JP2015165206A - Stress distribution measurement device and stress distribution measurement method - Google Patents

Stress distribution measurement device and stress distribution measurement method Download PDF

Info

Publication number
JP2015165206A
JP2015165206A JP2014040279A JP2014040279A JP2015165206A JP 2015165206 A JP2015165206 A JP 2015165206A JP 2014040279 A JP2014040279 A JP 2014040279A JP 2014040279 A JP2014040279 A JP 2014040279A JP 2015165206 A JP2015165206 A JP 2015165206A
Authority
JP
Japan
Prior art keywords
image
pixel
measured
noise
stress distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014040279A
Other languages
Japanese (ja)
Other versions
JP6248706B2 (en
Inventor
浩平 渡邉
Kohei Watanabe
浩平 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2014040279A priority Critical patent/JP6248706B2/en
Publication of JP2015165206A publication Critical patent/JP2015165206A/en
Application granted granted Critical
Publication of JP6248706B2 publication Critical patent/JP6248706B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a stress distribution measurement device capable of removing noise even under a condition where the repeated loading is not executed and lock-in processing cannot be applied.SOLUTION: A stress distribution measurement device 1 for estimating stress distribution of an object to be measured, includes: a projector 2 for projecting a predetermined pattern onto the object to be measured; imaging means for imaging the object to be measured on which the pattern is projected; an infrared camera 3 for obtaining temperature change images of the object to be measured when no load is applied and a load is applied; three-dimensional shape calculation means for calculating a three-dimensional shape of the object to be measured from an image of the object to be measured on which the pattern is projected, imaged by the imaging means; noise removal means for removing noise of the reference temperature image and the temperature distribution image, on the basis of height distribution of the object to be measured, obtained from acquired information of the three-dimensional shape of the object to be measured; and stress calculation means for calculating the stress distribution of the object to be measured from the difference between the reference temperature image and the temperature distribution image from which noise is removed by the noise removal means.

Description

本発明は応力分布計測装置及び応力分布計測方法に関する。さらに詳しくは、負荷荷重を受ける物体の温度分布の変化から当該物体に発生した応力分布を推定する応力分布計測装置及び応力分布計測方法に関する。   The present invention relates to a stress distribution measuring device and a stress distribution measuring method. More particularly, the present invention relates to a stress distribution measuring apparatus and a stress distribution measuring method for estimating a stress distribution generated in an object from a change in temperature distribution of the object subjected to a load.

部材の最適設計を行うためには当該部材にどのような応力が発生しているのかを把握することが重要である。そのために、例えば有限要素法(FEM)や境界要素法(BEM)等の数値解析により応力分布を求める方法、及び、歪ゲージを用いて部材に加わる応力を測定する方法が知られている。   In order to optimally design a member, it is important to grasp what kind of stress is generated in the member. For this purpose, for example, a method for obtaining a stress distribution by numerical analysis such as a finite element method (FEM) or a boundary element method (BEM) and a method for measuring stress applied to a member using a strain gauge are known.

しかし、部材の形状が複雑である場合や、部材が複数の部品により構成されている場合等では、前述した方法で正確に応力を求めることができないことがある。
そこで、負荷荷重を受ける部材の温度分布を計測し、その温度分布の変化から当該部材の応力分布を推定する方法(例えば、赤外線応力測定法)が提案されている。
However, when the shape of the member is complicated or when the member is composed of a plurality of parts, the stress may not be accurately obtained by the above-described method.
Therefore, a method (for example, infrared stress measurement method) has been proposed in which the temperature distribution of a member that receives a load is measured and the stress distribution of the member is estimated from the change in the temperature distribution.

赤外線応力測定法は、部材に作用する応力の変化に応じて当該部材に発生する熱(温度)の変化を赤外線カメラで測定する方法であるが、測定に際し、応力により発生する熱以外のノイズ(例えば、摩擦熱、雰囲気温度変化等)の影響を受ける。そして、このようなノイズを除去し、高精度な応力分布を得るための手法として、従来、ロックイン処理が採用されている(例えば、特許文献1〜2参照)。   The infrared stress measurement method is a method in which a change in heat (temperature) generated in a member according to a change in stress acting on the member is measured by an infrared camera. In measurement, noise other than heat generated by stress ( For example, it is affected by frictional heat, changes in ambient temperature, and the like. As a technique for removing such noise and obtaining a highly accurate stress distribution, lock-in processing has been conventionally employed (see, for example, Patent Documents 1 and 2).

特許文献1記載の方法におけるロックイン処理では、部材に繰り返し荷重変動を生じさせ、荷重変動の少なくとも1周期分をそれぞれ含む第1周期及びそれ以降の第2周期について、それぞれ温度平均値を求めて第1平均温度及び第2平均温度としている。そして、第1平均温度及び第2平均温度の差に基づいて時間に対する温度勾配を求め、この温度勾配と、部材の初期温度とから温度特性を決定し、部材について測定された実温度分布から前記温度特性に基づいて求めた温度を減じることで、ノイズが除去された補正温度分布を求めている。   In the lock-in process in the method described in Patent Document 1, repeated load fluctuations are generated in a member, and temperature average values are respectively obtained for a first period including at least one period of the load fluctuation and a second period thereafter. The first average temperature and the second average temperature are used. Then, a temperature gradient with respect to time is obtained based on the difference between the first average temperature and the second average temperature, a temperature characteristic is determined from the temperature gradient and the initial temperature of the member, and the actual temperature distribution measured for the member The corrected temperature distribution from which noise is removed is obtained by reducing the temperature obtained based on the temperature characteristics.

特開2012−103124号公報JP2012-103124A 特開2001−188028号公報Japanese Patent Laid-Open No. 2001-188028

しかし、ロックイン処理を行うためには荷重試験機から繰り返し荷重を部材に付加する必要があるため、その適用範囲が限定的である。すなわち、繰り返し荷重が作用しない部材に対してはロックイン処理を適用することができず、したがって高精度な応力分布を得ることができない。   However, in order to perform the lock-in process, it is necessary to repeatedly apply a load to the member from the load tester, so that the application range is limited. That is, the lock-in process cannot be applied to a member to which a repeated load does not act, and therefore a highly accurate stress distribution cannot be obtained.

本発明は、このような事情に鑑みてなされたものであり、ロックイン処理が適用できない、繰り返し負荷でない条件下でもノイズを除去して高精度な応力分布を得ることができる応力分布計測装置及び応力分布計測方法を提供することを目的としている。   The present invention has been made in view of such circumstances, and a stress distribution measuring device capable of obtaining a highly accurate stress distribution by removing noise even under non-repetitive load conditions, to which lock-in processing cannot be applied, and The object is to provide a stress distribution measurement method.

(1)本発明の応力分布計測装置は、荷重無負荷時の被計測物の温度画像と荷重負荷時の被計測物の温度画像との差分に基づいて当該被計測物の応力分布を推定する応力分布計測装置であって、
前記被計測物に所定のパターンを投影するプロジェクタと、
パターンが投影された被計測物を撮像する撮像手段と、
被計測物に負荷荷重を加える前の基準温度画像及び負荷荷重を加えたときの温度変動画像を取得する赤外線カメラと、
前記撮像手段で撮像された、パターンが投影された被計測物の画像から当該被計測物の三次元形状を算出する三次元形状算出手段と、
得られた被計測物の三次元形状の情報から得られる当該被計測物の高さ分布に基づいて、前記基準温度画像及び温度分布画像のノイズを除去するノイズ除去手段と、
ノイズ除去手段によりノイズが除去された基準温度画像及び温度分布画像の差分から前記被計測物の応力分布を算出する応力算出手段と
を備えたことを特徴としている。
(1) The stress distribution measuring apparatus according to the present invention estimates the stress distribution of the measurement object based on the difference between the temperature image of the measurement object when no load is applied and the temperature image of the measurement object when the load is applied. A stress distribution measuring device,
A projector that projects a predetermined pattern on the object to be measured;
Imaging means for imaging an object to be measured on which a pattern is projected;
An infrared camera that acquires a reference temperature image before applying a load to the object to be measured and a temperature fluctuation image when the load is applied;
Three-dimensional shape calculation means for calculating the three-dimensional shape of the measurement object from the image of the measurement object on which the pattern is projected, which is imaged by the imaging means;
Noise removing means for removing noise of the reference temperature image and the temperature distribution image based on the height distribution of the measured object obtained from the obtained three-dimensional shape information of the measured object;
Stress calculating means for calculating the stress distribution of the object to be measured from the difference between the reference temperature image and the temperature distribution image from which noise has been removed by the noise removing means.

本発明の応力分布計測装置では、被計測物にパターンを投影して得られる当該被計測物の三次元形状の情報から得られる高さ分布に基づいて、基準温度画像及び温度分布画像のノイズを除去している。このため、被計測物に対し繰り返して荷重を負荷するロックイン処理によることなくノイズを除去して高精度な応力分布を得ることができる。   In the stress distribution measuring apparatus of the present invention, the noise of the reference temperature image and the temperature distribution image is obtained based on the height distribution obtained from the three-dimensional shape information of the measurement object obtained by projecting the pattern onto the measurement object. It has been removed. For this reason, noise can be removed and a highly accurate stress distribution can be obtained without using a lock-in process in which a load is repeatedly applied to an object to be measured.

なお、本明細書において「被計測物」とは、熱弾性効果を利用して、その応力分布を計測する対象物のことであり、形状やサイズについて特に限定されるものではないが、例えばリブの付いたアルミハウジング等を例示することができる。   In the present specification, the “object to be measured” is an object for measuring the stress distribution using the thermoelastic effect, and is not particularly limited in shape or size. An aluminum housing or the like with can be exemplified.

前記三次元形状算出手段により得られる被計測物の三次元形状の情報から、当該被計測物の高さ分布に基づいて被計測物の画像領域を分割する分割手段を更に備えており、
前記ノイズ除去手段は、ノイズ除去する画素を選択するとともに、当該画素と同じ画像領域に属する当該画素周辺の周辺領域を選択し、選択した周辺領域から、前記選択した画素のノイズ除去された画素値を推定する処理を全画素について実行するものとすることができる。
From the three-dimensional shape information of the measurement object obtained by the three-dimensional shape calculation means, further comprising a dividing means for dividing the image area of the measurement object based on the height distribution of the measurement object,
The noise removing unit selects a pixel for noise removal, selects a peripheral region around the pixel belonging to the same image region as the pixel, and a pixel value from which noise of the selected pixel is removed from the selected peripheral region Can be executed for all pixels.

また、前記ノイズ除去手段は、ノイズ除去する画素を選択するとともに、当該画素周辺の周辺画素と前記選択された画素それぞれについて高さ分布に基づいて重み付けを行い、各画素の画素値と重みとの積の総和を前記選択した画素のノイズ除去された画素値とする処理を全画素について実行するものとすることができる。   In addition, the noise removing unit selects a pixel from which noise is to be removed, and performs weighting based on the height distribution for each of the peripheral pixels around the pixel and the selected pixel, and calculates the pixel value and weight of each pixel. The process of setting the sum of products to the pixel value from which the noise of the selected pixel has been removed can be executed for all the pixels.

(2)また、本発明の応力分布計測方法は、荷重無負荷時の被計測物の温度画像と荷重負荷時の被計測物の温度画像との差分に基づいて当該被計測物の応力分布を推定する応力分布計測方法であって、
プロジェクタから所定のパターンが投影された被計測物を撮像する撮像工程と、
前記撮像行程において撮像された、パターンが投影された被計測物の画像から当該被計測物の三次元形状を算出する三次元形状算出工程と、
赤外線カメラによって、被計測物に負荷荷重を加える前の基準温度画像及び負荷荷重を加えたときの温度変動画像を取得する画像取得工程と、
前記三次元形状算出工程において取得された被計測物の三次元形状の情報から得られる当該被計測物の高さ分布に基づいて、前記基準温度画像及び温度分布画像のノイズを除去するノイズ除去工程と、
ノイズ除去工程においてノイズが除去された基準温度画像及び温度分布画像の差分から前記被計測物の応力分布を算出する応力算出工程と
を含むことを特徴としている。
(2) Further, the stress distribution measuring method of the present invention calculates the stress distribution of the measured object based on the difference between the temperature image of the measured object when no load is applied and the temperature image of the measured object when loaded. An estimated stress distribution measurement method,
An imaging step of imaging an object to be measured on which a predetermined pattern is projected from a projector;
A three-dimensional shape calculation step of calculating a three-dimensional shape of the object to be measured from an image of the object to be measured, which is imaged in the imaging step and onto which a pattern is projected;
An image acquisition step of acquiring a reference temperature image before applying a load to the object to be measured and a temperature fluctuation image when applying the load by an infrared camera;
A noise removal step of removing noise of the reference temperature image and the temperature distribution image based on the height distribution of the measurement object obtained from the three-dimensional shape information of the measurement object acquired in the three-dimensional shape calculation step When,
A stress calculating step of calculating a stress distribution of the object to be measured from a difference between the reference temperature image and the temperature distribution image from which noise has been removed in the noise removing step.

本発明の応力分布計測方法では、被計測物にパターンを投影して得られる当該被計測物の三次元形状の情報から得られる高さ分布に基づいて、基準温度画像及び温度分布画像のノイズを除去している。このため、被計測物に対し繰り返して荷重を負荷するロックイン処理によることなくノイズを除去して高精度な応力分布を得ることができる。   In the stress distribution measurement method of the present invention, the noise of the reference temperature image and the temperature distribution image is calculated based on the height distribution obtained from the three-dimensional shape information of the measurement object obtained by projecting the pattern onto the measurement object. It has been removed. For this reason, noise can be removed and a highly accurate stress distribution can be obtained without using a lock-in process in which a load is repeatedly applied to an object to be measured.

前記三次元形状算出工程において取得される被計測物の三次元形状の情報から、当該被計測物の高さ分布に基づいて被計測物の画像領域を分割する分割工程を更に含んでおり、
前記ノイズ除去工程は、ノイズ除去する画素を選択するとともに、当該画素と同じ画像領域に属する当該画素周辺の周辺領域を選択し、選択した周辺領域から、前記選択した画素のノイズ除去された画素値を推定する処理を全画素について実行するものとすることができる。
From the three-dimensional shape information of the measurement object acquired in the three-dimensional shape calculation step, further includes a dividing step of dividing the image area of the measurement object based on the height distribution of the measurement object.
In the noise removal step, a pixel to be denoised is selected, a peripheral region around the pixel belonging to the same image region as the pixel is selected, and a pixel value from which noise of the selected pixel is removed from the selected peripheral region Can be executed for all pixels.

前記ノイズ除去工程は、ノイズ除去する画素を選択するとともに、当該画素周辺の周辺画素と前記選択された画素それぞれについて高さ分布に基づいて重みづけを行い、各画素の画素値と重みづけとの積の総和を前記選択した画素のノイズ除去された画素値とする処理を全画素について実行するものとすることができる。   In the noise removal step, a pixel to be denoised is selected, and a peripheral pixel around the pixel and the selected pixel are weighted based on a height distribution, and a pixel value and a weight of each pixel are determined. The process of setting the sum of products to the pixel value from which the noise of the selected pixel has been removed can be executed for all the pixels.

本発明の応力分布計測装置及び応力分布計測方法によれば、ロックイン処理が適用できない、繰り返し負荷でない条件下でもノイズを除去して高精度な応力分布を得ることができる。   According to the stress distribution measuring apparatus and the stress distribution measuring method of the present invention, it is possible to obtain a highly accurate stress distribution by removing noise even under conditions where a lock-in process cannot be applied and the load is not repeated.

本発明の応力分布計測装置の一実施形態の模式図である。It is a mimetic diagram of one embodiment of a stress distribution measuring device of the present invention. (a)は本発明における被計測物の一例の平面図であり、(b)は同A−A線断面図である。(A) is a top view of an example of the to-be-measured object in this invention, (b) is the sectional view on the AA line. 本発明の応力分布計測方法の一実施形態における工程の流れを示す図である。It is a figure which shows the flow of the process in one Embodiment of the stress distribution measuring method of this invention. ノイズ除去方法の一例の説明図である。It is explanatory drawing of an example of the noise removal method.

以下、添付図面を参照しつつ、本発明の応力分布計測装置及び応力分布計測方法の実施形態を詳細に説明する。   Hereinafter, embodiments of a stress distribution measuring device and a stress distribution measuring method of the present invention will be described in detail with reference to the accompanying drawings.

〔応力分布計測装置〕
図1は、本発明の一実施形態に係る応力分布計測装置1の模式図である。応力分布計測装置1は、被計測物に荷重を負荷していないときの当該被計測物の温度画像と、被計測物に荷重を負荷したときの当該被計測物の温度画像との差分に基づいて当該被計測物の応力分布を推定する装置である。応力分布計測装置1は、赤外線プロジェクタ2と、赤外線カメラ3と、画像処理装置4とを備えている。画像処理装置4は、演算部5(記憶部5aを含む。)と、表示部6と、入力部7とを備えている。また、本実施形態に係る応力分布計測装置1は、被計測物8に引張力を付与した場合に当該被計測物8に発生する応力の分布を計測する装置であり、被計測物8に引張力を付与するための荷重負荷部9を備えている。
[Stress distribution measuring device]
FIG. 1 is a schematic diagram of a stress distribution measuring apparatus 1 according to an embodiment of the present invention. The stress distribution measuring apparatus 1 is based on a difference between a temperature image of the measurement object when no load is applied to the measurement object and a temperature image of the measurement object when a load is applied to the measurement object. This is a device for estimating the stress distribution of the object to be measured. The stress distribution measuring device 1 includes an infrared projector 2, an infrared camera 3, and an image processing device 4. The image processing apparatus 4 includes a calculation unit 5 (including a storage unit 5a), a display unit 6, and an input unit 7. The stress distribution measuring device 1 according to the present embodiment is a device that measures the distribution of stress generated in the measurement object 8 when a tensile force is applied to the measurement object 8. A load load portion 9 for applying force is provided.

赤外線プロジェクタ2は、被計測物8に向けて配置されており、当該被計測物8に縞パターン等の所定のパターンを投影する。   The infrared projector 2 is arranged toward the object 8 to be measured, and projects a predetermined pattern such as a stripe pattern on the object 8 to be measured.

赤外線カメラ3は、物体の表面から放出される赤外線を検出し、赤外線センサにより電気信号に変換し、画像信号として出力する。この赤外線カメラ3は、被計測物8に向けて配置されており、所定のパターンが投影された被計測物8を撮像してパターン投影画像を取得するとともに、荷重無負荷時の被計測物8の温度分布である基準温度画像及び荷重負荷部9による荷重負荷時の被計測物8の温度分布である温度変動画像を取得する。   The infrared camera 3 detects infrared rays emitted from the surface of the object, converts the infrared rays into an electrical signal by the infrared sensor, and outputs it as an image signal. The infrared camera 3 is arranged toward the object 8 to be measured, captures the object 8 on which a predetermined pattern is projected, acquires a pattern projection image, and also measures the object 8 when no load is applied. And a temperature variation image that is a temperature distribution of the measurement object 8 when a load is applied by the load loading unit 9.

演算部5は、赤外線カメラ3からの画像信号を受信し、この画像信号を処理することで得られる被計測物8の温度変動の分布に基づいて当該被計測物8の応力分布を算出する。表示部6は、この演算部5による算出結果をモニタ上に表示する。   The calculation unit 5 receives the image signal from the infrared camera 3 and calculates the stress distribution of the measurement object 8 based on the distribution of temperature fluctuations of the measurement object 8 obtained by processing the image signal. The display unit 6 displays the calculation result by the calculation unit 5 on the monitor.

本実施形態における演算部5は、撮像手段である赤外線カメラ3で撮像された、パターンが投影された被計測物8の画像から当該被計測物8の三次元形状を算出する三次元形状算出手段、得られた被計測物8の三次元形状の情報から得られる当該被計測物8の高さ分布に基づいて、前記基準温度画像及び温度分布画像のノイズを除去するノイズ除去手段、及びノイズ除去手段によりノイズが除去された基準温度画像及び温度分布画像の差分から前記被計測物の応力分布を算出する応力算出手段として機能する。また、演算部5は、三次元形状算出手段により得られる被計測物の三次元形状の情報から、当該被計測物の高さ分布に基づいて被計測物の画像領域を分割する分割手段としても機能する。   The calculation unit 5 in the present embodiment is a three-dimensional shape calculation unit that calculates a three-dimensional shape of the measurement object 8 from an image of the measurement object 8 on which a pattern is projected, which is captured by the infrared camera 3 that is an imaging unit. A noise removing means for removing noise from the reference temperature image and the temperature distribution image based on the height distribution of the measured object 8 obtained from the obtained three-dimensional shape information of the measured object 8, and noise removal; It functions as a stress calculation means for calculating the stress distribution of the object to be measured from the difference between the reference temperature image and the temperature distribution image from which noise has been removed by the means. The calculation unit 5 may also be a dividing unit that divides the image area of the measurement object from the three-dimensional shape information of the measurement object obtained by the three-dimensional shape calculation unit based on the height distribution of the measurement object. Function.

〔応力分布計測方法〕
次に、応力分布計測方法の手順について図3〜4を参照しつつ説明する。図3は、本発明の一実施形態に係る応力分布計測方法における工程の流れを示す図であり、図4は、ノイズ除去方法の一例の説明図である。
[Stress distribution measurement method]
Next, the procedure of the stress distribution measurement method will be described with reference to FIGS. FIG. 3 is a diagram showing a process flow in the stress distribution measurement method according to the embodiment of the present invention, and FIG. 4 is an explanatory diagram of an example of the noise removal method.

まず、ステップS1において、赤外線プロジェクタ2から所定のパターン(例えば、縞パターン)が被計測物8に投影され、所定のパターンが投影された被計測物8を赤外線カメラ3が撮像する。撮像された画像の信号は画像処理装置4に出力され、当該画像処理装置4において処理される。この処理については、後述する。   First, in step S1, a predetermined pattern (for example, a fringe pattern) is projected from the infrared projector 2 onto the measurement object 8, and the infrared camera 3 images the measurement object 8 on which the predetermined pattern is projected. A signal of the captured image is output to the image processing device 4 and processed in the image processing device 4. This process will be described later.

ついで、ステップS2において、前記ステップS1で得られた、パターンが投影された被計測物8の画像から当該被計測物8の三次元形状が演算部5により算出される。パターンを用いた三次元形状の算出手法は、本発明において特に限定されるものではなく、例えば特開平7−63527号公報や特開平7−229723号公報に記載されているような一般的手法を適宜採用することができる。   Next, in step S <b> 2, the three-dimensional shape of the measurement object 8 is calculated from the image of the measurement object 8 onto which the pattern is projected, obtained in step S <b> 1. The calculation method of the three-dimensional shape using the pattern is not particularly limited in the present invention. For example, a general method as described in JP-A-7-63527 and JP-A-7-229723 is used. It can be adopted as appropriate.

ついで、ステップS3において、荷重負荷部9により荷重(引張荷重)が負荷されていない状態の被計測物8の温度分布を示す基準温度画像を赤外線カメラ3で取得し、その後、荷重負荷部9により荷重を負荷した状態(本実施形態では、荷重負荷部9によって引張力が被計測物8の長手方向に沿って負荷される。図1の白抜きの矢印参照。)の被計測物8の温度分布を示す温度変動画像を同じく赤外線カメラ3で取得する。取得された両画像の信号は画像処理装置4に出力され、当該画像処理装置4において処理される。この処理についても、後述する。   Next, in step S <b> 3, a reference temperature image indicating the temperature distribution of the measurement object 8 in a state in which no load (tensile load) is applied by the load application unit 9 is acquired by the infrared camera 3, and thereafter, by the load application unit 9. Temperature of the measurement object 8 in a state in which a load is applied (in this embodiment, a tensile force is applied along the longitudinal direction of the measurement object 8 by the load application unit 9. See the white arrow in FIG. 1). Similarly, an infrared camera 3 obtains a temperature fluctuation image indicating the distribution. The acquired signals of both images are output to the image processing device 4 and processed in the image processing device 4. This process will also be described later.

ついで、ステップS4において、ステップS2で得られた被計測物8の三次元形状の情報(三次元直交座標軸上の位置情報)から、当該被計測物8の高さ方向の分布に基づいて被計測物8の画像領域が演算部5により分割される。具体的に、本実施形態における被計測物8は、図2に示されるように、中央に円形の凹所8aが形成された矩形の板材である。この被計測物8の高さ方向を図2(b)における上下方向とすると、前記凹所8aの領域と、それ以外の領域とでは高さが異なっている。高さが異なる、すなわち段差があると当該段差で応力の分布が変わることから、本実施形態では、被計測物8の高さ方向の分布に基づいて当該被計測物8の画像領域を分割している。具体的に、本実施形態では、演算部5は凹所8aの領域とそれ以外の領域とに画像領域を分割する。
なお、以上の例では、簡単のため被計測物を2つの画像領域に分割しているが、複雑な形状の被計測物については、3つ以上の画像領域に分割することができる。
Next, in step S4, based on the three-dimensional shape information (position information on the three-dimensional orthogonal coordinate axis) of the measurement object 8 obtained in step S2, the measurement object is based on the distribution in the height direction of the measurement object 8. The image area of the object 8 is divided by the calculation unit 5. Specifically, the measurement object 8 in the present embodiment is a rectangular plate material in which a circular recess 8a is formed at the center, as shown in FIG. If the height direction of the object to be measured 8 is the vertical direction in FIG. 2B, the height of the region of the recess 8a is different from the other region. In this embodiment, the image area of the measurement object 8 is divided based on the distribution in the height direction of the measurement object 8 because the stress distribution varies depending on the difference in height when the height is different. ing. Specifically, in the present embodiment, the calculation unit 5 divides the image area into the area of the recess 8a and the other area.
In the above example, the object to be measured is divided into two image regions for simplicity, but the object to be measured having a complicated shape can be divided into three or more image regions.

ついで、ステップS5において、演算部5によってノイズ除去の処理が行われる。被計測物8の表面温度は、荷重負荷部9により負荷される応力だけに起因して変化するのではなく、ノイズ(例えば、摩擦熱、雰囲気温度変化等)の影響を受ける。したがって、このノイズの影響を排除しないと高精度に応力分布を推定することができない。本実施形態では、ステップS2で得られた基準温度画像及び温度変動画像について、例えば次のようにしてノイズの除去を行う。   In step S5, the arithmetic unit 5 performs noise removal processing. The surface temperature of the measurement object 8 does not change only due to the stress applied by the load application unit 9 but is affected by noise (for example, frictional heat, ambient temperature change, etc.). Therefore, the stress distribution cannot be estimated with high accuracy unless the influence of this noise is eliminated. In the present embodiment, noise is removed from the reference temperature image and the temperature fluctuation image obtained in step S2 as follows, for example.

<ノイズ除去>
ノイズの除去は赤外線カメラ3で取得された画像全体について行われる。例えば、100×100画素の赤外線カメラ3の場合、10000個の画素についてノイズ除去の処理が行われる。
<Noise reduction>
Noise removal is performed on the entire image acquired by the infrared camera 3. For example, in the case of the infrared camera 3 having 100 × 100 pixels, noise removal processing is performed on 10,000 pixels.

ノイズを除去しようとする着目画素p1のひとつ外側の画素(p2〜p9)が存在する領域を前記着目画素p1の周辺領域とする。図4に示される例では、着目画素p1の周辺領域には8つの画素p2〜p9が存在している(図4の(a)参照)。   A region where pixels (p2 to p9) that are one outside of the target pixel p1 from which noise is to be removed exists is set as a peripheral region of the target pixel p1. In the example shown in FIG. 4, there are eight pixels p2 to p9 in the peripheral region of the pixel of interest p1 (see (a) of FIG. 4).

今、ダブルハッチングを施した2つの画素p4、p6が属する画像領域(ステップS4において、演算部5により分割された画像領域)が、それ以外の7つの画素が属する画像領域と異なるとする(図4の(b)参照)。この場合、ノイズ除去手段によって、着目画素p1と同じ画像領域に属し、且つ、当該着目画素p1の周辺に位置する画素、すなわち画素p2、p3、p5、p7、p8及びp9、合計6つの画素が選択される。そして、これら6つの画素の画素値を用いて着目画素p1のノイズ除去された画素値が推定される。例えば、6つの画素値の平均を着目画素p1のノイズ除去された画素値とすることができる。   Now, it is assumed that the image region to which the two pixels p4 and p6 that have been subjected to double hatching belong (the image region divided by the calculation unit 5 in step S4) is different from the image region to which the other seven pixels belong (see FIG. 4 (b)). In this case, the noise removing unit determines that pixels belonging to the same image area as the target pixel p1 and located around the target pixel p1, that is, pixels p2, p3, p5, p7, p8, and p9, a total of six pixels. Selected. And the pixel value from which the noise of the pixel of interest p1 was removed is estimated using the pixel values of these six pixels. For example, the average of the six pixel values can be used as the pixel value from which the noise of the pixel of interest p1 has been removed.

着目画素を上下又は左右に順次シフトさせて新たな着目画素を設定し、前述した処理を繰り返すことで、全ての画素についてノイズ除去された画素値を得ることができる。このノイズ除去の処理は、基準温度画像及び温度変動画像それぞれについて行われる。   By sequentially shifting the target pixel up and down or left and right to set a new target pixel and repeating the above-described processing, it is possible to obtain pixel values from which noise has been removed for all the pixels. This noise removal process is performed for each of the reference temperature image and the temperature fluctuation image.

ついで、ステップS6において、演算部5は、ノイズが除去された基準温度画像及び温度変動画像の差分を取得し、その後、ステップS7において、演算部5は、ステップS6で取得した前記差分から被計測物8の応力分布を算出する。応力の算出に際しては、被計測物8を構成する材料の熱弾性係数が利用される。算出された応力分布は、表示部6のモニタ上に表示される。   Next, in step S6, the calculation unit 5 acquires the difference between the reference temperature image and the temperature fluctuation image from which noise has been removed, and in step S7, the calculation unit 5 then measures the difference from the difference acquired in step S6. The stress distribution of the object 8 is calculated. In calculating the stress, the thermoelastic coefficient of the material constituting the measurement object 8 is used. The calculated stress distribution is displayed on the monitor of the display unit 6.

〔その他の変形例〕
なお、今回開示された実施の形態はすべての点において単なる例示であって制限的なものではないと考えられるべきである。本発明の範囲は、前記した意味ではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内のすべての変更が含まれることが意図される。
[Other variations]
It should be noted that the embodiment disclosed this time is merely an example in all respects and is not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the meanings described above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

例えば、前述した実施形態では、分割手段によって、被計測物の画像領域を当該被計測物の高さ分布に基づいて分割しているが、このような分割処理をせずにノイズ除去を行うこともできる。   For example, in the above-described embodiment, the image area of the object to be measured is divided by the dividing unit based on the height distribution of the object to be measured, but noise removal is performed without performing such division processing. You can also.

今、図4の(a)に示されるように、着目画素p1を中心として8つの周辺画素が存在する場合を考える。
ステップS2において被計測物8の三次元形状の情報(三次元直交座標軸上の位置情報)が算出されている。
Now, as shown in FIG. 4A, consider a case where there are eight peripheral pixels centered on the pixel of interest p1.
In step S2, information on the three-dimensional shape of the measurement object 8 (position information on the three-dimensional orthogonal coordinate axes) is calculated.

ついで、着目画素p1と周辺画素p2〜p9の重み付けを行う。この重み付けは、種々の方法により行うことができるが、例えば各画素の空間距離に基づいて行うことができる。本発明では、被計測物の三次元形状が測定されているため、各画素の相対距離が分かっている。すなわち、或る周辺画素(例えば、画素p2)の座標と着目画素p1の座標との距離である、「各画素の空間距離」が分かっている。そして、着目画素p1との距離が近い周辺画素であれば重みを大きくし、逆に、着目画素p1との距離が遠い周辺画素であれば、重みを小さくするという処理(重み付け)を行う。この重み付けの手法は、本発明において特に限定されるものではなく、従来知られている手法を適宜採用することができ、例えば、ガウシアンフィルタに基づく重み付けを用いたり、着目画素との距離が大きく離れていれば重みをゼロにしたりする(閾値処理)ことができる。   Next, the pixel of interest p1 and the surrounding pixels p2 to p9 are weighted. This weighting can be performed by various methods, for example, based on the spatial distance of each pixel. In the present invention, since the three-dimensional shape of the object to be measured is measured, the relative distance of each pixel is known. That is, the “spatial distance of each pixel” that is the distance between the coordinates of a certain peripheral pixel (for example, pixel p2) and the coordinates of the pixel of interest p1 is known. Then, a process (weighting) is performed in which the weight is increased if the peripheral pixel is close to the target pixel p1, and the weight is decreased if the peripheral pixel is far from the target pixel p1. The weighting method is not particularly limited in the present invention, and a conventionally known method can be appropriately employed. For example, weighting based on a Gaussian filter is used, or the distance from the pixel of interest is greatly separated. If so, the weight can be set to zero (threshold processing).

そして、画素p1〜p9のそれぞれについて、画素の輝度値×重みを算出し、その総和を算出することで、着目画素p1についてノイズが除去された輝度値を得ることができる。   Then, for each of the pixels p1 to p9, the luminance value of the pixel × weight is calculated, and by calculating the sum thereof, the luminance value from which noise has been removed can be obtained for the pixel of interest p1.

また、前述した実施形態では、赤外線カメラを用いてパターン投影画像、基準温度画像及び温度変動画像を取得しているが、パターン投影画像については、赤外線カメラでなく通常のカメラ(撮像手段)でも取得することができる。すなわち、赤外線プロジェクタではなく一般的なプロジェクタで投影されたパターン画像を通常のカメラで取得し、基準温度画像及び温度変動画像を赤外線カメラで取得することもできる。ただし、2台のカメラ(通常のカメラと赤外線カメラ)を使用する場合、両カメラの座標系を把握しておく必要がある(両カメラの相対的な関係を知っておくために、両カメラの座標系と姿勢をカメラキャリブレーションなどの手段で把握する必要がある)ことから、赤外線カメラをパターン撮像手段としても機能させることが、システムを簡素化させる点からは望ましい。   In the above-described embodiment, the pattern projection image, the reference temperature image, and the temperature fluctuation image are acquired using the infrared camera. However, the pattern projection image is acquired not by the infrared camera but by a normal camera (imaging unit). can do. That is, a pattern image projected by a general projector instead of an infrared projector can be acquired by a normal camera, and a reference temperature image and a temperature fluctuation image can be acquired by an infrared camera. However, when using two cameras (normal camera and infrared camera), it is necessary to know the coordinate system of both cameras (to know the relative relationship between both cameras, Since it is necessary to grasp the coordinate system and posture by means such as camera calibration), it is desirable to make the infrared camera function as a pattern imaging means from the viewpoint of simplifying the system.

また、前述した実施形態では、3×3画素、合計9つの画素内に着目画素と周辺画素が存在しているが、ノイズ除去時の単位画素数はこれに限定されるものではなく、例えば5×5画素、合計25画素内に着目画素と周辺画素が存在してもよい。   In the above-described embodiment, the pixel of interest and the peripheral pixels are present in a total of nine pixels of 3 × 3 pixels, but the number of unit pixels at the time of noise removal is not limited to this. The target pixel and the peripheral pixels may exist within x5 pixels and a total of 25 pixels.

1:応力分布計測装置、2:赤外線プロジェクタ、3:赤外線カメラ、4:画像処理装置、5:演算部、6:表示部、7:入力部、8:被計測物、8a:凹所、9:荷重負荷部







1: Stress distribution measuring device, 2: Infrared projector, 3: Infrared camera, 4: Image processing device, 5: Calculation unit, 6: Display unit, 7: Input unit, 8: Object to be measured, 8a: Recess, 9 : Load application section







Claims (7)

荷重無負荷時の被計測物の温度画像と荷重負荷時の被計測物の温度画像との差分に基づいて当該被計測物の応力分布を推定する応力分布計測装置であって、
前記被計測物に所定のパターンを投影するプロジェクタと、
パターンが投影された被計測物を撮像する撮像手段と、
被計測物に負荷荷重を加える前の基準温度画像及び負荷荷重を加えたときの温度変動画像を取得する赤外線カメラと、
前記撮像手段で撮像された、パターンが投影された被計測物の画像から当該被計測物の三次元形状を算出する三次元形状算出手段と、
得られた被計測物の三次元形状の情報から得られる当該被計測物の高さ分布に基づいて、前記基準温度画像及び温度分布画像のノイズを除去するノイズ除去手段と、
ノイズ除去手段によりノイズが除去された基準温度画像及び温度分布画像の差分から前記被計測物の応力分布を算出する応力算出手段と
を備えたことを特徴とする、応力分布計測装置。
A stress distribution measuring device for estimating a stress distribution of a measurement object based on a difference between a temperature image of the measurement object when no load is applied and a temperature image of the measurement object when a load is applied,
A projector that projects a predetermined pattern on the object to be measured;
Imaging means for imaging an object to be measured on which a pattern is projected;
An infrared camera that acquires a reference temperature image before applying a load to the object to be measured and a temperature fluctuation image when the load is applied;
Three-dimensional shape calculation means for calculating the three-dimensional shape of the measurement object from the image of the measurement object on which the pattern is projected, which is imaged by the imaging means;
Noise removing means for removing noise of the reference temperature image and the temperature distribution image based on the height distribution of the measured object obtained from the obtained three-dimensional shape information of the measured object;
A stress distribution measuring apparatus comprising: a stress calculating unit that calculates a stress distribution of the object to be measured from a difference between the reference temperature image and the temperature distribution image from which noise has been removed by the noise removing unit.
前記三次元形状算出手段により得られる被計測物の三次元形状の情報から、当該被計測物の高さ分布に基づいて被計測物の画像領域を分割する分割手段を更に備えており、
前記ノイズ除去手段は、ノイズ除去する画素を選択するとともに、当該画素と同じ画像領域に属する当該画素周辺の周辺領域を選択し、選択した周辺領域から、前記選択した画素のノイズ除去された画素値を推定する処理を全画素について実行する、請求項1に記載の応力分布計測装置。
From the three-dimensional shape information of the measurement object obtained by the three-dimensional shape calculation means, further comprising a dividing means for dividing the image area of the measurement object based on the height distribution of the measurement object,
The noise removing unit selects a pixel for noise removal, selects a peripheral region around the pixel belonging to the same image region as the pixel, and a pixel value from which noise of the selected pixel is removed from the selected peripheral region The stress distribution measuring apparatus according to claim 1, wherein a process for estimating the stress is executed for all pixels.
前記ノイズ除去手段は、ノイズ除去する画素を選択するとともに、当該画素周辺の周辺画素と前記選択された画素それぞれについて高さ分布に基づいて重み付けを行い、各画素の画素値と重みとの積の総和を前記選択した画素のノイズ除去された画素値とする処理を全画素について実行する、請求項1に記載の応力分布計測装置。   The noise removing unit selects a pixel from which noise is removed, and performs weighting based on a height distribution for each of the surrounding pixels around the pixel and the selected pixel, and the product of the pixel value and the weight of each pixel. The stress distribution measuring apparatus according to claim 1, wherein a process of setting a sum as a pixel value from which noise of the selected pixel is removed is executed for all pixels. 前記プロジェクタが赤外線プロジェクタであり、前記赤外線カメラが前記撮像手段としても機能する、請求項1〜3のいずれか1項に記載の応力分布計測装置。   The stress distribution measuring apparatus according to claim 1, wherein the projector is an infrared projector, and the infrared camera also functions as the imaging unit. 荷重無負荷時の被計測物の温度画像と荷重負荷時の被計測物の温度画像との差分に基づいて当該被計測物の応力分布を推定する応力分布計測方法であって、
プロジェクタから所定のパターンが投影された被計測物を撮像する撮像工程と、
前記撮像工程において撮像された、パターンが投影された被計測物の画像から当該被計測物の三次元形状を算出する三次元形状算出工程と、
赤外線カメラによって、被計測物に負荷荷重を加える前の基準温度画像及び負荷荷重を加えたときの温度変動画像を取得する画像取得工程と、
前記三次元形状算出工程において取得された被計測物の三次元形状の情報から得られる当該被計測物の高さ分布に基づいて、前記基準温度画像及び温度分布画像のノイズを除去するノイズ除去工程と、
ノイズ除去工程においてノイズが除去された基準温度画像及び温度分布画像の差分から前記被計測物の応力分布を算出する応力算出工程と
を含むことを特徴とする、応力分布計測方法。
A stress distribution measurement method for estimating a stress distribution of an object to be measured based on a difference between a temperature image of the object to be measured when no load is applied and a temperature image of the object to be measured when a load is applied,
An imaging step of imaging an object to be measured on which a predetermined pattern is projected from a projector;
A three-dimensional shape calculation step of calculating a three-dimensional shape of the measurement object from the image of the measurement object on which a pattern is projected, which is imaged in the imaging step;
An image acquisition step of acquiring a reference temperature image before applying a load to the object to be measured and a temperature fluctuation image when applying the load by an infrared camera;
A noise removal step of removing noise of the reference temperature image and the temperature distribution image based on the height distribution of the measurement object obtained from the three-dimensional shape information of the measurement object acquired in the three-dimensional shape calculation step When,
A stress distribution measurement method comprising: a stress calculation step of calculating a stress distribution of the object to be measured from a difference between the reference temperature image and the temperature distribution image from which noise has been removed in the noise removal step.
前記三次元形状算出工程において取得される被計測物の三次元形状の情報から、当該被計測物の高さ分布に基づいて被計測物の画像領域を分割する分割工程を更に含んでおり、
前記ノイズ除去工程は、ノイズ除去する画素を選択するとともに、当該画素と同じ画像領域に属する当該画素周辺の周辺領域を選択し、選択した周辺領域から、前記選択した画素のノイズ除去された画素値を推定する処理を全画素について実行する、請求項5に記載の応力分布計測方法。
From the three-dimensional shape information of the measurement object acquired in the three-dimensional shape calculation step, further includes a dividing step of dividing the image area of the measurement object based on the height distribution of the measurement object.
In the noise removal step, a pixel to be denoised is selected, a peripheral region around the pixel belonging to the same image region as the pixel is selected, and a pixel value from which noise of the selected pixel is removed from the selected peripheral region The stress distribution measuring method according to claim 5, wherein the process for estimating the stress is executed for all pixels.
前記ノイズ除去工程は、ノイズ除去する画素を選択するとともに、当該画素周辺の周辺画素と前記選択された画素それぞれについて高さ分布に基づいて重み付けを行い、各画素の画素値と重みとの積の総和を前記選択した画素のノイズ除去された画素値とする処理を全画素について実行する、請求項5に記載の応力分布計測方法。



























In the noise removal step, a pixel to be denoised is selected, and the surrounding pixels around the pixel and the selected pixel are weighted based on the height distribution, and the product of the pixel value and the weight of each pixel is calculated. The stress distribution measuring method according to claim 5, wherein a process of setting a sum as a pixel value from which noise of the selected pixel is removed is executed for all pixels.



























JP2014040279A 2014-03-03 2014-03-03 Stress distribution measuring apparatus and stress distribution measuring method Active JP6248706B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014040279A JP6248706B2 (en) 2014-03-03 2014-03-03 Stress distribution measuring apparatus and stress distribution measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014040279A JP6248706B2 (en) 2014-03-03 2014-03-03 Stress distribution measuring apparatus and stress distribution measuring method

Publications (2)

Publication Number Publication Date
JP2015165206A true JP2015165206A (en) 2015-09-17
JP6248706B2 JP6248706B2 (en) 2017-12-20

Family

ID=54187740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014040279A Active JP6248706B2 (en) 2014-03-03 2014-03-03 Stress distribution measuring apparatus and stress distribution measuring method

Country Status (1)

Country Link
JP (1) JP6248706B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017215258A (en) * 2016-06-01 2017-12-07 新日鐵住金株式会社 Method for measuring stress distribution
JP2021131357A (en) * 2020-02-21 2021-09-09 Dic株式会社 Method for evaluating fatigue strength of composite material
CN113853515A (en) * 2019-05-30 2021-12-28 松下知识产权经营株式会社 Stress analysis device for moving object
CN114303168A (en) * 2019-08-30 2022-04-08 松下知识产权经营株式会社 Stress analysis device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60209132A (en) * 1984-03-31 1985-10-21 Jeol Ltd Formation of stress distribution image
JPH11108630A (en) * 1997-09-30 1999-04-23 Shiseido Co Ltd 3d shape measuring method, and method for analyzing distortion and stress on skin surface using the same
US20080022775A1 (en) * 2006-07-31 2008-01-31 University Of Dayton Non-contact thermo-elastic property measurement and imaging system for quantitative nondestructive evaluation of materials

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60209132A (en) * 1984-03-31 1985-10-21 Jeol Ltd Formation of stress distribution image
JPH11108630A (en) * 1997-09-30 1999-04-23 Shiseido Co Ltd 3d shape measuring method, and method for analyzing distortion and stress on skin surface using the same
US20080022775A1 (en) * 2006-07-31 2008-01-31 University Of Dayton Non-contact thermo-elastic property measurement and imaging system for quantitative nondestructive evaluation of materials

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017215258A (en) * 2016-06-01 2017-12-07 新日鐵住金株式会社 Method for measuring stress distribution
CN113853515A (en) * 2019-05-30 2021-12-28 松下知识产权经营株式会社 Stress analysis device for moving object
CN113853515B (en) * 2019-05-30 2024-03-19 松下知识产权经营株式会社 Stress analysis device for moving object
CN114303168A (en) * 2019-08-30 2022-04-08 松下知识产权经营株式会社 Stress analysis device
JP2021131357A (en) * 2020-02-21 2021-09-09 Dic株式会社 Method for evaluating fatigue strength of composite material
JP7375605B2 (en) 2020-02-21 2023-11-08 Dic株式会社 Fatigue strength evaluation method for composite materials

Also Published As

Publication number Publication date
JP6248706B2 (en) 2017-12-20

Similar Documents

Publication Publication Date Title
US20160379370A1 (en) Information processing apparatus, information processing method, and storage medium
US10733751B2 (en) Displacement detecting apparatus and displacement detecting method
KR101163916B1 (en) A mesuring method for stress-strain curve and a apparatus for the same
WO2016152076A1 (en) Structure condition assessing device, condition assessing system, and condition assessing method
US20170372466A1 (en) Information processing apparatus and method of selecting viewpoint for measuring object, and measuring system
JP6248706B2 (en) Stress distribution measuring apparatus and stress distribution measuring method
JP2018138930A (en) Displacement detection system and displacement detection method
CN106462949A (en) Depth sensor calibration and per-pixel correction
US10304202B2 (en) Evaluation device for skin texture based on skin blob and method thereof
JP2015184767A (en) Information processor, information processing method, position attitude estimation device and robot system
JP6007947B2 (en) Method and apparatus for testing rigidity of automobile body
JPWO2016152075A1 (en) Structure state determination apparatus, state determination system, and state determination method
Smith et al. Automatic machine vision calibration using statistical and neural network methods
JP2020038073A5 (en)
JP6413630B2 (en) Infrared stress measurement method and infrared stress measurement apparatus
JP2019011995A (en) Rigidity measuring device, rigidity measuring method, and program
US10846819B2 (en) Method and apparatus to infer structural stresses with visual image and video data
JP2020193820A5 (en)
CN108903907B (en) Horizontal deviation-based vernier sharpness perception capability detection method
WO2020255231A1 (en) Displacement measurement device, displacement measurement method, and computer-readable recording medium
JP5970892B2 (en) Strain measuring apparatus, method, and program
JP6872324B2 (en) Measurement system, measurement method and measurement program
JP2017215258A (en) Method for measuring stress distribution
KR20160082659A (en) Method for the three-dimensional automatic measurement of structural vibration by multi-channel sequence digital images
JP5990229B2 (en) Position change detection device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171106

R150 Certificate of patent or registration of utility model

Ref document number: 6248706

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150