JP7375605B2 - Fatigue strength evaluation method for composite materials - Google Patents

Fatigue strength evaluation method for composite materials Download PDF

Info

Publication number
JP7375605B2
JP7375605B2 JP2020027992A JP2020027992A JP7375605B2 JP 7375605 B2 JP7375605 B2 JP 7375605B2 JP 2020027992 A JP2020027992 A JP 2020027992A JP 2020027992 A JP2020027992 A JP 2020027992A JP 7375605 B2 JP7375605 B2 JP 7375605B2
Authority
JP
Japan
Prior art keywords
sample
distribution
fatigue strength
temperature amplitude
damage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020027992A
Other languages
Japanese (ja)
Other versions
JP2021131357A (en
Inventor
隆英 阪上
大輝 塩澤
智昭 新地
眞一 野中
健一 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp filed Critical DIC Corp
Priority to JP2020027992A priority Critical patent/JP7375605B2/en
Publication of JP2021131357A publication Critical patent/JP2021131357A/en
Application granted granted Critical
Publication of JP7375605B2 publication Critical patent/JP7375605B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Radiation Pyrometers (AREA)

Description

本発明は、疲労強度評価方法に関し、特に複合材料の疲労強度評価方法に関する。 The present invention relates to a method for evaluating fatigue strength, and particularly to a method for evaluating fatigue strength of composite materials.

近年、炭素繊維と樹脂からなる炭素繊維強化プラスチック(CFRP)や、ガラス繊維と樹脂からなるガラス繊維強化プラスチック(GFRP)といった軽量で強度の高い繊維強化複合材料が幅広く用いられており、特に航空宇宙分野のような、高い信頼性が求められる分野において多用されている。 In recent years, lightweight and strong fiber-reinforced composite materials such as carbon fiber reinforced plastic (CFRP) made of carbon fiber and resin and glass fiber reinforced plastic (GFRP) made of glass fiber and resin have been widely used, especially in aerospace. It is widely used in fields where high reliability is required, such as the field of technology.

上述のような、高い信頼性を求められる分野においては、CFRPのような繊維強化複合材料の疲労強度や損傷を高精度、かつ、迅速に評価できる手法が求められる。従来、その手法の一つとして、熱弾性解析という手法が知られている。熱弾性解析とは、対象とする材料に外的負荷を加え、試料が弾性的に変形することで生じる微小な温度変動を測定し、材料の疲労強度の評価や損傷状況を解析するものである。 In the above-mentioned fields that require high reliability, a method is required that can quickly and accurately evaluate the fatigue strength and damage of fiber-reinforced composite materials such as CFRP. Conventionally, a method called thermoelastic analysis has been known as one of the methods. Thermoelastic analysis is the process of applying an external load to a material, measuring the minute temperature fluctuations that occur when the sample deforms elastically, and evaluating the fatigue strength of the material and analyzing the damage situation. .

熱弾性解析の多くは、赤外線サーモグラフィ装置を用いて行われている。赤外線サーモグラフィ装置を用いた熱弾性解析は、対象物を非破壊かつ非接触で評価することができ、さらに、対象物を2次元的に解析することができるため、短時間に広範囲にわたって評価可能であり、対象物内に生じている欠陥の位置や形状を温度分布から視覚的に確認することができるという特徴がある。 Most thermoelastic analyzes are performed using infrared thermography equipment. Thermoelastic analysis using an infrared thermography device can evaluate a target object non-destructively and without contact.Furthermore, the target object can be analyzed two-dimensionally, so it can be evaluated over a wide range in a short time. It has the feature that the position and shape of defects occurring within the object can be visually confirmed from the temperature distribution.

例えば、下記特許文献1では、評価対象である材料に反復負荷を印加した時の温度振幅を測定し、予め把握しておいた評価対象の材料の疲労強度と、反復負荷を印加した時の温度振幅の関係から、疲労強度を評価する方法が記載されている。 For example, in Patent Document 1 listed below, the temperature amplitude when a repetitive load is applied to a material to be evaluated is measured, and the fatigue strength of the material to be evaluated, which is known in advance, and the temperature when a repetitive load is applied. A method for evaluating fatigue strength from the relationship of amplitude is described.

特開2005-249597号公報Japanese Patent Application Publication No. 2005-249597

ところが、評価対象の材料が複合材料である場合、複合材料を構成する各素材の間に界面が存在するため、界面の剥離等の損傷が発生しやすく、発生した損傷から界面に沿って損傷が進展していくといった、特有の欠陥が生じやすい。さらに、複合材料は、界面が存在することによって、評価対象の材料から評価用の試料を切り出す際に、亀裂や剥離といった初期欠陥も生じやすい。 However, when the material to be evaluated is a composite material, since there are interfaces between the materials that make up the composite material, damage such as delamination at the interface is likely to occur, and damage may be caused along the interface from the damage that occurs. It is prone to specific defects such as progress. Furthermore, due to the presence of interfaces in composite materials, initial defects such as cracks and peeling are likely to occur when a sample for evaluation is cut out from the material to be evaluated.

上記特許文献1に記載されている方法は、外的負荷を加えたことで発生した欠陥を確認することはできるが、初期欠陥の確認や、初期欠陥からの損傷の進展状況を確認することはできない。従って、初期欠陥の発生に応じた評価や損傷の進展状況が確認できないため、疲労強度の評価結果にバラつきが生じやすく、かつ、その原因の特定が困難であるため、高い精度で疲労強度評価ができないという課題があった。 The method described in Patent Document 1 can confirm defects caused by applying an external load, but it cannot confirm initial defects or the progress of damage from initial defects. Can not. Therefore, since it is not possible to evaluate the occurrence of initial defects or to check the progress of damage, the fatigue strength evaluation results tend to vary, and it is difficult to identify the cause, so it is difficult to evaluate fatigue strength with high accuracy. The problem was that it couldn't be done.

本発明は、上記課題に鑑み、複合材料の疲労強度を高精度に評価できる方法を提供することを目的とする。 In view of the above-mentioned problems, an object of the present invention is to provide a method that can evaluate the fatigue strength of a composite material with high accuracy.

本発明は、複合材料からなる試料に、外的負荷を反復して加えながら行う疲労強度評価方法であって、
前記外的負荷を加えることで前記試料に発生する温度振幅を、赤外線サーモグラフィ装置によって測定し、第一温度振幅分布を作成する工程(a)と、
前記工程(a)の後、前記外的負荷を加えることで前記試料に発生する温度振幅を、前記赤外線サーモグラフィ装置によって測定し、第二温度振幅分布を作成する工程(b)と、
前記第一温度振幅分布と前記第二温度振幅分布との差をとり、温度振幅変動分布を作成する工程(c)と、
前記温度振幅変動分布から、損傷を判定するための損傷パラメータを算出して、前記試料の疲労強度を評価する工程(d)とを含むことを特徴とする。
The present invention is a fatigue strength evaluation method performed while repeatedly applying an external load to a sample made of a composite material, the method comprising:
a step (a) of measuring the temperature amplitude generated in the sample by applying the external load with an infrared thermography device to create a first temperature amplitude distribution;
After the step (a), a step (b) of measuring the temperature amplitude generated in the sample by applying the external load with the infrared thermography device to create a second temperature amplitude distribution;
(c) creating a temperature amplitude fluctuation distribution by taking the difference between the first temperature amplitude distribution and the second temperature amplitude distribution;
The method is characterized by including a step (d) of calculating a damage parameter for determining damage from the temperature amplitude fluctuation distribution and evaluating the fatigue strength of the sample.

工程(a)は、外的負荷によって、試料が弾性的に変形することで、試料に発生する微小な温度変動を赤外線サーモグラフィ装置によって測定し、第一温度振幅分布を作成する工程である。試料とは、評価に用いるために適切な形状に加工された複合材料である。なお、工程(a)は、試料に外的負荷があまり加えられていない状態で行われることが好ましく、試料に加えられた外的負荷の反復回数が1,000回以下の状態で行われることが好ましい。 Step (a) is a step in which minute temperature fluctuations occurring in the sample are measured by an infrared thermography device when the sample is elastically deformed by an external load, and a first temperature amplitude distribution is created. A sample is a composite material processed into an appropriate shape for use in evaluation. Note that step (a) is preferably carried out in a state where not much external load is applied to the sample, and the number of repetitions of the external load applied to the sample is 1,000 times or less. is preferred.

外的負荷は、例えば、引張負荷、圧縮負荷、剪断負荷、曲げ負荷等が用いられる。これらは、評価対象の複合材料の種類、評価基準、試料の形状といった評価条件に応じて適宜選択される。 As the external load, for example, a tensile load, a compression load, a shearing load, a bending load, etc. are used. These are appropriately selected according to evaluation conditions such as the type of composite material to be evaluated, evaluation criteria, and shape of the sample.

赤外線サーモグラフィ装置は、試料の温度変動を2次元的に計測し、撮影した試料の温度分布を画像として可視化するため、損傷個所や損傷の大きさ、さらには損傷の進展状況を可視化することができる。損傷個所や損傷の進展状況等が可視化されることで、例えば、疲労強度評価結果に大きなバラつきが生じた場合に、初期欠陥や局所的な構造の欠陥等によって、損傷が発生や損傷の拡大していく状態を目視で確認をすることができ、評価結果にバラつきが生じた際に、バラつきの原因を特定しやすくなる。 Infrared thermography equipment measures the temperature fluctuations of a sample two-dimensionally and visualizes the temperature distribution of the photographed sample as an image, making it possible to visualize the location of damage, the size of damage, and the progress of damage. . By visualizing damage locations and damage progress, for example, if there are large variations in fatigue strength evaluation results, it is possible to identify whether damage has occurred or expanded due to initial defects or local structural defects. It is possible to visually check the progress of the evaluation results, and when there is variation in the evaluation results, it becomes easier to identify the cause of the variation.

工程(b)は、工程(a)の後、再び工程(a)と同じ方法で試料の微小な温度変動を赤外線サーモグラフィ装置によって測定し、第二温度振幅分布を作成する工程である。工程(a)と工程(b)との間に、試料に加える外的負荷の反復回数は、評価する複合材料や評価基準に従って任意に設定されてもよく、好ましくは1,000回以上10,000回以下であり、さらに好ましくは1,000回以上2,000回以下である。 Step (b) is a step in which, after step (a), minute temperature fluctuations of the sample are measured again using the infrared thermography device in the same manner as in step (a) to create a second temperature amplitude distribution. The number of repetitions of the external load applied to the sample between step (a) and step (b) may be arbitrarily set according to the composite material to be evaluated and the evaluation criteria, and is preferably 1,000 times or more. 000 times or less, more preferably 1,000 times or more and 2,000 times or less.

工程(a)と工程(b)との間において、温度振幅分布を測定し、第三温度振幅分布を取得するものであっても構わない。さらには、第四温度振幅分布、第五温度振幅分布と、外的負荷を加えている最中に、複数回の温度振幅分布を取得するものであっても構わない。外的負荷を加えている間の温度振幅変動を観測することで、外的負荷を加えている最中に、温度振幅分布の時間経過での変化を確認することができるため、損傷が試料のどこで発生し、どのように進展しているのかを確認することができる。 Between step (a) and step (b), the temperature amplitude distribution may be measured to obtain a third temperature amplitude distribution. Furthermore, the fourth temperature amplitude distribution and the fifth temperature amplitude distribution may be obtained multiple times while the external load is being applied. By observing temperature amplitude fluctuations while applying an external load, it is possible to confirm changes in the temperature amplitude distribution over time while applying an external load. You can see where it is occurring and how it is progressing.

工程(c)は、第一温度振幅分布と第二温度振幅分布との差をとり、温度振幅変動分布を作成する工程である。本明細書において、第一温度変動分布と第二温度変動分布の差を取るとは、第一温度変動分布におけるそれぞれの位置又は座標の温度変動値と、第二温度変動分布のそれぞれ対応する位置又は座標の温度変動値との差を取ることである。 Step (c) is a step of creating a temperature amplitude fluctuation distribution by taking the difference between the first temperature amplitude distribution and the second temperature amplitude distribution. In this specification, taking the difference between the first temperature fluctuation distribution and the second temperature fluctuation distribution refers to the temperature fluctuation value at each position or coordinate in the first temperature fluctuation distribution and the corresponding position in the second temperature fluctuation distribution. Or, it is to take the difference between the coordinates and the temperature fluctuation value.

工程(d)は、損傷パラメータを算出し、算出された損傷パラメータに基づいて、試料の疲労強度を評価する工程である。損傷パラメータには、例えば、温度振幅変動分布全体における温度振幅変動量の平均値や最大値とすることができ、これらに基づいて試料の疲労強度が評価される。試料の疲労強度の判定方法の一例としては、取得された試料の損傷パラメータがある負荷繰返し数までに所定の閾値に達したら疲労強度が弱く、損傷パラメータが所定の閾値に満たない場合は疲労強度が強いと判定する。 Step (d) is a step of calculating a damage parameter and evaluating the fatigue strength of the sample based on the calculated damage parameter. The damage parameter can be, for example, the average value or maximum value of the amount of temperature amplitude fluctuation in the entire temperature amplitude fluctuation distribution, and the fatigue strength of the sample is evaluated based on these. An example of a method for determining the fatigue strength of a sample is that if the acquired damage parameter of the sample reaches a predetermined threshold within a certain number of load cycles, the fatigue strength is weak, and if the damage parameter is less than the predetermined threshold, the fatigue strength is determined. is determined to be strong.

上記の工程による評価方法によれば、試料に外的負荷が加えられる前後での温度振幅の変動量に基づいて疲労強度が評価される。従って、第一温度分布の取得と第二温度分布の取得との間で、試料に加えられた外的負荷によって生じた変化のみが損傷として検出されるため初期欠陥による疲労強度の評価への影響が少ない。 According to the evaluation method using the above steps, fatigue strength is evaluated based on the amount of variation in temperature amplitude before and after an external load is applied to the sample. Therefore, between the acquisition of the first temperature distribution and the acquisition of the second temperature distribution, only the changes caused by the external load applied to the sample are detected as damage, so the influence of initial defects on fatigue strength evaluation Less is.

また、上記の工程による評価方法によれば、第一温度振幅分布及び第二温度振幅分布が作成されているため、それぞれの分布によって、初期欠陥が発生していたかどうかや、亀裂や剥離の発生箇所と、そこから損傷がどのように進展しているかを確認することができる。 In addition, according to the evaluation method using the above process, a first temperature amplitude distribution and a second temperature amplitude distribution are created, so each distribution can be used to determine whether or not initial defects have occurred, and whether or not cracks or peeling have occurred. You can see where the damage is and how the damage is progressing from there.

上記の工程による疲労強度評価方法によれば、初期欠陥に起因した評価結果のバラつきが抑制され、複合材料の疲労強度評価の精度を向上される。さらに、初期欠陥の有無を確認することができ、評価対象の試料として適切であるか否かの判別も行うことができる。 According to the fatigue strength evaluation method using the above steps, variations in evaluation results due to initial defects are suppressed, and the accuracy of fatigue strength evaluation of composite materials is improved. Furthermore, the presence or absence of initial defects can be confirmed, and it can also be determined whether the sample is suitable as an evaluation target.

上記複合材料の疲労強度方法において、
前記損傷パラメータは、温度振幅変動分布全体の面積に対する、損傷と判別されている領域の面積の割合を示す損傷面積率とすることができる。
In the above fatigue strength method for composite materials,
The damage parameter may be a damage area ratio that indicates the ratio of the area of a region determined to be damaged to the area of the entire temperature amplitude fluctuation distribution.

損傷面積率は、温度振幅変動分布を図示した場合の全体の面積に対して、温度振幅変動量が、損傷発生したと判定するための閾値を超えている領域の面積の割合である。損傷パラメータを損傷面積率とすることで、試料が外的負荷を加えることによって、どの程度損傷が進展したのかを確認することができる。 The damage area ratio is the ratio of the area of a region where the temperature amplitude fluctuation amount exceeds a threshold value for determining that damage has occurred to the entire area when the temperature amplitude fluctuation distribution is illustrated. By using the damage area ratio as the damage parameter, it is possible to confirm the extent to which damage has progressed when the sample is subjected to an external load.

上記複合材料の疲労強度評価方法において、
工程(d)は、ワイブル分布を用いて前記試料の疲労強度を判定することができる。
In the above fatigue strength evaluation method for composite materials,
In step (d), the fatigue strength of the sample can be determined using Weibull distribution.

ワイブル分布によって、引張負荷を加える回数に応じた累積の損傷確率を記述する関数F(N)は、下記の数式1のような式で記述される。 Based on the Weibull distribution, a function F(N) that describes the cumulative damage probability according to the number of times a tensile load is applied is described by a formula such as Equation 1 below.

Figure 0007375605000001
Figure 0007375605000001

数式1に現れる各パラメータは、mが形状パラメータ(ワイブル係数)、ηが尺度パラメータと称され、評価対象の複合材料ごとに固有の適切な数値が設定される。また、Nは整数であり、試料に外的負荷を加えた回数である。 In each parameter that appears in Equation 1, m is called a shape parameter (Weibull coefficient), and η is called a scale parameter, and a unique and appropriate numerical value is set for each composite material to be evaluated. Further, N is an integer and is the number of times an external load was applied to the sample.

ワイブル分布は、物体の疲労強度等を統計的に解析する場合に用いられる確率分布である。ワイブル分布は、評価対象とする試料(複合材料)によって定められる、形状パラメータと尺度パラメータという値を設定することで、時間変化や負荷を加える反復回数と累積破断確率との関係を記述することができる。 The Weibull distribution is a probability distribution used when statistically analyzing the fatigue strength of an object. The Weibull distribution can describe the relationship between time changes, the number of repetitions of applying a load, and the cumulative probability of failure by setting the values of the shape parameter and scale parameter, which are determined by the sample (composite material) to be evaluated. can.

ワイブル分布を用いることで、所定の反復回数だけ外的負荷が加えられた時の損傷率に基づいて、当該試料が、外的負荷を何回加えられると破壊してしまうかを確率統計的に予測することができる。つまり、試料が破断するまで外的負荷を加え続けなくとも、複合材料の疲労強度を評価することができるため、疲労強度評価時間が大幅に短縮される。 By using the Weibull distribution, based on the damage rate when the external load is applied a predetermined number of times, it is possible to statistically calculate how many times the external load can be applied to the sample before it breaks. Can be predicted. In other words, the fatigue strength of the composite material can be evaluated without continuing to apply an external load until the sample breaks, so the fatigue strength evaluation time can be significantly shortened.

また、初期欠陥や剥離の発生位置、剥離の合体等の試料が破断するまでに必要な外的負荷を加える反復回数のバラつきをも含めて、強度比較をすることができる。従って、初期欠陥に起因した評価結果のバラつきが抑制され、複合材料の疲労強度評価の精度をさらに向上させることができる。 It is also possible to compare the strengths, including variations in the number of repetitions of applying an external load necessary for the sample to break, such as initial defects, the location of peeling, and coalescence of peelings. Therefore, variations in evaluation results due to initial defects are suppressed, and the accuracy of fatigue strength evaluation of composite materials can be further improved.

本発明によれば、複合材料の疲労強度を高精度に評価できる方法を提供することできる。 According to the present invention, it is possible to provide a method that can evaluate the fatigue strength of a composite material with high accuracy.

本発明の複合材料の疲労強度評価方法の一実施形態のフローチャートを示す図面である。1 is a drawing showing a flowchart of an embodiment of a method for evaluating fatigue strength of a composite material of the present invention. 本発明の複合材料の疲労強度評価方法の評価対象となる試料の正面視の形状を示す模式的な図面である。1 is a schematic drawing showing the shape of a sample to be evaluated in a front view of the method for evaluating fatigue strength of a composite material of the present invention. 検証における複合材料の第一温度振幅分布と第二温度振幅分布である。These are the first temperature amplitude distribution and the second temperature amplitude distribution of the composite material in the verification. 検証における複合材料の温度振幅変動分布である。This is the temperature amplitude fluctuation distribution of the composite material during verification. 各試料の破断繰返し数のワイブル分布のグラフである。It is a graph of the Weibull distribution of the number of rupture cycles of each sample. 各試料の損傷面積率が1%に達するのに要した反復回数のワイブル分布のグラフである。It is a graph of the Weibull distribution of the number of repetitions required for the damage area ratio of each sample to reach 1%. 各試料の損傷面積率が5%に達するのに要した反復回数のワイブル分布のグラフである。It is a graph of the Weibull distribution of the number of repetitions required for the damage area rate of each sample to reach 5%. 各試料の損傷面積率が10%に達するのに要した反復回数のワイブル分布のグラフである。It is a graph of the Weibull distribution of the number of repetitions required for the damage area ratio of each sample to reach 10%. 各試料の損傷面積率が20%に達するのに要した反復回数のワイブル分布のグラフである。It is a graph of the Weibull distribution of the number of repetitions required for the damage area ratio of each sample to reach 20%.

以下、本発明の複合材料の疲労強度評価方法について、図面を参照して説明する。 Hereinafter, a method for evaluating fatigue strength of a composite material according to the present invention will be explained with reference to the drawings.

[評価方法]
本実施形態では、負荷装置、赤外線サーモグラフィ装置、演算処理装置によって試料の疲労強度を評価するものについて説明する。図1は、本発明の複合材料の疲労強度評価方法の一実施形態のフローチャートを示す図面である。評価を行う試料1には、負荷装置によって負荷を加えるために適当な形状に、複合材料が加工されたものである。なお、本実施形態において試料1に加えられる外的負荷は、引張応力である。
[Evaluation method]
In this embodiment, a method will be described in which the fatigue strength of a sample is evaluated using a load device, an infrared thermography device, and an arithmetic processing device. FIG. 1 is a drawing showing a flowchart of an embodiment of a method for evaluating fatigue strength of a composite material of the present invention. Sample 1 to be evaluated is a composite material processed into an appropriate shape for applying a load using a loading device. Note that in this embodiment, the external load applied to sample 1 is tensile stress.

図2は、本発明の複合材料の疲労強度評価方法で評価対象となる試料1の正面視の形状を示す模式的な図面である。図2に示すように、試料1は長方形状であって、両短辺の把持部(2a,2b)が負荷装置によって把持されて、引張方向3に反復して引張負荷が加えられる。 FIG. 2 is a schematic diagram showing the shape of the sample 1 to be evaluated in the method for evaluating fatigue strength of a composite material of the present invention when viewed from the front. As shown in FIG. 2, the sample 1 has a rectangular shape, and the gripping portions (2a, 2b) on both short sides are gripped by a loading device, and a tensile load is repeatedly applied in the tensile direction 3.

図1に示すように、まず、負荷装置が試料1に引張負荷が加え始め(S1)、その後、赤外線サーモグラフィ装置が基準となる試料1の温度を2次元的に測定し、画素ごとの第一温度振幅分布が作成される(S2)。 As shown in Figure 1, first, the loading device begins to apply a tensile load to the sample 1 (S1), and then the infrared thermography device measures the temperature of the reference sample 1 two-dimensionally, and the first A temperature amplitude distribution is created (S2).

第一温度振幅分布が作成された後、負荷装置が反復して数万回の引張負荷を試料1に加えられるのを待つ(S3)。その後、赤外線サーモグラフィ装置が、再び試料1の温度を2次元的に測定し、画素ごとの第二温度振幅分布を作成する(S4)。 After the first temperature amplitude distribution is created, wait for the loading device to repeatedly apply tens of thousands of tensile loads to the sample 1 (S3). After that, the infrared thermography device measures the temperature of the sample 1 two-dimensionally again, and creates a second temperature amplitude distribution for each pixel (S4).

第一温度振幅分布と第二温度振幅分布が作成されると、演算処理装置が、第一温度振幅分布におけるそれぞれの画素の温度変動値と、第二温度振幅分布のそれぞれ対応する画素の温度振幅値との差を取って温度振幅変動分布を作成する(S5)。 When the first temperature amplitude distribution and the second temperature amplitude distribution are created, the processing unit calculates the temperature fluctuation value of each pixel in the first temperature amplitude distribution and the temperature amplitude of each corresponding pixel in the second temperature amplitude distribution. A temperature amplitude fluctuation distribution is created by taking the difference between the two values (S5).

作成された温度振幅変動分布から、演算処理装置が損傷パラメータとして損傷面積率を算出する(S6)。損傷面積率は、上述の通り、試料1の温度振幅変動分布全体の面積に対する、温度振幅変動量が、損傷発生したと判定するための閾値を超えている領域の面積の割合として算出される。本実施形態では、赤外線サーモグラフィ装置によって2次元的に温度測定された領域全体の画素数に対する、温度振幅変動量が、損傷発生したと判定するための閾値を超えている画素数の割合として算出される。 The arithmetic processing unit calculates a damage area ratio as a damage parameter from the created temperature amplitude fluctuation distribution (S6). As described above, the damage area ratio is calculated as the ratio of the area of the region where the temperature amplitude fluctuation amount exceeds the threshold value for determining that damage has occurred to the area of the entire temperature amplitude fluctuation distribution of the sample 1. In this embodiment, the temperature amplitude fluctuation amount is calculated as the ratio of the number of pixels in the entire area whose temperature is measured two-dimensionally by the infrared thermography device, which exceeds a threshold value for determining that damage has occurred. Ru.

演算処理装置は、算出された損傷面積率から、ワイブル分布に基づいて疲労強度を評価する(S7)。ワイブル分布は上述したように、物体の強度を統計的に記述する確率分布であり、疲労強度を評価するためには、評価対象の複合材料に応じたm(形状パラメータ)及びη(尺度パラメータ)を決めておく必要がある。これらは、同じ複合材料からなる複数の試料1を評価することで求められる。 The arithmetic processing device evaluates the fatigue strength based on the Weibull distribution from the calculated damage area ratio (S7). As mentioned above, the Weibull distribution is a probability distribution that statistically describes the strength of an object, and in order to evaluate fatigue strength, m (shape parameter) and η (scale parameter) are determined according to the composite material to be evaluated. It is necessary to decide. These are determined by evaluating a plurality of samples 1 made of the same composite material.

さらに、本実施形態では、損傷面積率が所定の数値に達したときの引張負荷を加えた回数を評価打切り数Nfとする。そして、試料1の評価打切り数Nfについて、ワイブル分布で整理すると、引張負荷の反復回数に対する試料1が所定の損傷面積率に達する累積確率分布が得られる。 Furthermore, in this embodiment, the number of times a tensile load is applied when the damage area ratio reaches a predetermined value is defined as the number of evaluation discontinuations N f . Then, when the evaluation cutoff number N f of sample 1 is organized using the Weibull distribution, a cumulative probability distribution for sample 1 to reach a predetermined damage area ratio with respect to the number of repetitions of tensile load is obtained.

こうして得られた累積確率分布のうち、特定の確率に達するまでの引張負荷の反復回数を比較することで、相対的に複合罪材料の強度を評価することができる。 By comparing the number of repetitions of tensile loading until a specific probability is reached in the cumulative probability distribution thus obtained, the strength of the composite material can be relatively evaluated.

本実施形態によれば、上述のように、引張負荷を加える前後での温度振幅変動を測定して解析する手法であることから、初期欠陥による影響を受けにくく、複合材料の疲労強度の評価制度を向上させることができる。また、確率統計分布を用いて、複合材料が持つ特性の傾向に基づいた数値を用いて評価を行うため、バラつきの少ない評価結果が得られやすい。 According to this embodiment, as described above, since the method measures and analyzes temperature amplitude fluctuations before and after applying a tensile load, it is less susceptible to the influence of initial defects, and the evaluation system for fatigue strength of composite materials is can be improved. Furthermore, since the evaluation is performed using numerical values based on the tendency of the properties of the composite material using probability statistical distribution, it is easy to obtain evaluation results with less variation.

また、一般的な疲労強度の評価は、複合材料が破断するまで外的負荷を加えて評価される。しかし、本検証からもわかるように、本発明の疲労強度評価方法は、所定回数の外的負荷を加えた時点での損傷率から、当該複合材料に応じたワイブル分布から確率統計的に疲労強度を評価する。従って、一般的な疲労強度の評価方法と比較して、外的負荷を加える回数を100分の1、又は1000分の1程度で評価することができるため、評価時間が短縮される。 Furthermore, fatigue strength is generally evaluated by applying an external load to the composite material until it breaks. However, as can be seen from this verification, the fatigue strength evaluation method of the present invention is based on the damage rate at the time when external loads are applied a predetermined number of times, and the fatigue strength is determined statistically based on the Weibull distribution according to the composite material. Evaluate. Therefore, compared to a general fatigue strength evaluation method, the number of times an external load is applied can be reduced to about 1/100 or 1/1000, so the evaluation time is shortened.

[検証]
本発明の複合材料の疲労強度評価方法の精度につき、検証結果を説明する。
[verification]
Verification results regarding the accuracy of the fatigue strength evaluation method for composite materials of the present invention will be explained.

(条件)
いくつかの複合材料を用いて本発明の効果の検証を行った。評価対象の複合材料は、ビニルウレタン樹脂の組成の材料とし、それぞれ材料Bと材料Cとして2種類用意し、材料Bを5本、材料Cを6本評価した。
(conditions)
The effects of the present invention were verified using several composite materials. The composite materials to be evaluated were materials with a composition of vinyl urethane resin, and two types were prepared as material B and material C, respectively, and 5 pieces of material B and 6 pieces of material C were evaluated.

試料1の大きさは12.5mm×200mmとした。 The size of sample 1 was 12.5 mm x 200 mm.

負荷装置によって試料1に加えられる引張負荷は、図2に示す引張方向3に対して800N/mm2を最大値とする変動負荷とした。 The tensile load applied to sample 1 by the loading device was a variable load with a maximum value of 800 N/mm 2 in tensile direction 3 shown in FIG.

第一温度振幅分布を作成するための赤外線サーモグラフィ装置温度分布による測定は、負荷装置が試料1に引張負荷が加え始めてから反復回数が1,000回となったところで行った。 The measurement using the infrared thermography device temperature distribution for creating the first temperature amplitude distribution was performed when the number of repetitions reached 1,000 after the loading device started applying a tensile load to the sample 1.

第二温度振幅分布を作成するための赤外線サーモグラフィ装置温度分布による測定は、負荷装置が試料1に引張負荷が加え始めてから反復回数が10,000回、50,000回、及び100,000回となったところで行った。 The measurement by the infrared thermography device temperature distribution to create the second temperature amplitude distribution was repeated 10,000 times, 50,000 times, and 100,000 times after the loading device started applying the tensile load to sample 1. I went there when it happened.

損傷と判定する温度振幅変動量の閾値は、±0.05℃とした。 The threshold value of the amount of temperature amplitude fluctuation for determining damage was set to ±0.05°C.

(結果)
図3は、検証における複合材料の第一温度振幅分布と第二温度振幅分布である。図4は、検証における複合材料の温度振幅変動分布である。第一温度振幅分布を示す図は、図3の(x)である。第二温度振幅分布を示す図は、図3の(a)~(c)であり、それぞれ(a)は、反復回数が10,000回、(b)は、反復回数が50,000回、(c)は、反復回数が100,000回での第二温度振幅分布を示している。
(result)
FIG. 3 shows the first temperature amplitude distribution and second temperature amplitude distribution of the composite material in the verification. FIG. 4 shows the temperature amplitude fluctuation distribution of the composite material in the verification. A diagram showing the first temperature amplitude distribution is (x) in FIG. The diagrams showing the second temperature amplitude distribution are (a) to (c) in FIG. 3, where (a) is repeated 10,000 times, (b) is repeated 50,000 times, (c) shows the second temperature amplitude distribution with 100,000 iterations.

図3に示される、第一温度振幅分布(x)と、それぞれの第二温度振幅分布((a),(b),(c))との差を取ると、図4に示される、温度振幅変動分布((A),(B),(C))が得られる。 Taking the difference between the first temperature amplitude distribution (x) shown in FIG. 3 and the respective second temperature amplitude distributions ((a), (b), and (c)), the temperature shown in FIG. Amplitude fluctuation distributions ((A), (B), (C)) are obtained.

反復回数が10,000回では、試料1の把持部2a側の端部に低い温度変動とその内側に高い温度変動が現れており、繰返し数とともに温度変動が低い領域が端部に沿って、高い領域が内側に向かって広がっていることが分かる。これは損傷の発生と進展を示すものであり、損傷の様子を可視化することができる。 When the number of repetitions is 10,000, low temperature fluctuations appear at the end of the sample 1 on the gripping part 2a side and high temperature fluctuations appear inside the end. It can be seen that the high areas are expanding inward. This indicates the occurrence and progress of damage, and allows the state of damage to be visualized.

図5Aは、各試料の破断繰返し数Nfのワイブル分布のグラフであり、図5B~図5Eは,各試料の損傷面積率が1%、5%、10%、20%に達するのに要した反復回数Nsaのワイブル分布のグラフである。いずれのワイブル分布においても材料Cの方が、材料Bよりも50%累積確率となる反復回数は大きい。すなわち、損傷の発生や進展が、材料Cでは材料Bよりも遅く、疲労強度が高いことを意味する。 Figure 5A is a graph of the Weibull distribution of the number of fracture cycles Nf for each sample, and Figures 5B to 5E show the time required for the damage area rate of each sample to reach 1%, 5%, 10%, and 20%. It is a graph of the Weibull distribution of the number of repetitions Nsa. In any of the Weibull distributions, material C has a larger number of repetitions at which the cumulative probability is 50% than material B. In other words, damage occurs and progresses more slowly in material C than in material B, which means that the fatigue strength is higher.

表1は、材料Bと材料Cの累積確率50%(試行回数のうち、半数が破壊する反復回数)に到達するサイクル数をまとめた表である。

Figure 0007375605000002
Table 1 is a table summarizing the number of cycles at which the cumulative probability of material B and material C reaches 50% (the number of repetitions in which half of the number of trials results in failure).
Figure 0007375605000002

表2及び表3は、各試料の従来の疲労強度試験による結果を示す表である。6本での材料Bの破断繰返し数の平均値は4.04×105回(標準偏差2.48×105回)であり、6本での材料Cの破断繰返し数の平均値は1.02×106回(標準偏差1.08×106回)である。従来の疲労強度試験は、材料Cは材料Bよりも破断繰返し数が大きいため、ワイブル分布による評価と同じように疲労強度が高いことはわかるが、破断繰返し数のバラつきが大きい。 Tables 2 and 3 are tables showing the results of conventional fatigue strength tests for each sample. The average number of rupture cycles for material B with 6 pieces is 4.04 x 10 5 times (standard deviation 2.48 x 10 5 times), and the average value of the number of rupture cycles for material C with 6 pieces is 1. .02×10 6 times (standard deviation 1.08×10 6 times). In the conventional fatigue strength test, material C has a higher number of rupture cycles than material B, so it can be seen that the fatigue strength is high as in the Weibull distribution evaluation, but the number of rupture cycles varies widely.

Figure 0007375605000003
Figure 0007375605000003

Figure 0007375605000004
Figure 0007375605000004

以上より、本発明の疲労強度の評価方法は、破壊に要した繰返し数と損傷面積率とのワイブル分布での整理が同じ傾向を示していることからも損傷面積率を用いた評価で、疲労強度を評価できることがわかる。さらに、本発明の疲労強度の評価方法は、同一の複合材料から製作された各試料の結果に大きなバラつきは生じておらず、複合材料であっても、試料ごとに大きなバラつきが発生することなく、通常の疲労強度試験よりも精度良く評価できていることがわかる。 From the above, the fatigue strength evaluation method of the present invention is based on the evaluation using the damage area ratio, since the number of repetitions required for fracture and the damage area ratio show the same tendency in the Weibull distribution. It can be seen that the strength can be evaluated. Furthermore, the fatigue strength evaluation method of the present invention does not cause large variations in the results of each sample made from the same composite material, and even with composite materials, there is no large variation from sample to sample. It can be seen that the evaluation is more accurate than the normal fatigue strength test.

[別実施形態]
以下、別実施形態について説明する。
[Another embodiment]
Another embodiment will be described below.

〈1〉 試料に加える外的負荷は、周波数や、試料に加える力の大きさが、任意に設定されてもよく、常に一定でなくても構わない。また、試料に加えられる外的負荷は、周期的な負荷でなくても構わない。 <1> As for the external load applied to the sample, the frequency and the magnitude of the force applied to the sample may be set arbitrarily, and do not always need to be constant. Further, the external load applied to the sample does not have to be a periodic load.

〈2〉 本発明は、複合材料に限らず、複雑な形状の構造物や建造物に対しても適用することができる。例えば、建造物に対して、剪断負荷を反復して加えながら温度振幅分布を取得することで、建造物疲労強度を評価することができる。 <2> The present invention is applicable not only to composite materials but also to complex-shaped structures and buildings. For example, the fatigue strength of a building can be evaluated by acquiring the temperature amplitude distribution while repeatedly applying a shear load to the building.

1 : 試料
2a : 把持部
2b : 把持部
3 : 引張方向
1: Sample 2a: Gripping part 2b: Gripping part 3: Tensile direction

Claims (3)

複合材料からなる試料に、外的負荷を反復して加えながら行う疲労強度評価方法であって、
前記外的負荷を反復して加えることで前記試料に発生する温度振幅を、赤外線サーモグラフィ装置によって測定し、第一温度振幅分布を作成する工程(a)と、
前記工程(a)の後、前記外的負荷を反復して加えることで前記試料に発生する温度振幅を、前記赤外線サーモグラフィ装置によって測定し、第二温度振幅分布を作成する工程(b)と、
前記第一温度振幅分布と前記第二温度振幅分布との差をとり、温度振幅変動分布を作成する工程(c)と、
前記温度振幅変動分布から、損傷を判定するための損傷パラメータを算出して、前記試料の疲労強度を評価する工程(d)とを含むことを特徴とする複合材料の疲労強度評価方法。
A fatigue strength evaluation method performed while repeatedly applying an external load to a sample made of a composite material,
Step (a) of measuring the temperature amplitude generated in the sample by repeatedly applying the external load using an infrared thermography device to create a first temperature amplitude distribution;
After the step (a), a step (b) of measuring the temperature amplitude generated in the sample by repeatedly applying the external load with the infrared thermography device to create a second temperature amplitude distribution;
(c) creating a temperature amplitude fluctuation distribution by taking the difference between the first temperature amplitude distribution and the second temperature amplitude distribution;
A method for evaluating fatigue strength of a composite material, comprising a step (d) of calculating a damage parameter for determining damage from the temperature amplitude fluctuation distribution and evaluating the fatigue strength of the sample.
前記損傷パラメータは、温度振幅変動分布全体の面積に対する、損傷と判別されている領域の面積の割合を示す損傷面積率であることを特徴とする請求項1に記載の複合材料の疲労強度評価方法。 The method for evaluating fatigue strength of a composite material according to claim 1, wherein the damage parameter is a damage area ratio indicating a ratio of the area of a region determined to be damaged to the area of the entire temperature amplitude fluctuation distribution. . 前記工程(d)は、ワイブル分布を用いて前記試料の疲労強度を判定することを特徴とする請求項1又は2に記載の複合材料の疲労強度評価方法。 3. The method for evaluating fatigue strength of a composite material according to claim 1, wherein in the step (d), the fatigue strength of the sample is determined using a Weibull distribution.
JP2020027992A 2020-02-21 2020-02-21 Fatigue strength evaluation method for composite materials Active JP7375605B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020027992A JP7375605B2 (en) 2020-02-21 2020-02-21 Fatigue strength evaluation method for composite materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020027992A JP7375605B2 (en) 2020-02-21 2020-02-21 Fatigue strength evaluation method for composite materials

Publications (2)

Publication Number Publication Date
JP2021131357A JP2021131357A (en) 2021-09-09
JP7375605B2 true JP7375605B2 (en) 2023-11-08

Family

ID=77550835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020027992A Active JP7375605B2 (en) 2020-02-21 2020-02-21 Fatigue strength evaluation method for composite materials

Country Status (1)

Country Link
JP (1) JP7375605B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7487248B2 (en) 2022-03-28 2024-05-20 株式会社豊田中央研究所 Fatigue damage level identification device and method for identifying fatigue damage level

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101622082A (en) 2007-02-28 2010-01-06 杰富意钢铁株式会社 Metal-band hot-rolling method and apparatus using near infrared camera
JP2010024413A (en) 2008-07-24 2010-02-04 Doshisha Fiber-reinforced composite material and method for producing the same
JP2012163420A (en) 2011-02-04 2012-08-30 Panasonic Corp Fatigue limit identifying system and fatigue limit identifying method
US20140067285A1 (en) 2011-02-25 2014-03-06 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Fatigue Monitoring for Composite Materials
JP2015165206A (en) 2014-03-03 2015-09-17 株式会社ジェイテクト Stress distribution measurement device and stress distribution measurement method
JP2016085153A (en) 2014-10-28 2016-05-19 株式会社ジェイテクト Infrared stress measurement method and infrared stress measurement device
JP2016142679A (en) 2015-02-04 2016-08-08 株式会社ジェイテクト Infrared stress measurement method and infrared stress measurement device
JP2016197080A (en) 2015-04-06 2016-11-24 三菱重工業株式会社 Notch factor estimation method, notch factor estimation system and notch factor estimation device
JP2018132431A (en) 2017-02-16 2018-08-23 株式会社東光高岳 Strength evaluation method, method for producing structure, strength evaluation device, and strength evaluation program

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0629834B2 (en) * 1984-07-12 1994-04-20 日本電子株式会社 Method of imaging fatigue status of subject

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101622082A (en) 2007-02-28 2010-01-06 杰富意钢铁株式会社 Metal-band hot-rolling method and apparatus using near infrared camera
JP2010024413A (en) 2008-07-24 2010-02-04 Doshisha Fiber-reinforced composite material and method for producing the same
JP2012163420A (en) 2011-02-04 2012-08-30 Panasonic Corp Fatigue limit identifying system and fatigue limit identifying method
US20140067285A1 (en) 2011-02-25 2014-03-06 Board Of Supervisors Of Louisiana State University And Agricultural And Mechanical College Fatigue Monitoring for Composite Materials
JP2015165206A (en) 2014-03-03 2015-09-17 株式会社ジェイテクト Stress distribution measurement device and stress distribution measurement method
JP2016085153A (en) 2014-10-28 2016-05-19 株式会社ジェイテクト Infrared stress measurement method and infrared stress measurement device
JP2016142679A (en) 2015-02-04 2016-08-08 株式会社ジェイテクト Infrared stress measurement method and infrared stress measurement device
JP2016197080A (en) 2015-04-06 2016-11-24 三菱重工業株式会社 Notch factor estimation method, notch factor estimation system and notch factor estimation device
JP2018132431A (en) 2017-02-16 2018-08-23 株式会社東光高岳 Strength evaluation method, method for producing structure, strength evaluation device, and strength evaluation program

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
島村佳伸,炭素繊維強化プラスチックの超高サイクル疲労の迅速評価手法の開発,科学研究費助成事業 研究成果報告書,2016年06月14日

Also Published As

Publication number Publication date
JP2021131357A (en) 2021-09-09

Similar Documents

Publication Publication Date Title
US9128018B2 (en) Method for evaluating corrosion-fatigue life of steel material
Perera et al. Identification of damage in RC beams using indexes based on local modal stiffness
JP7375605B2 (en) Fatigue strength evaluation method for composite materials
TW202244476A (en) Fatigue life estimation method, fatigue life estimation apparatus, fatigue life estimation program and storage medium
US20220042892A1 (en) Method and system for obtaining properties using indentation imprint
JP6543019B2 (en) Evaluation method of corrosion fatigue life of steel
RU2610936C1 (en) Method of determining strain and stress intensity in local zones of plastically deformeed material
JP2007057325A (en) Remaining lifetime prediction method
Lee et al. Post-yielding tension stiffening of reinforced concrete members using an image analysis method with a consideration of steel ratios
US20240027314A1 (en) Method of calculating residual stress
Rummel Nondestructive evaluation–a critical part of structural integrity
Roebuck et al. Data acquisition and analysis of tensile properties for metal matrix composites
JP4239733B2 (en) Diagnostic method for concrete
CN110082207B (en) Method, device, system and storage medium for detecting strain failure of coating material
Panwitt et al. Automated crack length measurement for mixed mode fatigue cracks using digital image correlation
Tripathy et al. Finite element framework for fatigue performance assessment of superelastic nitinol used in medical devices
JP5583489B2 (en) Method and apparatus for evaluating damage of metal materials
JP3612293B2 (en) Method and apparatus for measuring residual stress in object
Link Round-robin Analysis of Standard Data Sets for Fracture Toughness Evaluation in ASTM E1820
Suhartono et al. Estimating of measurement uncertainty of tensile strength test for deformed steel bars for concrete reinforcement
CN110765646A (en) Method for predicting tearing residual strength of fabric membrane material
De Jesus et al. An investigation on the strength of axially loaded cold-formed steel Z-sections
Arnold et al. Interpretation of Experimental Tensile Test Results and Its Implication on Damage Modeling
Fayyadh et al. Experimental validation of dynamic based damage locating indices in rc structures
Vladimír et al. The methodology of transformation of the nominal loading process into a root of notch

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231009

R151 Written notification of patent or utility model registration

Ref document number: 7375605

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151