製造することも可能である。
上記の方法に替えて、熱間圧延後の冷却速度を高め、巻き取り温度も低めにすることで、ベイナイト組織(以下、B組織と記載)を主体とするミクロ組織を有する鋼板とすれば良い訳であるが、それでは、熱延鋼板としての成形性の確保が難しく、また冷間圧延時の必要荷重が高まってしまう。
On the other hand, it is also possible to manufacture a hot rolled steel sheet with priority given to making the carbon concentration uniform and making the size of carbides relatively small to make them easier to melt.
Instead of the above method, by increasing the cooling rate after hot rolling and lowering the coiling temperature, it is possible to obtain a steel sheet with a microstructure mainly composed of bainite structure (hereinafter referred to as B structure). However, in this case, it is difficult to ensure formability as a hot-rolled steel sheet, and the required load during cold rolling increases.

以上述べてきたように、熱延鋼板の成形の容易さ、および冷間圧延性(圧延荷重が低いこと)と、炭素濃度の均一性、および炭化物の溶解し易さを両立させるような熱間圧延の圧延後の冷却条件、および巻取り条件は見出されていないのが実情である。 As mentioned above, hot-rolled steel sheets that achieve both ease of forming and cold rollability (low rolling load), uniformity of carbon concentration, and ease of dissolving carbides have been proposed. The reality is that cooling conditions and winding conditions after rolling have not been found.

例えば非特許文献1には、熱延コイルを高温で巻取った後、一定時間空冷してフェライト変態を促進させ、その後浸漬水冷する冷間圧延特性が良好な熱延鋼板の試作方法が開示されている。質量%でC:0.17%、Si:1.3%、およびMn:2.0%を有する鋼について、熱間圧延を920℃で終了し、一旦630℃で巻取った後、30分後あるいは60分後に浸水冷却することで、熱延コイルの全長に亘って軟質化が達成出来、また粒界酸化の発生を低減出来たことが示されている。
しかしながら温度履歴から推定されるミクロ組織は、F相、P組織、および低温生成物で構成されるとされていることからA相に加熱された際の炭素濃度の不均一は何ら改善されないものと推定されるし、実際に言及もされていない。
For example, Non-Patent Document 1 discloses a method for prototyping a hot-rolled steel sheet with good cold rolling properties, in which a hot-rolled coil is wound at a high temperature, air-cooled for a certain period of time to promote ferrite transformation, and then immersed in water-cooled. ing. For steel having mass percentages of C: 0.17%, Si: 1.3%, and Mn: 2.0%, hot rolling was completed at 920°C, coiled at 630°C, and immersed in water after 30 or 60 minutes. It has been shown that by cooling, it was possible to achieve softening over the entire length of the hot rolled coil and to reduce the occurrence of grain boundary oxidation.
However, since the microstructure estimated from the temperature history is said to be composed of F phase, P structure, and low-temperature products, it is assumed that the nonuniformity of carbon concentration when heated to A phase will not be improved at all. It's presumed and never actually mentioned.

特許文献1には、Ar3変態点以上の温度域において圧下率が50%以上の熱間圧延を行った後、続いて、Ar3以上の温度から冷却速度2℃/秒以上の予備冷却を開始し、その後、Ar3以下Ar3-100℃以上の温度において予備冷却を一旦中断し、所定の時間待機した後、再び3℃/秒以上15℃/秒以下の冷却速度で400~600℃の温度域まで加熱冷却することで、ミクロ組織をF相とB組織あるいはマルテンサイト相(以下、M相と記載)が混在したものとして低降伏比である鋼板を得る製造方法が開示されている。
しかしながら、降伏比以外の材質特性の記述がないため、材質の均一性や、熱処理による高強度化を容易にする炭化物の溶解し易さについては明らかではない。
Patent Document 1 discloses that after hot rolling is performed at a reduction rate of 50% or more in a temperature range of Ar 3 or higher, then preliminary cooling is performed from a temperature of Ar 3 or higher at a cooling rate of 2°C/sec or higher. After that, pre-cooling is temporarily interrupted at a temperature of Ar 3 or below and Ar 3 -100°C or above, and after waiting for a predetermined period of time, the temperature is increased again from 400 to 600°C at a cooling rate of 3°C/s or more and 15°C/s or less. A manufacturing method is disclosed in which a steel plate with a low yield ratio is obtained by heating and cooling the steel sheet to a temperature range of 1 to 100 nm to make the microstructure a mixture of F phase and B structure or martensitic phase (hereinafter referred to as M phase). .
However, since there is no description of material properties other than yield ratio, it is not clear about the uniformity of the material or the ease with which carbides can be dissolved, which facilitates increasing the strength by heat treatment.

特許文献2には、所定の化学成分を有する鋼片をAr3変態点以上の温度で圧延を終了し、750~600℃の温度で一旦巻き取り、10~30分保持した後、コイルを払い出ししながら20℃/秒以上の冷却速度で冷却し、550℃以下の温度で再び巻き取る熱延鋼板の製造方法が開示されている。
この方法に依れば、熱延鋼板は軟質で、かつ粒界酸化が抑制されているので冷間圧延での高い歩留まりが達成できるとのことであるが、どのようなミクロ組織が得られ、また、材質の均一性や、加熱や焼鈍による高強度化を容易にする炭化物の溶解し易さについては明らかではない。更に当該技術は、一般的な熱延冷却設備(ランアウトテーブルやホットランテーブルと呼ばれる)の中間に巻き取り装置と巻き戻し装置を配した設備を必要とするものであるから、例え望ましい特性が得られたとしても、工業的に容易には実施出来ないと言う問題点がある。
Patent Document 2 discloses that rolling of a steel billet having a predetermined chemical composition is completed at a temperature equal to or higher than the Ar 3 transformation point, the coil is once coiled at a temperature of 750 to 600°C, and the coil is unrolled after being held for 10 to 30 minutes. However, a method for producing a hot rolled steel sheet is disclosed in which the steel sheet is cooled at a cooling rate of 20° C./sec or higher and then re-rolled at a temperature of 550° C. or lower.
According to this method, hot-rolled steel sheets are soft and grain boundary oxidation is suppressed, so a high yield can be achieved in cold rolling, but what kind of microstructure can be obtained? Further, it is not clear about the uniformity of the material or the ease with which carbides can be dissolved, which facilitates increasing the strength by heating or annealing. Furthermore, this technology requires equipment that has a winding device and an unwinding device located in the middle of common hot rolling cooling equipment (called a run-out table or hot run table), so even if desirable characteristics cannot be obtained, However, there is a problem in that it cannot be easily implemented industrially.

特開2000-087138号公報Japanese Patent Application Publication No. 2000-087138 特開2013-253301号公報Japanese Patent Application Publication No. 2013-253301

小林・土肥・木村・小泉・君島・佐野・赤水・森本・石川:鉄と鋼、vol.100(2014)No.5、616-624Kobayashi, Doi, Kimura, Koizumi, Kimijima, Sano, Sekisui, Morimoto, Ishikawa: Tetsu to Hagane, vol. 100 (2014) No. 5, 616-624

本発明は、上記実情に鑑み、F相とP組織で構成される鋼板の有する良成形性や良冷延性と、B組織を主体とする鋼板の有する材質均一性や加熱・焼鈍による高強度化を容易にする炭化物の溶解し易さとを両立させた鋼板を得ることを目的とする。 In view of the above circumstances, the present invention aims to improve the good formability and cold ductility of a steel plate composed of F phase and P structure, the material uniformity of a steel plate mainly composed of B structure, and the high strength achieved by heating and annealing. The objective is to obtain a steel sheet that is compatible with the ease of dissolving carbides.

本発明者らは、良成形性や良冷延性と、材質均一性や炭化物の溶解し易さとを両立した鋼板を得るべく鋭意検討を行った。
具体的には、ミクロ組織としてはB組織を主体とすることで材質の均一性と炭化物の溶解し易さをまず確保し、その上で、成形性や冷延性に優れるように軟質化させられないか研究を進めた。その結果、ベイナイト変態完了後極短時間以内に再び一定の冷却速度以上の冷却をして所定の温度以下で巻き取ることでそうした鋼板が得られることを見出した。
このようにして完成させた本発明の要旨は、次の通りである。
The inventors of the present invention conducted extensive studies in order to obtain a steel sheet that is compatible with good formability, good cold rollability, material uniformity, and ease of dissolving carbides.
Specifically, the microstructure is made mainly of the B structure to first ensure uniformity of the material and ease of dissolving carbides, and then it is softened to have excellent formability and cold rollability. We conducted research to see if there was any. As a result, it has been found that such a steel plate can be obtained by cooling again at a certain cooling rate or higher within a very short time after the completion of bainite transformation, and then winding it at a predetermined temperature or lower.
The gist of the invention thus completed is as follows.

(1)質量%で、C:0.05~0.50%、Si:0.01~2.0%、Mn:0.5~3.0%を含有し、P:0.03%以下、S:0.02%以下、N:0.05%以下、Al:0.05%以下にそれぞれ制限され、残部がFeおよび不可避的不純物で構成される化学成分を有し、ミクロ組織が、面積率50%以上のベイナイト組織、および同15~30%のフェライト相を含み、フェライト相の平均結晶粒径が30μm以下であり、微細格子マーカー法で求めたフェライト相中の局所歪の絶対値の平均が0.050以上で、引張強さが440MPa以上であることを特徴とする高強度熱延鋼板。 (1) Contains C: 0.05 to 0.50%, Si: 0.01 to 2.0%, Mn: 0.5 to 3.0%, and P: 0.03% or less in mass % , S: 0.02% or less, N: 0.05% or less, Al: 0.05% or less, with the remainder consisting of Fe and unavoidable impurities, and the microstructure is Contains a bainitic structure with an area ratio of 50% or more and a ferrite phase with an area ratio of 15 to 30%, the average crystal grain size of the ferrite phase is 30 μm or less, and the absolute value of local strain in the ferrite phase determined by the fine lattice marker method. A high-strength hot rolled steel sheet having an average of 0.050 or more and a tensile strength of 440 MPa or more.

(2)上記鋼板が、更に加えて、質量%で、Ti:0.1%以下、Nb:0.1%以下、B:0.01%以下、Cr:1.5%以下、Cu:1.0%以下、Ni:1.0%以下のうちの1種または2種以上を含有することを特徴とする上記(1)に記載の高強度熱延鋼板。
(3)上記鋼板が、更に加えて、質量%で、Mo:0.01~1.0%、W:0.01~0.5%、V:0.01~0.5%のうちの、1種、または2種以上を含有することを特徴とする上記(1)または(2)に記載の高強度熱延鋼板。
(2) The above steel plate further includes, in mass %, Ti: 0.1% or less, Nb: 0.1% or less, B: 0.01% or less, Cr: 1.5% or less, Cu: 1 .0% or less, Ni: 1.0% or less, and the high-strength hot-rolled steel sheet according to (1) above.
(3) The above steel plate further contains, in mass%, Mo: 0.01 to 1.0%, W: 0.01 to 0.5%, and V: 0.01 to 0.5%. The high-strength hot-rolled steel sheet according to (1) or (2) above, characterized in that the high-strength hot-rolled steel sheet contains one or more of the following.

(4)上記(1)~(3)のいずれかに記載の高強度熱延鋼板を製造する方法であって、上記(1)~(3)のいずれに記載の化学成分を有する鋼を鋳造した後、直接、あるいは1300℃以下に再加熱して熱間圧延し、該熱間圧延において、Ar3点以上で完了する累積圧下率50%以上の仕上げ圧延を行い、熱間圧延後、第1段階の冷却として、15~35℃/秒の平均冷却速度で400~550℃まで冷却し、その後、第2段階の冷却として、15℃/s以下で、(ベイナイト組織が50%以上でオーステナイト相が35%となる時点)~(ベイナイト組織が50%以上でオーステナイト相が20%となる時点から100s経過後の時点)の間のいずれかの時点まで冷却し、更に、第3段階の冷却として、その後、300℃になるまでの平均冷却速度を50℃/秒以上として300℃以下まで冷却して巻き取ることを特徴とする高強度熱延鋼板の製造方法。 (4) A method for producing a high-strength hot-rolled steel sheet according to any one of (1) to (3) above, in which steel having a chemical composition according to any one of (1) to (3) above is cast. After that, hot rolling is carried out directly or by reheating to 1300°C or less, and in the hot rolling, finish rolling is performed with a cumulative reduction rate of 50% or more, which is completed at Ar 3 points or more, and after hot rolling, As the first stage of cooling, cooling is performed to 400 to 550 °C at an average cooling rate of 15 to 35 °C/s, and then as the second stage of cooling, at a rate of 15 °C/s or less (bainite structure is 50% or more and austenite). cooling to any point between 100 seconds after the bainite structure becomes 50% or more and the austenite phase becomes 20%), and then a third stage of cooling. A method for producing a high-strength hot-rolled steel sheet, the method comprising: cooling to 300°C or less at an average cooling rate of 50°C/second or more until the temperature reaches 300°C, and then winding the sheet.

本発明の鋼板を用いれば、低い荷重で成形出来、かつ成形後に熱処理して高強度な部材とすることが容易な熱延鋼板や、低い荷重で冷延出来、冷延後に熱処理して高強度化することが容易な冷延鋼板用原板を得ることが出来る。また汎用的な設備で製造できるので広く産業に寄与出来る。 If the steel sheet of the present invention is used, hot-rolled steel sheets that can be formed with low loads and easily heat-treated after forming to make high-strength members, and hot-rolled steel sheets that can be cold-rolled with low loads and can be heat-treated after cold-rolling to have high strength. It is possible to obtain a cold-rolled steel plate material that can be easily converted into a raw material for cold-rolled steel sheets. Furthermore, since it can be manufactured using general-purpose equipment, it can contribute to a wide range of industries.

微細格子マーカーを説明する模式図である。It is a schematic diagram explaining a fine lattice marker. 熱処理後の格子マーカーを示す模式図である。FIG. 3 is a schematic diagram showing a grid marker after heat treatment. F相中の局所歪の絶対値の平均と降伏強度の関係を示す図である。It is a figure which shows the relationship between the average absolute value of local strain in F phase, and yield strength.

本発明の鋼板及びその製造方法について詳しく説明する。
[鋼板]
まず鋼板の化学成分について説明する。
The steel plate of the present invention and its manufacturing method will be explained in detail.
[Steel plate]
First, the chemical composition of the steel plate will be explained.

<C:0.05~0.50%>
Cは、高強度の鋼板を得るために必須の元素である。少なくとも440MPa以上の引張強さを有する鋼板を得るためには0.05%以上を含有させる必要がある。一方、溶接性や溶接部の靭性を確保する必要から0.50%を上限とする。
<C: 0.05-0.50%>
C is an essential element to obtain a high-strength steel plate. In order to obtain a steel plate having a tensile strength of at least 440 MPa or more, it is necessary to contain 0.05% or more. On the other hand, the upper limit is set at 0.50% due to the need to ensure weldability and the toughness of the welded part.

<Si:0.01~2.0%>
Siは、F相を強化する効果を有するので鋼板の強度設計に有用な元素である。またセメンタイトの生成を抑制する効果も有することから、特に冷延鋼板のミクロ組織設計に対しても有用である。但し、過剰に含有させると酸洗性や化成処理などの表面処理性に悪影響を及ぼす。そのため上限は2.0%とする。一方、0.01%未満に低減することは製鋼工程に過大な負荷となるので下限を0.01%とする。
<Si: 0.01-2.0%>
Si is an element useful in designing the strength of steel sheets because it has the effect of strengthening the F phase. Since it also has the effect of suppressing the formation of cementite, it is particularly useful for microstructural design of cold-rolled steel sheets. However, if it is contained in excess, it will have an adverse effect on surface treatment properties such as pickling properties and chemical conversion treatments. Therefore, the upper limit is set at 2.0%. On the other hand, reducing the content to less than 0.01% places an excessive burden on the steel manufacturing process, so the lower limit is set at 0.01%.

<Mn:0.5~3.0%>
Mnは、固溶強化の他に、高い焼き入れ性を有することから、変態組織強化を通じた鋼板の高強度化に極めて重要な元素である。そこで明瞭な効果が発現する0.5%を下限とする。一方、3.0%を超えて含有させると、凝固偏析に起因して機械的性質を劣化させる恐れがあるので3.0%を上限とする。
<Mn: 0.5-3.0%>
In addition to solid solution strengthening, Mn has high hardenability, and is therefore an extremely important element for increasing the strength of steel sheets through strengthening the transformation structure. Therefore, the lower limit is set at 0.5%, at which a clear effect is produced. On the other hand, if the content exceeds 3.0%, the mechanical properties may deteriorate due to solidification segregation, so the upper limit is set at 3.0%.

<P:0.03%以下>
Pは不純物であり、熱間加工性に悪影響を及ぼすため0.03%以下に制限されなくてはならない。一方、下限は特に設けないが、必要以上に低減することは製鋼工程に多大な負荷を掛けるので0.001%を目安とすればよい。
<P: 0.03% or less>
P is an impurity and must be limited to 0.03% or less since it has an adverse effect on hot workability. On the other hand, although there is no particular lower limit set, 0.001% may be used as a guideline since reducing the content more than necessary will put a heavy burden on the steel manufacturing process.

<S:0.02%以下>
Sは不純物であり、熱間加工性や、延性、靭性などの機械的性質に悪影響を及ぼすため0.02%以下に制限されなくてはならない。一方、下限は特に設けないが、必要以上に低減することは製鋼工程に多大な負荷を掛けるので0.0001%を目安とすればよい。
<S: 0.02% or less>
S is an impurity and must be limited to 0.02% or less because it has an adverse effect on hot workability and mechanical properties such as ductility and toughness. On the other hand, there is no particular lower limit set, but reducing it more than necessary will put a heavy load on the steel manufacturing process, so 0.0001% may be used as a guide.

<N:0.05%以下>
Nは、Bと窒化物を形成してBの焼き入れ性への寄与を減じてしまったり、Tiと窒化物を形成して機械的性質を劣化させたりするので出来るだけ低減することが望ましいが0.05%以下であれば許容される。一方、必要以上に低減することは製鋼工程に多大な負荷を掛けるので0.0010%を目安とすれば良い。
<N: 0.05% or less>
N forms nitrides with B, reducing the contribution of B to hardenability, and forms nitrides with Ti, deteriorating mechanical properties, so it is desirable to reduce it as much as possible. It is acceptable if it is 0.05% or less. On the other hand, reducing the content more than necessary places a heavy burden on the steel manufacturing process, so 0.0010% may be used as a guideline.

<Al:0.05%以下>
Alは、脱酸元素として用いるが、その酸化物が表面品位に影響を及ぼす他、酸化被膜が表面処理特性にも影響するので0.05%以下にする必要がある。一方、製鋼工程に多大な負荷を掛けるので0.01%を下限の目安とすればよい。
<Al: 0.05% or less>
Al is used as a deoxidizing element, but its oxide affects the surface quality and the oxide film also affects the surface treatment characteristics, so it needs to be kept at 0.05% or less. On the other hand, since it places a heavy burden on the steel manufacturing process, 0.01% may be used as a lower limit.

本発明の鋼板では、以上の、C、Si、Mnを含有し、P、S、N、Alの含有が制限された化学成分を基本とするが、さらに、以下に示す、Ti、Nb、B、Cr、Cu、Niの1種または2種以上を、さらにはMo、W、Vの1種または2種以上を必要に応じて含有できる。 The steel sheet of the present invention is based on the above-mentioned chemical components containing C, Si, and Mn, and with limited content of P, S, N, and Al, but furthermore, the following chemical components are included: Ti, Nb, and B. , Cr, Cu, and Ni, as well as one or more of Mo, W, and V, if necessary.

<Ti:0.1%以下>
Tiは、Nと結合して、NがBの焼き入れ性への寄与を減じるのを抑制するので、Bを含有させてその焼き入れ性を高強度化に活用する場合には、0.01%以上を目安として添加することが望ましい。一方、既に述べたようにTiNが機械的性質を損ねる恐れがあり、また過剰な添加は冷延後の再結晶を抑制して生産性を損ねる恐れがある他、Cと結合して有効なCを減少させて焼き入れ性を低下させる恐れがあるので、0.1%を上限とする。
<Ti: 0.1% or less>
Ti combines with N and suppresses N from reducing the contribution of B to hardenability. Therefore, when containing B and utilizing its hardenability to increase strength, Ti is 0.01 It is desirable to add % or more as a guideline. On the other hand, as already mentioned, TiN may impair mechanical properties, and excessive addition may suppress recrystallization after cold rolling and impair productivity. The upper limit is set at 0.1%, since there is a risk that the hardenability may be lowered by decreasing the content.

<Nb:0.1%以下>
Nbは、Tiと同様にNと結合して、NがBの焼き入れ性への寄与を減じるのを抑制するので、Bを含有させてその焼き入れ性を高強度化に活用する場合には、0.01%以上を目安として添加することが望ましい。一方、0.1%を超えて添加しても効果は飽和し、更に冷延後の再結晶を抑制して生産性を損ねる恐れがある他、Cと結合して焼き入れ性を低下させる恐れがあるので、0.1%を上限とする。
<Nb: 0.1% or less>
Like Ti, Nb combines with N and suppresses N from reducing the contribution of B to hardenability. Therefore, when incorporating B and utilizing its hardenability to increase strength, , it is desirable to add 0.01% or more. On the other hand, if it is added in excess of 0.1%, the effect will be saturated, and there is a risk that it will further suppress recrystallization after cold rolling and impair productivity, and that it will combine with C and reduce hardenability. Therefore, the upper limit is set at 0.1%.

<B:0.01%以下>
Bは、0.0001%以上添加することで焼き入れ性を高める効果を発するので必要に応じて添加出来る。一方、過剰な添加は熱間加工性の劣化と延性の低下につながるので、0.01%を上限とする。
<B: 0.01% or less>
B has the effect of increasing hardenability when added in an amount of 0.0001% or more, so it can be added as necessary. On the other hand, excessive addition leads to deterioration of hot workability and ductility, so the upper limit is set at 0.01%.

<Cr:1.5%以下>
Crは焼き入れ性を有する元素であるから適宜活用出来る。その効果を得るためには0.01%以上含有させることが好ましい。しかし、1.5%を超えて添加してもその効果は飽和し、製造コストを高めるだけであるから、1.5%を上限とする。
<Cr: 1.5% or less>
Since Cr is an element that has hardenability, it can be used as appropriate. In order to obtain this effect, it is preferable to contain 0.01% or more. However, if it is added in an amount exceeding 1.5%, the effect will be saturated and the manufacturing cost will only increase, so the upper limit is set at 1.5%.

<Cu:1.0%以下>
Cuは、強度を高める作用を有するので必要に応じて添加出来る。その効果を得るためには0.01%以上含有させることが好ましい。しかし、1.0%を超えると、熱間圧延鋼板の表面品位を損ねるので、1.0%を上限とする。
<Cu: 1.0% or less>
Cu has the effect of increasing strength, so it can be added as necessary. In order to obtain this effect, it is preferable to contain 0.01% or more. However, if it exceeds 1.0%, the surface quality of the hot rolled steel sheet will be impaired, so the upper limit is set at 1.0%.

<Ni:1.0%以下>
Niは、焼入れ性を高める元素であるから必要に応じて添加出来る。その効果を得るためには0.01%以上含有させることが好ましい。一方、高価な元素であるから、添加効果が飽和する1.0%を上限とする。また、Niは、Cuによる熱間圧延鋼板の表面品位の低下を抑制する効果があるので、Cuと同時に含有させることが望ましい。
<Ni: 1.0% or less>
Since Ni is an element that improves hardenability, it can be added as necessary. In order to obtain this effect, it is preferable to contain 0.01% or more. On the other hand, since it is an expensive element, the upper limit is set at 1.0% at which the addition effect is saturated. Further, since Ni has the effect of suppressing deterioration of the surface quality of hot rolled steel sheets due to Cu, it is desirable to include Ni at the same time as Cu.

<Mo:0.01~1.0%>
<W:0.01~0.5%>
<V:0.01~0.5%>
これらの元素は、いずれも、焼入れ性を高める元素である。添加効果を得るため、いずれも、0.01%以上を必要に応じて添加出来る。一方、これらの元素は高価であるので、添加効果が飽和するところを添加する場合の上限とする。Moは1.0%を上限とし、WとVは0.5%を上限とする。
<Mo: 0.01-1.0%>
<W: 0.01-0.5%>
<V:0.01~0.5%>
All of these elements are elements that improve hardenability. In order to obtain the effect of addition, 0.01% or more of each can be added as necessary. On the other hand, since these elements are expensive, the upper limit for addition is set at the point where the effect of addition is saturated. The upper limit of Mo is 1.0%, and the upper limit of W and V is 0.5%.

<残部>
本発明において上記以外の成分(残部)はFeとなるが、スクラップなどの溶解原料や耐火物などから混入する不可避的不純物は許容される。
<Remainder>
In the present invention, the component other than the above (the remainder) is Fe, but unavoidable impurities mixed in from melted raw materials such as scrap, refractories, etc. are allowed.

次に本発明の鋼板のミクロ組織やその他の要件について説明する。
<面積率50%以上のベイナイト組織(以下B組織)、および面積率15~30%のフェライト相(以下F相)>
本発明の鋼板はB組織が面積率で最大を占め、次いでF相からなるミクロ組織を有するものとする。
B組織を50%以上とすることで、炭素濃度の均一性が確保され、いわゆるバンド組織と呼ばれるパーライトとフェライトの層状の不均一組織が回避される。この不均一組織が形成されると、割れや破壊の起点となるためB組織を50%以上にする。好ましくは60%以上、より好ましくは70%以上である。
またB組織に隣接するF相内に、後述するように、絶対値の平均で0.050以上の局所歪を残留させるためには、F相の面積率を30%以下とする必要がある。30%超ではF相内に残留させることが出来る局所歪が分散して小さくなるので好ましくない。F相が15%未満では、ハイテン材として自動車用などに用いる場合、材料の延性が不足する恐れがあるため、F相は15%以上とする。
Next, the microstructure and other requirements of the steel plate of the present invention will be explained.
<Bainitic structure with an area ratio of 50% or more (hereinafter referred to as B structure) and ferrite phase with an area ratio of 15 to 30% (hereinafter referred to as F phase)>
The steel sheet of the present invention has a microstructure in which the B structure occupies the largest area ratio, followed by the F phase.
By setting the B structure to 50% or more, the uniformity of the carbon concentration is ensured, and a layered non-uniform structure of pearlite and ferrite, called a so-called band structure, is avoided. When this non-uniform structure is formed, it becomes a starting point for cracking and destruction, so the B structure should be 50% or more. Preferably it is 60% or more, more preferably 70% or more.
Furthermore, in order to cause local strain of 0.050 or more to remain in the F phase adjacent to the B structure, as described later, the area ratio of the F phase must be 30% or less. If it exceeds 30%, the local strain that can remain in the F phase will be dispersed and become small, which is not preferable. If the F phase is less than 15%, the material may lack ductility when used as a high tensile strength material for automobiles, etc., so the F phase should be 15% or more.

また、上記以外のミクロ組織として10%以下のマルテンサイト相(以下M相)、および10%以下の残留オーステナイト相(以下A相と記載することがある)は許容される。
なお、各々の面積率は、鋼板の圧延方向と平行な断面を研磨し、ナイタール液で腐食した後、板厚の1/4位置を観察して決定する。
In addition, as microstructures other than those mentioned above, 10% or less of a martensite phase (hereinafter referred to as M phase) and 10% or less of a retained austenite phase (hereinafter sometimes referred to as A phase) are allowed.
Note that each area ratio is determined by polishing a cross section of the steel plate parallel to the rolling direction and corroding it with a nital solution, and then observing the 1/4 position of the plate thickness.

<F相の平均結晶粒径が30μm以下>
F相の平均結晶粒径は鋼板の強度や靭性に大きな影響を及ぼす因子である。一般には、結晶粒径が微細であれば、引張り強度が向上する。このような強度を保つためには、F相の平均結晶粒径を30μm以下とする必要がある。
<Average grain size of F phase is 30 μm or less>
The average grain size of the F phase is a factor that greatly affects the strength and toughness of a steel sheet. Generally, the finer the crystal grain size, the better the tensile strength. In order to maintain such strength, the average crystal grain size of the F phase needs to be 30 μm or less.

<微細格子マーカー法で求めたフェライト相中の局所歪の絶対値の平均が0.050以上>
B組織、およびF相からなるミクロ組織を有しながら、F相、およびP組織からなるミクロ組織を有する鋼板と同等の成形性や冷間圧延性を示す鋼板とするには本条件を満足する必要がある。
本発明の鋼板はA相で圧延を完了し、第1段の冷却として15~35℃/sの冷却速度で400℃~550℃まで冷却を行い、さらに第2段の冷却として、(B組織が50%以上でオーステナイト相が35%となる時点)~(B組織が50%以上でオーステナイト相が20%となる時点から100s経過後の時点)の間のいずれかの時点まで、冷却速度が15℃/s以内で冷却または温度保持しベイナイト変態させる。この際、B組織に隣接するF相の結晶粒は、圧縮、または引張の外力を受け、結晶粒内には歪が残存する。そして上記時点から第3段階目の冷却として50℃/s以上の平均冷却速度で室温を含む300℃以下まで冷却することでそれらの歪を残存させ続けることが可能となる。
<The average absolute value of local strain in the ferrite phase determined by the fine lattice marker method is 0.050 or more>
These conditions must be met in order to obtain a steel sheet that has a microstructure consisting of a B structure and an F phase, but exhibits formability and cold rollability equivalent to a steel sheet that has a microstructure consisting of an F phase and a P structure. There is a need.
The steel sheet of the present invention is rolled in the A phase, cooled to 400 to 550 °C at a cooling rate of 15 to 35 °C/s as the first stage cooling, and further cooled as the second stage cooling (B structure is 50% or more and the austenite phase is 35%) to (100 seconds after the B structure is 50% or more and the austenite phase is 20%), the cooling rate is Cool or maintain temperature within 15° C./s to transform into bainite. At this time, the crystal grains of the F phase adjacent to the B structure are subjected to an external compressive or tensile force, and strain remains within the crystal grains. Then, by cooling from the above point to 300° C. or lower, including room temperature, at an average cooling rate of 50° C./s or higher as the third stage of cooling, it becomes possible to keep those strains remaining.

本発明では、このようにF相の結晶粒内に残存(存在)する歪をそれぞれの結晶粒における局所歪と定義する。
F相中の局所歪は、圧縮、あるいは引張の何れの外力によってもたらされたかに関わらず、鋼板がプレス成型や冷間圧延などの変形を受ける際に、転位の移動を容易にする作用を有するため、成形荷重や冷延荷重の低下として享受出来るものと考えられる。
局所歪はF相の結晶粒毎に異なり、隣接するB組織の大きさや同組織との結晶方位関係、F相の生成温度などによって決定される。そして、その絶対値が大きいほど効果も大きくなる。従って、現実的な範囲で出来るだけ多くのF相について局所歪を測定し、それらの絶対値を平均することで鋼板の成形性や冷間圧延性を評価出来る。一方、そうした効果は、引張試験での降伏強度(の低下)として定量化出来る。
In the present invention, the strain that remains (exists) in the crystal grains of the F phase is defined as local strain in each crystal grain.
Local strain in the F phase has the effect of facilitating the movement of dislocations when a steel plate undergoes deformation such as press forming or cold rolling, regardless of whether it is caused by an external force such as compression or tension. Therefore, it is thought that this can be enjoyed as a reduction in forming load and cold rolling load.
The local strain differs for each crystal grain of the F phase, and is determined by the size of the adjacent B structure, the crystal orientation relationship with the same structure, the formation temperature of the F phase, and the like. The larger the absolute value, the greater the effect. Therefore, the formability and cold rollability of a steel sheet can be evaluated by measuring the local strain for as many F phases as possible within a practical range and averaging their absolute values. On the other hand, such effects can be quantified as (reduction in) yield strength in a tensile test.

本発明者らの行った実験の結果、局所歪の絶対値の平均が0.050以上の場合に、F相、およびP組織からなるミクロ組織を有する鋼板と同等(またはそれ以下)の降伏強度、すなわち、成形性や冷間圧延性を示す鋼板が得られることが明らかとなった。本規定はこれに基づいて行ったものである。 As a result of experiments conducted by the present inventors, when the average absolute value of local strain is 0.050 or more, the yield strength is equivalent to (or lower than) that of a steel plate having a microstructure consisting of an F phase and a P structure. In other words, it has become clear that a steel plate exhibiting formability and cold rollability can be obtained. This provision was made based on this.

F相内の局所歪は、微細格子マーカー法によって決定した。その手順を以下に説明する。
まず、鋼板表面に以下のようにして格子マーカーを形成する。
局所歪を測定する鋼板を採取して表面を化学研磨し、更にナイタール液で腐食させてミクロ組織を現出させる。次いで、ポジ型フォトレジスト(感光材料)を塗布する。フォトレジストとしては、例えば日本ゼオン(株)製ZEP520Aなどを用いることが出来る。
鋼板上に成膜したフォトレジストに電子線を走査し、正方格子状に感光(露光)させる。格子の幅は100nm、格子の幅の中央同士の間隔は500nmを狙い値とした(図1参照)。格子は500μm×500μmの領域に作製した。
電子線を照射したフォトレジストを現像処理し、感光させた部分、すなわち格子の辺にあたる部分を除去した。現像には日本ゼオン(株)製のZED-N50などを用いることが出来る。
現像処理した表面に金を蒸着する。金は、現像して除去された部分(格子の辺)では鋼板表面に直接蒸着され、一方、感光せず、除去されていない部分ではレジスト上に蒸着される。
その後、有機溶媒にてフォトレジストを溶解させるとレジスト上の金はレジストと一緒に除去されるので鋼板表面に直接蒸着された金のみが残り、鋼板表面に金の格子(マーカー)が形成される。
The local strain within the F phase was determined by the fine lattice marker method. The procedure will be explained below.
First, grid markers are formed on the surface of a steel plate as follows.
The steel plate whose local strain is to be measured is sampled, its surface chemically polished, and then corroded with nital solution to reveal the microstructure. Next, a positive photoresist (photosensitive material) is applied. As the photoresist, for example, ZEP520A manufactured by Zeon Corporation can be used.
A photoresist film formed on a steel plate is scanned with an electron beam to expose it to light in the form of a square lattice. The width of the grating was set to 100 nm, and the distance between the centers of the width of the grating was set to 500 nm (see FIG. 1). The grid was fabricated in an area of 500 μm×500 μm.
The photoresist irradiated with electron beams was developed and the exposed areas, that is, the areas corresponding to the sides of the grid, were removed. For development, ZED-N50 manufactured by Nippon Zeon Co., Ltd. or the like can be used.
Gold is deposited on the developed surface. The gold is deposited directly on the surface of the steel plate in the areas that are removed by development (the sides of the grid), while it is deposited on the resist in the areas that are not exposed to light and have not been removed.
After that, when the photoresist is dissolved in an organic solvent, the gold on the resist is removed together with the resist, leaving only the gold deposited directly on the steel plate surface, forming a gold lattice (marker) on the steel plate surface. .

次に、格子マーカーを形成した鋼板を300℃に2時間保持する。こうすることで局所歪が解放され、その状況は格子の変形として表面から観察できる。なお、以下の測定を容易にするため、この熱処理は非酸化性雰囲気(例えばArガス雰囲気)で行うことが望ましい。
格子点が4点全てF相内にある格子をSEMで観察し、各々の格子について格子点間の距離(辺の長さ)L1~L4を測定する(図2参照)。そして、それらと500nmとの差の絶対値の最大値ΔLmax(単位nm)を500nmで除した値ΔLmax/500を、その格子の部分に、上記の300℃に2時間保持する熱処理を行う前に存在していた歪と定義する。
このようにして少なくとも500(個)の格子について歪を求め、その平均値を計算してF相中の局所歪の絶対値とした。
Next, the steel plate on which the grid markers are formed is held at 300° C. for 2 hours. This releases local strain, which can be observed from the surface as deformation of the lattice. Note that, in order to facilitate the following measurements, this heat treatment is preferably performed in a non-oxidizing atmosphere (for example, an Ar gas atmosphere).
A lattice in which all four lattice points are in the F phase is observed by SEM, and the distances (side lengths) L1 to L4 between the lattice points are measured for each lattice (see FIG. 2). Then, the value ΔLmax/500 obtained by dividing the maximum absolute value ΔLmax (unit: nm) of the difference between them and 500 nm by 500 nm is applied to the lattice portion before performing the heat treatment described above at 300°C for 2 hours. It is defined as the distortion that existed.
In this way, the strain was determined for at least 500 (pieces) of the lattices, and the average value was calculated to be used as the absolute value of the local strain in the F phase.

一方で、圧延後の冷却条件を変化させた実験を行い、F相中の局所歪の絶対値の平均が異なる鋼板を複数作製した。そしてそれらの降伏強度を、同一の化学成分を有する鋼片から作製したF相、およびP組織からなる鋼板のそれと比較したところ、F相中の局所歪の絶対値の平均が0.050以上の場合に、同等か、低いことを知見した。本発明でF相中の局所歪の絶対値の平均が0.050以上としたのはこのためである(後述の図3参照)。 On the other hand, an experiment was conducted in which the cooling conditions after rolling were varied, and a plurality of steel plates with different average absolute values of local strain in the F phase were produced. The yield strength of these steel sheets was compared with that of a steel sheet made of F phase and P structure made from steel slabs with the same chemical composition, and it was found that the average absolute value of local strain in F phase was 0.050 or more. In some cases, the results were found to be the same or lower. This is why the average absolute value of local strain in the F phase is set to 0.050 or more in the present invention (see FIG. 3, which will be described later).

<機械特性>
本発明の熱延鋼板によれば、高い引張強さ、具体的には440MPa以上の引張強さを達成することができる。引張強さは好ましくは600MPa以上であり、より好ましくは800MPa以上である。引張強度の上限値は、特に限定されないが、一般的には1000MPa以下であってもよい。
<Mechanical properties>
According to the hot rolled steel sheet of the present invention, high tensile strength, specifically, a tensile strength of 440 MPa or more can be achieved. The tensile strength is preferably 600 MPa or more, more preferably 800 MPa or more. The upper limit of the tensile strength is not particularly limited, but may generally be 1000 MPa or less.

<使用形態>
以上のように構成される本発明の熱延鋼板は、必要に応じて表面処理を施して製品板とすることにより、低い荷重で成形出来、かつ成形後に熱処理して高強度な部材とすることが容易な熱延鋼板として、建築、自動車、家電、産業用機械などの種々の用途に使用できる。
また、鋼片を熱間圧延、冷間圧延を経て薄鋼板とするプロセスにおける冷延鋼板用原板とすることにより、低い圧延荷重で冷間圧延でき、冷延後に熱処理して高強度化することが容易な熱延板とすることができる。
<Usage form>
The hot-rolled steel sheet of the present invention configured as described above can be formed into a product sheet by surface treatment as necessary, so that it can be formed with a low load, and it can be heat-treated after forming to form a high-strength member. As a hot-rolled steel sheet that can be easily rolled, it can be used in a variety of applications such as architecture, automobiles, home appliances, and industrial machinery.
In addition, by using the steel billet as the original sheet for cold rolled steel sheets in the process of hot rolling and cold rolling into thin steel sheets, it can be cold rolled with a low rolling load, and it can be heat treated after cold rolling to increase its strength. It can be made into a hot-rolled sheet that is easy to roll.

[製造方法]
本発明の鋼板の製造方法について説明する。
上記の条件を満たす化学成分を有する鋳片を製造する。製造に当たっては、生産性の観点から連続鋳造が望ましい。
鋳造後直接、あるいは1300℃以下に再加熱後、熱間圧延を行う。熱間圧延では、Ar点以上で完了する仕上げ圧延を行う。圧延前に再加熱する場合の再加熱温度が1300℃を上回ると酸化による歩留まりの低下が看過出来なくなる。一方、再加熱温度の下限は、Ar点以上で仕上げ圧延が完了出来ればどのような温度でも良く、圧延設備の仕様に応じて設定できる。
[Production method]
A method for manufacturing a steel plate according to the present invention will be explained.
A slab having a chemical composition that satisfies the above conditions is manufactured. In manufacturing, continuous casting is desirable from the viewpoint of productivity.
Hot rolling is performed directly after casting or after reheating to 1300°C or less. In hot rolling, finish rolling is completed at three or more Ar points. If the reheating temperature in the case of reheating before rolling exceeds 1300° C., a decrease in yield due to oxidation cannot be overlooked. On the other hand, the lower limit of the reheating temperature may be any temperature as long as finish rolling can be completed at 3 or more Ar points, and can be set according to the specifications of the rolling equipment.

仕上げ圧延をAr点以上で完了させるのは、冷却後のミクロ組織をベイナイト組織とF相からなる構成にするためである。仕上げ圧延の累積圧下率を50%以上とするのは、フェライトの平均粒径を30μm以下とするためである。本発明において、累積圧下率とは、複数パスの圧延を行う場合、一回毎の公称圧下率(圧下量/入側板厚)を全てのパスについて合計した値である。 The reason why the finish rolling is completed at three or more Ar points is to make the microstructure after cooling to be composed of a bainite structure and an F phase. The reason why the cumulative reduction ratio in finish rolling is set to 50% or more is to set the average grain size of ferrite to 30 μm or less. In the present invention, the cumulative rolling reduction ratio is the sum of the nominal rolling reduction ratio (rolling amount/inlet side plate thickness) for each pass when rolling is performed in multiple passes.

熱間圧延後、15~35℃/秒の平均冷却速度で400~550℃まで第一段目の冷却を行って、ベイナイト変態させる。この際の冷却速度が15℃/秒未満ではフェライト変態が優勢になり、F相、およびP組織からなるミクロ組織になる。一方で35℃/秒を上回るとM相主体の鋼板になるので望ましくない。
また、15~35℃/秒の平均冷却速度で冷却する温度を400~550℃とするのは、B組織の占有率を高め、かつM相の生成を極力抑制するためである。
After hot rolling, a first stage of cooling is performed to 400 to 550°C at an average cooling rate of 15 to 35°C/second to effect bainite transformation. If the cooling rate at this time is less than 15° C./sec, ferrite transformation becomes predominant, resulting in a microstructure consisting of an F phase and a P structure. On the other hand, if it exceeds 35° C./sec, the steel sheet will consist mainly of M phase, which is not desirable.
Further, the reason why the temperature at which cooling is performed at an average cooling rate of 15 to 35° C./sec is set to 400 to 550° C. is to increase the occupancy of the B structure and to suppress the formation of the M phase as much as possible.

第2段階の冷却として、15℃/s以下で、(ベイナイト組織が50%以上でオーステナイト相が35%となる時点)~(ベイナイト組織が50%以上でオーステナイト相が20%となる時点から100s経過後の時点)の間のいずれかの時点まで冷却する。このようにするためには、成分に応じて予め定められたCCT曲線に基づいて、圧延後の冷却条件を決定すればよい。
第2段階の冷却速度を15℃/秒以下とした理由は15℃超の冷却速度では、B変態の進行の途中でMs点を下回り、M相が優位に生成してしまうためである。
The second stage of cooling is at 15°C/s or less for 100 seconds from (the time when the bainite structure becomes 50% or more and the austenite phase becomes 35%) to (the time when the bainite structure becomes 50% or more and the austenite phase becomes 20%). Cool to some point between In order to do this, the cooling conditions after rolling may be determined based on a CCT curve predetermined according to the component.
The reason why the cooling rate in the second stage was set to 15° C./sec or less is that if the cooling rate exceeds 15° C., the temperature drops below the Ms point during the progress of the B transformation, and the M phase will predominately be produced.

このような相比率としたあと、第3段目の冷却を開始し、冷却開始から300℃までの冷却速度を50℃/秒以上として300℃以下まで冷却を行い、コイルに巻き取る。これにより、微細な応力分布を維持、凍結し、F相中に歪を残存させることができる。
この冷却速度の上限は、F相中に導入された歪の解放を抑制する目的からは特に設けなくともよいが、余りに速いと設備的な負荷が大きいので100℃/秒を上限とすればよい。
After achieving such a phase ratio, the third stage of cooling is started, and the cooling rate from the start of cooling to 300° C. is set to 50° C./sec or more to cool down to 300° C. or less, and the material is wound into a coil. Thereby, a fine stress distribution can be maintained and frozen, and strain can remain in the F phase.
There is no need to set an upper limit on this cooling rate for the purpose of suppressing the release of the strain introduced in the F phase, but if it is too fast, the load on the equipment will be large, so the upper limit should be 100°C/sec. .

ここで、第3段目の冷却を開始する時期を、B組織が50%以上の量になった時点以降としたのは、冷却開始時に少なくともB組織が50%以上でないと、降伏比を低下させるのに必要なひずみが形成されないためであり、冷却を開始する時期をオーステナイト相が35%の量になった時点以降としたのは、オーステナイトが35%を超える時刻に冷却を開始すると、マルテンサイトが多く出やすくなることや、降伏点を下げる効果を持つフェライトの量が減少するためである。また、オーステナイトが20%の時点から100秒経過後の時点としたのは、これ以上経過後に冷却を開始すると、ベイナイト変態時に導入されたひずみが解放されてしまい、目的の効果が得られないためである。 Here, the reason for starting the third stage of cooling is after the time when the amount of B structure reaches 50% or more is because if the B structure is not at least 50% or more at the start of cooling, the yield ratio will decrease. This is because the strain required to make the martenite phase This is because more sites tend to appear and the amount of ferrite, which has the effect of lowering the yield point, decreases. In addition, the reason why we set the time point 100 seconds after the austenite content is 20% is because if we start cooling after this time, the strain introduced during bainite transformation will be released and the desired effect will not be obtained. It is.

以上の条件を満たすことにより、上記の条件を満たす鋼板が得られる。 By satisfying the above conditions, a steel plate that satisfies the above conditions can be obtained.

本発明について実施例を示して説明する。
<実施例1>
まず、表1に記載の化学成分(残部はFeおよび不可避不純物)を有する鋼片を作製した。この鋼片を950℃に加熱後、1~60℃/秒の間の数水準の冷却速度で冷却を行い、それぞれの冷却速度において、冷却中の種々の温度において試験片を急冷してオーステナイト相の比率を求め、その結果を基に各成分の鋼片のCCT曲線を求めた。
The present invention will be explained by showing examples.
<Example 1>
First, a steel piece having the chemical components listed in Table 1 (the remainder being Fe and unavoidable impurities) was produced. After heating this steel piece to 950°C, it was cooled at several levels of cooling rate between 1 and 60°C/second, and at each cooling rate, the specimen was rapidly cooled at various temperatures during cooling to form an austenite phase. Based on the results, the CCT curves of the steel slabs of each component were determined.

次に、表1に記載の化学成分を有する鋼片を別途作製し、表2に記載の条件(下線付きは本発明の範囲外を示す。他の表でも同様である。)で板厚2.0~3.6mmの熱延鋼板とした。
なお、表2において、鋳片の加熱温度をSRT、圧延終了温度をFT、圧延後の最初の冷却速度をCR1として変態完了温度MTまで冷却し(第1段階)、その後の空冷時間をtACとして、冷却速度をCR2で空冷し(第2段階)、その後、冷却速度をCR3として冷却終点温度(巻取り温度)CTまで冷却した(第3段階)。なお、第3段階で冷却を開始する際のオーステナイト分率をξA、オーステナイト分率が20%となった時点から第3段階の冷却が開始されるまでの時間をtyとする。ここで、オーステナイト分率は、レーザー超音波法による測定で板厚平均値を測定した。また条件iiは、圧延終了後、5℃/秒で600℃まで冷却し、そのまま巻き取ったものである。なお、表1の鋼のAr点は750~830℃であり、表2のFTはすべてAr点以上である。
Next, a steel billet having the chemical composition listed in Table 1 was separately produced, and the plate thickness was increased to 2 A hot rolled steel plate with a thickness of .0 to 3.6 mm was used.
In Table 2, the heating temperature of the slab is SRT, the rolling end temperature is FT, the initial cooling rate after rolling is CR1, the slab is cooled to the transformation completion temperature MT (first stage), and the subsequent air cooling time is t AC The material was air cooled at a cooling rate of CR2 (second stage), and then cooled to the cooling end point temperature (winding temperature) CT at a cooling rate of CR3 (third stage). Note that the austenite fraction at the time of starting cooling in the third stage is ξA, and the time from the time when the austenite fraction reaches 20% until the third stage cooling is started is ty. Here, the austenite fraction was determined by measuring the average value of the plate thickness using a laser ultrasonic method. Further, under condition ii, after the rolling was completed, the sheet was cooled to 600° C. at a rate of 5° C./sec, and the sheet was wound up as it was. Note that the Ar 3 points of the steels in Table 1 are 750 to 830°C, and the FTs in Table 2 are all Ar 3 points or higher.

Figure 0007376771000001
Figure 0007376771000001

Figure 0007376771000002
Figure 0007376771000002

得られた鋼板の圧延方向と平行な断面を研磨、ナイタール腐食して板厚の1/4位置のミクロ組織構成を調べた。また、化学研磨後ナイタール腐食した鋼板に格子マーカーを作製し、歪を解放する熱処理を行い、F相内の歪を計測し、絶対値の平均を求めた。
さらに、得られた鋼板からJIS5号型引張試験片を作製した。試験片は引張方向を圧延方向と直交する向きに採取した。試験片について引張試験を行って降伏強度を求めた。上降伏点が認められたものについては上降伏点を、または上降伏点が認められなかったものについては0.2%耐力を以って降伏強度とした。
結果を表3に示す。
A cross section of the obtained steel plate parallel to the rolling direction was polished and subjected to nital corrosion, and the microstructure composition at a position of 1/4 of the plate thickness was investigated. In addition, a grid marker was made on a steel plate that had been subjected to nital corrosion after chemical polishing, and heat treatment was performed to release the strain. The strain in the F phase was measured, and the average of the absolute values was determined.
Furthermore, a JIS No. 5 tensile test piece was prepared from the obtained steel plate. The test pieces were taken with the tensile direction perpendicular to the rolling direction. A tensile test was conducted on the test piece to determine the yield strength. The yield strength was defined as the upper yield point for those in which the upper yield point was observed, or the 0.2% proof stress for those in which the upper yield point was not observed.
The results are shown in Table 3.

Figure 0007376771000003
Figure 0007376771000003

鋼aを条件iで累積圧下率150%で圧延した鋼板(No.1)は、ミクロ組織の構成が本発明を満たし、かつF相中の局所歪の絶対値の平均が0.050以上であり、条件iiで累積圧下率150%で圧延してF相、およびP組織とした鋼板(No.2)よりも低い降伏強度を示した。なお、以降では、特に記載が無い場合は、累積圧下率は150%で圧延を行うこととする。
鋼bを条件iii、およびivで圧延した鋼板(No.4、および5)は、ミクロ組織の構成が本発明を満たし、かつF相中の局所歪の絶対値の平均が0.050以上であり、条件iiで圧延してF相、およびP組織とした鋼板(No.3)よりも低い降伏強度を示した。
A steel plate (No. 1) obtained by rolling steel a at a cumulative reduction rate of 150% under condition i has a microstructure that satisfies the present invention and has an average absolute value of local strain in the F phase of 0.050 or more. The yield strength was lower than that of the steel plate (No. 2) which was rolled under condition ii at a cumulative reduction rate of 150% to form an F phase and a P structure. In addition, hereinafter, unless otherwise specified, rolling is performed at a cumulative reduction rate of 150%.
Steel plates (No. 4 and 5) obtained by rolling steel b under conditions iii and iv have a microstructure that satisfies the present invention, and have an average absolute value of local strain in the F phase of 0.050 or more. The yield strength was lower than that of the steel plate (No. 3) rolled under condition ii to have an F phase and a P structure.

鋼cを条件v、vi、およびviiで圧延した鋼板(No.7、8、および9)は、ミクロ組織の構成が本発明を満たし、かつF相中の局所歪の絶対値の平均が0.050以上であり、条件iiで圧延してF相、およびP組織とした鋼板(No.6)よりも低い降伏強度を示した。
また、鋼cを条件viii、およびixで圧延した鋼板(No.10、および11)は、F相中の局所歪の絶対値の平均が0.050を下回り、No.6よりも高い降伏強度を示した。
Steel plates (No. 7, 8, and 9) obtained by rolling steel c under conditions v, vi, and vii have a microstructure that satisfies the present invention, and the average absolute value of local strain in the F phase is 0. .050 or more, and showed a lower yield strength than the steel plate (No. 6) rolled under condition ii to have an F phase and a P structure.
In addition, the steel plates (No. 10 and 11) obtained by rolling steel c under conditions viii and ix have a yield strength higher than that of No. 6, with the average absolute value of local strain in the F phase being less than 0.050. showed that.

鋼dを条件xで圧延した鋼板(No.13)は、ミクロ組織の構成が本発明を満たし、かつF相中の局所歪の絶対値の平均が0.050以上であり、条件iiで圧延してF相、およびP組織とした鋼板(No.12)よりも低い降伏強度を示した。 A steel plate (No. 13) obtained by rolling steel d under condition x has a microstructure that satisfies the present invention, has an average absolute value of local strain in the F phase of 0.050 or more, and is rolled under condition ii. The yield strength was lower than that of the steel plate (No. 12) with F phase and P structure.

鋼eを条件xiで圧延した鋼板(No.15)は、ミクロ組織の構成が本発明を満たし、かつF相中の局所歪の絶対値の平均が0.050以上であり、条件iiで圧延してF相、およびP組織とした鋼板(No.14)よりも低い降伏強度を示した。
また、同鋼を条件xii、およびxiiiで圧延した鋼板(No.16、および17)は、ミクロ組織の構成が本発明の範囲を外れ、かつF相中の局所歪の絶対値の平均が0.050以下であり、No.14よりも高い降伏強度を示した。
e鋼についてF相中の局所歪の絶対値の平均と降伏強度の関係を図3にグラフで示す。F相中の局所歪の絶対値の平均が0.050以上の場合に、F相、およびP組織とした鋼板(No.14)に対する降伏強度の低下が明確である。
A steel plate (No. 15) obtained by rolling steel e under condition xi has a microstructure that satisfies the present invention, has an average absolute value of local strain in the F phase of 0.050 or more, and is rolled under condition ii. The yield strength was lower than that of the steel plate (No. 14) with F phase and P structure.
In addition, steel plates (No. 16 and 17) obtained by rolling the same steel under conditions xii and .050 or less, showing a higher yield strength than No. 14.
FIG. 3 graphically shows the relationship between the average absolute value of local strain in the F phase and the yield strength for e-steel. When the average absolute value of local strain in the F phase is 0.050 or more, there is a clear decrease in yield strength relative to the steel plate (No. 14) with the F phase and P structure.

鋼fを条件xivで圧延した鋼板(No.19)は、ミクロ組織の構成が本発明を満たし、かつF相中の局所歪の絶対値の平均が0.050以上であり、条件iiで圧延してF相、およびP組織とした鋼板(No.18)よりも低い降伏強度を示した。
鋼gを条件xvで圧延した鋼板(No.21)は、ミクロ組織の構成が本発明を満たし、かつF相中の局所歪の絶対値の平均が0.050以上であり、条件iiで圧延してF相、およびP組織とした鋼板(No.20)よりも低い降伏強度を示した。
また、同鋼を条件xviで圧延した鋼板(No.22)はF相が生成しなかったので以降の評価は行わなかった。
A steel plate (No. 19) obtained by rolling steel f under condition xiv has a microstructure composition that satisfies the present invention, an average absolute value of local strain in the F phase is 0.050 or more, and is rolled under condition ii. The yield strength was lower than that of the steel plate (No. 18) with F phase and P structure.
A steel plate (No. 21) obtained by rolling steel g under conditions The yield strength was lower than that of the steel plate (No. 20) with F phase and P structure.
Furthermore, since no F phase was generated in the steel plate (No. 22) obtained by rolling the same steel under condition xvi, no further evaluation was performed.

鋼hを条件xviiで圧延した鋼板(No.24)は、ミクロ組織の構成が本発明を満たし、かつF相中の局所歪の絶対値の平均が0.050以上であり、条件iiで圧延してF相、およびP組織とした鋼板(No.23)よりも低い降伏強度を示した。
また、同鋼を条件xviiiで圧延した鋼板(No.25)は、ミクロ組織の構成が本発明の範囲を外れ、かつF相中の局所歪の絶対値の平均が0.050以下であり、No.23よりも高い降伏強度を示した。
A steel plate (No. 24) obtained by rolling steel h under condition xvii has a microstructure that satisfies the present invention, has an average absolute value of local strain in the F phase of 0.050 or more, and is rolled under condition ii. The yield strength was lower than that of the steel plate (No. 23) with F phase and P structure.
In addition, a steel plate (No. 25) obtained by rolling the same steel under condition xviii has a microstructure composition outside the range of the present invention, and the average absolute value of local strain in the F phase is 0.050 or less, It showed higher yield strength than No. 23.

ここで、累積圧下率の影響について調査するため、鋼hを条件xviiで累積圧下率50%で圧延した鋼板を作成した。この鋼板は、F相中の局所歪の絶対値の平均が0.050以上であり、条件iiで圧延してF相、およびP組織とした鋼板(No.23)よりも低い降伏強度650MPaを示すと同時に、フェライト相の平均結晶粒径が30μmであり、良好な引張り強度902MPaを示した。
一方で、同鋼を条件xviiで累積圧下率40%で圧延した鋼板も作成した。この鋼板は、F相中の局所歪の絶対値の平均が0.050以上であり、低い降伏強度632MPaを示したが、フェライト相の平均結晶粒径が35μmとなり、引張り強度も同時に430MPaと低値となった。
Here, in order to investigate the influence of the cumulative reduction rate, a steel plate was prepared by rolling steel h under condition xvii with a cumulative reduction rate of 50%. This steel plate has an average absolute value of local strain in the F phase of 0.050 or more, and has a lower yield strength of 650 MPa than the steel plate (No. 23) rolled under condition ii to form the F phase and P structure. At the same time, the average crystal grain size of the ferrite phase was 30 μm, and a good tensile strength of 902 MPa was exhibited.
On the other hand, a steel plate was also produced by rolling the same steel under condition xvii with a cumulative reduction rate of 40%. This steel sheet had an average absolute value of local strain in the F phase of 0.050 or more and exhibited a low yield strength of 632 MPa, but the average grain size of the ferrite phase was 35 μm and the tensile strength was also low at 430 MPa. It became the value.

<実施例2>
表4に記載の化学成分(残部はFe、および不可避不純物である)を有する鋼片を作製し、表5に記載の条件で板厚2.4~3.0mmの熱延鋼板とした。ただし条件2-iは、圧延終了後、5℃/秒で600℃まで冷却し、そのまま巻き取ったものである。
<Example 2>
Steel pieces having the chemical components listed in Table 4 (the remainder being Fe and unavoidable impurities) were produced, and hot-rolled steel plates with a thickness of 2.4 to 3.0 mm were prepared under the conditions listed in Table 5. However, under condition 2-i, after the rolling was completed, the sheet was cooled to 600° C. at a rate of 5° C./sec and then wound up as it was.

Figure 0007376771000004
Figure 0007376771000004

Figure 0007376771000005
Figure 0007376771000005

得られた熱延鋼板の圧延方向と平行な断面を研磨、ナイタール腐食して板厚の1/4位置のミクロ組織構成を調べた。また、化学研磨後ナイタール腐食した鋼板に格子マーカーを作製し、歪を解放する熱処理を行い、F相内の歪を計測し、絶対値の平均を求めた。
次いで、得られた熱延鋼板を酸洗後冷間圧延に供した。7パスで板厚を1/2とする圧延を行った。各パスの線荷重を計測し、その合計値を求めた。なお潤滑条件は全条件、全パスについて一様となるように潤滑剤のノズル角度、噴霧量を制御した。潤滑剤は合成エステル系(日本パーカライジング(株)製FR-160)を用いた。
結果を表6に示す。
A cross section of the obtained hot rolled steel sheet parallel to the rolling direction was polished and subjected to nital corrosion, and the microstructure composition at a position of 1/4 of the sheet thickness was investigated. In addition, a grid marker was made on a steel plate that had been subjected to nital corrosion after chemical polishing, and heat treatment was performed to release the strain. The strain in the F phase was measured, and the average of the absolute values was determined.
Next, the obtained hot rolled steel sheet was pickled and then subjected to cold rolling. Rolling was performed to reduce the plate thickness to 1/2 in 7 passes. The line load of each pass was measured and the total value was calculated. Note that the nozzle angle and spray amount of the lubricant were controlled so that the lubrication conditions were uniform for all conditions and all passes. A synthetic ester lubricant (FR-160 manufactured by Nippon Parkerizing Co., Ltd.) was used as the lubricant.
The results are shown in Table 6.

Figure 0007376771000006
Figure 0007376771000006

鋼2-aを条件2-iで圧延した鋼板(No.2-1)はF相中の局所歪が殆ど認められず、さらにP分率が非常に高かったため、圧延線荷重としては比較的高い値となった。
鋼2-aを条件2-iiで圧延した鋼板(No.2-2)はF相中の局所歪の絶対値の平均が0.050以上であった。条件2-iで圧延してF相、およびP組織とした鋼板(No.2-1)よりも僅かに低い線荷重で冷間圧延することができ、冷間圧延性に優れることが明らかとなった。
一方、条件2-iiiで圧延した鋼板(No.2-3)は、B組織を主としたミクロ組織を呈しているものの、F相中の局所歪の絶対値の平均が0.050に届かず、圧延線荷重はNo.2-1、No.2-2よりも大幅に高くなり、冷間圧延性に劣ることが分かった。CR2が本発明の範囲を外れることが原因の一つと考えられる。
The steel plate (No. 2-1) obtained by rolling Steel 2-a under Condition 2-i had almost no local strain in the F phase, and also had a very high P fraction, so the rolling wire load was relatively low. The value was high.
A steel plate (No. 2-2) obtained by rolling Steel 2-a under Condition 2-ii had an average absolute value of local strain in the F phase of 0.050 or more. It is clear that it can be cold rolled with a slightly lower wire load than the steel plate (No. 2-1) rolled under condition 2-i to have F phase and P structure, and has excellent cold rollability. became.
On the other hand, although the steel plate (No. 2-3) rolled under condition 2-iii exhibits a microstructure mainly consisting of the B structure, the average absolute value of local strain in the F phase does not reach 0.050. First, the rolling wire load was significantly higher than that of No. 2-1 and No. 2-2, and it was found that the cold rolling properties were inferior. One of the reasons is considered to be that CR2 is outside the scope of the present invention.

鋼2-bを条件2-ivで圧延した鋼板(No.2-5)はF相中の局所歪の絶対値の平均が0.050以上であった。条件2-iで圧延してF相、およびP組織とした鋼板(No.2-4)よりも僅かに低い線荷重で圧延することができ、冷間圧延性に優れることが明らかとなった。
一方、条件2-vで圧延した鋼板(No.2-6)は、B組織を主としたミクロ組織を呈しているものの、F相中の局所歪の絶対値の平均が0.050に届かず、圧延線荷重はNo.2-4、No.2-5よりも大幅に高くなり、冷間圧延性に劣ることが分かった。CR2が本発明の範囲を外れることが原因の一つと考えられる。
A steel plate (No. 2-5) obtained by rolling Steel 2-b under Condition 2-iv had an average absolute value of local strain in the F phase of 0.050 or more. It became clear that the steel sheet could be rolled with a slightly lower wire load than the steel plate (No. 2-4) rolled under condition 2-i to have F phase and P structure, and had excellent cold rollability. .
On the other hand, although the steel plate (No. 2-6) rolled under condition 2-v exhibits a microstructure mainly consisting of the B structure, the average absolute value of local strain in the F phase does not reach 0.050. First, the rolling wire load was significantly higher than that of No. 2-4 and No. 2-5, and it was found that the cold rolling properties were inferior. One of the reasons is considered to be that CR2 is outside the scope of the present invention.

鋼2-cを条件2-viで圧延した鋼板(No.2-8)はF相中の局所歪の絶対値の平均が0.050以上であった。条件2-iで圧延してF相、およびP組織とした鋼板(No.2-7)よりも僅かに低い線荷重で圧延することができ、冷間圧延性に優れることが明らかとなった。
一方、条件2-viiで圧延した鋼板(No.2-9)は、B組織を主としたミクロ組織を呈しているものの、F相中の局所歪の絶対値の平均が0.050に届かず、圧延線荷重はNo.2-7、No.2-8よりも大幅に高くなり、冷間圧延性に劣ることが分かった。CR2が本発明の範囲を外れることが原因の一つと考えられる。
A steel plate (No. 2-8) obtained by rolling Steel 2-c under Condition 2-vi had an average absolute value of local strain in the F phase of 0.050 or more. It became clear that the steel sheet could be rolled with a slightly lower wire load than the steel plate (No. 2-7) rolled under condition 2-i to have F phase and P structure, and had excellent cold rollability. .
On the other hand, although the steel plate (No. 2-9) rolled under condition 2-vii has a microstructure mainly composed of the B structure, the average absolute value of local strain in the F phase does not reach 0.050. First, the rolling wire load was significantly higher than that of No. 2-7 and No. 2-8, and it was found that the cold rolling properties were inferior. One of the reasons is considered to be that CR2 is outside the scope of the present invention.

本発明によれば、高い生産性で、鋼板の引張強度を変えずに降伏点のみ下げることを実現でき、さらに、巻き取り温度を下げて、高強度化鋼板としても、低降伏比の鋼板とすることができる。よって、本発明は、産業上の利用可能性が高いものである。 According to the present invention, it is possible to lower only the yield point without changing the tensile strength of the steel plate with high productivity, and further, by lowering the winding temperature, it can be used as a high-strength steel plate as well as a steel plate with a low yield ratio. can do. Therefore, the present invention has high industrial applicability.

Claims (4)

質量%で、
C:0.05~0.50%、
Si:0.01~2.0%、
Mn:0.5~3.0%
を含有し、
P:0.03%以下、
S:0.02%以下、
N:0.05%以下、
Al:0.05%以下
にそれぞれ制限され、残部がFeおよび不可避的不純物で構成される化学成分を有し、
そのミクロ組織が、面積率で、50%以上のベイナイト組織および15~30%のフェライト相を含み、フェライト相の平均結晶粒径が30μm以下であり、
微細格子マーカー法で求めたフェライト相中の局所歪の絶対値の平均が0.050以上であり、引張強さが440MPa以上であり、前記局所歪の絶対値の平均は300℃、2時間の加熱前後の微細格子マーカーの変化を比較することにより求められた歪の数値に基づいて決定されることを特徴とする高強度熱延鋼板。
In mass%,
C: 0.05-0.50%,
Si: 0.01-2.0%,
Mn: 0.5-3.0%
Contains
P: 0.03% or less,
S: 0.02% or less,
N: 0.05% or less,
Al: has chemical components each limited to 0.05% or less, with the remainder consisting of Fe and unavoidable impurities,
The microstructure contains a bainite structure of 50% or more and a ferrite phase of 15 to 30% in terms of area ratio, and the average grain size of the ferrite phase is 30 μm or less,
The average absolute value of local strain in the ferrite phase determined by the fine lattice marker method is 0.050 or more, the tensile strength is 440 MPa or more , and the average absolute value of the local strain is 300 ° C. for 2 hours. A high-strength hot-rolled steel sheet, characterized in that the strain is determined based on a numerical value of strain determined by comparing changes in fine lattice markers before and after heating.
鋼板が、更に加えて、質量%で、
Ti:0.1%以下、
Nb:0.1%以下、
B:0.01%以下、
Cr:1.5%以下、
Cu:1.0%以下、
Ni:1.0%以下
のうちの1種または2種以上を含有することを特徴とする請求項1に記載の高強度熱延鋼板。
In addition, the steel plate is in mass%,
Ti: 0.1% or less,
Nb: 0.1% or less,
B: 0.01% or less,
Cr: 1.5% or less,
Cu: 1.0% or less,
The high-strength hot-rolled steel sheet according to claim 1, containing one or more of Ni: 1.0% or less.
鋼板が、更に加えて、質量%で、
Mo:0.01~1.0%、
W:0.01~0.5%、
V:0.01~0.5%
のうちの1種または2種以上を含有することを特徴とする請求項1または2に記載の高強度熱延鋼板。
In addition, the steel plate is in mass%,
Mo: 0.01-1.0%,
W: 0.01-0.5%,
V:0.01~0.5%
The high-strength hot-rolled steel sheet according to claim 1 or 2, characterized in that it contains one or more of the following.
請求項1~3のいずれか1項に記載の高強度熱延鋼板を製造する方法であって、請求項1~3のいずれか1項に記載の化学成分を有する鋼を鋳造した後、直接、あるいは1300℃以下に再加熱して熱間圧延し、該熱間圧延において、Ar3点以上で完了する累積圧下率50%以上の仕上げ圧延を行い、熱間圧延後、第1段階の冷却として、15~35℃/秒の平均冷却速度で400~550℃まで冷却し、その後、第2段階の冷却として、平均冷却速度15℃/s以下で、(ベイナイト組織が50%以上でオーステナイト相が35%となる時点)~(ベイナイト組織が50%以上でオーステナイト相が20%となる時点から100s経過後の時点)の間のいずれかの時点まで冷却し、更に、第3段階の冷却として、その後、300℃になるまでの平均冷却速度を50℃/秒以上として300℃以下まで冷却して巻き取ることを特徴とする高強度熱延鋼板の製造方法。 A method for producing a high-strength hot-rolled steel sheet according to any one of claims 1 to 3, comprising: directly casting the steel having the chemical composition according to any one of claims 1 to 3; Alternatively, hot rolling is performed by reheating to 1300°C or lower, and in the hot rolling, finish rolling is performed with a cumulative reduction rate of 50% or more that is completed at 3 or more Ar points, and after hot rolling, the first stage of cooling is performed. Then, in the second stage of cooling, at an average cooling rate of 15°C/s or less, (the bainite structure is 50% or more and the austenite phase is formed). 35%) to (100 seconds after the point when the bainite structure is 50% or more and the austenite phase is 20%), and then as a third stage of cooling. A method for producing a high-strength hot-rolled steel sheet, the method comprising: cooling to 300°C or less at an average cooling rate of 50°C/second or more until the temperature reaches 300°C, and then winding the sheet.
JP2019150342A 2019-08-20 2019-08-20 High-strength hot-rolled steel sheet and its manufacturing method Active JP7376771B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019150342A JP7376771B2 (en) 2019-08-20 2019-08-20 High-strength hot-rolled steel sheet and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019150342A JP7376771B2 (en) 2019-08-20 2019-08-20 High-strength hot-rolled steel sheet and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2021031700A JP2021031700A (en) 2021-03-01
JP7376771B2 true JP7376771B2 (en) 2023-11-09

Family

ID=74675553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019150342A Active JP7376771B2 (en) 2019-08-20 2019-08-20 High-strength hot-rolled steel sheet and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7376771B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115491581B (en) * 2021-06-17 2023-07-11 宝山钢铁股份有限公司 X100-grade low-temperature-resistant corrosion-resistant thick-wall seamless pipeline tube and manufacturing method thereof
CN114182078A (en) * 2021-12-03 2022-03-15 上海电气上重铸锻有限公司 Preparation method of high-strength austenite shaft heavy forging
CN114657479B (en) * 2022-05-11 2023-05-16 马鞍山钢铁股份有限公司 Hot-rolled corrosion-resistant steel with thick specification, high strength and excellent low-temperature toughness, and manufacturing method and application thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005298956A (en) 2004-04-16 2005-10-27 Sumitomo Metal Ind Ltd Hot rolled steel sheet and its production method
JP2008266792A (en) 2008-05-28 2008-11-06 Sumitomo Metal Ind Ltd Hot-rolled steel sheet
JP2009263718A (en) 2008-04-24 2009-11-12 Nippon Steel Corp Hot-rolled steel plate superior in hole expandability and manufacturing method therefor
JP2014205890A (en) 2013-04-15 2014-10-30 Jfeスチール株式会社 High strength hot rolled steel sheet excellent in bore expanding workability and manufacturing method therefor
JP2015063732A (en) 2013-09-25 2015-04-09 新日鐵住金株式会社 High strength hot rolled steel sheet excellent in hole-expandability, elongation and weld characteristics and manufacturing method therefor
JP2015124411A (en) 2013-12-26 2015-07-06 新日鐵住金株式会社 Method for manufacturing hot rolled steel sheet
JP2017101299A (en) 2015-12-03 2017-06-08 新日鐵住金株式会社 Hot rolled steel sheet and production method therefor
JP2018188675A (en) 2017-04-28 2018-11-29 Jfeスチール株式会社 High strength hot-rolled steel sheet and production method thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005298956A (en) 2004-04-16 2005-10-27 Sumitomo Metal Ind Ltd Hot rolled steel sheet and its production method
JP2009263718A (en) 2008-04-24 2009-11-12 Nippon Steel Corp Hot-rolled steel plate superior in hole expandability and manufacturing method therefor
JP2008266792A (en) 2008-05-28 2008-11-06 Sumitomo Metal Ind Ltd Hot-rolled steel sheet
JP2014205890A (en) 2013-04-15 2014-10-30 Jfeスチール株式会社 High strength hot rolled steel sheet excellent in bore expanding workability and manufacturing method therefor
JP2015063732A (en) 2013-09-25 2015-04-09 新日鐵住金株式会社 High strength hot rolled steel sheet excellent in hole-expandability, elongation and weld characteristics and manufacturing method therefor
JP2015124411A (en) 2013-12-26 2015-07-06 新日鐵住金株式会社 Method for manufacturing hot rolled steel sheet
JP2017101299A (en) 2015-12-03 2017-06-08 新日鐵住金株式会社 Hot rolled steel sheet and production method therefor
JP2018188675A (en) 2017-04-28 2018-11-29 Jfeスチール株式会社 High strength hot-rolled steel sheet and production method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
南 秀和、池田 博司、森川 龍哉、東田 賢二、眞山 剛、田路 勇樹、長谷川 浩,微細格子マーカー法を用いた複合組織鋼における 局所塑性ひずみ分布の可視化,鉄と鋼,日本,日本鉄鋼協会,2012年,Vol. 98 (2012) 、No. 6,89~96,https://www.jstage.jst.go.jp/article/tetsutohagane/98/6/98_303/_pdf/-char/ja

Also Published As

Publication number Publication date
JP2021031700A (en) 2021-03-01

Similar Documents

Publication Publication Date Title
JP6791838B2 (en) Cold-rolled steel sheet and its manufacturing method
KR101600723B1 (en) Medium carbon steel sheet, quenched member, and method for manufacturing medium carbon steel sheet and quenched member
JP5821912B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
JP5724267B2 (en) High-strength hot-rolled steel sheet excellent in punching workability and manufacturing method thereof
KR100974737B1 (en) Manufacturing method of ultra soft high carbon hot-rolled steel sheets
JP5316634B2 (en) High-strength steel sheet with excellent workability and method for producing the same
JP7376771B2 (en) High-strength hot-rolled steel sheet and its manufacturing method
US9994941B2 (en) High strength cold rolled steel sheet with high yield ratio and method for producing the same
KR20130021409A (en) High-strength steel sheet with excellent processability and process for producing same
JP6566168B1 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
WO2013180180A1 (en) High strength cold-rolled steel plate and manufacturing method therefor
WO2013089095A1 (en) High-strength cold-rolled steel sheet having small variations in strength and ductility, and method for producing same
JP6610113B2 (en) High-strength galvannealed steel sheet, hot-rolled steel sheet for the steel sheet, and methods for producing them
JP2018090874A (en) High-strength steel sheet excellent in bake hardenability and method for manufacturing the same
JP2011214073A (en) Cold-rolled steel sheet, and method for producing the same
JP2013249502A (en) High-strength cold-rolled steel plate with excellent bendability and method for manufacturing the same
JP5533145B2 (en) Cold rolled steel sheet and method for producing the same
JP2011214070A (en) Cold-rolled steel sheet, and method for producing same
JP5776762B2 (en) Cold rolled steel sheet and method for producing the same
JP5860345B2 (en) High-strength cold-rolled steel sheet with small variation in mechanical properties and method for producing the same
CN111315907B (en) Steel plate
KR102020387B1 (en) High-carbon hot-rolled steel sheet having excellent surface quality and method for manufacturing same
JP4280202B2 (en) High carbon steel plate with excellent hardenability and stretch flangeability
JP5874376B2 (en) High-strength steel sheet with excellent workability and method for producing the same
JP5776764B2 (en) Cold rolled steel sheet and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230509

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230703

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231009

R151 Written notification of patent or utility model registration

Ref document number: 7376771

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151