JP2017215258A - Method for measuring stress distribution - Google Patents

Method for measuring stress distribution Download PDF

Info

Publication number
JP2017215258A
JP2017215258A JP2016110399A JP2016110399A JP2017215258A JP 2017215258 A JP2017215258 A JP 2017215258A JP 2016110399 A JP2016110399 A JP 2016110399A JP 2016110399 A JP2016110399 A JP 2016110399A JP 2017215258 A JP2017215258 A JP 2017215258A
Authority
JP
Japan
Prior art keywords
procedure
temporal change
stress
stress distribution
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016110399A
Other languages
Japanese (ja)
Other versions
JP6634959B2 (en
Inventor
上田 秀樹
Hideki Ueda
秀樹 上田
泰三 牧野
Taizo Makino
泰三 牧野
山田 浩
Hiroshi Yamada
浩 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2016110399A priority Critical patent/JP6634959B2/en
Publication of JP2017215258A publication Critical patent/JP2017215258A/en
Application granted granted Critical
Publication of JP6634959B2 publication Critical patent/JP6634959B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method in which a stress distribution can be measured at a practicable level in a noncontact manner without applying black coating material to a surface of a measured body.SOLUTION: A method for measuring a stress distribution according to the present invention, includes: a first procedure for sticking a blackbody tape 3 on a surface of a measured body TP to which a load is added; a second procedure for imaging the surface of the measured body with the blackbody tape stuck, by an infrared imaging device 1 and measuring a temporal change of a temperature distribution of the measured body; a third procedure for calculating a temporal change of a stress distribution of the measured body on the basis of the measured temporal change of the temperature distribution of the measured body and a predetermined relational formula between a temporal change in temperature and a temporal change in stress; and a fourth procedure for correcting the temporal change of the stress distribution of the measured body calculated in the third procedure using a correction factor of the blackbody tape obtained by calculation beforehand.SELECTED DRAWING: Figure 1

Description

本発明は、いわゆる熱弾性応力測定法によって、荷重が付加される被測定体の応力分布を測定する方法に関する。   The present invention relates to a method for measuring a stress distribution of a measurement object to which a load is applied by a so-called thermoelastic stress measurement method.

従来、例えば、橋梁やクレーン等の構造物など、荷重が付加される被測定体の応力分布を非接触で測定する方法として、赤外線撮像装置(サーモグラフィ)を用いた熱弾性応力測定法が提案されている(例えば、特許文献1参照)。熱弾性応力測定法は、被測定体が断熱的に弾性変形する際に温度変化が生じるという熱弾性効果を利用し、赤外線撮像装置を用いて被測定体を連続的に撮像することで被測定体の温度分布の時間的変化(所定時間内における温度分布の変化)を測定し、この測定した温度分布の時間的変化を被測定体の応力分布の時間的変化(所定時間内における温度分布の変化)に換算する方法である。   Conventionally, for example, a thermoelastic stress measurement method using an infrared imaging device (thermography) has been proposed as a method for non-contact measurement of a stress distribution of a measurement object to which a load is applied, such as a structure such as a bridge or a crane. (For example, refer to Patent Document 1). The thermoelastic stress measurement method uses the thermoelastic effect that a temperature change occurs when the measured object undergoes elastic deformation in an adiabatic manner, and continuously measures the image of the measured object using an infrared imaging device. Measure the temporal change in the temperature distribution of the body (change in the temperature distribution within a predetermined time), and measure the temporal change in the measured temperature distribution as the temporal change in the stress distribution of the measured object (the temperature distribution within the predetermined time). Change).

この熱弾性応力測定法を用いて被測定体の温度分布の時間的変化を測定する際、被測定体の周囲の熱(赤外線)が被測定体の表面で反射し、赤外線撮像装置で受光される場合がある。換言すれば、赤外線撮像装置を用いて測定した被測定体の温度分布の時間的変化に、熱弾性効果によって生じる温度変化(被測定体から放射される赤外線の強度変化)以外の要因で生じた温度変化が含まれる場合がある。熱弾性効果によって生じる温度変化は極微小であるため、被測定体表面における赤外線の反射率が大きければ、熱弾性効果によって生じる温度変化が被測定体表面における赤外線の反射強度の変化に埋もれてしまい、被測定体の応力分布の変化を精度良く算出できないおそれがある。   When using this thermoelastic stress measurement method to measure the temporal change in the temperature distribution of the measured object, the heat (infrared) around the measured object is reflected by the surface of the measured object and received by the infrared imaging device. There is a case. In other words, the temporal change in the temperature distribution of the measured object measured using the infrared imaging device is caused by a factor other than the temperature change caused by the thermoelastic effect (infrared intensity change emitted from the measured object). Temperature changes may be included. Since the temperature change caused by the thermoelastic effect is extremely small, if the infrared reflectance on the surface of the object to be measured is large, the temperature change caused by the thermoelastic effect is buried in the change in the infrared reflection intensity on the surface of the object to be measured. Therefore, there is a possibility that the change in stress distribution of the measured object cannot be calculated with high accuracy.

このため、熱弾性応力測定法を用いる際、被測定体の表面に黒色塗料を塗布し、被測定体表面における赤外線の反射率を低下させる(放射率を高める)方法が提案されている(例えば、特許文献2参照)。
しかしながら、被測定体の用途によっては、被測定体の表面に黒色塗料を塗布して応力分布の測定を終了した後、被測定体の表面を元の状態に戻さなければならない場合がある。しかしながら、黒色塗料を速やかに除去できなかったり、時間をかけても完全に除去できない場合もあるため、被測定体の表面に黒色塗料を塗布することなく、非接触で精度良く応力分布を測定可能な方法が望まれている。
For this reason, when using the thermoelastic stress measurement method, a method has been proposed in which a black paint is applied to the surface of the object to be measured and the infrared reflectance on the surface of the object to be measured is reduced (emissivity is increased) (for example, , See Patent Document 2).
However, depending on the use of the object to be measured, it may be necessary to return the surface of the object to be measured to its original state after applying the black paint to the surface of the object to be measured and finishing the measurement of the stress distribution. However, since the black paint cannot be removed quickly or completely over time, the stress distribution can be measured accurately without contact without applying black paint to the surface of the object to be measured. Is desired.

なお、特許文献3、4には、被測定体の正確な温度を測定するため、被測定体の表面に黒体テープを貼り付ける技術が提案されているものの、特許文献3、4に記載の技術は、熱弾性効果によって生じる極微小な温度変化を測定する熱弾性応力測定法を対象としたものではない。   Patent Documents 3 and 4 propose a technique for attaching a black body tape to the surface of the measured object in order to measure the accurate temperature of the measured object. The technology is not intended for thermoelastic stress measurement methods that measure very small temperature changes caused by the thermoelastic effect.

特開2006−98283号公報JP 2006-98283 A 特開2015−1392号公報Japanese Patent Laying-Open No. 2015-1392 特開2000−230914号公報JP 2000-230914 A 特開2001−281061号公報JP 2001-281061 A

本発明は、上記のような従来技術の問題点を解決するためになされたものであり、被測定体の表面に黒色塗料を塗布することなく、非接触で実用可能な水準で応力分布を測定可能な方法を提供することを課題とする。   The present invention has been made to solve the above-described problems of the prior art, and measures stress distribution at a non-contact and practical level without applying black paint to the surface of the object to be measured. It is an object to provide a possible method.

前記課題を解決するため、本発明者らは、被測定体表面における赤外線の反射率を低下させる(放射率を高める)ために、従来のように被測定体表面に黒色塗料を塗布するのではなく、応力分布の測定を終了した後に被測定体の表面を元の状態に戻すことができるように、着脱自在の黒体テープを貼り付けることに着眼した。
一般に、黒色塗料の厚みは10μm程度であるのに対し、黒体テープの厚みは100〜200μm程度と大きいため、被測定体の温度に応じて放射される赤外線が黒体テープに吸収されて減衰し、赤外線撮像装置で受光される赤外線(すなわち、黒体テープを透過する赤外線)の強度が低下すると考えられる。前述のように、熱弾性効果によって生じる温度変化は極微小であるため、黒体テープにおける赤外線の吸収に起因して、熱弾性効果によって生じる温度変化(被測定体から放射される赤外線の強度変化)、ひいては被測定体の応力分布の変化を精度良く算出できないおそれがあると考えるのが一般的である。
また、赤外線撮像装置で測定することができる温度分布の変化が、実際には黒体テープの温度分布の変化である場合も考えられる。この場合、黒体テープの厚みに応じた熱容量の影響によって黒体テープが被測定体と同じ温度にならず、黒体テープの温度分布の変化を測定したのでは、被測定体の温度分布の変化、ひいては被測定体の応力分布の変化を精度良く算出できないおそれがあると考えられる。
さらには、黒体テープにおける赤外線の吸収及び黒体テープの熱容量の双方に起因して、被測定体の温度分布の変化、ひいては被測定体の応力分布の変化を精度良く算出できないおそれがあるとも考えられる。
しかしながら、本発明者らが鋭意検討した結果、黒体テープについての補正係数を予め算出しておき、熱弾性応力測定法によって算出した被測定体の応力分布の変化をこの補正係数を用いて補正すれば、十分に実用可能な水準で応力分布の変化を算出可能であることを知見した。
In order to solve the above problems, the present inventors do not apply a black paint to the surface of the object to be measured as in the past in order to reduce the reflectance of infrared rays on the surface of the object to be measured (increase the emissivity). Instead, the inventors focused on attaching a detachable black body tape so that the surface of the object to be measured can be returned to the original state after the measurement of the stress distribution is completed.
In general, the thickness of the black paint is about 10 μm, whereas the thickness of the black body tape is as large as about 100 to 200 μm. Therefore, the infrared radiation radiated by the black body tape is absorbed by the black body tape and attenuated. However, it is considered that the intensity of infrared rays received by the infrared imaging device (that is, infrared rays transmitted through the black body tape) decreases. As described above, since the temperature change caused by the thermoelastic effect is extremely small, the temperature change caused by the thermoelastic effect due to the absorption of infrared rays in the black body tape (the change in the intensity of infrared rays emitted from the measured object). In general, it is generally considered that there is a possibility that the change in the stress distribution of the object to be measured cannot be accurately calculated.
In addition, the change in temperature distribution that can be measured by the infrared imaging device may actually be a change in temperature distribution of the black body tape. In this case, the black body tape does not reach the same temperature as the measured object due to the influence of the heat capacity according to the thickness of the black body tape, and the change in the temperature distribution of the black body tape is measured. It is considered that there is a possibility that the change, and hence the change in the stress distribution of the measurement object, cannot be calculated with high accuracy.
Furthermore, due to both the absorption of infrared rays in the black body tape and the heat capacity of the black body tape, there is a possibility that the change in the temperature distribution of the measurement object, and hence the change in the stress distribution of the measurement object, may not be accurately calculated. Conceivable.
However, as a result of intensive studies by the present inventors, a correction coefficient for the black body tape is calculated in advance, and the change in stress distribution of the measured object calculated by the thermoelastic stress measurement method is corrected using this correction coefficient. It was found that the change in stress distribution can be calculated at a sufficiently practical level.

本発明は、上記の本発明者らの知見に基づき完成したものである。
すなわち、前記課題を解決するため、本発明は、荷重が付加される被測定体の表面に黒体テープを貼り付ける第1手順と、前記第1手順によって前記黒体テープが貼り付けられた前記被測定体の表面を赤外線撮像装置で撮像し、前記被測定体の温度分布の時間的変化を測定する第2手順と、前記第2手順によって測定した前記被測定体の温度分布の時間的変化と、温度の時間的変化(所定時間内の温度変化)及び応力の時間的変化(所定時間内の応力変化)の間の所定の関係式とに基づき、前記被測定体の応力分布の時間的変化を算出する第3手順と、前記黒体テープについて予め算出した補正係数を用いて、前記第3手順によって算出した前記被測定体の応力分布の時間的変化を補正する第4手順と、を含むことを特徴とする応力分布測定方法を提供する。
The present invention has been completed based on the above-mentioned findings of the present inventors.
That is, in order to solve the above-described problem, the present invention provides a first procedure in which a black body tape is applied to the surface of a measurement object to which a load is applied, and the black body tape is applied in the first procedure. A second procedure for imaging the surface of the measured object with an infrared imaging device and measuring a temporal change in the temperature distribution of the measured object, and a temporal change in the temperature distribution of the measured object measured by the second procedure And a predetermined relational expression between a temporal change in temperature (temperature change within a predetermined time) and a temporal change in stress (stress change within a predetermined time), the temporal distribution of the stress distribution of the measured object A third procedure for calculating a change, and a fourth procedure for correcting a temporal change in the stress distribution of the measured object calculated by the third procedure using a correction coefficient calculated in advance for the blackbody tape. Stress distribution measurement characterized by including The law provides.

本発明に係る応力分布測定方法によれば、第1手順〜第3手順を実行することで、表面に黒体テープが貼り付けられた状態の被測定体の応力分布の時間的変化が、熱弾性応力測定法によって算出されることになる。すなわち、赤外線撮像装置で撮像した撮像画像を構成する画素毎に応力の時間的変化が算出されるが、撮像画像は2次元配列された画素から構成されているため、応力分布(2次元分布)の時間的変化が算出されることになる。なお、第3手順における所定の関係式としては、以下の式(A)を例示できる。
Δσ=−1/K・ΔT/T ・・・(A)
上記の式(A)において、ΔTは温度の時間的変化(所定時間内の温度変化)を、Δσは応力の時間的変化(所定時間内の応力変化)を、Tは被測定体の温度を、Kは熱弾性係数を意味する。熱弾性係数Kは被測定体の材質によって決まる物性値であり、例えば被測定体が鉄鋼材料から形成されている場合、K=3.5×10−12[Pa−1]となる。
そして、本発明に係る応力測定方法によれば、第4手順を実行することで、予め算出した補正係数を用いて、被測定体の応力分布の時間的変化が補正される。すなわち、赤外線撮像装置で撮像した撮像画像を構成する画素毎に算出された応力の時間的変化を、例えば補正係数でそれぞれ除算することで、被測定体の応力分布の時間的変化が補正されることになる。
本発明に係る応力分布測定方法によれば、被測定体の表面に黒色塗料を塗布することなく、非接触で実用可能な水準で応力分布の時間的変化を測定可能である。なお、応力分布の初期値を把握していれば(実際に応力分布を測定して把握している場合のみならず、想定可能な場合も含む)、この初期値に応力分布の時間的変化を加算することで、所定時間経過後の応力分布の絶対値も測定可能である。応力分布の初期値がゼロである場合、応力分布の時間的変化自体が所定時間経過後の応力分布の絶対値に相当する。本発明でいう「応力分布の測定」とは、応力分布の時間的変化のみを測定する場合と、所定時間経過後の応力分布の絶対値をも測定する場合との双方を含む概念である。
According to the stress distribution measuring method according to the present invention, by performing the first to third procedures, the temporal change in the stress distribution of the measured object with the black body tape attached to the surface is the heat It is calculated by an elastic stress measurement method. That is, the temporal change in stress is calculated for each pixel constituting the captured image captured by the infrared imaging device, but since the captured image is composed of pixels arranged two-dimensionally, the stress distribution (two-dimensional distribution) The temporal change of is calculated. In addition, the following formula | equation (A) can be illustrated as a predetermined relational expression in a 3rd procedure.
Δσ = −1 / K · ΔT / T (A)
In the above formula (A), ΔT represents a temporal change in temperature (temperature change within a predetermined time), Δσ represents a temporal change in stress (stress change within a predetermined time), and T represents a temperature of the object to be measured. , K means a thermoelastic coefficient. The thermoelastic coefficient K is a physical property value determined by the material of the object to be measured. For example, when the object to be measured is formed of a steel material, K = 3.5 × 10 −12 [Pa −1 ].
According to the stress measurement method of the present invention, the temporal change in the stress distribution of the measurement object is corrected by using the correction coefficient calculated in advance by executing the fourth procedure. That is, the temporal change in the stress distribution of the measured object is corrected by dividing the temporal change in the stress calculated for each pixel constituting the captured image captured by the infrared imaging device, for example, by the correction coefficient. It will be.
According to the stress distribution measuring method according to the present invention, it is possible to measure a temporal change of the stress distribution at a non-contact and practical level without applying a black paint to the surface of the object to be measured. If the initial value of the stress distribution is grasped (including not only when the stress distribution is actually measured and grasped, but also when it can be assumed), the stress distribution temporally changes to this initial value. By adding, the absolute value of the stress distribution after the lapse of a predetermined time can also be measured. When the initial value of the stress distribution is zero, the temporal change of the stress distribution itself corresponds to the absolute value of the stress distribution after a predetermined time has elapsed. The term “measurement of stress distribution” as used in the present invention is a concept that includes both the case of measuring only the temporal change of the stress distribution and the case of measuring the absolute value of the stress distribution after a predetermined time has elapsed.

本発明において、被測定体の表面に貼り付ける黒体テープの厚みが変化すれば、黒体テープにおける赤外線の吸収量(黒体テープに対する赤外線の透過量)も変化すると考えられる。
このため、好ましくは、前記第4手順で用いる補正係数は、前記黒体テープの厚みを変数とする関数で表わされ、前記第4手順において、前記第1手順で貼り付けた黒体テープの厚みに応じた前記補正係数を選択し、該選択した補正係数を用いて補正する。
In the present invention, it is considered that if the thickness of the black body tape applied to the surface of the object to be measured changes, the amount of infrared absorption in the black body tape (the amount of infrared transmission through the black body tape) also changes.
Therefore, preferably, the correction coefficient used in the fourth procedure is expressed by a function having the thickness of the black body tape as a variable. In the fourth procedure, the correction coefficient of the black body tape pasted in the first procedure is used. The correction coefficient corresponding to the thickness is selected, and correction is performed using the selected correction coefficient.

上記の好ましい方法によれば、黒体テープの厚みが変化(2枚以上の黒体テープが重なって総厚みが変化する場合も含む)したとしても、適切な補正が可能であり、実用可能な水準で応力分布を測定可能である。
なお、貼り付けた黒体テープの厚みとしては、設計値を用いても良いし、実際に被測定体に貼り付けた状態の黒体テープの厚みを膜厚計等を用いて実測しても良い。
According to the preferable method described above, even if the thickness of the black body tape changes (including the case where the total thickness changes due to the overlap of two or more black body tapes), appropriate correction is possible and practical. The stress distribution can be measured at the level.
In addition, as the thickness of the pasted black body tape, the design value may be used, or the thickness of the black body tape actually attached to the measured object may be measured using a film thickness meter or the like. good.

本発明において、応力分布の時間的変化を測定する被測定体の領域が広い場合には、2枚以上の黒体テープを被測定体の表面に貼り付ける必要が生じる場合が考えられる。この際、黒体テープが貼り付けられていない領域が生じないように(隣接する黒体テープの間に隙間が生じないように)するには、単に並べて貼り付けるのではなく、隣接する黒体テープが重なる部分を有するように貼り付けるのが好ましい。
このため、好ましくは、前記第1手順において、2枚以上の黒体テープが重なる部分を有するように、前記被測定体の表面に前記黒体テープを貼り付け、前記第4手順において、前記2枚以上の黒体テープが重なっている部分については、前記2枚以上の黒体テープの総厚みに応じた前記補正係数を選択し、該選択した補正係数を用いて補正する。
In the present invention, when the area of the measured object for measuring the temporal change of the stress distribution is wide, it may be necessary to attach two or more black body tapes to the surface of the measured object. At this time, in order not to create an area where the black body tape is not attached (so as not to create a gap between adjacent black body tapes), the adjacent black bodies are not simply attached side by side. It is preferable that the tape is attached so as to have an overlapping portion.
Therefore, preferably, in the first procedure, the black body tape is pasted on the surface of the measured object so that two or more black body tapes overlap each other, and in the fourth procedure, the 2 For a portion where two or more black body tapes are overlapped, the correction coefficient corresponding to the total thickness of the two or more black body tapes is selected and corrected using the selected correction coefficient.

上記の好ましい方法によれば、2枚以上の黒体テープが重なっている部分についても、適切な補正が可能であり、実用可能な水準で応力分布を測定可能である。
なお、2枚以上の黒体テープの総厚み(各黒体テープの厚みの合計値)としては、設計値を用いても良いし、実際に被測定体に貼り付けた状態の2枚以上の黒体テープの総厚みを膜厚計等を用いて実測しても良い。
According to the preferable method described above, it is possible to appropriately correct a portion where two or more black body tapes overlap, and to measure the stress distribution at a practical level.
In addition, as a total thickness of two or more black body tapes (total value of thicknesses of the respective black body tapes), a design value may be used, or two or more sheets actually attached to a measurement object may be used. The total thickness of the black body tape may be measured using a film thickness meter or the like.

本発明で用いる補正係数を黒体テープの厚みを変数とする関数で表わす場合、補正係数を黒体テープの厚みの累乗関数で表わし、第3手順で算出した被測定体の応力分布の時間的変化をこの補正係数で除算して補正すれば、より一層適切な補正が可能であり、より一層実用可能な水準で応力分布の時間的変化を測定可能であることを本発明者らは知見した。
このため、好ましくは、前記第4手順で用いる補正係数をCRとし、前記黒体テープの厚みをtとした場合に、前記補正係数CRは、以下の式(1)で表わされ、前記第4手順において、前記第3手順によって算出した前記被測定体の応力分布の時間的変化を前記補正係数CRで除算して補正する。
CR=a・t ・・・(1)
上記式(1)において、a、bは所定の定数である。
When the correction coefficient used in the present invention is expressed by a function having the thickness of the black body tape as a variable, the correction coefficient is expressed by a power function of the thickness of the black body tape, and the time distribution of the stress distribution of the measured object calculated in the third procedure is calculated. The present inventors have found that if the change is corrected by dividing by this correction factor, a more appropriate correction is possible, and the temporal change of the stress distribution can be measured at a more practical level. .
Therefore, preferably, when the correction coefficient used in the fourth procedure is CR and the thickness of the black body tape is t, the correction coefficient CR is expressed by the following equation (1), and In four procedures, the temporal change of the stress distribution of the measurement object calculated in the third procedure is corrected by dividing by the correction coefficient CR.
CR = a · t b (1)
In the above formula (1), a and b are predetermined constants.

上記の好ましい方法によれば、より一層適切な補正が可能であり、より一層実用可能な水準で応力分布を測定可能である。   According to the preferable method described above, more appropriate correction can be performed, and the stress distribution can be measured at a more practical level.

本発明において、補正係数の算出方法としては種々考えられるものの、例えば以下のようにして算出することが好ましい。
すなわち、好ましくは、前記第4手順で用いる補正係数は、試験体の表面に歪センサを取り付け、該歪センサが取り付けられた前記試験体に所定条件の荷重を付加して前記歪センサで歪の時間的変化を検出し、該検出した歪の時間的変化に基づき、前記試験体の前記歪センサが取り付けられた部位の応力の時間的変化を算出する第1準備手順と、前記試験体の表面に前記黒体テープを貼り付け、該黒体テープが貼り付けられた前記試験体に前記所定条件と同一条件の荷重を付加して前記試験体の表面を前記赤外線撮像装置で撮像して前記試験体の温度分布の時間的変化を測定し、該測定した前記試験体の温度分布の時間的変化と、前記所定の関係式とに基づき、前記試験体の応力分布の時間的変化を算出し、該算出した前記試験体の応力分布の時間的変化から前記歪センサが取り付けられた部位と同じ前記試験体の部位の応力の時間的変化を抽出する第2準備手順と、前記第2準備手順によって抽出した前記試験体の応力の時間的変化を前記補正係数を用いて補正したときに、前記第1準備手順によって算出した前記試験体の応力の時間的変化と合致するように、前記補正係数を決定する第3準備手順と、によって算出される。
In the present invention, although various correction coefficient calculation methods are conceivable, it is preferable to calculate, for example, as follows.
That is, preferably, the correction coefficient used in the fourth procedure is that the strain sensor is attached to the surface of the test body, and a load of a predetermined condition is applied to the test body to which the strain sensor is attached, so that the strain sensor A first preparatory procedure for detecting a temporal change, and calculating a temporal change in a stress of a portion of the test body to which the strain sensor is attached based on the detected temporal change of the strain; and a surface of the test body The black body tape is affixed to the test body, a load having the same condition as the predetermined condition is applied to the test body to which the black body tape is affixed, and the surface of the test body is imaged by the infrared imaging device, and the test Measuring the temporal change of the temperature distribution of the body, and calculating the temporal change of the stress distribution of the specimen based on the temporal change of the measured temperature distribution of the specimen and the predetermined relational expression; The calculated stress distribution of the specimen A second preparatory procedure for extracting a temporal change in stress of a part of the test specimen that is the same as a part to which the strain sensor is attached from a temporal change; and a temporal change in stress of the test specimen extracted by the second preparatory procedure. Calculated by a third preparation procedure for determining the correction coefficient so as to coincide with the temporal change in stress of the specimen calculated by the first preparation procedure when a change is corrected using the correction coefficient. Is done.

上記の好ましい方法によれば、第1準備手順において、歪センサを用いて試験体の応力の時間的変化が算出される。また、第2準備手順において、赤外線撮像装置を用いて試験体の応力の時間的変化が算出される。そして、第3準備手順において、双方の算出結果を対比することで補正係数が算出される。具体的には、第1準備手順によって算出した試験体の応力の時間的変化を真値と考え、第2準備手順によって抽出した試験体の応力の時間的変化を補正係数を用いて補正したときに、補正後の値が上記の真値と合致するように補正係数が決定される。
したがい、上記の好ましい方法によれば、第4手順において補正係数を用いて補正した後の被測定体の応力分布の時間的変化が、歪センサを用いて算出した被測定体の応力分布の時間的変化と同等の精度で算出可能であることが期待できる。
なお、上記の好ましい方法で用いる歪センサとしては、歪ゲージを例示できる。また、上記の好ましい方法で用いる試験体は、被測定体と同種の材質から形成されていることが好ましい。
According to said preferable method, the time change of the stress of a test body is calculated in a 1st preparatory procedure using a strain sensor. Further, in the second preparation procedure, the temporal change in the stress of the specimen is calculated using the infrared imaging device. Then, in the third preparation procedure, the correction coefficient is calculated by comparing both calculation results. Specifically, when the temporal change in the stress of the specimen calculated by the first preparation procedure is considered as a true value, and the temporal change in the stress of the specimen extracted by the second preparation procedure is corrected using the correction coefficient In addition, the correction coefficient is determined so that the corrected value matches the true value.
Therefore, according to the preferable method described above, the temporal change in the stress distribution of the measurement object after correction using the correction coefficient in the fourth procedure is the time of the stress distribution of the measurement object calculated using the strain sensor. It can be expected that it can be calculated with the same accuracy as that of the target change.
In addition, a strain gauge can be illustrated as a strain sensor used with said preferable method. Moreover, it is preferable that the test body used by said preferable method is formed from the same kind of material as a to-be-measured body.

本発明によれば、被測定体の表面に黒色塗料を塗布することなく、非接触で実用可能な水準で応力分布を測定可能である。   According to the present invention, the stress distribution can be measured at a non-contact and practical level without applying a black paint to the surface of the object to be measured.

本発明の一実施形態に係る応力分布測定方法を実行するための応力分布測定装置の概略構成を示す模式図である。It is a mimetic diagram showing a schematic structure of a stress distribution measuring device for performing a stress distribution measuring method concerning one embodiment of the present invention. 本発明の一実施形態に係る応力分布測定方法の手順を概略的に示すフロー図である。It is a flowchart which shows roughly the procedure of the stress distribution measuring method which concerns on one Embodiment of this invention. 本発明の一実施形態に係る応力分布測定方法の準備手順を説明する説明図である。It is explanatory drawing explaining the preparation procedure of the stress distribution measuring method which concerns on one Embodiment of this invention. 本発明の一実施形態に係る応力分布測定方法の第3準備手順において算出した補正係数CR’及び決定した補正係数CRの一例を示す図である。It is a figure which shows an example of correction coefficient CR 'calculated in the 3rd preparatory procedure of the stress distribution measuring method which concerns on one Embodiment of this invention, and determined correction coefficient CR. 2枚以上の黒体テープが重なる部分を有するように、被測定体の表面に黒体テープを貼り付けた場合における、赤外線撮像装置の撮像画像の一例を模式的に示す図である。It is a figure which shows typically an example of the captured image of an infrared imaging device when a black body tape is affixed on the surface of a to-be-measured body so that it may have a part with which 2 or more black body tapes overlap. 本発明の一実施形態に係る応力分布測定方法によって被測定体の応力分布の時間的変化を測定した結果の一例を示す図である。It is a figure which shows an example of the result of having measured the time change of the stress distribution of a to-be-measured body by the stress distribution measuring method which concerns on one Embodiment of this invention.

以下、添付図面を適宜参照しつつ、本発明の一実施形態に係る応力分布測定方法について説明する。
図1は、本発明の一実施形態に係る応力分布測定方法を実行するための応力分布測定装置の概略構成を示す模式図である。
図1に示すように、本実施形態に係る応力分布測定方法の適用対象は、荷重が付加される被測定体TPである。本実施形態では、被測定体TPが溶接ビードBを有する溶接構造物であり、破壊起点となり得る溶接ビードBの端部B1を応力分布の測定領域としている。本実施形態の被測定体TPは、疲労試験機(図示せず)に取り付けられており、応力分布を測定する際に、一端(図1に示す下端)が拘束されると共に、他端(図1に示す上端)に所定周波数の繰り返し荷重(引張荷重又は圧縮荷重)が付加される。
Hereinafter, a stress distribution measurement method according to an embodiment of the present invention will be described with reference to the accompanying drawings as appropriate.
FIG. 1 is a schematic diagram showing a schematic configuration of a stress distribution measuring apparatus for executing a stress distribution measuring method according to an embodiment of the present invention.
As shown in FIG. 1, the application target of the stress distribution measurement method according to the present embodiment is a measurement object TP to which a load is applied. In this embodiment, the to-be-measured body TP is a welded structure having the weld bead B, and the end B1 of the weld bead B that can be a fracture starting point is used as a stress distribution measurement region. The to-be-measured body TP of this embodiment is attached to a fatigue testing machine (not shown). When measuring the stress distribution, one end (the lower end shown in FIG. 1) is constrained and the other end (the figure). A repetitive load (tensile load or compressive load) having a predetermined frequency is applied to the upper end shown in FIG.

図1に示すように、本実施形態の応力分布測定装置100は、赤外線撮像装置1と、赤外線撮像装置1に接続され、赤外線撮像装置1から出力された画像信号に基づき応力分布の時間的変化を算出する演算装置2とを備える。   As shown in FIG. 1, the stress distribution measuring apparatus 100 according to the present embodiment is connected to the infrared imaging apparatus 1 and the infrared imaging apparatus 1, and the temporal change of the stress distribution is based on the image signal output from the infrared imaging apparatus 1. And an arithmetic unit 2 that calculates

赤外線撮像装置1は、2次元配列されたInSb等の赤外線検出素子及び結像光学系を具備し、被測定体TPから放射された赤外線を結像光学系を介して各赤外線検出素子に結像して電気信号に変換し、撮像画像を構成する所定のフレームレートの画像信号として演算装置2に出力する。   The infrared imaging device 1 includes a two-dimensionally arranged infrared detection element such as InSb and an imaging optical system, and forms an infrared ray emitted from the measurement target TP on each infrared detection element via the imaging optical system. Then, it is converted into an electrical signal and output to the arithmetic unit 2 as an image signal of a predetermined frame rate that constitutes the captured image.

演算装置2は、赤外線撮像装置1から入力された画像信号から、測定対象とする熱弾性効果によって生じる温度変化に応じた信号波形をロックイン処理する。すなわち、赤外線撮像装置1から入力された画像信号から、所定の周波数成分のみを抽出する。具体的には、演算装置2には、疲労試験機で付加する繰り返し荷重と同じ周波数の参照信号が疲労試験機から入力される。そして、演算装置2は、赤外線撮像装置1から入力された画像信号を疲労試験機から入力された参照信号で同期検波し、参照信号と同じ周波数を有する画像信号成分のみ又は参照信号と同じ周波数を含む狭周波数帯域の画像信号のみを抽出することで、測定すべき熱弾性効果によって生じる温度変化のS/N比を向上させている。
演算装置2は、上記のようにして抽出した画像信号成分の大きさと、予め記憶されている画像信号成分の大きさ及び温度の対応関係とに応じて、被測定体TPの温度分布の時間的変化(赤外線撮像装置1で撮像した撮像画像を構成する画素毎の温度分布の時間的変化)を算出する。また、後述のように、演算装置2は、被測定体TPの温度分布の時間的変化と、温度の時間的変化及び応力の時間的変化の間の所定の関係式とに基づき、被測定体TPの応力分布の時間的変化を算出する。さらに、後述のように、演算装置2は、算出した被測定体TPの応力分布の時間的変化を補正する。
The arithmetic device 2 locks in a signal waveform corresponding to a temperature change caused by a thermoelastic effect to be measured from the image signal input from the infrared imaging device 1. That is, only a predetermined frequency component is extracted from the image signal input from the infrared imaging device 1. Specifically, a reference signal having the same frequency as the repeated load applied by the fatigue tester is input to the arithmetic device 2 from the fatigue tester. Then, the arithmetic device 2 synchronously detects the image signal input from the infrared imaging device 1 with the reference signal input from the fatigue testing machine, and uses only the image signal component having the same frequency as the reference signal or the same frequency as the reference signal. By extracting only the image signal of the narrow frequency band including it, the S / N ratio of the temperature change caused by the thermoelastic effect to be measured is improved.
The arithmetic unit 2 determines the temporal distribution of the temperature distribution of the measured object TP according to the magnitude of the image signal component extracted as described above and the correspondence between the magnitude of the image signal component stored in advance and the temperature. A change (temporal change in temperature distribution for each pixel constituting the captured image captured by the infrared imaging device 1) is calculated. In addition, as will be described later, the arithmetic device 2 is based on the temporal change in the temperature distribution of the measured object TP and a predetermined relational expression between the temporal change in temperature and the temporal change in stress. The time change of the stress distribution of TP is calculated. Furthermore, as will be described later, the arithmetic device 2 corrects the temporal change in the calculated stress distribution of the measured object TP.

なお、上記の赤外線撮像装置1、及び、被測定体TPの応力分布の時間的変化を算出するまでの機能を有する(本発明の特徴である被測定体TPの応力分布の時間的変化を後述のように補正する機能は有しない)演算装置2は、熱弾性応力測定法を実行するための市販の装置を用いて構成することが可能である。このような市販の装置としては、例えば、ケン・オートメーション社から販売されている「赤外線応力測定システム」を例示できる。本実施形態の演算装置2は、上記のような市販装置が具備する被測定体TPの応力分布の時間的変化を算出するためのソフトウェアが内蔵されたパーソナルコンピュータに、後述の補正手順を実行するプログラムをインストールして構成可能である。   The infrared imaging device 1 has a function to calculate a temporal change in the stress distribution of the measured object TP (the temporal change in the stress distribution of the measured object TP, which is a feature of the present invention, will be described later). The computing device 2 can be configured using a commercially available device for executing the thermoelastic stress measurement method. An example of such a commercially available apparatus is an “infrared stress measurement system” sold by Ken Automation. The arithmetic device 2 according to the present embodiment executes a correction procedure described later in a personal computer that has built-in software for calculating the temporal change of the stress distribution of the measurement object TP included in the commercial device as described above. The program can be installed and configured.

以下、上記の構成を有する応力分布測定装置100を用いた応力分布測定方法について説明する。
図2は、本発明の一実施形態に係る応力分布測定方法の手順を概略的に示すフロー図である。図3は、本発明の一実施形態に係る応力分布測定方法の準備手順を説明する説明図である。
図2に示すように、本実施形態に係る応力分布測定方法は、準備手順(図2のS1)、第1手順(図2のS2)、第2手順(図2のS3)、第3手順(図2のS4)及び第4手順(図2のS5)を含む。以下、各手順について、順次説明する。
Hereinafter, a stress distribution measuring method using the stress distribution measuring apparatus 100 having the above configuration will be described.
FIG. 2 is a flowchart schematically showing the procedure of the stress distribution measuring method according to the embodiment of the present invention. FIG. 3 is an explanatory diagram illustrating a preparation procedure for the stress distribution measurement method according to the embodiment of the present invention.
As shown in FIG. 2, the stress distribution measuring method according to the present embodiment includes a preparation procedure (S1 in FIG. 2), a first procedure (S2 in FIG. 2), a second procedure (S3 in FIG. 2), and a third procedure. (S4 in FIG. 2) and the fourth procedure (S5 in FIG. 2). Hereinafter, each procedure will be described sequentially.

<準備手順>
図2に示すように、準備手順では、黒体テープについての補正係数を予め算出する(図2のS1)。具体的には、この準備手順では、以下に説明する第1準備手順〜第3準備手順を実行する。
<Preparation procedure>
As shown in FIG. 2, in the preparation procedure, a correction coefficient for the black body tape is calculated in advance (S1 in FIG. 2). Specifically, in this preparation procedure, a first preparation procedure to a third preparation procedure described below are executed.

(第1準備手順)
図3(a)に示すように、第1準備手順では、試験体TP1の表面に歪センサ4を取り付ける。本実施形態の試験体TP1は、好ましい構成として、被測定体TPと同種の材質から形成されており、円孔TPaが設けられている。本実施形態では、歪センサ4として歪ゲージを用い、この歪ゲージを試験体TP1の円孔TPa付近に取り付ける。そして、歪センサ4の出力信号を連続的に記録するため、歪センサ4をデータロガー5に接続する。
第1準備手順では、上記のように歪センサ4が取り付けられた試験体TP1を例えば疲労試験機(図示せず)に取り付け、試験体TP1に所定条件の荷重を付加して歪センサ4で歪の時間的変化を検出する。具体的には、データロガー5に連続的に記録された歪センサ4の出力信号に基づき、歪の時間的変化を検出する。より具体的には、本実施形態では、歪の最大値と最小値との差を検出する。試験体TP1に付加する所定条件の荷重としては、被測定体TPと同様に、所定周波数の繰り返し荷重(引張荷重又は圧縮荷重)を例示できる。
そして、第1準備手順では、検出した歪の時間的変化に基づき、試験体TP1の歪センサ4が取り付けられた部位の応力の時間的変化を算出する。具体的には、試験体TP1の材質によって決まるヤング率をEとし、歪の時間的変化をΔε、応力の時間的変化をΔσとすると、以下の式(B)によって応力の時間的変化Δσを算出する。
Δσ=E・Δε ・・・(B)
なお、本実施形態では、試験体TP1に付加する最大荷重及び最小荷重を種々の値に変更した複数の荷重条件毎に応力の時間的変化Δσを算出する。
(First preparation procedure)
As shown in FIG. 3A, in the first preparation procedure, the strain sensor 4 is attached to the surface of the test body TP1. As a preferable configuration, the test body TP1 of the present embodiment is formed of the same material as the measurement target TP, and is provided with a circular hole TPa. In this embodiment, a strain gauge is used as the strain sensor 4, and this strain gauge is attached near the circular hole TPa of the test body TP1. The strain sensor 4 is connected to the data logger 5 in order to continuously record the output signal of the strain sensor 4.
In the first preparation procedure, the test body TP1 to which the strain sensor 4 is attached as described above is attached to, for example, a fatigue tester (not shown), and a load under a predetermined condition is applied to the test body TP1 to cause the strain sensor 4 to perform strain. Detect changes in time. Specifically, the temporal change of the distortion is detected based on the output signal of the distortion sensor 4 continuously recorded in the data logger 5. More specifically, in this embodiment, the difference between the maximum value and the minimum value of distortion is detected. As a load of the predetermined condition added to the test body TP1, a repeated load (tensile load or compressive load) at a predetermined frequency can be exemplified as in the case of the measured body TP.
Then, in the first preparation procedure, the temporal change in the stress of the part to which the strain sensor 4 of the test body TP1 is attached is calculated based on the detected temporal change in the strain. Specifically, when the Young's modulus determined by the material of the test body TP1 is E, the temporal change in strain is Δε, and the temporal change in stress is Δσ T , the temporal change in stress Δσ according to the following equation (B): T is calculated.
Δσ T = E · Δε (B)
In this embodiment, the temporal change Δσ T of the stress is calculated for each of a plurality of load conditions in which the maximum load and the minimum load applied to the specimen TP1 are changed to various values.

(第2準備手順)
図3(b)に示すように、第2準備手順では、第1準備手順で用いたものと同じ試験体TP1の表面に黒体テープ3を貼り付ける。具体的には、試験体TP1から歪センサ4を取り外した後、歪センサ4が取り付けられていた部位を含む試験体TP1の表面に、黒体テープ3を貼り付ける。ただし、本発明はこれに限るものではなく、第2準備手順を先に実行し、その後に第1準備手順を実行することも可能である。第2準備手順を先に実行する場合、黒体テープ3を取り外した後に、歪センサ4を取り付ければ良い。
第2準備手順では、上記のように黒体テープ3が貼り付けられた試験体TP1を第1準備手順と同じ疲労試験機(図示せず)に取り付け、試験体TP1に第1準備手順の所定条件と同一条件(試験体TP1に付加する最大荷重及び最小荷重を種々の値に変更した複数の荷重条件)の荷重を付加して試験体TP1の表面を赤外線撮像装置1で撮像する。演算装置2は、赤外線撮像装置1から入力された画像信号に基づき、試験体TP1の温度分布の時間的変化を測定する。すなわち、赤外線撮像装置1で撮像した撮像画像を構成する画素毎に温度の時間的変化を測定する。次いで、演算装置2は、測定した試験体TP1の温度分布の時間的変化と、以下の式(A)で表される関係式とに基づき、試験体TP1の応力分布の時間的変化を算出する。すなわち、赤外線撮像装置1で撮像した撮像画像を構成する画素毎に応力の時間的変化を算出する。
Δσ=−1/K・ΔT/T ・・・(A)
上記の式(A)において、ΔTは温度の時間的変化を、Δσは応力の時間的変化を、Tは試験体TP1の温度を、Kは熱弾性係数を意味する。熱弾性係数Kは試験体TP1の材質によって決まる物性値であり、例えば試験体TP1が鉄鋼材料から形成されている場合、K=3.5×10−12[Pa−1]となる。
さらに、第2準備手順において、演算装置2は、算出した試験体TP1の応力分布の時間的変化から第1準備手順で歪センサ4が取り付けられた部位と同じ試験体TP1の部位の応力の時間的変化を抽出する。具体的には、算出した試験体T1の応力分布の時間的変化、すなわち、撮像画像を構成する全画素領域の応力の時間的変化のうち、歪センサ4が取り付けられた部位に相当する画素領域の応力の時間的変化(例えば、歪センサ4が取り付けられた部位に相当する画素領域における平均的な応力の時間的変化)を抽出する。
本実施形態では、好ましい構成として、試験体TP1の表面に貼り付ける黒体テープ3の厚みを変更して第2準備手順を繰り返し実行することにより、黒体テープ3の厚み毎に、また第1準備手順と同様に複数の荷重条件毎に、歪センサ4が取り付けられた部位と同じ試験体TP1の部位の応力の時間的変化を抽出する。
(Second preparation procedure)
As shown in FIG. 3B, in the second preparation procedure, the black body tape 3 is attached to the same surface of the specimen TP1 used in the first preparation procedure. Specifically, after removing the strain sensor 4 from the test body TP1, the black body tape 3 is attached to the surface of the test body TP1 including the portion where the strain sensor 4 is attached. However, the present invention is not limited to this, and it is also possible to execute the second preparation procedure first and then execute the first preparation procedure. When the second preparation procedure is executed first, the strain sensor 4 may be attached after the blackbody tape 3 is removed.
In the second preparation procedure, the test body TP1 to which the black body tape 3 is adhered as described above is attached to the same fatigue tester (not shown) as in the first preparation procedure, and the test body TP1 has a predetermined first preparation procedure. The surface of the test specimen TP1 is imaged by the infrared imaging device 1 with the same load condition (a plurality of load conditions in which the maximum load and the minimum load applied to the test specimen TP1 are changed to various values). The arithmetic device 2 measures a temporal change in the temperature distribution of the specimen TP1 based on the image signal input from the infrared imaging device 1. That is, the temporal change in temperature is measured for each pixel constituting the captured image captured by the infrared imaging device 1. Next, the arithmetic device 2 calculates a temporal change in the stress distribution of the test specimen TP1 based on the measured temporal change in the temperature distribution of the test specimen TP1 and a relational expression represented by the following formula (A). . That is, the temporal change in stress is calculated for each pixel constituting the captured image captured by the infrared imaging device 1.
Δσ = −1 / K · ΔT / T (A)
In the above formula (A), ΔT represents a temporal change in temperature, Δσ represents a temporal change in stress, T represents the temperature of the specimen TP1, and K represents a thermoelastic coefficient. The thermoelastic coefficient K is a physical property value determined by the material of the test body TP1, and for example, when the test body TP1 is made of a steel material, K = 3.5 × 10 −12 [Pa −1 ].
Further, in the second preparation procedure, the arithmetic unit 2 determines the time of stress at the same part of the specimen TP1 as the part where the strain sensor 4 is attached in the first preparation procedure from the temporal change of the stress distribution of the specimen TP1 calculated. To extract changes. Specifically, among the temporal changes in the stress distribution of the calculated specimen T1, that is, the temporal changes in the stress of all the pixel areas constituting the captured image, the pixel area corresponding to the part where the strain sensor 4 is attached The time variation of the stress (for example, the average time variation of the stress in the pixel region corresponding to the portion where the strain sensor 4 is attached) is extracted.
In this embodiment, as a preferable configuration, the thickness of the black body tape 3 to be attached to the surface of the test body TP1 is changed, and the second preparation procedure is repeatedly performed. Similar to the preparation procedure, for each of a plurality of load conditions, the temporal change in the stress of the part of the specimen TP1 that is the same as the part to which the strain sensor 4 is attached is extracted.

なお、用いる黒体テープ3としては、例えば、イチネンTASCO社製の黒体テープを例示できる。
また、第1準備手順及び第2準備手順で試験体TP1に付加する荷重(繰り返し荷重)の周波数は、5Hz以上とすることが好ましい。荷重の周波数が小さすぎると、第2準備手順で試験体TP1の温度分布の時間的変化を測定する際、熱弾性効果によって生じた熱が測定前に拡散することで、熱弾性効果によって生じる温度変化を正確に測定できなくなるおそれがあるからである。また、第1準備手順及び第2準備手順で試験体TP1に付加する荷重の大きさは、応力振幅に換算して10MPa以上とすることが好ましい。付加する荷重が小さすぎると、第2準備手順で試験体TP1の温度分布の時間的変化を測定する際、赤外線撮像装置1が具備する赤外線検出素子の温度検出分解能以上の温度変化が生じないおそれがあるからである。
In addition, as the black body tape 3 to be used, for example, a black body tape manufactured by Ichinen TASCO can be exemplified.
Moreover, it is preferable that the frequency of the load (repetitive load) applied to the specimen TP1 in the first preparation procedure and the second preparation procedure is 5 Hz or more. If the frequency of the load is too small, when the temporal change in the temperature distribution of the test body TP1 is measured in the second preparation procedure, the heat generated by the thermoelastic effect diffuses before the measurement, thereby causing the temperature generated by the thermoelastic effect. This is because the change may not be measured accurately. Moreover, it is preferable that the magnitude | size of the load added to test body TP1 in a 1st preparation procedure and a 2nd preparation procedure shall be 10 Mpa or more converted into a stress amplitude. If the applied load is too small, when measuring the temporal change of the temperature distribution of the test body TP1 in the second preparation procedure, there is a possibility that the temperature change exceeding the temperature detection resolution of the infrared detection element included in the infrared imaging device 1 does not occur. Because there is.

(第3準備手順)
第3準備手順では、第2準備手順によって抽出した試験体TP1の応力の時間的変化を補正係数CRを用いて補正したときに、第1準備手順によって算出した試験体TP1の応力の時間的変化と合致するように、黒体テープ3についての補正係数CRを決定する。
具体的には、本実施形態では、第2準備手順によって黒体テープ3の厚み毎に抽出した一の荷重条件での試験体TP1の応力の時間的変化Δσを、第1準備手順によって算出した前記一の荷重条件での試験体TP1の応力の時間的変化Δσで除算することにより、黒体テープ3の厚み毎に且つ前記一の荷重条件での補正係数を算出する。この補正係数を全ての荷重条件について算出し、平均化して、黒体テープ3の厚み毎の補正係数CR’を算出する。そして、本実施形態では、各補正係数CR’を最小自乗法等によって近似し、以下の式(1)に示す黒体テープ3の厚みtを変数とする関数で表わされた補正係数CRを決定する。
CR=a・t ・・・(1)
上記式(1)において、a、bは所定の定数であり、tは黒体テープ3の厚みである。
(Third preparation procedure)
In the third preparation procedure, when the temporal change in the stress of the specimen TP1 extracted in the second preparation procedure is corrected using the correction coefficient CR, the temporal change in the stress of the specimen TP1 calculated in the first preparation procedure. The correction coefficient CR for the black body tape 3 is determined so as to match the above.
Specifically, in this embodiment, the temporal change Δσ of the stress of the specimen TP1 under one load condition extracted for each thickness of the blackbody tape 3 by the second preparation procedure is calculated by the first preparation procedure. By dividing by the temporal change Δσ T of the stress of the test body TP1 under the one load condition, the correction coefficient is calculated for each thickness of the black body tape 3 and under the one load condition. This correction coefficient is calculated for all load conditions, averaged, and a correction coefficient CR ′ for each thickness of the blackbody tape 3 is calculated. In the present embodiment, each correction coefficient CR ′ is approximated by the least square method or the like, and the correction coefficient CR expressed by a function having the thickness t of the black body tape 3 shown in the following equation (1) as a variable is represented. decide.
CR = a · t b (1)
In the above formula (1), a and b are predetermined constants, and t is the thickness of the blackbody tape 3.

図4は、第3準備手順において算出した補正係数CR’及び決定した補正係数CRの一例を示す図である。図4に示す例では、黒体テープ3の厚みt=t1〜t4の4つの補正係数CR’を用いて、補正係数CRを決定している。図4に示す例では、補正係数CRは、a>0、b<0の定数を用いたtの累乗関数として表わされている。本発明者らの知見によれば、補正係数CRを黒体テープ3の厚みtの累乗関数で表わすことにより、最も適切な補正が可能である。しかしながら、本発明はこれに限るものではなく、例えば、補正係数CRを黒体テープ3の厚みtの一次関数として表わすことも可能である。   FIG. 4 is a diagram illustrating an example of the correction coefficient CR ′ calculated in the third preparation procedure and the determined correction coefficient CR. In the example shown in FIG. 4, the correction coefficient CR is determined using the four correction coefficients CR ′ for the thickness t = t1 to t4 of the blackbody tape 3. In the example shown in FIG. 4, the correction coefficient CR is expressed as a power function of t using constants a> 0 and b <0. According to the knowledge of the present inventors, the most appropriate correction is possible by expressing the correction coefficient CR as a power function of the thickness t of the black body tape 3. However, the present invention is not limited to this. For example, the correction coefficient CR can be expressed as a linear function of the thickness t of the black body tape 3.

本実施形態に係る応力分布測定方法では、以上に説明した第1〜第3準備手順からなる準備手順を実行して、黒体テープ3についての補正係数CRを予め算出した後(図2のS1)、第1手順(図2のS2)を実行する。なお、少なくとも被測定体TPに貼り付ける黒体テープ3の種類を変更しない限りにおいて、上記の準備手順(第1〜第3準備手順)は、一度実行すれば、被測定体TPを変更したとしても、繰り返し実行する必要はない。   In the stress distribution measurement method according to the present embodiment, after performing the preparation procedure including the first to third preparation procedures described above and calculating in advance the correction coefficient CR for the blackbody tape 3 (S1 in FIG. 2). ), The first procedure (S2 in FIG. 2) is executed. As long as at least the type of the black body tape 3 to be attached to the measurement target TP is not changed, the above preparation procedure (first to third preparation procedures) is executed once. However, there is no need to execute repeatedly.

<第1手順>
図1及び図2に示すように、第1手順では、荷重が付加される被測定体TPの表面に黒体テープ3を貼り付ける(図2のS2)。前述のように、本実施形態では、被測定体TPが有する溶接ビードBの端部B1を応力分布の測定領域としているため、図1に示すように、溶接ビードBの端部B1の表面を覆うように黒体テープ3を貼り付ける。
なお、被測定体TPの測定領域が広い場合には、2枚以上の黒体テープ3を被測定体TPの表面に貼り付ける必要が生じる場合がある。この際、黒体テープ3が貼り付けられていない領域が生じないように(隣接する黒体テープ3の間に隙間が生じないように)するには、単に並べて貼り付けるのではなく、隣接する黒体テープ3が重なる部分を有するように貼り付けるのが好ましい。
<First procedure>
As shown in FIGS. 1 and 2, in the first procedure, the black body tape 3 is attached to the surface of the measurement target TP to which a load is applied (S2 in FIG. 2). As described above, in this embodiment, since the end B1 of the weld bead B included in the measurement target TP is used as a stress distribution measurement region, the surface of the end B1 of the weld bead B is formed as shown in FIG. The black body tape 3 is pasted so as to cover it.
In addition, when the measurement area | region of the to-be-measured body TP is wide, it may be necessary to affix two or more black body tapes 3 on the surface of the to-be-measured body TP. At this time, in order not to generate a region where the black body tape 3 is not attached (so as not to generate a gap between the adjacent black body tapes 3), the regions are adjacent to each other instead of simply being attached side by side. The black body tape 3 is preferably attached so as to have an overlapping portion.

<第2手順>
図1及び図2に示すように、第2手順では、前述のように黒体テープ3が貼り付けられた被測定体TPを疲労試験機(図示せず)に取り付けて荷重を付加し、被測定体TPの表面を赤外線撮像装置1で撮像し、被測定体TPの温度分布の時間的変化を演算装置2で測定する(図2のS3)。すなわち、演算装置2は、赤外線撮像装置1で撮像した撮像画像を構成する画素毎に温度の時間的変化を測定する。
<Second procedure>
As shown in FIG. 1 and FIG. 2, in the second procedure, the measured object TP with the black body tape 3 attached as described above is attached to a fatigue testing machine (not shown), a load is applied, The surface of the measurement object TP is imaged by the infrared imaging device 1, and the temporal change of the temperature distribution of the measurement object TP is measured by the arithmetic device 2 (S3 in FIG. 2). That is, the arithmetic device 2 measures a temporal change in temperature for each pixel constituting the captured image captured by the infrared imaging device 1.

<第3手順>
図2に示すように、第3手順では、演算装置2が、第2手順によって測定した被測定体TPの温度分布の時間的変化と、温度の時間的変化及び応力の時間的変化の間の所定の関係式とに基づき、被測定体TPの応力分布の時間的変化を算出する(図2のS4)。すなわち、演算装置2は、第2手順によって測定した被測定体TPの温度分布の時間的変化と、前述の式(A)で表される関係式とに基づき、被測定体TPの応力分布の時間的変化を算出する。
<Third procedure>
As shown in FIG. 2, in the third procedure, the arithmetic device 2 performs a temporal change in the temperature distribution of the measurement target TP measured in the second procedure, a temporal change in temperature, and a temporal change in stress. Based on the predetermined relational expression, the temporal change in the stress distribution of the measured object TP is calculated (S4 in FIG. 2). That is, the arithmetic unit 2 calculates the stress distribution of the measured object TP based on the temporal change of the temperature distribution of the measured object TP measured by the second procedure and the relational expression expressed by the above-described equation (A). Calculate the change over time.

<第4手順>
図2に示すように、第4手順では、演算装置2が、前述の準備手順で黒体テープ3について予め算出した黒体テープ3についての補正係数CRを用いて、第3手順によって算出した被測定体TPの応力分布の時間的変化を補正する(図2のS5)。
具体的には、本実施形態では、前述のように補正係数CRが式(1)で表される黒体テープ3の厚みを変数とする関数で表わされているため、演算装置2は、第1手順で貼り付けた黒体テープ3の厚みに応じた補正係数CRを選択し、該選択した補正係数CRを用いて補正する。より具体的には、演算装置2は、第3手順によって算出した被測定体TPの応力分布の時間的変化を補正係数CRで除算して補正する。
なお、貼り付けた黒体テープ3の厚みとしては、設計値を用いても良いし、実際に被測定体TPに貼り付けた状態の黒体テープ3の厚みを膜厚計等を用いて実測しても良い。そして、例えば、黒体テープ3の厚みの設計値又は実測値を演算装置2に手動で入力することにより、演算装置2は入力された厚みに応じた補正係数CRを選択するように構成可能である。
黒体テープ3の厚みを実測するための膜厚計としては、被測定体TPが磁性体である場合には、例えば、電磁誘導式の膜厚計を好適に用いることが可能である。電磁誘導式の膜厚計としては、ケツト科学研究所製「電磁膜厚計LE−370」を例示できる。また、被測定体TPが非磁性体である場合には、例えば、渦電流式膜厚計を用いることが可能である。
<4th procedure>
As shown in FIG. 2, in the fourth procedure, the computing device 2 uses the correction coefficient CR for the blackbody tape 3 that has been calculated in advance for the blackbody tape 3 in the above-described preparation procedure. The temporal change in the stress distribution of the measuring body TP is corrected (S5 in FIG. 2).
Specifically, in the present embodiment, as described above, the correction coefficient CR is represented by a function having the thickness of the blackbody tape 3 represented by the expression (1) as a variable. A correction coefficient CR corresponding to the thickness of the black body tape 3 attached in the first procedure is selected, and correction is performed using the selected correction coefficient CR. More specifically, the arithmetic device 2 corrects the temporal change in the stress distribution of the measured object TP calculated by the third procedure by dividing it by the correction coefficient CR.
In addition, as a thickness of the affixed black body tape 3, a design value may be used, or the thickness of the black body tape 3 actually affixed to the measurement target TP is measured using a film thickness meter or the like. You may do it. Then, for example, by manually inputting the design value or the actual measurement value of the thickness of the black body tape 3 to the arithmetic device 2, the arithmetic device 2 can be configured to select the correction coefficient CR according to the input thickness. is there.
As the film thickness meter for actually measuring the thickness of the black body tape 3, for example, when the measured object TP is a magnetic material, an electromagnetic induction type film thickness meter can be preferably used. As an electromagnetic induction type film thickness meter, “Electromagnetic film thickness meter LE-370” manufactured by Kett Science Laboratory can be exemplified. Moreover, when the to-be-measured body TP is a nonmagnetic material, for example, an eddy current film thickness meter can be used.

第1手順において、2枚以上の黒体テープ3が重なる部分を有するように、被測定体TPの表面に黒体テープ3を貼り付ける場合、演算装置2は、2枚以上の黒体テープ3が重なっている部分については、2枚以上の黒体テープ3の総厚みに応じた補正係数CRを選択し、該選択した補正係数CRを用いて補正する。
なお、黒体テープ3が重なっている部分については、例えば、赤外線撮像装置1で撮像した撮像画像(モノクロ画像)を演算装置2が具備するモニタ画面に表示して目視することで判断可能である。すなわち、図5に示すように、黒体テープ3が重なっている部分と重なっていない部分とでは濃淡の程度が異なるため、モニタ画面に表示された撮像画像を目視することで判断可能である。図5は、撮像画像の中央付近で2枚の黒体テープ3が重なっている例を模式的に示している。そして、例えば、モニタ画面上でマウス等のポインティングデバイスを用いて、撮像画像において黒体テープ3の重なっている部分と重なっていない部分とを手動で指示可能にし、重なっている部分の総厚みと重なっていない部分の厚みとを演算装置2に手動で入力すればよい。図5に示す例では、重なっていない部分の厚みtとして、t=t1が入力され、重なっている部分の厚みtとして、2枚分の厚みであるt=2・t1が入力される。これにより、演算装置2は、重なっている部分については、入力された総厚みt=2・t1に応じた補正係数CR(図5に示す例ではCR2)を選択し、重なっていない部分については、入力された厚みt=t1に応じた補正係数CR(図5に示す例ではCR1)を選択するように構成可能である。
In the first procedure, when the black body tape 3 is pasted on the surface of the measurement object TP so that two or more black body tapes 3 overlap, the arithmetic device 2 has two or more black body tapes 3. For the overlapping portion, a correction coefficient CR corresponding to the total thickness of two or more blackbody tapes 3 is selected, and correction is performed using the selected correction coefficient CR.
The portion where the black body tape 3 overlaps can be determined by, for example, displaying a captured image (monochrome image) captured by the infrared imaging device 1 on a monitor screen provided in the arithmetic device 2 and visually observing it. . That is, as shown in FIG. 5, since the degree of shading differs between the portion where the black body tape 3 overlaps and the portion where it does not overlap, it can be determined by viewing the captured image displayed on the monitor screen. FIG. 5 schematically shows an example in which two blackbody tapes 3 overlap in the vicinity of the center of the captured image. Then, for example, using a pointing device such as a mouse on the monitor screen, it is possible to manually indicate the overlapping portion and the non-overlapping portion of the black body tape 3 in the captured image, and the total thickness of the overlapping portion and What is necessary is just to input the thickness of the part which does not overlap into the arithmetic unit 2 manually. In the example shown in FIG. 5, t = t1 is input as the thickness t of the non-overlapping portion, and t = 2 · t1 that is the thickness of two sheets is input as the thickness t of the overlapping portion. Thereby, the arithmetic unit 2 selects the correction coefficient CR (CR2 in the example shown in FIG. 5) according to the input total thickness t = 2 · t1 for the overlapping portions, and for the non-overlapping portions. The correction coefficient CR (CR1 in the example shown in FIG. 5) corresponding to the input thickness t = t1 can be selected.

以上に説明した本実施形態に係る応力分布測定方法によれば、準備手順を実行することで、黒体テープ3についての補正係数CRが予め算出される。また、第1手順〜第3手順を実行することで、表面に黒体テープ3が貼り付けられた状態の被測定体TPの応力分布の時間的変化が、熱弾性応力測定法によって算出されることになる。さらに、第4手順を実行することで、予め算出した黒体テープ3についての補正係数CRを用いて、被測定体TPの応力分布の時間的変化が補正される。
したがい、本実施形態に係る応力分布測定方法によれば、被測定体TPの表面に黒色塗料を塗布することなく、非接触で実用可能な水準で応力分布の時間的変化を測定可能である。なお、応力分布の初期値を把握していれば、この初期値に応力分布の時間的変化を加算することで、所定時間経過後の応力分布の絶対値も測定可能である。
According to the stress distribution measurement method according to the present embodiment described above, the correction coefficient CR for the blackbody tape 3 is calculated in advance by executing the preparation procedure. Moreover, the temporal change of the stress distribution of the measurement object TP in a state where the black body tape 3 is attached to the surface is calculated by the thermoelastic stress measurement method by executing the first procedure to the third procedure. It will be. Further, by executing the fourth procedure, the temporal change in the stress distribution of the measurement object TP is corrected using the correction coefficient CR for the blackbody tape 3 calculated in advance.
Therefore, according to the stress distribution measuring method according to the present embodiment, it is possible to measure the temporal change of the stress distribution at a practical level without contact without applying black paint to the surface of the measurement object TP. If the initial value of the stress distribution is known, the absolute value of the stress distribution after a predetermined time can be measured by adding the temporal change of the stress distribution to the initial value.

以下、本実施形態に係る応力分布測定方法によって、図1に示す被測定体TPの応力分布の時間的変化を測定した結果の一例(試験1、試験2)について説明する。
試験1として、図1に示す被測定体TPに、周波数が10Hzで、最大荷重が60.6[kN]、最小荷重が3.0[kN](応力比R=0.05、荷重変化ΔP=57.6[kN])の繰り返し荷重(引張荷重)を付加し、本実施形態に係る応力分布測定方法によって、溶接ビードBの端部B1における応力分布の時間的変化を測定した。試験1で用いた黒体テープ3の厚みt=0.14mmであり、補正係数CR=0.33とした。そして、赤外線撮像装置1で撮像した撮像画像中、後述の歪センサ4を取り付けた部位に相当する画素領域における平均的な応力の時間的変化Δσ’(補正前はΔσ)を算出した。また、被測定体TPの溶接ビードBの端部B1に歪センサ4を取り付け、上記と同じ条件の繰り返し荷重(周波数10Hz、最大荷重60.6[kN]、最小荷重3.0[kN])を付加して、応力の時間的変化Δσを算出した。
また、試験2として、図1に示す被測定体TPに、周波数が10Hzで、最大荷重が45.5[kN]、最小荷重が2.3[kN](応力比R=0.05、荷重変化ΔP=43.2[kN])の繰り返し荷重(引張荷重)を付加し、本実施形態に係る応力分布測定方法によって、溶接ビードBの端部B1における応力分布の時間的変化を測定した。試験2で用いた黒体テープ3の厚みt=0.14mmであり、補正係数CR=0.33とした。そして、赤外線撮像装置1で撮像した撮像画像中、後述の歪センサ4を取り付けた部位に相当する画素領域における平均的な応力の時間的変化Δσ’を算出した。また、被測定体TPの溶接ビードBの端部B1に歪センサ4を取り付け、上記と同じ条件の繰り返し荷重(周波数10Hz、最大荷重45.5[kN]、最小荷重2.3[kN])を付加して、応力の時間的変化Δσを算出した。
Hereinafter, an example (Test 1 and Test 2) of the result of measuring the temporal change of the stress distribution of the measurement object TP shown in FIG. 1 by the stress distribution measurement method according to the present embodiment will be described.
As test 1, the measurement object TP shown in FIG. 1 has a frequency of 10 Hz, a maximum load of 60.6 [kN], and a minimum load of 3.0 [kN] (stress ratio R = 0.05, load change ΔP). = 57.6 [kN]) was applied, and the temporal change in the stress distribution at the end B1 of the weld bead B was measured by the stress distribution measurement method according to this embodiment. The black body tape 3 used in Test 1 had a thickness t = 0.14 mm and a correction coefficient CR = 0.33. Then, an average stress temporal change Δσ ′ (Δσ before correction) in a pixel region corresponding to a portion to which a later-described strain sensor 4 is attached in the captured image captured by the infrared imaging device 1 was calculated. Further, the strain sensor 4 is attached to the end B1 of the weld bead B of the measurement object TP, and the repeated load under the same conditions as described above (frequency 10 Hz, maximum load 60.6 [kN], minimum load 3.0 [kN]). Was added to calculate the time change Δσ T of the stress.
Further, as test 2, the measured object TP shown in FIG. 1 has a frequency of 10 Hz, a maximum load of 45.5 [kN], and a minimum load of 2.3 [kN] (stress ratio R = 0.05, load A cyclic load (tensile load) of change ΔP = 43.2 [kN]) was applied, and the temporal change in the stress distribution at the end B1 of the weld bead B was measured by the stress distribution measurement method according to this embodiment. The black body tape 3 used in Test 2 had a thickness t = 0.14 mm and a correction coefficient CR = 0.33. Then, an average stress temporal change Δσ ′ in a pixel region corresponding to a part to which a later-described strain sensor 4 is attached in the captured image captured by the infrared imaging device 1 was calculated. Further, the strain sensor 4 is attached to the end B1 of the weld bead B of the measured object TP, and a repeated load under the same conditions as described above (frequency 10 Hz, maximum load 45.5 [kN], minimum load 2.3 [kN]). Was added to calculate the time change Δσ T of the stress.

図6は、試験1及び試験2の結果を示す。図6に示すように、歪センサ4を用いて測定した応力の時間的変化Δσを真値と考えた場合、試験1及び試験2の何れについても、測定誤差(=(Δσ’−ΔσT)/ΔσT×100)は10%以下であり、実用可能な水準で応力分布を測定可能であることが確認できた。 FIG. 6 shows the results of Test 1 and Test 2. As shown in FIG. 6, when the temporal change Δσ T of the stress measured using the strain sensor 4 is considered as a true value, the measurement error (= (Δσ′−ΔσT) in both Test 1 and Test 2 / ΔσT × 100) is 10% or less, and it was confirmed that the stress distribution could be measured at a practical level.

1・・・赤外線撮像装置
2・・・演算装置
3・・・黒体テープ
100・・・応力分布測定装置
TP・・・被測定体
DESCRIPTION OF SYMBOLS 1 ... Infrared imaging device 2 ... Arithmetic unit 3 ... Black body tape 100 ... Stress distribution measuring device TP ... Measurement object

Claims (5)

荷重が付加される被測定体の表面に黒体テープを貼り付ける第1手順と、
前記第1手順によって前記黒体テープが貼り付けられた前記被測定体の表面を赤外線撮像装置で撮像し、前記被測定体の温度分布の時間的変化を測定する第2手順と、
前記第2手順によって測定した前記被測定体の温度分布の時間的変化と、温度の時間的変化及び応力の時間的変化の間の所定の関係式とに基づき、前記被測定体の応力分布の時間的変化を算出する第3手順と、
前記黒体テープについて予め算出した補正係数を用いて、前記第3手順によって算出した前記被測定体の応力分布の時間的変化を補正する第4手順と、
を含むことを特徴とする応力分布測定方法。
A first procedure for attaching a black body tape to the surface of a measurement object to which a load is applied;
A second procedure for imaging the surface of the measurement object to which the black body tape is attached by the first procedure with an infrared imaging device, and measuring a temporal change in the temperature distribution of the measurement object;
Based on the temporal change of the temperature distribution of the measured object measured by the second procedure and a predetermined relational expression between the temporal change of temperature and the temporal change of stress, the stress distribution of the measured object A third procedure for calculating temporal changes;
A fourth procedure for correcting a temporal change in the stress distribution of the measured object calculated by the third procedure using a correction coefficient calculated in advance for the black body tape;
A stress distribution measuring method comprising:
前記第4手順で用いる補正係数は、前記黒体テープの厚みを変数とする関数で表わされ、
前記第4手順において、前記第1手順で貼り付けた黒体テープの厚みに応じた前記補正係数を選択し、該選択した補正係数を用いて補正することを特徴とする請求項1に記載の応力分布測定方法。
The correction coefficient used in the fourth procedure is represented by a function having the thickness of the black body tape as a variable,
The said 4th procedure WHEREIN: The said correction coefficient according to the thickness of the black body tape stuck by the said 1st procedure is selected, It correct | amends using this selected correction coefficient. Stress distribution measurement method.
前記第1手順において、2枚以上の黒体テープが重なる部分を有するように、前記被測定体の表面に前記黒体テープを貼り付け、
前記第4手順において、前記2枚以上の黒体テープが重なっている部分については、前記2枚以上の黒体テープの総厚みに応じた前記補正係数を選択し、該選択した補正係数を用いて補正することを特徴とする請求項2に記載の応力分布測定方法。
In the first procedure, the black body tape is pasted on the surface of the object to be measured so that two or more black body tapes overlap each other.
In the fourth procedure, for the portion where the two or more blackbody tapes overlap, the correction coefficient corresponding to the total thickness of the two or more blackbody tapes is selected, and the selected correction coefficient is used. The stress distribution measuring method according to claim 2, wherein the stress distribution measuring method is corrected.
前記第4手順で用いる補正係数をCRとし、前記黒体テープの厚みをtとした場合に、前記補正係数CRは、以下の式(1)で表わされ、
前記第4手順において、前記第3手順によって算出した前記被測定体の応力分布の時間的変化を前記補正係数CRで除算して補正することを特徴とする請求項2又は3に記載の応力分布測定方法。
CR=a・t ・・・(1)
上記式(1)において、a、bは所定の定数である。
When the correction coefficient used in the fourth procedure is CR and the thickness of the black body tape is t, the correction coefficient CR is expressed by the following equation (1):
4. The stress distribution according to claim 2, wherein in the fourth procedure, the temporal change of the stress distribution of the measurement object calculated by the third procedure is corrected by dividing by the correction coefficient CR. 5. Measuring method.
CR = a · t b (1)
In the above formula (1), a and b are predetermined constants.
前記第4手順で用いる補正係数は、
試験体の表面に歪センサを取り付け、該歪センサが取り付けられた前記試験体に所定条件の荷重を付加して前記歪センサで歪の時間的変化を検出し、該検出した歪の時間的変化に基づき、前記試験体の前記歪センサが取り付けられた部位の応力の時間的変化を算出する第1準備手順と、
前記試験体の表面に前記黒体テープを貼り付け、該黒体テープが貼り付けられた前記試験体に前記所定条件と同一条件の荷重を付加して前記試験体の表面を前記赤外線撮像装置で撮像して前記試験体の温度分布の時間的変化を測定し、該測定した前記試験体の温度分布の時間的変化と、前記所定の関係式とに基づき、前記試験体の応力分布の時間的変化を算出し、該算出した前記試験体の応力分布の時間的変化から前記歪センサが取り付けられた部位と同じ前記試験体の部位の応力の時間的変化を抽出する第2準備手順と、
前記第2準備手順によって抽出した前記試験体の応力の時間的変化を前記補正係数を用いて補正したときに、前記第1準備手順によって算出した前記試験体の応力の時間的変化と合致するように、前記補正係数を決定する第3準備手順と、
によって算出されることを特徴とする請求項1から4の何れかに記載の応力分布測定方法。
The correction coefficient used in the fourth procedure is
A strain sensor is attached to the surface of the test body, a load with a predetermined condition is applied to the test body to which the strain sensor is attached, and a temporal change in strain is detected by the strain sensor, and a temporal change in the detected strain is detected. A first preparatory procedure for calculating a temporal change in stress of a portion of the specimen to which the strain sensor is attached;
The black body tape is affixed to the surface of the test body, a load having the same condition as the predetermined condition is applied to the test body to which the black body tape is affixed, and the surface of the test body is applied with the infrared imaging device. The temporal change of the temperature distribution of the test specimen is measured to measure the temporal distribution of the stress distribution of the specimen based on the measured temporal change of the temperature distribution of the specimen and the predetermined relational expression. A second preparatory procedure for calculating a change, and extracting a temporal change in stress of a part of the test body that is the same as a part to which the strain sensor is attached, from the temporal change of the stress distribution of the test body calculated;
When the temporal change of the stress of the specimen extracted by the second preparation procedure is corrected using the correction coefficient, the temporal change of the stress of the specimen calculated by the first preparation procedure is matched. A third preparatory procedure for determining the correction factor;
The stress distribution measuring method according to claim 1, wherein the stress distribution measuring method is calculated by:
JP2016110399A 2016-06-01 2016-06-01 Stress distribution measurement method Active JP6634959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016110399A JP6634959B2 (en) 2016-06-01 2016-06-01 Stress distribution measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016110399A JP6634959B2 (en) 2016-06-01 2016-06-01 Stress distribution measurement method

Publications (2)

Publication Number Publication Date
JP2017215258A true JP2017215258A (en) 2017-12-07
JP6634959B2 JP6634959B2 (en) 2020-01-22

Family

ID=60575612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016110399A Active JP6634959B2 (en) 2016-06-01 2016-06-01 Stress distribution measurement method

Country Status (1)

Country Link
JP (1) JP6634959B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7469661B2 (en) 2020-08-13 2024-04-17 日本製鉄株式会社 Method for estimating load value applied to spot welded joints
JP7469660B2 (en) 2020-08-13 2024-04-17 日本製鉄株式会社 Method for evaluating internal stress of spot welded joints and evaluation method for thermoelastic stress measurement

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06201623A (en) * 1993-01-07 1994-07-22 Nikon Corp Method and apparatus for inspecting defect at joint of different materials
US20120026323A1 (en) * 2011-06-24 2012-02-02 General Electric Company System and method for monitoring stress on a wind turbine blade
JP2012103124A (en) * 2010-11-10 2012-05-31 Jtekt Corp Stress measuring method
JP2015165206A (en) * 2014-03-03 2015-09-17 株式会社ジェイテクト Stress distribution measurement device and stress distribution measurement method
JP2017036978A (en) * 2015-08-10 2017-02-16 株式会社明電舎 Stress measurement device and stress measurement method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06201623A (en) * 1993-01-07 1994-07-22 Nikon Corp Method and apparatus for inspecting defect at joint of different materials
JP2012103124A (en) * 2010-11-10 2012-05-31 Jtekt Corp Stress measuring method
US20120026323A1 (en) * 2011-06-24 2012-02-02 General Electric Company System and method for monitoring stress on a wind turbine blade
JP2015165206A (en) * 2014-03-03 2015-09-17 株式会社ジェイテクト Stress distribution measurement device and stress distribution measurement method
JP2017036978A (en) * 2015-08-10 2017-02-16 株式会社明電舎 Stress measurement device and stress measurement method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7469661B2 (en) 2020-08-13 2024-04-17 日本製鉄株式会社 Method for estimating load value applied to spot welded joints
JP7469660B2 (en) 2020-08-13 2024-04-17 日本製鉄株式会社 Method for evaluating internal stress of spot welded joints and evaluation method for thermoelastic stress measurement

Also Published As

Publication number Publication date
JP6634959B2 (en) 2020-01-22

Similar Documents

Publication Publication Date Title
JP6485454B2 (en) Information processing device
Palumbo et al. Study of damage evolution in composite materials based on the Thermoelastic Phase Analysis (TPA) method
US7822268B2 (en) Advanced processing of active thermography signals
Li et al. Adopting lock-in infrared thermography technique for rapid determination of fatigue limit of aluminum alloy riveted component and affection to determined result caused by initial stress
Palumbo et al. Characterisation of steel welded joints by infrared thermographic methods
Dehnavi et al. Utilizing digital image correlation to determine stress intensity factors
Chen et al. Crack growth analysis in welded and non-welded T-joints based on lock-in digital image correlation and thermoelastic stress analysis
Thatcher et al. Low cost infrared thermography for automated crack monitoring in fatigue testing
Zhong et al. Quasi-optical coherence vibration tomography technique for damage detection in beam-like structures based on auxiliary mass induced frequency shift
Urbanek et al. Influence of motion compensation on lock-In thermographic investigations of fatigue crack propagation
Sakagami et al. Application of infrared thermography to structural integrity evaluation of steel bridges
JP6634959B2 (en) Stress distribution measurement method
US20120026323A1 (en) System and method for monitoring stress on a wind turbine blade
JP6248706B2 (en) Stress distribution measuring apparatus and stress distribution measuring method
Legrand et al. New concept of friction sensor for strip rolling: Theoretical analysis
Amjad et al. A thermal emissions-based real-time monitoring system for in situ detection of fatigue cracks
Żurek Magnetic contactless detection of stress distribution and assembly defects in constructional steel element
JP2017036978A (en) Stress measurement device and stress measurement method
Brooks et al. Automated visual tracking of crack growth in coupon and component level fatigue testing using thermoelastic stress analysis
Angani et al. Magnetic leakage testing using linearly integrated hall and GMR sensor arrays to inspect inclusions in cold-rolled strips
JP7469661B2 (en) Method for estimating load value applied to spot welded joints
JP4097079B2 (en) Defect inspection method and apparatus
TW201239351A (en) Nondestructive test method and system
JP2020046215A (en) Evaluation device and evaluation method
JP3739118B2 (en) Method and apparatus for nondestructive inspection of quench hardened layer depth

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191202

R151 Written notification of patent or utility model registration

Ref document number: 6634959

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151