JP2014205890A - High strength hot rolled steel sheet excellent in bore expanding workability and manufacturing method therefor - Google Patents
High strength hot rolled steel sheet excellent in bore expanding workability and manufacturing method therefor Download PDFInfo
- Publication number
- JP2014205890A JP2014205890A JP2013084450A JP2013084450A JP2014205890A JP 2014205890 A JP2014205890 A JP 2014205890A JP 2013084450 A JP2013084450 A JP 2013084450A JP 2013084450 A JP2013084450 A JP 2013084450A JP 2014205890 A JP2014205890 A JP 2014205890A
- Authority
- JP
- Japan
- Prior art keywords
- less
- steel sheet
- cooling
- rolled steel
- stage cooling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 107
- 239000010959 steel Substances 0.000 title claims abstract description 107
- 238000004519 manufacturing process Methods 0.000 title claims description 16
- 238000001816 cooling Methods 0.000 claims abstract description 87
- 238000005096 rolling process Methods 0.000 claims abstract description 45
- 229910001563 bainite Inorganic materials 0.000 claims abstract description 31
- 229910001567 cementite Inorganic materials 0.000 claims abstract description 31
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 claims abstract description 31
- 238000004804 winding Methods 0.000 claims abstract description 11
- 239000000203 mixture Substances 0.000 claims description 20
- 239000000463 material Substances 0.000 claims description 19
- 229910000859 α-Fe Inorganic materials 0.000 claims description 14
- 229910001566 austenite Inorganic materials 0.000 claims description 11
- 229910000734 martensite Inorganic materials 0.000 claims description 10
- 239000012535 impurity Substances 0.000 claims description 9
- 238000005098 hot rolling Methods 0.000 claims description 8
- 229910052796 boron Inorganic materials 0.000 claims description 7
- 229910052804 chromium Inorganic materials 0.000 claims description 7
- 229910052802 copper Inorganic materials 0.000 claims description 7
- 238000010438 heat treatment Methods 0.000 claims description 7
- 229910052750 molybdenum Inorganic materials 0.000 claims description 7
- 229910052759 nickel Inorganic materials 0.000 claims description 7
- 229910052698 phosphorus Inorganic materials 0.000 claims description 7
- 239000002245 particle Substances 0.000 abstract description 12
- 229910052748 manganese Inorganic materials 0.000 abstract description 8
- 229910052799 carbon Inorganic materials 0.000 abstract description 6
- 229910052720 vanadium Inorganic materials 0.000 abstract description 6
- 229910052757 nitrogen Inorganic materials 0.000 abstract description 4
- 239000002994 raw material Substances 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 23
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 18
- 238000012360 testing method Methods 0.000 description 16
- 238000000034 method Methods 0.000 description 15
- 230000015572 biosynthetic process Effects 0.000 description 14
- 229910052758 niobium Inorganic materials 0.000 description 9
- 230000007423 decrease Effects 0.000 description 7
- 239000002244 precipitate Substances 0.000 description 7
- 230000006872 improvement Effects 0.000 description 6
- 239000006104 solid solution Substances 0.000 description 6
- 229910052717 sulfur Inorganic materials 0.000 description 6
- 238000005868 electrolysis reaction Methods 0.000 description 5
- 238000001556 precipitation Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 238000004080 punching Methods 0.000 description 5
- 229910052742 iron Inorganic materials 0.000 description 4
- 230000009466 transformation Effects 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 238000005728 strengthening Methods 0.000 description 3
- 238000009864 tensile test Methods 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000003749 cleanliness Effects 0.000 description 2
- 238000009749 continuous casting Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000003892 spreading Methods 0.000 description 2
- 230000007480 spreading Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- OKIZCWYLBDKLSU-UHFFFAOYSA-M N,N,N-Trimethylmethanaminium chloride Chemical compound [Cl-].C[N+](C)(C)C OKIZCWYLBDKLSU-UHFFFAOYSA-M 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
本発明は、自動車の足回り部品、構造部品、骨格、あるいはトラックのフレーム等の素材として好適な、引張強さTSが980MPa以上の高強度熱延鋼板およびその製造方法に係り、とくに、穴拡げ加工性の向上に関する。なお、ここでいう「鋼板」には、鋼帯をも含むものとする。 The present invention relates to a high-strength hot-rolled steel sheet having a tensile strength TS of 980 MPa or more, which is suitable as a material for automobile undercarriage parts, structural parts, frames, truck frames, and the like, and in particular, to expand holes. It relates to improvement of workability. Note that the “steel plate” here includes a steel strip.
近年、地球環境の保全の観点から、自動車の燃費向上が重要な課題となっており、自動車車体の一層の軽量化が要望されている。そのため、自動車部品の素材である自動車用鋼板に対して、より一層の高強度化(薄肉化)が要求されている。しかし、一般的に、鋼板を高強度化すると、成形性(加工性)が低下するため、高強度鋼板の成形性向上が要望されている。とくに、自動車部品用高強度鋼板では、成形性のうち、とくに穴拡げ加工性(伸びフランジ性ともいう)の向上が強く要望され、種々の検討がなされている。 In recent years, improving the fuel efficiency of automobiles has become an important issue from the viewpoint of protecting the global environment, and further weight reduction of automobile bodies has been demanded. Therefore, a further increase in strength (thinning) is required for the steel sheet for automobiles, which is a material for automobile parts. However, generally, when the strength of a steel plate is increased, the formability (workability) is lowered, so that improvement of the formability of the high strength steel plate is desired. In particular, high strength steel sheets for automobile parts are strongly requested to improve the hole expansion workability (also referred to as stretch flangeability), and various studies have been made.
例えば、特許文献1には、質量%で、C:0.05〜0.15%、Si:0.2〜1.2%、Mn:1.0〜2.0%、P:0.04%以下、S:0.005%以下、Ti:0.05〜0.15%、Al:0.005〜0.10%、N:0.007%以下を含有し、残部鉄及び不可避的不純物からなる組成を有する鋼素材を、1150〜1350℃、好ましくは1200℃超1350℃以下に加熱したのち、850〜950℃、好ましくは900℃超950℃以下の仕上温度で終了する熱間圧延を施し、該熱間圧延終了後、30℃/s以上の平均冷却速度で530℃まで冷却し、ついで100℃/s以上の平均冷却速度で、巻取温度:300〜500℃まで冷却し、該巻取温度で巻取る、高強度熱延鋼板の製造方法が記載されている。これにより、平均粒径が5μm以下、好ましくは3.0超〜5.0μmのベイナイト相単相からなる組織としたうえで、固溶Tiを0.02%以上残存させることにより、TS:780MPa以上という高強度を維持したまま、伸びフランジ性および耐疲労特性が顕著に向上するとしている。なお、ベイナイト相単相からなる組織に代えて、面積率で90%以上のベイナイト相と、該ベイナイト相以外の第二相からなり、第二相の平均粒径が3μm以下である組織としてもよいとしている。 For example, Patent Document 1 includes mass%, C: 0.05 to 0.15%, Si: 0.2 to 1.2%, Mn: 1.0 to 2.0%, P: 0.04% or less, S: 0.005% or less, Ti: 0.05 to 0.15. %, Al: 0.005 to 0.10%, N: 0.007% or less, and after heating the steel material having the composition of the balance iron and inevitable impurities to 1150 to 1350 ° C, preferably more than 1200 ° C and 1350 ° C or less , 850 to 950 ° C., preferably over 900 ° C. and finished at a finishing temperature of 950 ° C. or less, and after the hot rolling is finished, it is cooled to 530 ° C. at an average cooling rate of 30 ° C./s or more. A method for producing a high-strength hot-rolled steel sheet is described in which the coil is cooled to a winding temperature of 300 to 500 ° C. at an average cooling rate of 100 ° C./s or more and wound at the winding temperature. As a result, after having a structure composed of a single phase of bainite phase having an average particle size of 5 μm or less, preferably more than 3.0 to 5.0 μm, TS of 780 MPa or more is obtained by leaving 0.02% or more of solid solution Ti. It is said that stretch flangeability and fatigue resistance will be remarkably improved while maintaining. Instead of a structure consisting of a single phase of bainite phase, a bainite phase having an area ratio of 90% or more and a second phase other than the bainite phase, and a structure in which the average particle size of the second phase is 3 μm or less It ’s good.
また、特許文献2には、質量%で、C:0.01〜0.08%、Si:0.30〜1.50%、Mn:0.50〜2.50%、P:0.03%以下、S:0.005%以下、及びTi:0.01〜0.20%、Nb:0.01〜0.04%の1種または2種を含有し、残部鉄及び不可避的不純物からなるスラブに、圧延終了温度をAr3変態点〜950℃として熱間圧延を施したのち、20℃/s以上の冷却速度で650〜800℃まで冷却しついで2〜15s空冷したのち、さらに20℃/s以上の冷却速度で350〜600℃に冷却して巻き取る、高強度熱延鋼板の製造方法が記載されている。これにより、粒径2μm以上のフェライトの割合が80%以上であるフェライト・ベイナイト二相組織を有し、TS:690MPa以上で、穴拡げ性と延性に優れた高強度熱延鋼板が得られるとしている。なお、Ca、REMの1種または2種を0.0005〜0.01%含有してもよいとしている。 Patent Document 2 includes mass%, C: 0.01 to 0.08%, Si: 0.30 to 1.50%, Mn: 0.50 to 2.50%, P: 0.03% or less, S: 0.005% or less, and Ti: 0.01 to 0.20%, Nb: contains 0.01 to 0.04% of one or, in slab and the balance of iron and unavoidable impurities, after the rolling end temperature was subjected to hot rolling as Ar 3 transformation point to 950 ° C., High-strength hot-rolled steel sheet that is cooled to 650-800 ° C at a cooling rate of 20 ° C / s or higher, then air-cooled for 2-15s, and further cooled to 350-600 ° C at a cooling rate of 20 ° C / s or higher. The manufacturing method is described. As a result, a high-strength hot-rolled steel sheet having a ferrite-bainite dual-phase structure in which the proportion of ferrite with a grain size of 2 μm or more is 80% or more, TS: 690 MPa or more and excellent in hole expansibility and ductility is obtained Yes. Note that one or two of Ca and REM may be contained in an amount of 0.0005 to 0.01%.
また、特許文献3には、穴拡げ性と延性に優れた高強度薄鋼板が記載されている。特許文献3に記載された高強度薄鋼板は、質量%で、C:0.01〜0.20%、Si: 1.50%以下、Al:1.5%以下、Mn:0.5〜3.5%、P:0.2%以下、S:0.0005〜0.009%、N:0.009%以下、Mg:0.0006〜0.01%、O:0.005%以下、およびTi:0.01〜0.20%、Nb:0.01〜0.10%の1種または2種含有し、残部が鉄および不可避的不純物からなり、次の3式
[Mg%]≧ ([O%]/16×0.8)×24・・・(1)
[S%] ≦ ([Mg%]/24−[O%]/16×0.8+0.00012)×32・・・(2)
[S%] ≦ 0.0075/[Mn%]・・・(3)
の全てを満たし、組織がベイナイト相を主体とする薄鋼板である。これにより、TS:980MPa以上の高強度で、穴拡げ性と延性に優れる薄鋼板になるとしている。特許文献3に記載された技術では、O、MgとMnとSの添加バランスをある条件に調整し、MgOとMgSとの複合析出を利用して(Nb,Ti)Nの均一微細化を図り、打抜き穴の断面に微細均一なボイドを生成させて、穴拡げ加工時の応力集中を緩和し、穴拡げ性を向上させるとしている。
Patent Document 3 describes a high-strength thin steel sheet having excellent hole expandability and ductility. The high-strength thin steel sheet described in Patent Document 3 is in mass%, C: 0.01 to 0.20%, Si: 1.50% or less, Al: 1.5% or less, Mn: 0.5 to 3.5%, P: 0.2% or less, S : 0.0005 to 0.009%, N: 0.009% or less, Mg: 0.0006 to 0.01%, O: 0.005% or less, and Ti: 0.01 to 0.20%, Nb: 0.01 to 0.10%. Consists of iron and inevitable impurities.
[Mg%] ≧ ([O%] / 16 × 0.8) × 24 (1)
[S%] ≤ ([Mg%] / 24- [O%] / 16 × 0.8 + 0.00012) × 32 (2)
[S%] ≦ 0.0075 / [Mn%] (3)
It is a thin steel sheet that satisfies all of the above and whose structure is mainly a bainite phase. As a result, TS: 980MPa or higher high strength steel sheet with excellent hole expansibility and ductility. In the technique described in Patent Document 3, the balance of addition of O, Mg, Mn, and S is adjusted to a certain condition, and uniform refinement of (Nb, Ti) N is achieved by utilizing composite precipitation of MgO and MgS. It is said that fine uniform voids are generated in the cross-section of the punched hole to relieve stress concentration during the hole expanding process and improve the hole expandability.
特許文献1に記載された技術では、目標とする強度は、引張強さTS:780MPa以上であるが、C含有量を増加すれば、引張強さTS:980MPa以上の高強度を確保することもできる。しかし、更なる高強度化のためにC含有量を増加すると、Ti炭化物の析出量の制御が困難となり、穴拡げ加工性を向上させるために必要な0.02%以上の固溶Tiを安定して残存させることができにくいという問題があった。 In the technique described in Patent Document 1, the target strength is the tensile strength TS: 780 MPa or more, but if the C content is increased, the tensile strength TS: 980 MPa or more can be ensured. it can. However, if the C content is increased to further increase the strength, it becomes difficult to control the amount of precipitation of Ti carbide, and 0.02% or more of the solid solution Ti required to improve hole expansion workability can be stabilized. There was a problem that it was difficult to remain.
また、特許文献2に記載された技術では、鋼板組織を、粒径2μm以上のフェライトの割合が80%以上であるフェライト+ベイナイトの混合組織としており、得られる鋼板強度は高々976MPa程度までで、引張強さTS:980MPa以上という更なる高強度化を達成できにくく、引張強さTS:980MPa以上という高強度が得られたとしても、フェライト相の靭性が著しく低下し、優れた穴拡げ加工性を確保できないという問題があった。 In the technique described in Patent Document 2, the steel sheet structure is a mixed structure of ferrite and bainite in which the ratio of ferrite having a grain size of 2 μm or more is 80% or more, and the obtained steel sheet strength is up to about 976 MPa, Tensile strength TS: It is difficult to achieve higher strength of 980 MPa or higher, and even if tensile strength TS: 980 MPa or higher is obtained, the toughness of the ferrite phase is significantly reduced and excellent hole expansion workability is achieved. There was a problem that could not be secured.
また、特許文献3に記載された技術では、(Nb,Ti)Nの均一微細化を図り、打抜き穴の断面に微細均一なボイドを生成させて、穴拡げ加工時の応力集中を緩和し、穴拡げ性(穴拡げ加工性)を向上させるとしているが、(Nb,Ti)Nの均一微細化により、(Nb,Ti)N同士の距離が縮まり、局部変形時に発生したボイドが連結しやすくなり、局部伸びが低下する場合があるという問題があった。 Moreover, in the technique described in Patent Document 3, uniform (Nb, Ti) N refinement is achieved, fine uniform voids are generated in the cross section of the punched hole, and stress concentration during hole expansion processing is reduced. Although the hole expandability (hole expandability) is being improved, the (Nb, Ti) N uniform refinement reduces the distance between (Nb, Ti) N and facilitates the connection of voids generated during local deformation. Therefore, there was a problem that the local elongation may decrease.
本発明は、かかる従来技術の問題を解決し、引張強さ:980MPa以上という高強度を維持しつつ、さらに優れた穴拡げ加工性を有する高強度熱延鋼板およびその製造方法を提供することを目的とする。なお、本発明が目的とする高強度熱延鋼板は板厚2〜4mmの薄鋼板とする。 The present invention provides a high-strength hot-rolled steel sheet having a further excellent hole expansion workability and a method for producing the same while solving such problems of the prior art and maintaining a high strength of tensile strength: 980 MPa or more. Objective. The high-strength hot-rolled steel sheet targeted by the present invention is a thin steel sheet having a thickness of 2 to 4 mm.
本発明者らは、上記した目的を達成するために、引張強さTS:980MPa以上という高強度を維持した状態で、穴拡げ加工性に及ぼす各種要因について鋭意検討した。その結果、ベイナイト相を主相とする組織として引張強さTS:980MPa以上という高強度を維持した場合には、セメンタイトが穴拡げ加工時、あるいは局部変形時のボイド形成の起点として作用し、セメンタイトの量が多くなると、ボイドが連結しやすく、局部延性が低下し、穴拡げ加工性を低下させることを知見した。また、セメンタイトの粒径が大きくなると、穴拡げ加工の前処理である打抜き加工の打抜き端面に粗大なボイドが形成され、穴拡げ加工性が低下することも見出した。 In order to achieve the above-described object, the present inventors diligently studied various factors affecting the hole expansion workability while maintaining a high strength of tensile strength TS: 980 MPa or more. As a result, when the tensile strength TS: 980MPa or higher is maintained with the bainite phase as the main phase, cementite acts as a starting point for void formation during hole expansion or local deformation. It has been found that when the amount of is increased, the voids are easily connected, the local ductility is lowered, and the hole expanding workability is lowered. It has also been found that when the particle size of cementite increases, coarse voids are formed on the punching end face of the punching process, which is a pretreatment for the hole expanding process, and the hole expanding processability is lowered.
このようなことから、本発明者らは更なる研究を行い、引張強さTS:980MPa以上という高強度を維持した状態で、穴拡げ加工性、さらには局部延性を向上させるためには、C、Si、Ti、Vの含有量バランスを調整し、さらに製造条件を適正化して、セメンタイトを質量%で0.8%以下、セメンタイトの平均粒径を150nm以下に調整し、セメンタイト同士の間隔を広くすることが肝要になることを知見した。 For this reason, the present inventors conducted further research, and in order to improve the hole expansion workability and further the local ductility while maintaining a high strength of tensile strength TS: 980 MPa or more, C Adjust the content balance of Si, Ti and V, further optimize the production conditions, adjust the cementite to 0.8% by mass and the average particle size of cementite to 150nm or less, and widen the space between cementites. I found out that this is important.
本発明は、かかる知見に基づき、更なる検討を加えて完成したものである。すなわち、本発明の要旨はつぎの通りである。
(1)質量%で、C:0.1%超0.2%以下、Si:1.0%以下、Mn:1.5〜2.5%、P:0.05%以下、S:0.005%以下、Al:0.10%以下、N:0.007%以下、Ti:0.07〜0.2%、V:0.1%超0.3%以下を含有し、残部Feおよび不可避的不純物からなる組成を有し、さらに、面積率で90%以上のベイナイト相を主相とし、主相以外の残部が面積率で10%以下の、マルテンサイト相、オーステナイト相、フェライト相のうちから選ばれた1種または2種以上からなる組織を有し、かつ組織中に分散するセメンタイトが質量%で0.8%以下、平均粒径が150nm以下であり、引張強さTSが980MPa以上であることを特徴とする穴拡げ加工性に優れた高強度熱延鋼板。
The present invention has been completed on the basis of such findings with further studies. That is, the gist of the present invention is as follows.
(1) By mass%, C: more than 0.1% and 0.2% or less, Si: 1.0% or less, Mn: 1.5 to 2.5%, P: 0.05% or less, S: 0.005% or less, Al: 0.10% or less, N: 0.007 %, Ti: 0.07 to 0.2%, V: more than 0.1% and 0.3% or less, the composition consisting of the balance Fe and inevitable impurities, and the main phase is a bainite phase with an area ratio of 90% or more , Cementite having a structure composed of one or more selected from the martensite phase, austenite phase, and ferrite phase, the balance other than the main phase being 10% or less in area ratio, and dispersed in the structure Is a high-strength hot-rolled steel sheet excellent in hole expansion workability, characterized by having a mass% of 0.8% or less, an average particle size of 150 nm or less, and a tensile strength TS of 980 MPa or more.
(2)(1)において、前記組成に加えてさらに、質量%で、Nb:0.005〜0.1%、B:0.0002〜0.002%、Cu:0.005〜0.3%、Ni:0.005〜0.3%、Cr:0.005〜0.3%、Mo:0.005〜0.3%のうちから選ばれた1種または2種以上を含有することを特徴とする高強度熱延鋼板。
(3)(1)または(2)において、前記組成に加えてさらに、質量%で、Ca:0.0003〜0.01%、REM:0.0003〜0.01%のうちから選ばれた1種または2種を含有することを特徴とする高強度熱延鋼板。
(2) In (1), in addition to the above composition, in terms of mass%, Nb: 0.005-0.1%, B: 0.0002-0.002%, Cu: 0.005-0.3%, Ni: 0.005-0.3%, Cr: 0.005 A high-strength hot-rolled steel sheet comprising one or more selected from ˜0.3% and Mo: 0.005 to 0.3%.
(3) In (1) or (2), in addition to the above composition, the composition further contains one or two kinds selected from Ca: 0.0003 to 0.01% and REM: 0.0003 to 0.01% by mass%. A high-strength hot-rolled steel sheet characterized by that.
(4)鋼素材を、加熱し粗圧延と仕上圧延からなる熱間圧延を施したのち、第一段冷却と第二段冷却の二段階からなる冷却を施し、ついで巻き取り熱延鋼板とするにあたり、前記鋼素材を、質量%で、C:0.1%超0.2%以下、Si:1.0%以下、Mn:1.5〜2.5%、P:0.05%以下、S:0.005%以下、Al:0.10%以下、N:0.007%以下、Ti:0.07〜0.2%、V:0.1%超0.3%以下を含有し、残部Feおよび不可避的不純物からなる組成を有する鋼素材とし、前記加熱が前記鋼素材を1200℃以上に加熱する処理であり、前記仕上圧延が、仕上圧延終了温度:850〜950℃とする圧延であり、前記第一段冷却が、前記仕上圧延を終了した後、1.5s以内に冷却を開始し、20〜80℃/sの平均冷却速度で500〜600℃の第一段冷却停止温度まで冷却する冷却であり、前記第二段冷却が、前記第一段冷却終了後、3s以内に90℃/s以上の平均冷却速度で330〜470℃の第二段冷却停止温度まで冷却する冷却であり、前記第二段冷却終了後、前記第二段冷却停止温度を巻取温度として巻き取ることを特徴とする穴拡げ加工性に優れた高強度熱延鋼板の製造方法。 (4) The steel material is heated and subjected to hot rolling consisting of rough rolling and finish rolling, followed by cooling consisting of two stages of first stage cooling and second stage cooling, and then a wound hot rolled steel sheet. In the above, the steel material is mass%, C: more than 0.1%, 0.2% or less, Si: 1.0% or less, Mn: 1.5 to 2.5%, P: 0.05% or less, S: 0.005% or less, Al: 0.10% or less , N: 0.007% or less, Ti: 0.07 to 0.2%, V: more than 0.1% and 0.3% or less, and a steel material having a composition consisting of the remaining Fe and inevitable impurities, and the heating causes the steel material to be 1200 ° C It is a process to heat above, and the finish rolling is a finish rolling finish temperature: 850 to 950 ° C., and the first stage cooling starts cooling within 1.5 s after finishing the finish rolling. And cooling to the first stage cooling stop temperature of 500 to 600 ° C. at an average cooling rate of 20 to 80 ° C./s, wherein the second stage cooling is the first stage cooling. After the completion of the rejection, the cooling is performed at an average cooling rate of 90 ° C./s or more within 3 s to the second stage cooling stop temperature of 330 to 470 ° C. After the second stage cooling ends, the second stage cooling stop temperature A method for producing a high-strength hot-rolled steel sheet excellent in hole-expanding workability, characterized by winding at a winding temperature.
(5)(4)において、前記組成に加えてさらに、質量%で、Nb:0.005〜0.1%、B:0.0002〜0.002%、Cu:0.005〜0.3%、Ni:0.005〜0.3%、Cr:0.005〜0.3%、Mo:0.005〜0.3%のうちから選ばれた1種または2種以上を含有することを特徴とする高強度熱延鋼板の製造方法。
(6)(4)または(5)において、前記組成に加えてさらに、質量%で、Ca:0.0003〜0.01%、REM:0.0003〜0.01%のうちから選ばれた1種または2種を含有することを特徴とする高強度熱延鋼板の製造方法。
(5) In (4), in addition to the above composition, in terms of mass%, Nb: 0.005-0.1%, B: 0.0002-0.002%, Cu: 0.005-0.3%, Ni: 0.005-0.3%, Cr: 0.005 A method for producing a high-strength hot-rolled steel sheet, comprising one or more selected from ˜0.3% and Mo: 0.005 to 0.3%.
(6) In (4) or (5), in addition to the above composition, the composition further contains one or two selected from Ca: 0.0003 to 0.01% and REM: 0.0003 to 0.01% by mass%. A method for producing a high-strength hot-rolled steel sheet.
本発明によれば、引張強さ:980MPa以上という高強度を維持したまま、穴拡げ加工性が顕著に向上した熱延鋼板を安定して製造することができ、産業上格段の効果を奏する。また、本発明熱延鋼板は、自動車の足回り部品、構造部品、骨格、あるいはトラックのフレーム等の素材として適用すれば、自動車の安全性を確保しつつ車体重量を軽減でき、環境負荷を低減することが可能となるという効果もある。 According to the present invention, it is possible to stably manufacture a hot-rolled steel sheet having a significantly improved hole expansion workability while maintaining a high strength of tensile strength: 980 MPa or more, and has a remarkable industrial effect. The hot-rolled steel sheet of the present invention can be used as a material for automobile undercarriage parts, structural parts, skeletons, truck frames, etc., while ensuring the safety of the automobile while reducing the weight of the vehicle body and reducing the environmental load. There is also an effect that it becomes possible to do.
まず、本発明熱延鋼板の組成限定理由について説明する。なお、各成分元素の含有量を示す「%」はとくに断らない限り、「質量%」を意味するものとする。
C:0.1%超0.2%以下
Cは、ベイナイトの生成を促進し、鋼の強度を増加させ、ベイナイトの生成を促進する作用を有する元素であり、本発明において重要な元素の一つである。このような効果を得るためには、C含有量を0.1%超とする必要がある。一方、CはFeと結合してセメンタイトを形成するため、過剰なCの含有は、セメンタイト個数を増加させ、ボイドの起点となるセメンタイト同士の間隔を狭めることになり、局部延性を低下させ、穴拡げ加工性が低下する。また、0.2%を超える過剰なCの含有は、溶接性を低下させる。このようなことから、Cは0.1%超0.2%以下の範囲に限定した。なお、好ましくは、0.12〜0.17%である。
First, the reasons for limiting the composition of the hot-rolled steel sheet of the present invention will be described. “%” Indicating the content of each component element means “% by mass” unless otherwise specified.
C: Over 0.1% and below 0.2%
C is an element that has an action of promoting the formation of bainite, increasing the strength of steel, and promoting the formation of bainite, and is one of the important elements in the present invention. In order to obtain such an effect, the C content needs to exceed 0.1%. On the other hand, since C combines with Fe to form cementite, the excessive C content increases the number of cementite, narrows the gap between the cementites that are the origin of voids, reduces local ductility, Spreading processability decreases. Further, if C is contained in excess of 0.2%, weldability is lowered. For these reasons, C is limited to the range of more than 0.1% and 0.2% or less. In addition, Preferably, it is 0.12 to 0.17%.
Si:1.0%以下
Siは、固溶して鋼の強度増加に寄与するとともに、粗大なセメンタイトの生成を抑制する作用を有する元素であり、本発明において重要な元素の一つである。Siは、とくに粗大なセメンタイトの生成を抑制する作用を介して、ボイドの起点となるセメンタイトの間隔を広くして、局部延性、穴拡げ加工性の改善に寄与する。このような効果を得るためには、0.1%以上含有することが望ましい。一方、1.0%を超える含有は、鋼板の表面性状を著しく劣化させ、化成処理性や耐食性の低下を招く。このため、Siは1.0%以下に限定した。なお、好ましくは0.5〜0.9%である。
Si: 1.0% or less
Si is an element having an effect of suppressing the formation of coarse cementite as well as contributing to an increase in strength of the steel by solid solution, and is an important element in the present invention. Si contributes to the improvement of local ductility and hole expansion workability by widening the interval of cementite, which is the origin of voids, particularly through the action of suppressing the formation of coarse cementite. In order to acquire such an effect, it is desirable to contain 0.1% or more. On the other hand, if the content exceeds 1.0%, the surface properties of the steel sheet are remarkably deteriorated, and chemical conversion treatment properties and corrosion resistance are reduced. For this reason, Si was limited to 1.0% or less. In addition, Preferably it is 0.5 to 0.9%.
Mn:1.5〜2.5%
Mnは、固溶して鋼の強度増加に寄与するとともに、さらに焼入れ性向上を介してベイナイト相の生成を促進する元素である。このような効果を得るためには、1.5%以上の含有を必要とする。一方、2.5%を超えて含有すると、中央偏析が顕著となり、鋼板の打抜き端面性状を低下させ、穴拡げ加工性を低下させる。このため、Mn量は1.5〜2.5%の範囲に限定した。なお、好ましくは1.7〜2.2%の範囲である。
Mn: 1.5-2.5%
Mn is an element that contributes to increasing the strength of the steel by solid solution and further promotes the formation of a bainite phase through improvement of hardenability. In order to obtain such an effect, the content of 1.5% or more is required. On the other hand, if the content exceeds 2.5%, central segregation becomes prominent, the punched end face properties of the steel sheet are lowered, and the hole expansion workability is lowered. For this reason, the amount of Mn was limited to the range of 1.5 to 2.5%. In addition, Preferably it is 1.7 to 2.2% of range.
P:0.05%以下
Pは、固溶して鋼の強度増加に寄与するが、粒界、特に旧オーステナイト粒界に偏析し、低温靭性や加工性を低下させる。このため、Pは極力低減することが好ましいが、0.05%までの含有は許容できる。このようなことから、Pは0.05%以下に限定した。なお、好ましくは0.03%以下、さらに好ましくは0.02%以下である。
P: 0.05% or less
P dissolves and contributes to increasing the strength of the steel, but segregates at the grain boundaries, particularly the prior austenite grain boundaries, and lowers the low temperature toughness and workability. For this reason, it is preferable to reduce P as much as possible, but inclusion up to 0.05% is acceptable. Therefore, P is limited to 0.05% or less. In addition, Preferably it is 0.03% or less, More preferably, it is 0.02% or less.
S:0.005%以下
Sは、TiやMnと結合して粗大な硫化物を形成し、加工性を低下させる。このため、Sは極力低減することが好ましいが、0.005%までの含有は許容できる。このようなことから、Sは0.005%以下に限定した。なお、好ましくは0.003%以下、さらに好ましくは0.001%以下である。
S: 0.005% or less
S combines with Ti and Mn to form coarse sulfides, thereby reducing workability. For this reason, it is preferable to reduce S as much as possible, but the content up to 0.005% is acceptable. For these reasons, S is limited to 0.005% or less. In addition, Preferably it is 0.003% or less, More preferably, it is 0.001% or less.
Al:0.10%以下
Alは、脱酸剤として作用し、鋼の清浄度を向上させるのに有効に寄与する元素である。このような効果を得るためには、0.005%以上含有することが望ましい。一方、0.10%を超える過剰な含有は、酸化物系介在物の増加を招き、疵発生の原因となるとともに、鋼板の加工性を低下させる。このため、Alは0.10%以下に限定した。なお、好ましくは0.01〜0.05%である。
Al: 0.10% or less
Al is an element that acts as a deoxidizer and contributes effectively to improving the cleanliness of steel. In order to acquire such an effect, it is desirable to contain 0.005% or more. On the other hand, an excessive content exceeding 0.10% causes an increase in oxide inclusions, which causes generation of flaws and decreases the workability of the steel sheet. For this reason, Al was limited to 0.10% or less. In addition, Preferably it is 0.01 to 0.05%.
N:0.007%以下
Nは、窒化物形成元素と結合し窒化物として析出し、結晶粒の微細化に寄与する元素である。しかし、Nは高温でTiと結合し、粗大な窒化物になりやすく、穴拡げ加工時にボイドの起点となりやすい。このため、本発明ではできるだけ低減することが好ましいが、0.007%までは許容できる。このようなことから、Nは0.007%以下に限定した。なお、好ましくは0.006%以下、さらに好ましくは0.005%以下である。
N: 0.007% or less
N is an element that combines with a nitride-forming element and precipitates as a nitride, contributing to refinement of crystal grains. However, N bonds with Ti at a high temperature and tends to be coarse nitrides, and tends to be the starting point of voids during hole expansion processing. For this reason, although it is preferable to reduce as much as possible in this invention, 0.007% is permissible. For these reasons, N is limited to 0.007% or less. In addition, Preferably it is 0.006% or less, More preferably, it is 0.005% or less.
Ti:0.07〜0.2%
Tiは、炭窒化物を形成し結晶粒を微細化し、また析出強化により鋼の強度増加に寄与する。また、Tiは、300〜500℃(巻取り温度)程度の温度範囲では微細な(Ti,V)Cのクラスターを多数形成し、鋼中のセメンタイト量を低減する作用を有し、本発明において重要な元素の一つである。このような効果を発現させるためには、0.07%以上の含有を必要とする。一方、0.2%を超える過剰な含有は、上記した効果が飽和するうえ、粗大な析出物の増加を招き、穴拡げ加工性の低下を招く。また、Tiはフェライト相の生成を促進させるため、所望の組織を確保できなくなり、穴拡げ加工性が低下する。このため、Tiは0.07〜0.2%の範囲に限定した。なお、好ましくは0.1〜0.15%である。
Ti: 0.07 to 0.2%
Ti forms carbonitrides, refines the crystal grains, and contributes to increasing the strength of the steel by precipitation strengthening. In addition, Ti has the effect of reducing the amount of cementite in steel by forming many fine (Ti, V) C clusters in the temperature range of about 300 to 500 ° C (coiling temperature). One of the important elements. In order to exhibit such an effect, the content of 0.07% or more is required. On the other hand, an excessive content exceeding 0.2% saturates the above-described effects and causes an increase in coarse precipitates, resulting in a decrease in hole expansion workability. Further, since Ti promotes the formation of a ferrite phase, a desired structure cannot be secured, and the hole expansion workability is lowered. For this reason, Ti was limited to the range of 0.07 to 0.2%. In addition, Preferably it is 0.1 to 0.15%.
V:0.1%超0.3%以下
Vは、炭窒化物を形成して結晶粒を微細化し、また析出強化により鋼の強度増加に寄与するとともに、焼入れ性向上を介して、ベイナイト相の生成および微細化に貢献する元素である。また、Vは、300〜500℃(巻取り温度)程度の温度範囲では微細な(Ti,V)Cのクラスターを多数形成し、鋼中のセメンタイト量を低減する作用を有し、本発明において重要な元素の一つである。このような効果を発現させるためには、0.1%超の含有を必要とする。一方、0.3%を超える過剰な含有は、延性を低下させるとともに、製造コストの高騰を招く。このため、Vは0.1%超0.3%以下の範囲に限定した。なお、好ましくは0.13〜0.27%、さらに好ましくは0.15〜0.25%である。
V: More than 0.1% and less than 0.3%
V is an element that forms carbonitrides to refine crystal grains, contributes to increase the strength of steel by precipitation strengthening, and contributes to the formation and refinement of bainite phase through improvement of hardenability. In addition, V has a function of forming a large number of fine (Ti, V) C clusters in the temperature range of about 300 to 500 ° C. (winding temperature) and reducing the amount of cementite in the steel. One of the important elements. In order to exhibit such an effect, the content of more than 0.1% is required. On the other hand, an excessive content exceeding 0.3% lowers the ductility and causes an increase in production cost. For this reason, V is limited to a range of more than 0.1% and 0.3% or less. In addition, Preferably it is 0.13-0.27%, More preferably, it is 0.15-0.25%.
上記した成分が基本の成分であるが、本発明では、必要に応じて基本の組成に加えてさらに、選択元素として、Nb:0.005〜0.1%、B:0.0002〜0.002%、Cu:0.005〜0.3%、Ni:0.005〜0.3%、Cr:0.005〜0.3%、Mo:0.005〜0.3%のうちから選ばれた1種または2種以上、および/または、Ca:0.0003〜0.01%、REM:0.0003〜0.01%のうちから選ばれた1種または2種、を含有できる。 The above-mentioned components are basic components. In the present invention, Nb: 0.005 to 0.1%, B: 0.0002 to 0.002%, Cu: 0.005 to 0.3, in addition to the basic composition, if necessary, as necessary. %, Ni: 0.005-0.3%, Cr: 0.005-0.3%, Mo: One or more selected from 0.005-0.3%, and / or Ca: 0.0003-0.01%, REM: 0.0003- One or two selected from 0.01% can be contained.
Nb:0.005〜0.1%、B:0.0002〜0.002%、Cu:0.005〜0.3%、Ni:0.005〜0.3%、Cr:0.005〜0.3%、Mo:0.005〜0.3%のうちから選ばれた1種または2種以上
Nb、B、Cu、Ni、Cr、Moはいずれも、鋼板の強度増加に寄与する元素であり、必要に応じて選択して1種または2種以上を含有できる。
Nbは、炭窒化物の形成を介して、鋼の強度増加に寄与する元素である。このような効果を発現させるためには、0.005%以上含有することが好ましい。一方、0.1%を超える含有は、変形抵抗が増加して熱間圧延の圧延荷重が増加し、圧延機への負担が大きくなりすぎて圧延操業そのものが困難になるとともに、粗大な析出物を形成し、加工性の低下を招く。このため、含有する場合には、Nbは0.005〜0.1%の範囲に限定することが好ましい。なお、より好ましくは0.01〜0.05%、さらに好ましくは0.02〜0.04%である。
One selected from Nb: 0.005-0.1%, B: 0.0002-0.002%, Cu: 0.005-0.3%, Ni: 0.005-0.3%, Cr: 0.005-0.3%, Mo: 0.005-0.3% 2 or more types
Nb, B, Cu, Ni, Cr, and Mo are all elements that contribute to an increase in the strength of the steel sheet, and can be selected as necessary to contain one or more.
Nb is an element that contributes to increasing the strength of steel through the formation of carbonitrides. In order to exhibit such an effect, it is preferable to contain 0.005% or more. On the other hand, if the content exceeds 0.1%, the deformation resistance increases, the rolling load of hot rolling increases, the burden on the rolling mill becomes too large, making the rolling operation itself difficult, and forming coarse precipitates. In addition, workability is reduced. For this reason, when it contains, it is preferable to limit Nb to 0.005 to 0.1% of range. In addition, More preferably, it is 0.01 to 0.05%, More preferably, it is 0.02 to 0.04%.
Bは、オーステナイト粒界に偏析し、フェライトの生成、成長を抑制し、また焼入れ性を向上させ、ベイナイト相の形成および微細化に寄与し、鋼の強度を増加させる作用を有する元素である。このような効果を発現させるためには、0.0002%以上含有することが好ましいが、0.002%を超える含有は加工性を著しく低下させる。このため、含有する場合には、Bは0.0002〜0.002%の範囲に限定することが好ましい。なお、より好ましくは0.0005〜0.0015%である。 B segregates at the austenite grain boundaries, suppresses the formation and growth of ferrite, improves hardenability, contributes to the formation and refinement of the bainite phase, and increases the strength of the steel. In order to exhibit such an effect, it is preferable to contain 0.0002% or more, but if it exceeds 0.002%, the workability is remarkably lowered. For this reason, when it contains, it is preferable to limit B to 0.0002 to 0.002% of range. In addition, More preferably, it is 0.0005 to 0.0015%.
Cuは、固溶して鋼の強度を増加させるとともに、焼入れ性を向上させる作用を有する元素である。Cuは、とくにベイナイト変態温度を低下させ、ベイナイト相の微細化に寄与する。このような効果を得るためには、0.005%以上含有することが好ましいが、0.3%を超える含有は、表面性状の低下を招く。このため、含有する場合には、Cuは0.005〜0.3%の範囲に限定することが好ましい。なお、より好ましくは0.01〜0.2%である。 Cu is an element that has the effect of increasing the strength of steel by solid solution and improving the hardenability. Cu particularly lowers the bainite transformation temperature and contributes to refinement of the bainite phase. In order to acquire such an effect, it is preferable to contain 0.005% or more, but inclusion exceeding 0.3% causes the surface property to deteriorate. For this reason, when it contains, it is preferable to limit Cu to 0.005 to 0.3% of range. In addition, More preferably, it is 0.01 to 0.2%.
Niは、固溶して鋼の強度を増加させるとともに、焼入れ性を向上させ、ベイナイト相を生成しやすくする作用を有する元素である。このような効果を得るためには、0.005%以上含有することが好ましいが、0.3%を超えて含有すると、マルテンサイト相を生成しやすくなり、穴拡げ加工性を著しく低下させる。このため、含有する場合には、Niは0.005〜0.3%の範囲に限定することが好ましい。なお、より好ましくは0.01〜0.2%である。 Ni is an element that has the effect of increasing the strength of steel by solid solution and improving the hardenability and facilitating the formation of a bainite phase. In order to acquire such an effect, it is preferable to contain 0.005% or more, but when it contains exceeding 0.3%, it will become easy to produce | generate a martensite phase and hole expansion workability will fall remarkably. For this reason, when it contains, it is preferable to limit Ni to 0.005 to 0.3% of range. In addition, More preferably, it is 0.01 to 0.2%.
Crは、炭化物を形成し、鋼の強度増加に寄与する元素である。このような効果を発現させるためには0.005%以上含有することが好ましい。一方、0.3%を超える過剰な含有は、鋼板の耐食性を低下させる。このため、含有する場合には、Crは0.005〜0.3%の範囲に限定することが好ましい。なお、より好ましくは0.01〜0.2%である。
Moは、焼入れ性を向上させ、ベイナイト相を形成しやすくし、鋼の強度を増加させる作用を有する元素である。このような効果を得るためには、0.005%以上含有することが好ましいが、0.3%を超えて含有すると、マルテンサイト相を生成しやすくなり、穴拡げ加工性を著しく低下させる。このため、含有する場合には、Moは0.005〜0.3%の範囲に限定することが好ましい。なお、より好ましくは0.01〜0.2%である。
Cr is an element that forms carbides and contributes to an increase in steel strength. In order to exhibit such an effect, it is preferable to contain 0.005% or more. On the other hand, an excessive content exceeding 0.3% lowers the corrosion resistance of the steel sheet. For this reason, when it contains, it is preferable to limit Cr to 0.005 to 0.3% of range. In addition, More preferably, it is 0.01 to 0.2%.
Mo is an element that has effects of improving hardenability, facilitating the formation of a bainite phase, and increasing the strength of steel. In order to acquire such an effect, it is preferable to contain 0.005% or more, but when it contains exceeding 0.3%, it will become easy to produce | generate a martensite phase and hole expansion workability will fall remarkably. For this reason, when it contains, it is preferable to limit Mo to 0.005 to 0.3% of range. In addition, More preferably, it is 0.01 to 0.2%.
Ca:0.0003〜0.01%、REM:0.0003〜0.01%のうちから選ばれた1種または2種
Ca、REMはいずれも、介在物の形状制御を介して、穴拡げ加工性向上に寄与する元素であり、必要に応じて選択して1種または2種を含有できる。
Caは、硫化物系介在物の形状を制御し、穴拡げ加工性の向上に有効に寄与する元素である。この効果を発現させるためには、0.0003%以上の含有を必要とする。一方、0.01%を超える過剰な含有は、介在物量を増加させ表面欠陥を多発させる原因となる。このため、含有する場合には、Caは0.0003〜0.01%の範囲に限定することが好ましい。
One or two selected from Ca: 0.0003 to 0.01%, REM: 0.0003 to 0.01%
Both Ca and REM are elements that contribute to improving the hole expansion workability through shape control of inclusions, and can be selected as necessary to contain one or two kinds.
Ca is an element that controls the shape of sulfide inclusions and contributes effectively to the improvement of hole expansion workability. In order to express this effect, the content of 0.0003% or more is required. On the other hand, an excessive content exceeding 0.01% increases the amount of inclusions and causes frequent surface defects. For this reason, when it contains, it is preferable to limit Ca to 0.0003 to 0.01% of range.
REMは、Caと同様、硫化物系介在物の形状を制御し、穴拡げ加工性に対する硫化物系介在物の悪影響を改善し、穴拡げ加工性向上に寄与する元素である。この効果を発現させるためには、0.0003%以上の含有を必要とする。一方、0.01%を超える過剰な含有は、介在物量を増加させ鋼の清浄度を悪化させ、穴拡げ加工性を低下させる。このため、含有する場合は、REMは0.0003〜0.01%の範囲に限定することが好ましい。 REM, like Ca, is an element that controls the shape of sulfide inclusions, improves the adverse effects of sulfide inclusions on hole expanding workability, and contributes to improving hole expanding workability. In order to express this effect, the content of 0.0003% or more is required. On the other hand, an excessive content exceeding 0.01% increases the amount of inclusions, deteriorates the cleanliness of the steel, and decreases the hole expansion workability. For this reason, when it contains, it is preferable to limit REM to 0.0003 to 0.01% of range.
上記した成分以外の残部は、Feおよび不可避的不純物からなる。なお、不可避的不純物としては、O(酸素):0.005%以下、W:0.1%以下、Ta:0.1%以下、Co:0.1%以下、Sb:0.1%以下、Sn:0.1%以下、Zr:0.1%以下等が許容できる。
次に、本発明熱延鋼板の組織限定の理由について説明をする。
本発明熱延鋼板では、主相はベイナイト相とする。ここでいう「主相」は、面積率で90%以上である相をいう。ベイナイト相以外の相を主相とすると、所望の高強度と良好な穴拡げ加工性を安定して確保できない。このようなことから、面積率で90%以上のベイナイト相を主相とした。なお、好ましくは92%以上、より好ましくは95%以上である。
The balance other than the components described above consists of Fe and inevitable impurities. Inevitable impurities include O (oxygen): 0.005% or less, W: 0.1% or less, Ta: 0.1% or less, Co: 0.1% or less, Sb: 0.1% or less, Sn: 0.1% or less, Zr: 0.1 % Or less is acceptable.
Next, the reason for the structure limitation of the hot-rolled steel sheet of the present invention will be described.
In the hot-rolled steel sheet of the present invention, the main phase is a bainite phase. The “main phase” here refers to a phase having an area ratio of 90% or more. If the phase other than the bainite phase is the main phase, the desired high strength and good hole expansion workability cannot be secured stably. Therefore, the main phase was a bainite phase having an area ratio of 90% or more. In addition, Preferably it is 92% or more, More preferably, it is 95% or more.
主相であるベイナイト相以外の残部は、マルテンサイト相、オーステナイト相(残留オーステナイト相)、フェライト相のうちから選ばれた1種または2種以上からなる。主相以外の残部の相は、面積率で合計10%以下(0%を含む)とする。ベイナイト相以外の残部の相が10%を超えると、所望の高強度と良好な穴拡げ加工性を安定して確保できない。とくにマルテンサイト相が増加すると、所望の良好な穴拡げ加工性を安定して確保できない。 The balance other than the bainite phase, which is the main phase, is composed of one or more selected from a martensite phase, an austenite phase (residual austenite phase), and a ferrite phase. The remaining phases other than the main phase are 10% or less in total (including 0%) in terms of area ratio. If the remaining phase other than the bainite phase exceeds 10%, the desired high strength and good hole expansion workability cannot be secured stably. In particular, when the martensite phase increases, the desired good hole expansion workability cannot be secured stably.
本発明熱延鋼板は、上記した組織を有し、組織中にセメンタイトが分散した組織を呈する。セメンタイトは主としてベイナイト相中に分散して存在するが、ベイナイト以外の相中、あるいは相の境界に存在することもある。本発明熱延鋼板では、組織中に分散するセメンタイトは、質量%で0.8%以下、平均粒径が150nm以下とする。
セメンタイトが、組織中に、質量%で0.8%を超えて多量に分散すると、分散するセメンタイトの個数が増加し、加工時にセメンタイトを起点としたボイドが連結しやすくなり、局部延性が低下し、穴拡げ加工性が低下する。このため、セメンタイトは質量%で0.8%以下に限定した。なお、好ましくは0.6%以下である。より好ましくは0.5%以下である。
The hot-rolled steel sheet of the present invention has the above-described structure and exhibits a structure in which cementite is dispersed in the structure. Cementite exists mainly in a dispersed state in the bainite phase, but may exist in a phase other than bainite or at the boundary between phases. In the hot rolled steel sheet of the present invention, the cementite dispersed in the structure is 0.8% or less by mass% and the average particle size is 150 nm or less.
When cementite is dispersed in a large amount exceeding 0.8% by mass in the structure, the number of dispersed cementite increases, voids originating from cementite are easily connected during processing, local ductility is reduced, and holes are reduced. Spreading processability decreases. For this reason, cementite was limited to 0.8% or less by mass. In addition, Preferably it is 0.6% or less. More preferably, it is 0.5% or less.
また、セメンタイトの平均粒径が150nmを超えて粗大化すると、加工時にセメンタイトを起点とした粗大なボイドが発生しやすくなり、穴拡げ加工性が低下する。このため、セメンタイトの平均粒径を150nm以下に限定した。なお、好ましくは130nm以下、さらに好ましくは110nm以下である。
つぎに、本発明熱延鋼板の好ましい製造方法について説明をする。
Further, when the average particle size of cementite exceeds 150 nm and becomes coarse, coarse voids starting from cementite are likely to be generated during processing, and the hole expansion workability is lowered. For this reason, the average particle diameter of cementite was limited to 150 nm or less. In addition, Preferably it is 130 nm or less, More preferably, it is 110 nm or less.
Below, the preferable manufacturing method of this invention hot rolled sheet steel is demonstrated.
本発明では、鋼素材を、加熱し粗圧延と仕上圧延からなる熱間圧延を施したのち、第一段冷却と第二段冷却の二段階からなる冷却を施し、ついで巻き取る工程を経て、熱延鋼板とする。
出発材である鋼素材の製造方法は、上記した組成を有する溶鋼を、転炉等の常用の溶製方法で溶製し、連続鋳造法等の常用の鋳造方法で、スラブ等の鋼素材とする、常用の製造方法がいずれも適用でき、とくに限定する必要はない。なお、造塊−分塊圧延法を用いてもなんら問題はない。
In the present invention, the steel material is heated and subjected to hot rolling consisting of rough rolling and finish rolling, then subjected to cooling consisting of two stages of first stage cooling and second stage cooling, and then through a winding process, A hot-rolled steel sheet is used.
The manufacturing method of the steel material that is the starting material is to melt the molten steel having the above-described composition by a conventional melting method such as a converter, and by a conventional casting method such as a continuous casting method, Any conventional manufacturing method can be applied, and there is no particular limitation. It should be noted that there is no problem even if the ingot-bundling rolling method is used.
得られた鋼素材をまず、加熱温度:1200℃以上に加熱する。
加熱温度:1200℃以上
本発明で使用する鋼素材には、Tiなどの炭窒化物形成元素が含まれているが、これら炭窒化物形成元素は、ほとんどが粗大な炭窒化物(析出物)として存在している。また、Tiなどの炭窒化物形成元素が粗大な析出物のままで存在すると、析出強化に寄与する微細な析出物量が低下する。このため、鋼板強度が低下する。この粗大な析出物を熱間圧延前に固溶させるために、加熱温度は1200℃以上に限定した。なお、好ましくは1220℃〜1350℃である。
The obtained steel material is first heated to a heating temperature of 1200 ° C. or higher.
Heating temperature: 1200 ° C or higher The steel material used in the present invention contains carbonitride-forming elements such as Ti, but these carbonitride-forming elements are mostly coarse carbonitrides (precipitates). Exist as. In addition, when a carbonitride-forming element such as Ti is present as coarse precipitates, the amount of fine precipitates contributing to precipitation strengthening is reduced. For this reason, steel plate strength falls. In order to dissolve the coarse precipitates before hot rolling, the heating temperature was limited to 1200 ° C. or higher. In addition, Preferably it is 1220 to 1350 degreeC.
ついで、加熱された鋼素材は、粗圧延と仕上圧延からなる熱間圧延を施される。
粗圧延は、所望のシートバー寸法が確保できればよく、その条件は、とくに限定する必要はない。粗圧延に引続き、仕上圧延終了温度:850〜950℃とする仕上圧延を施す。なお、仕上圧延の前、あるいは仕上圧延スタンド間の圧延途中で、デスケーリングを行うことはいうまでもない。
Next, the heated steel material is subjected to hot rolling consisting of rough rolling and finish rolling.
Rough rolling only needs to secure a desired sheet bar size, and the conditions are not particularly limited. Subsequent to rough rolling, finish rolling is performed at a finish rolling finish temperature of 850 to 950 ° C. Needless to say, descaling is performed before finish rolling or during rolling between finish rolling stands.
仕上圧延終了温度:850〜950℃
仕上圧延終了温度が850℃未満では、仕上圧延がフェライト+オーステナイトの二相域圧延となり、圧延後に加工組織が残存して、穴拡げ加工性が低下する。一方、仕上圧延終了温度が950℃を超えて高くなると、オーステナイト粒が成長し、冷却後に得られる熱延板のベイナイト相が粗大化する。このため、穴拡げ加工性が低下する。このようなことから、仕上圧延終了温度を850〜950℃の範囲に限定した。なお、好ましくは870〜930℃である。ここでいう「仕上圧延終了温度」は、表面温度を用いるものとする。
Finishing rolling finish temperature: 850-950 ° C
When the finish rolling finish temperature is less than 850 ° C., the finish rolling becomes a ferrite + austenite two-phase region rolling, and the processed structure remains after rolling, so that the hole expanding workability is lowered. On the other hand, when the finish rolling finish temperature is higher than 950 ° C., austenite grains grow, and the bainite phase of the hot-rolled sheet obtained after cooling becomes coarse. For this reason, hole expansion workability falls. For this reason, the finish rolling finish temperature was limited to the range of 850 to 950 ° C. In addition, Preferably it is 870-930 degreeC. As used herein, “finishing rolling finish temperature” is the surface temperature.
仕上圧延終了後、第一段冷却と第二段冷却の二段階からなる冷却を施す。
第一段冷却では、仕上圧延を終了した後、1.5s以内に、好ましくは直ちに冷却を開始し、20〜80℃/sの平均冷却速度で500〜600℃の第一段冷却停止温度まで冷却する。
第一段冷却の冷却開始時間が、1.5sを超えて長くなると、オーステナイト粒が粗大となり、ベイナイト相が粗大化する。また、オーステナイト粒が粗大となると、鋼板の焼入れ性が上昇し、マルテンサイト相が生成しやすくなり、所望の優れた穴拡げ加工性が確保できなくなる。このため、第一段冷却の冷却開始時間は、仕上圧延終了後、1.5s以内に限定した。
After finishing rolling, the cooling which consists of two steps of the first stage cooling and the second stage cooling is performed.
In the first stage cooling, after finishing rolling, cooling is started within 1.5 s, preferably immediately, and cooled to the first stage cooling stop temperature of 500 to 600 ° C. at an average cooling rate of 20 to 80 ° C./s. To do.
When the cooling start time of the first stage cooling exceeds 1.5 s, the austenite grains become coarse and the bainite phase becomes coarse. Further, when the austenite grains are coarse, the hardenability of the steel sheet is increased, the martensite phase is easily generated, and the desired excellent hole expanding workability cannot be ensured. For this reason, the cooling start time of the first stage cooling is limited to 1.5 s or less after finishing rolling.
また、第一段冷却の平均冷却速度が20℃/s未満と冷却が遅くなると、フェライトあるいは粗大なベイナイトの生成が促進され、所望の高強度または穴拡げ加工性を確保できなくなる。一方、80℃/sを超えて急冷されると、マルテンサイトが生成されやすく硬質化して、穴拡げ加工性が低下する。このようなことから、第一段冷却の平均冷却速度を20〜80℃/sの範囲に限定した。なお、好ましくは25〜60℃/sである。 On the other hand, when the average cooling rate of the first stage cooling is less than 20 ° C./s and the cooling is slow, the formation of ferrite or coarse bainite is promoted, and the desired high strength or hole expansion workability cannot be ensured. On the other hand, when it is rapidly cooled at a temperature exceeding 80 ° C./s, martensite is easily generated and becomes hard, and the hole expansion workability is lowered. For this reason, the average cooling rate of the first stage cooling was limited to the range of 20 to 80 ° C./s. In addition, Preferably it is 25-60 degreeC / s.
また、第一段冷却停止温度が、500℃未満では、遷移沸騰領域に入り鋼板温度のバラつきが大きくなり、組織が不均一となり、所望の優れた穴拡げ加工性を確保できなくなる。一方、第一段冷却停止温度が600℃を超える高温となると、フェライト変態が促進されて、所望の高強度を確保できなくなる。このため、第一段冷却停止温度は500〜600℃に限定した。なお、好ましくは520〜580℃である。 On the other hand, if the first stage cooling stop temperature is less than 500 ° C., the steel plate temperature varies greatly in the transition boiling region, the structure becomes non-uniform, and the desired excellent hole expanding workability cannot be ensured. On the other hand, when the first stage cooling stop temperature is higher than 600 ° C., the ferrite transformation is promoted and the desired high strength cannot be ensured. For this reason, the first stage cooling stop temperature was limited to 500 to 600 ° C. In addition, Preferably it is 520-580 degreeC.
第一段冷却終了後、直ちに、3s以内に、好ましくは直ちに第二段冷却を開始し、90℃/s以上の平均冷却速度で330〜470℃の第二段冷却停止温度まで冷却する。
第二段冷却の冷却開始時間が、3sを超えて長くなると、フェライト変態が開始し、所望の高強度を確保できなくなる。このため、第二段冷却の冷却開始時間は、第一段冷却終了後、3s以内に限定した。
Immediately after the completion of the first stage cooling, the second stage cooling is immediately started within 3 s, preferably immediately, and cooled to the second stage cooling stop temperature of 330 to 470 ° C. at an average cooling rate of 90 ° C./s or more.
If the cooling start time of the second stage cooling is longer than 3 s, the ferrite transformation starts and the desired high strength cannot be ensured. For this reason, the cooling start time of the second stage cooling is limited to within 3 s after the end of the first stage cooling.
また、第二段冷却の平均冷却速度が90℃/s未満では、生成するベイナイトが粗大化し、所望の穴拡げ加工性を確保できなくなる。このようなことから、第二段冷却の平均冷却速度を90℃/s以上に限定した。なお、第二段冷却の平均冷却速度の上限はとくに限定する必要はないが、被冷却板の板厚や冷却設備の能力とも関連して、250℃/s程度が上限となる。なお、好ましくは100〜200℃/sである。 On the other hand, if the average cooling rate of the second stage cooling is less than 90 ° C./s, the bainite to be produced becomes coarse, and the desired hole expansion workability cannot be ensured. For this reason, the average cooling rate of the second stage cooling was limited to 90 ° C./s or more. The upper limit of the average cooling rate of the second stage cooling is not particularly limited, but the upper limit is about 250 ° C./s in relation to the thickness of the plate to be cooled and the capacity of the cooling equipment. In addition, Preferably it is 100-200 degreeC / s.
第二段冷却停止温度が、330℃未満では、鋼板組織に、硬質なマルテンサイト相や残留オーステナイト相が形成され、所望の組織を確保できなくなり、穴拡げ加工性が低下する。一方、470℃を超えて高温となると、鋼板組織にフェライト相やマルテンサイト相が増加し、所望の組織を確保できなくなり、穴拡げ加工性が著しく低下する。このため、第一段冷却停止温度は330〜470℃に限定した。なお、好ましくは350〜450℃である。 If the second stage cooling stop temperature is less than 330 ° C., a hard martensite phase or a retained austenite phase is formed in the steel sheet structure, and a desired structure cannot be secured, resulting in a decrease in hole expansion workability. On the other hand, when the temperature is higher than 470 ° C., the ferrite phase and martensite phase increase in the steel sheet structure, the desired structure cannot be secured, and the hole expansion workability is remarkably lowered. For this reason, the first stage cooling stop temperature was limited to 330 to 470 ° C. In addition, Preferably it is 350-450 degreeC.
第二段冷却停止温度まで冷却した後、該第二段冷却停止温度を巻取温度として、コイル状に巻き取り、熱延鋼板(熱延鋼帯)とする。
なお、上記した温度は、鋼板の表面温度を意味する。
また、巻取った後に、さらに熱延鋼板には常法にしたがい、調質圧延を施してもよい。また、得られた熱延鋼板に、酸洗を施して表面に形成されたスケールを除去してもよい。あるいは酸洗後に、さらに、溶融亜鉛めっき、電気亜鉛めっき等のめっき処理や、化成処理を施してもよい。
After cooling to the second stage cooling stop temperature, the second stage cooling stop temperature is taken as the coiling temperature, and the coil is wound into a hot rolled steel sheet (hot rolled steel strip).
In addition, above-described temperature means the surface temperature of a steel plate.
Further, after the winding, the hot-rolled steel sheet may be further subjected to temper rolling according to a conventional method. Moreover, the obtained hot-rolled steel sheet may be pickled to remove the scale formed on the surface. Or after pickling, you may give plating processing, such as hot dip galvanization and electrogalvanization, and chemical conversion treatment.
表1に示す組成の溶鋼を転炉で溶製し、連続鋳造法によりスラブ(鋼素材)とした。ついで、これらの鋼素材を、表2に示す条件で加熱し、粗圧延と表2に示す条件の仕上圧延とからなる熱間圧延を施し、仕上圧延終了後、表2に示す条件で冷却し、表2に示す巻取温度で巻取り、表2に示す板厚の熱延鋼板とした。一部の熱延鋼板では、冷却を一段階の冷却とした。 Molten steel having the composition shown in Table 1 was melted in a converter and made into a slab (steel material) by a continuous casting method. Subsequently, these steel materials are heated under the conditions shown in Table 2, hot-rolled comprising rough rolling and finish rolling under the conditions shown in Table 2, and after finishing rolling, cooled under the conditions shown in Table 2. The steel sheet was wound at the winding temperature shown in Table 2 to obtain a hot-rolled steel sheet having the thickness shown in Table 2. In some hot-rolled steel sheets, the cooling is one-step cooling.
得られた熱延鋼板から試験片を採取し、組織観察、引張試験、穴拡げ試験を実施した。試験方法はつぎの通りとした。
(1)組織観察
得られた熱延鋼板から組織観察用試験片を採取し、圧延方向に平行な板厚断面を研磨し腐食液(3%ナイタール溶液)で組織を現出し、板厚1/4位置について走査型電子顕微鏡(SEM)を用いて組織を観察し、3視野について組織を撮影(倍率:3000倍)して、組織の同定および画像解析により各相の組織分率(面積率)を算出した。
Test pieces were collected from the obtained hot-rolled steel sheet and subjected to structure observation, tensile test, and hole expansion test. The test method was as follows.
(1) Microstructure observation A specimen for microstructural observation was collected from the obtained hot-rolled steel sheet, the cross section of the plate thickness parallel to the rolling direction was polished, and the microstructure was revealed with a corrosive solution (3% nital solution). Tissues were observed at 4 positions using a scanning electron microscope (SEM), tissues were imaged at 3 fields of view (magnification: 3000 times), and tissue fractions (area ratios) of each phase were identified by tissue identification and image analysis Was calculated.
また、得られた熱延鋼板の板厚1/4位置からレプリカ採取用試験片(大きさ:10mm×15mm)を採取し、2段レプリカ法によりレプリカ膜を作製しセメンタイトを採取して、透過型電子顕微鏡(TEM)を用いて、採取されたセメンタイトを観察し、5視野について撮影(倍率:50000倍)して、各セメンタイトの粒径を求め、平均して当該鋼板のセメンタイトの平均粒径とした。なお、アスペクト比を持つセメンタイトの場合は、長軸長さと短軸長さの平均値を当該セメンタイトの粒径とした。 In addition, a specimen for replica collection (size: 10 mm x 15 mm) is collected from the 1/4 thickness position of the obtained hot-rolled steel sheet, a replica film is produced by the two-stage replica method, and cementite is collected for transmission. Using a scanning electron microscope (TEM), the collected cementite was observed, photographed for 5 fields of view (magnification: 50000 times), the particle size of each cementite was determined, and the average particle size of the cementite of the steel sheet was averaged It was. In the case of cementite having an aspect ratio, the average value of the major axis length and the minor axis length was used as the particle size of the cementite.
また、得られた熱延鋼板から電解残渣抽出用試験片(大きさ:t×50×100 mm)を採取し、10%AA系電解液(10vol%アセチルアセトン−1mass%塩化テトラメチルアンモニウム・メタノール)中で、電流密度:20mA/cm2で、試験片全厚に対して定電流電解した。得られた電解液を濾過し、濾過紙に残った電解残渣を、ICP分光分析装置を用いて分析し、電解残渣中のFe量を測定した。定量したFeが全てFe3Cであると仮定し、次式
Fe3C(質量%)=(1.0716×[定量Fe(g)])/[電解重量(g)]×100
で析出セメンタイト量を算出した。なお、Feの原子量を55.85(g/mol)、Cの原子量を12.01(g/mol)とする。なお、電解重量は、電解後の電解用試験片を洗浄し、重量を測定して、電解前の試験片重量から差し引くことにより求めた。
(2)引張試験
得られた熱延鋼板から、引張方向が圧延方向と直角方向になるように、JIS 5号試験片(GL:50mm)を採取し、JIS Z 2241に準拠して引張試験を実施し、降伏強さ(降伏点)YP、引張強さTS、伸びElを求めた。
(3)穴拡げ試験
得られた熱延鋼板から、穴拡げ試験用試験片(大きさ:t×100×100 mm)を採取し、鉄連規格JFST 1001に準拠して、試験片中央に10mmφポンチで、クリアランス:12.5%で、ポンチ穴を打ち抜いた後、該ポンチ穴に60°円錐ポンチを打抜き方向から押し上げるように挿入して、亀裂が板厚を貫通した時点での穴径dmmを求め、次式
λ(%)={(d−10)/10}×100
で定義される穴拡げ率λ(%)を算出した。
In addition, an electrolytic residue extraction test piece (size: t × 50 × 100 mm) was collected from the obtained hot-rolled steel sheet, and 10% AA electrolyte (10 vol% acetylacetone-1 mass% tetramethylammonium chloride / methanol). In particular, the current density was 20 mA / cm 2 , and constant current electrolysis was performed on the entire thickness of the test piece. The obtained electrolytic solution was filtered, and the electrolytic residue remaining on the filter paper was analyzed using an ICP spectrometer, and the amount of Fe in the electrolytic residue was measured. Assuming that all of the quantified Fe is Fe 3 C, the following formula
Fe 3 C (mass%) = (1.0716 × [quantitative Fe (g)]) / [electrolytic weight (g)] × 100
The amount of precipitated cementite was calculated. The atomic weight of Fe is 55.85 (g / mol), and the atomic weight of C is 12.01 (g / mol). In addition, the electrolysis weight was calculated | required by wash | cleaning the test piece for electrolysis after electrolysis, measuring weight, and subtracting from the test piece weight before electrolysis.
(2) Tensile test JIS No. 5 test piece (GL: 50mm) was sampled from the obtained hot-rolled steel sheet so that the tensile direction was perpendicular to the rolling direction, and a tensile test was conducted according to JIS Z 2241. The yield strength (yield point) YP, the tensile strength TS, and the elongation El were determined.
(3) Hole expansion test A test piece for hole expansion test (size: t x 100 x 100 mm) is collected from the obtained hot-rolled steel sheet, and a 10mmφ punch is placed in the center of the test piece in accordance with the iron standard JFST 1001. Then, after punching a punch hole at a clearance of 12.5%, a 60 ° conical punch is inserted into the punch hole so as to push up from the punching direction, and the hole diameter dmm when the crack penetrates the plate thickness is obtained. Next formula
λ (%) = {(d−10) / 10} × 100
The hole expansion rate λ (%) defined in (1) was calculated.
また、得られた熱延鋼板から、穴拡げ試験用試験片(大きさ:t×100×100 mm)を採取し、試験片中央に10mmφポンチで、クリアランス:25.0%で、ポンチ穴を打ち抜いた後、該ポンチ穴に60°円錐ポンチを打抜き方向から押し上げるように挿入して、亀裂が板厚を貫通した時点での穴径dmmを求め、上記した式で同様に穴広げ率λ(%)を算出した。なお、クリアランスは、板厚に対する割合(%)である。 Also, a test piece for hole expansion test (size: t × 100 × 100 mm) was taken from the obtained hot-rolled steel sheet, and a punch hole was punched out with a 10 mmφ punch at the center of the test piece with a clearance of 25.0%. Thereafter, a 60 ° conical punch is inserted into the punch hole so as to push it up from the punching direction, and the hole diameter dmm when the crack penetrates the plate thickness is obtained. Was calculated. The clearance is a ratio (%) to the plate thickness.
なお、クリアランス12.5%で打抜いたポンチ穴に対して行った穴拡げ試験で得られたλが60%以上、クリアランス25.0%で打抜いたポンチ穴に対して行った穴拡げ試験で得られたλが40%以上の場合を、穴拡げ加工性が良好と評価した。
得られた結果を表3に示す。
In addition, λ obtained in a hole expansion test performed on a punch hole punched with a clearance of 12.5% was obtained in a hole expansion test performed on a punch hole punched with a clearance of 60% or more and clearance of 25.0%. When λ was 40% or more, the hole expansion workability was evaluated as good.
The obtained results are shown in Table 3.
本発明例はいずれも、引張強さ:980MPa以上という高強度と、優れた穴拡げ加工性を有する高強度熱延鋼板となっている。一方、本発明の範囲を外れる比較例は、所望の引張強さを確保できていないか、あるいは穴拡げ加工性が低下している。 Each of the examples of the present invention is a high strength hot rolled steel sheet having high tensile strength: 980 MPa or more and excellent hole expansion workability. On the other hand, in the comparative example that is out of the scope of the present invention, the desired tensile strength is not ensured or the hole expansion workability is lowered.
Claims (6)
C :0.1%超0.2%以下、 Si:1.0%以下、
Mn:1.5〜2.5%、 P :0.05%以下、
S :0.005%以下、 Al:0.10%以下、
N :0.007%以下、 Ti:0.07〜0.2%、
V :0.1%超0.3%以下
を含有し、残部Feおよび不可避的不純物からなる組成を有し、さらに、面積率で90%以上のベイナイト相を主相とし、主相以外の残部が面積率で10%以下の、マルテンサイト相、オーステナイト相、フェライト相のうちから選ばれた1種または2種以上からなる組織を有し、かつ組織中に分散するセメンタイトが質量%で0.8%以下、平均粒径が150nm以下であり、引張強さTSが980MPa以上であることを特徴とする穴拡げ加工性に優れた高強度熱延鋼板。 % By mass
C: more than 0.1% and 0.2% or less, Si: 1.0% or less,
Mn: 1.5 to 2.5%, P: 0.05% or less,
S: 0.005% or less, Al: 0.10% or less,
N: 0.007% or less, Ti: 0.07 to 0.2%,
V: contains more than 0.1% and 0.3% or less, has a composition composed of the balance Fe and inevitable impurities, and has a bainite phase of 90% or more in area ratio as the main phase and the balance other than the main phase in area ratio 10% or less of the martensite phase, austenite phase, or ferrite phase selected from one or more of the structures, and the cementite dispersed in the structure is 0.8% by mass or less, average grain size A high-strength hot-rolled steel sheet excellent in hole expansion workability, characterized in that the diameter is 150 nm or less and the tensile strength TS is 980 MPa or more.
前記鋼素材を、質量%で、
C :0.1%超0.2%以下、 Si:1.0%以下、
Mn:1.5〜2.5%、 P :0.05%以下、
S :0.005%以下、 Al:0.10%以下、
N :0.007%以下、 Ti:0.07〜0.2%、
V :0.1%超0.3%以下
を含有し、残部Feおよび不可避的不純物からなる組成を有する鋼素材とし、
前記加熱が前記鋼素材を1200℃以上に加熱する処理であり、
前記仕上圧延が、仕上圧延終了温度:850〜950℃とする圧延であり、
前記第一段冷却が、前記仕上圧延を終了した後、1.5s以内に冷却を開始し、20〜80℃/sの平均冷却速度で500〜600℃の第一段冷却停止温度まで冷却する冷却であり、
前記第二段冷却が、前記第一段冷却終了後、3s以内に90℃/s以上の平均冷却速度で330〜470℃の第二段冷却停止温度まで冷却する冷却であり、
前記第二段冷却終了後、前記第二段冷却停止温度を巻取温度として巻き取ることを特徴とする穴拡げ加工性に優れた高強度熱延鋼板の製造方法。 After the steel material is heated and subjected to hot rolling consisting of rough rolling and finish rolling, it is subjected to cooling consisting of two stages of first stage cooling and second stage cooling, and then to a wound hot rolled steel sheet,
The steel material in mass%,
C: more than 0.1% and 0.2% or less, Si: 1.0% or less,
Mn: 1.5 to 2.5%, P: 0.05% or less,
S: 0.005% or less, Al: 0.10% or less,
N: 0.007% or less, Ti: 0.07 to 0.2%,
V: A steel material containing more than 0.1% and not more than 0.3% and having the balance Fe and inevitable impurities,
The heating is a treatment of heating the steel material to 1200 ° C. or higher;
The finish rolling is a finish rolling finishing temperature: 850 to 950 ° C,
The first stage cooling starts cooling within 1.5 s after finishing the finish rolling, and cools to the first stage cooling stop temperature of 500 to 600 ° C. at an average cooling rate of 20 to 80 ° C./s. And
The second-stage cooling is cooling to the second-stage cooling stop temperature of 330 to 470 ° C. at an average cooling rate of 90 ° C./s or more within 3 s after the completion of the first-stage cooling;
After completion of the second stage cooling, a method for producing a high-strength hot-rolled steel sheet excellent in hole expansion workability, wherein the second stage cooling stop temperature is taken up as a winding temperature.
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013084450A JP5870955B2 (en) | 2013-04-15 | 2013-04-15 | High-strength hot-rolled steel sheet excellent in hole expansion workability and its manufacturing method |
US14/784,455 US20160076124A1 (en) | 2013-04-15 | 2014-03-17 | High strength hot rolled steel sheet and method for manufacturing the same (as amended) |
CN201480020707.7A CN105102662A (en) | 2013-04-15 | 2014-03-17 | High strength hot rolled steel sheet and method for producing same |
MX2015014437A MX2015014437A (en) | 2013-04-15 | 2014-03-17 | High strength hot rolled steel sheet and method for producing same. |
EP14785555.5A EP2987887B1 (en) | 2013-04-15 | 2014-03-17 | High strength hot rolled steel sheet and method for producing same |
PCT/JP2014/001509 WO2014171063A1 (en) | 2013-04-15 | 2014-03-17 | High strength hot rolled steel sheet and method for producing same |
KR1020157031660A KR20160041850A (en) | 2013-04-15 | 2014-03-17 | High strength hot rolled steel sheet and method for producing same |
MX2020003923A MX2020003923A (en) | 2013-04-15 | 2015-10-14 | High strength hot rolled steel sheet and method for producing same. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013084450A JP5870955B2 (en) | 2013-04-15 | 2013-04-15 | High-strength hot-rolled steel sheet excellent in hole expansion workability and its manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014205890A true JP2014205890A (en) | 2014-10-30 |
JP5870955B2 JP5870955B2 (en) | 2016-03-01 |
Family
ID=52119691
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013084450A Active JP5870955B2 (en) | 2013-04-15 | 2013-04-15 | High-strength hot-rolled steel sheet excellent in hole expansion workability and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5870955B2 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20180069030A (en) | 2015-11-19 | 2018-06-22 | 신닛테츠스미킨 카부시키카이샤 | High-strength hot-rolled steel sheet and manufacturing method thereof |
JP2018532045A (en) * | 2015-09-22 | 2018-11-01 | タタ、スティール、アイモイデン、ベスローテン、フェンノートシャップTata Steel Ijmuiden Bv | High-strength hot-rolled steel sheet capable of roll forming having excellent stretch flangeability, and method for producing the steel |
WO2019009410A1 (en) | 2017-07-07 | 2019-01-10 | 新日鐵住金株式会社 | Hot-rolled steel sheet and method for manufacturing same |
WO2020195605A1 (en) | 2019-03-26 | 2020-10-01 | 日本製鉄株式会社 | Steel sheet, method for manufacturing same and plated steel sheet |
JP2021031700A (en) * | 2019-08-20 | 2021-03-01 | 日本製鉄株式会社 | High-strength hot-rolled steel sheet and method for manufacturing the same |
CN112779401A (en) * | 2019-11-07 | 2021-05-11 | 上海梅山钢铁股份有限公司 | High-reaming hot-rolled pickled steel plate with yield strength of 550MPa |
JP2022507379A (en) * | 2018-11-14 | 2022-01-18 | エスエスアーベー テクノロジー アーベー | Hot-rolled strip steel and its manufacturing method |
WO2022070608A1 (en) | 2020-09-30 | 2022-04-07 | 日本製鉄株式会社 | Steel sheet and steel sheet manufacturing method |
CN115038801A (en) * | 2019-12-20 | 2022-09-09 | 塔塔钢铁艾默伊登有限责任公司 | Hot rolled high strength steel strip with high hole expansion ratio |
WO2022244706A1 (en) * | 2021-05-17 | 2022-11-24 | Jfeスチール株式会社 | High-strength hot-rolled steel sheet and method for producing high-strength hot-rolled steel sheet |
CN115595505A (en) * | 2022-10-28 | 2023-01-13 | 武汉钢铁有限公司(Cn) | 600 MPa-grade axle housing steel with high temperature resistance and high hole expansion rate and production method thereof |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002180190A (en) * | 2000-12-07 | 2002-06-26 | Nippon Steel Corp | High strength hot rolled steel sheet having excellent hole expandability and ductility and its production method |
JP2005120437A (en) * | 2003-10-17 | 2005-05-12 | Nippon Steel Corp | High-strength steel thin sheet superior in hole-expandability and ductility |
JP2007056294A (en) * | 2005-08-23 | 2007-03-08 | Kobe Steel Ltd | Method for manufacturing steel plate with low yield ratio, high strength and high toughness |
JP2010174343A (en) * | 2009-01-30 | 2010-08-12 | Jfe Steel Corp | Method for producing thick and high tension hot-rolled steel plate excellent in low temperature toughness |
JP2012012701A (en) * | 2010-05-31 | 2012-01-19 | Jfe Steel Corp | High-strength hot-rolled steel plate exhibiting superior stretch flange workability and fatigue resistance properties, and method of manufacturing the same |
JP2012062557A (en) * | 2010-09-17 | 2012-03-29 | Jfe Steel Corp | High-strength hot rolled steel sheet having excellent toughness and method for producing the same |
JP2012255176A (en) * | 2011-06-07 | 2012-12-27 | Nippon Steel & Sumitomo Metal Corp | Steel material and impact-absorbing member |
-
2013
- 2013-04-15 JP JP2013084450A patent/JP5870955B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002180190A (en) * | 2000-12-07 | 2002-06-26 | Nippon Steel Corp | High strength hot rolled steel sheet having excellent hole expandability and ductility and its production method |
JP2005120437A (en) * | 2003-10-17 | 2005-05-12 | Nippon Steel Corp | High-strength steel thin sheet superior in hole-expandability and ductility |
JP2007056294A (en) * | 2005-08-23 | 2007-03-08 | Kobe Steel Ltd | Method for manufacturing steel plate with low yield ratio, high strength and high toughness |
JP2010174343A (en) * | 2009-01-30 | 2010-08-12 | Jfe Steel Corp | Method for producing thick and high tension hot-rolled steel plate excellent in low temperature toughness |
JP2012012701A (en) * | 2010-05-31 | 2012-01-19 | Jfe Steel Corp | High-strength hot-rolled steel plate exhibiting superior stretch flange workability and fatigue resistance properties, and method of manufacturing the same |
JP2012062557A (en) * | 2010-09-17 | 2012-03-29 | Jfe Steel Corp | High-strength hot rolled steel sheet having excellent toughness and method for producing the same |
JP2012255176A (en) * | 2011-06-07 | 2012-12-27 | Nippon Steel & Sumitomo Metal Corp | Steel material and impact-absorbing member |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018532045A (en) * | 2015-09-22 | 2018-11-01 | タタ、スティール、アイモイデン、ベスローテン、フェンノートシャップTata Steel Ijmuiden Bv | High-strength hot-rolled steel sheet capable of roll forming having excellent stretch flangeability, and method for producing the steel |
KR20180069030A (en) | 2015-11-19 | 2018-06-22 | 신닛테츠스미킨 카부시키카이샤 | High-strength hot-rolled steel sheet and manufacturing method thereof |
US10301697B2 (en) | 2015-11-19 | 2019-05-28 | Nippon Steel & Sumitomo Metal Corporation | High strength hot rolled steel sheet and manufacturing method thereof |
WO2019009410A1 (en) | 2017-07-07 | 2019-01-10 | 新日鐵住金株式会社 | Hot-rolled steel sheet and method for manufacturing same |
KR20200011475A (en) | 2017-07-07 | 2020-02-03 | 닛폰세이테츠 가부시키가이샤 | Hot rolled steel sheet and its manufacturing method |
US11313009B2 (en) | 2017-07-07 | 2022-04-26 | Nippon Steel Corporation | Hot-rolled steel sheet and method for manufacturing same |
JP2022507379A (en) * | 2018-11-14 | 2022-01-18 | エスエスアーベー テクノロジー アーベー | Hot-rolled strip steel and its manufacturing method |
KR20210107826A (en) | 2019-03-26 | 2021-09-01 | 닛폰세이테츠 가부시키가이샤 | Steel plate, manufacturing method of steel plate and plated steel plate |
WO2020195605A1 (en) | 2019-03-26 | 2020-10-01 | 日本製鉄株式会社 | Steel sheet, method for manufacturing same and plated steel sheet |
JP7376771B2 (en) | 2019-08-20 | 2023-11-09 | 日本製鉄株式会社 | High-strength hot-rolled steel sheet and its manufacturing method |
JP2021031700A (en) * | 2019-08-20 | 2021-03-01 | 日本製鉄株式会社 | High-strength hot-rolled steel sheet and method for manufacturing the same |
CN112779401A (en) * | 2019-11-07 | 2021-05-11 | 上海梅山钢铁股份有限公司 | High-reaming hot-rolled pickled steel plate with yield strength of 550MPa |
CN115038801A (en) * | 2019-12-20 | 2022-09-09 | 塔塔钢铁艾默伊登有限责任公司 | Hot rolled high strength steel strip with high hole expansion ratio |
WO2022070608A1 (en) | 2020-09-30 | 2022-04-07 | 日本製鉄株式会社 | Steel sheet and steel sheet manufacturing method |
KR20230038544A (en) | 2020-09-30 | 2023-03-20 | 닛폰세이테츠 가부시키가이샤 | Steel plate and manufacturing method of steel plate |
CN116018418A (en) * | 2020-09-30 | 2023-04-25 | 日本制铁株式会社 | Steel sheet and method for manufacturing steel sheet |
JP7239072B1 (en) * | 2021-05-17 | 2023-03-14 | Jfeスチール株式会社 | High-strength hot-rolled steel sheet and method for producing high-strength hot-rolled steel sheet |
WO2022244706A1 (en) * | 2021-05-17 | 2022-11-24 | Jfeスチール株式会社 | High-strength hot-rolled steel sheet and method for producing high-strength hot-rolled steel sheet |
CN115595505A (en) * | 2022-10-28 | 2023-01-13 | 武汉钢铁有限公司(Cn) | 600 MPa-grade axle housing steel with high temperature resistance and high hole expansion rate and production method thereof |
CN115595505B (en) * | 2022-10-28 | 2024-03-19 | 武汉钢铁有限公司 | 600 MPa-level axle housing steel with high-temperature resistance and high-expansion rate and production method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP5870955B2 (en) | 2016-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5870955B2 (en) | High-strength hot-rolled steel sheet excellent in hole expansion workability and its manufacturing method | |
JP6252692B2 (en) | High strength hot rolled steel sheet and method for producing the same | |
KR101910444B1 (en) | High-strength hot-rolled steel sheet and method for manufacturing the same | |
JP4978741B2 (en) | High-strength hot-rolled steel sheet excellent in stretch flangeability and fatigue resistance and method for producing the same | |
JP5126326B2 (en) | High strength hot-rolled steel sheet with excellent fatigue resistance and method for producing the same | |
WO2014171063A1 (en) | High strength hot rolled steel sheet and method for producing same | |
KR102016432B1 (en) | High-strength cold-rolled steel sheet and method for manufacturing the same | |
JP5724267B2 (en) | High-strength hot-rolled steel sheet excellent in punching workability and manufacturing method thereof | |
KR101706441B1 (en) | High strength hot-rolled steel sheet having excellent ductility, stretch flangeability and uniformity and method for manufacturing the same | |
JP6056790B2 (en) | High strength hot rolled steel sheet and method for producing the same | |
JP4304473B2 (en) | Manufacturing method of ultra fine grain hot rolled steel sheet | |
WO2012002566A1 (en) | High-strength steel sheet with excellent processability and process for producing same | |
KR20140047743A (en) | Hot-rolled steel sheet with high tensile strength and superior processability and method for producing same | |
JP5867444B2 (en) | High strength hot rolled steel sheet with excellent toughness and method for producing the same | |
KR20210024135A (en) | High-strength hot rolled steel sheet and its manufacturing method | |
KR20120023129A (en) | High-strength steel sheet and manufacturing method therefor | |
JP2014080665A (en) | High strength cold rolled steel sheet and its manufacturing method | |
KR20150119363A (en) | High strength hot rolled steel sheet and method for producing same | |
JP2009280900A (en) | METHOD FOR PRODUCING HIGH-STRENGTH HOT-ROLLED STEEL SHEET HAVING 780 MPa OR MORE OF TENSILE STRENGTH | |
JP6866933B2 (en) | Hot-rolled steel sheet and its manufacturing method | |
JP2011168861A (en) | High-strength hot rolled steel sheet and method of manufacturing the same | |
JP6103160B1 (en) | High strength thin steel sheet and method for producing the same | |
JP2009280899A (en) | METHOD FOR PRODUCING HIGH-STRENGTH HOT-ROLLED STEEL SHEET HAVING 780 MPa OR MORE OF TENSILE STRENGTH | |
JP6699711B2 (en) | High-strength steel strip manufacturing method | |
KR20220062603A (en) | hot rolled steel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20141121 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150714 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150805 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20151215 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20151228 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5870955 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |