JP7469660B2 - Method for evaluating internal stress of spot welded joints and evaluation method for thermoelastic stress measurement - Google Patents

Method for evaluating internal stress of spot welded joints and evaluation method for thermoelastic stress measurement Download PDF

Info

Publication number
JP7469660B2
JP7469660B2 JP2020136648A JP2020136648A JP7469660B2 JP 7469660 B2 JP7469660 B2 JP 7469660B2 JP 2020136648 A JP2020136648 A JP 2020136648A JP 2020136648 A JP2020136648 A JP 2020136648A JP 7469660 B2 JP7469660 B2 JP 7469660B2
Authority
JP
Japan
Prior art keywords
stress
load
calculated
welded joint
welded portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020136648A
Other languages
Japanese (ja)
Other versions
JP2022032646A (en
Inventor
秀樹 上田
泰三 牧野
浩 白水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2020136648A priority Critical patent/JP7469660B2/en
Publication of JP2022032646A publication Critical patent/JP2022032646A/en
Application granted granted Critical
Publication of JP7469660B2 publication Critical patent/JP7469660B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

本発明は、いわゆる熱弾性応力測定法の測定結果を用いてスポット溶接継手の溶接部の内面応力を評価可能な方法に関する。また、本発明は、熱弾性応力測定法の測定結果を容易に評価可能な熱弾性応力測定法の評価方法に関する。 The present invention relates to a method capable of evaluating the internal stress of a welded portion of a spot-welded joint using the measurement results of a so-called thermoelastic stress measurement method, and also to an evaluation method of the thermoelastic stress measurement method capable of easily evaluating the measurement results of the thermoelastic stress measurement method.

重ね合わせられた鋼板等の板材をスポット溶接(抵抗スポット溶接)することにより形成されるスポット溶接継手は、スポット溶接の生産性が高く、低コストであるため、自動車や家電製品の部材として広く用いられている。
スポット溶接継手の溶接部のナゲット(溶融凝固した部分)は、重ね合わせられた板材の重ね合わせ面(内面)側に生成される。スポット溶接継手の溶接部の場合、応力集中が生じて破壊の危険性があるのは、ナゲットが生成される内面側の部位である。しかしながら、溶接部のナゲットを直接目視することで溶接部の良否を検査することはできない。
2. Description of the Related Art Spot welded joints formed by spot welding (resistance spot welding) overlapping steel plates or other plate materials are widely used as components for automobiles and home appliances because spot welding is highly productive and low cost.
The nugget (melted and solidified portion) of the weld of a spot welded joint is formed on the overlapping surface (inner surface) of the overlapping plate materials. In the case of the weld of a spot welded joint, the part on the inner surface where the nugget is formed is at risk of fracture due to stress concentration. However, it is not possible to inspect the quality of the weld by directly visually inspecting the nugget of the weld.

目視検査できない構造物等の被測定物の検査方法(具体的には、応力評価方法)として、有限要素法(以下、適宜「FEM」(Finite Element Method)という)解析が用いられる場合がある。
しかしながら、FEMの数値解析モデルは、計算機上で幾何情報を数値化して作成されるため、スポット溶接継手の溶接部のナゲットのような複雑な形状を正確にモデル化することは困難である。また、FEM解析の数値解析モデルは、六面体等の要素(メッシュ)に分割されるため、スポット溶接時に溶接部のナゲット以外の部位(本明細書において「熱影響部」と称する)に生じる圧痕など、微妙な変化を有する形状を反映できない場合がある。
したがい、FEM解析のみを用いて、スポット溶接継手の溶接部の内面応力(板材の重ね合わせ面側の応力)を精度良く評価することが困難な場合がある。
2. Description of the Related Art Finite element method (hereinafter, occasionally referred to as "FEM") analysis is sometimes used as an inspection method (specifically, a stress evaluation method) for objects such as structures that cannot be visually inspected.
However, since the FEM numerical analysis model is created by digitizing geometric information on a computer, it is difficult to accurately model a complex shape such as a nugget of a welded part of a spot-welded joint. In addition, since the FEM numerical analysis model is divided into elements (meshes) such as hexahedrons, it may not be possible to reflect shapes that have subtle changes, such as indentations that occur in parts of the welded part other than the nugget during spot welding (referred to as the "heat-affected zone" in this specification).
Therefore, it may be difficult to accurately evaluate the internal stress (stress on the overlapping surface side of the plate materials) of the weld of a spot-welded joint using only FEM analysis.

一方、被測定物に発生する応力を非接触で測定する方法として、赤外線撮像装置(サーモグラフィ)を用いた熱弾性応力測定法が提案されている(例えば、非特許文献1参照)。
熱弾性応力測定法は、被測定物が断熱的に弾性変形する際に温度変化が生じるという熱弾性効果を利用し、繰り返し荷重が付加される被測定物を赤外線撮像装置を用いて連続的に撮像することで被測定物の温度の時間的変化(所定時間内における温度の変化)を測定し、この測定した温度の時間的変化を被測定物の応力の時間的変化(所定時間内における応力の変化)に換算する方法である。応力の初期値を把握していれば(実際に応力を測定して把握している場合のみならず、想定可能な場合も含む)、この初期値に応力の時間的変化を加算することで、所定時間経過後の応力を測定可能である。
On the other hand, a thermoelastic stress measurement method using an infrared imaging device (thermography) has been proposed as a method for non-contact measurement of stress occurring in a measurement object (see, for example, Non-Patent Document 1).
The thermoelastic stress measurement method utilizes the thermoelastic effect that a temperature change occurs when the object to be measured elastically deforms adiabatically, and measures the temperature change over time (temperature change within a specified time) of the object to be measured by continuously imaging the object to which a repeated load is applied using an infrared imaging device, and converts this measured temperature change over time into the stress change over time (stress change within a specified time) of the object to be measured. If the initial value of the stress is known (including not only cases where the stress is actually measured and known, but also cases where it can be assumed), the stress after the specified time has passed can be measured by adding the stress change over time to this initial value.

この熱弾性応力測定法を用いて被測定物の温度の時間的変化を測定する際、被測定物の周囲の熱(赤外線)が被測定物の表面で反射し、赤外線撮像装置で受光される場合がある。換言すれば、赤外線撮像装置を用いて測定した被測定物の温度の時間的変化に、熱弾性効果によって生じる温度変化(被測定物から放射される赤外線の強度変化)以外の要因で生じた温度変化が含まれる場合がある。熱弾性効果によって生じる温度変化は極微小であるため、被測定物表面における赤外線の反射率が大きければ、熱弾性効果によって生じる温度変化が被測定物表面における赤外線の反射強度の変化に埋もれてしまい、被測定物の応力の時間的変化を精度良く算出できないおそれがある。 When using this thermoelastic stress measurement method to measure the change in temperature of an object over time, the heat (infrared rays) surrounding the object may be reflected by the surface of the object and received by the infrared imaging device. In other words, the change in temperature of the object over time measured using the infrared imaging device may include temperature changes caused by factors other than the temperature change caused by the thermoelastic effect (change in the intensity of infrared rays emitted from the object). Since the temperature change caused by the thermoelastic effect is extremely small, if the reflectance of infrared rays on the surface of the object is large, the temperature change caused by the thermoelastic effect will be buried in the change in the reflection intensity of infrared rays on the surface of the object, and there is a risk that the change in stress of the object over time cannot be calculated accurately.

このため、非特許文献1に記載の技術では、赤外線撮像装置から出力された画像信号から、測定対象とする熱弾性効果によって生じる温度変化に応じた信号波形をロックイン処理している。すなわち、赤外線撮像装置から出力された画像信号から、所定の周波数成分のみを抽出している。
具体的には、例えば、被測定物に繰り返し荷重を付加する疲労試験機から出力され、付加する繰り返し荷重と同じ周波数の参照信号を利用する。この参照信号で画像信号を同期検波し、参照信号に応じた周波数帯域の画像信号成分のみ(参照信号と同じ周波数を有する画像信号成分のみ又は参照信号と同じ周波数を含む狭周波数帯域の画像信号のみ)を抽出することで、測定すべき熱弾性効果によって生じる温度変化のS/N比を向上させている。そして、抽出した画像信号成分の大きさと、予め記憶されている画像信号成分の大きさ及び温度の対応関係とに応じて、被測定物の温度の時間的変化(赤外線撮像装置で撮像した撮像画像を構成する画素毎の温度の時間的変化)を算出する。次いで、被測定物の温度の時間的変化と、温度の時間的変化及び応力の時間的変化の間の所定の関係式とに基づき、被測定物の応力の時間的変化を算出する。
For this reason, in the technology described in Non-Patent Document 1, a signal waveform corresponding to a temperature change caused by the thermoelastic effect to be measured is locked in from the image signal output from the infrared imaging device, i.e., only a predetermined frequency component is extracted from the image signal output from the infrared imaging device.
Specifically, for example, a reference signal output from a fatigue testing machine that applies a repeated load to a measured object and having the same frequency as the applied repeated load is used. The image signal is synchronously detected by this reference signal, and only the image signal components in the frequency band corresponding to the reference signal (only the image signal components having the same frequency as the reference signal or only the image signal in a narrow frequency band including the same frequency as the reference signal) are extracted, thereby improving the S/N ratio of the temperature change caused by the thermoelastic effect to be measured. Then, the time change in temperature of the measured object (the time change in temperature of each pixel constituting the image captured by the infrared imaging device) is calculated according to the magnitude of the extracted image signal components and the correspondence relationship between the magnitude of the image signal components and the temperature stored in advance. Next, the time change in stress of the measured object is calculated based on the time change in temperature of the measured object and a predetermined relational expression between the time change in temperature and the time change in stress.

このように、ロックイン処理を用いれば、原理的には、被測定物の応力の時間的変化、ひいては被測定物の応力を精度良く算出することが可能であると考えられる。そして、赤外線撮像装置を用いて実際に被測定物を撮像した撮像画像に基づき、被測定物の応力を算出するため、溶接部のような複雑な形状にも適用可能である。
したがい、スポット溶接継手の溶接部を検査する際、具体的には、溶接部の内面応力を評価する際に、FEM解析ではなく、ロックイン処理を適用した熱弾性応力測定法を用いることが考えられる。
In this way, it is believed that the lock-in process can, in principle, accurately calculate the change in stress of the object with time, and therefore the stress of the object. Furthermore, since the stress of the object is calculated based on an image of the object actually captured by an infrared imaging device, the process can be applied to objects with complex shapes, such as welds.
Therefore, when inspecting the welded portion of a spot welded joint, specifically when evaluating the internal stress of the welded portion, it may be possible to use a thermoelastic stress measurement method to which lock-in processing is applied, rather than FEM analysis.

しかしながら、スポット溶接継手の溶接部の内面応力を評価する際に熱弾性応力測定法を用いる場合、赤外線撮像装置は、溶接部の外面(板材の重ね合わせ面と反対側の面)を撮像することになる。このため、熱弾性応力測定法で直接測定できる応力は、溶接部の外面応力(外面側の応力)であって、溶接部の内面応力ではないという問題がある。 However, when using the thermoelastic stress measurement method to evaluate the internal stress of the welded part of a spot welded joint, the infrared imaging device images the outer surface of the welded part (the surface opposite the overlapping surfaces of the plate materials). This poses the problem that the stress that can be directly measured using the thermoelastic stress measurement method is the external stress of the welded part (stress on the outer surface), not the internal stress of the welded part.

また、前述のように熱弾性効果によって生じる温度変化が極微小であると共に、スポット溶接継手の板材の板厚が比較的小さいために溶接部の周囲への熱伝導が生じ易い。このため、熱弾性応力測定法では、スポット溶接継手の溶接部に実際に生じた外面応力の時間的変化に対応する温度の時間的変化を精度良く算出できない。本発明者らの知見では、スポット溶接継手に付加する繰り返し荷重の周波数が小さいほど、上記の熱伝導の影響が大きくなり、溶接部に実際に生じた外面応力の時間的変化に対応する温度の時間的変化の算出精度が悪くなる。具体的には、溶接部に実際に生じた外面応力の時間的変化よりも小さな値に対応する温度の時間的変化が算出されることになる。このため、熱弾性応力測定法で測定される外面応力は、溶接部に実際に生じた外面応力よりも小さくなるという問題がある。 As mentioned above, the temperature change caused by the thermoelastic effect is extremely small, and the plate thickness of the plate material of the spot welded joint is relatively small, so heat conduction to the periphery of the welded part is likely to occur. For this reason, the thermoelastic stress measurement method cannot accurately calculate the time change of temperature corresponding to the time change of the external stress actually generated in the welded part of the spot welded joint. According to the knowledge of the inventors, the smaller the frequency of the repeated load applied to the spot welded joint, the greater the effect of the above-mentioned heat conduction, and the worse the calculation accuracy of the time change of temperature corresponding to the time change of the external stress actually generated in the welded part. Specifically, the time change of temperature calculated corresponds to a value smaller than the time change of the external stress actually generated in the welded part. For this reason, there is a problem that the external stress measured by the thermoelastic stress measurement method is smaller than the external stress actually generated in the welded part.

特許文献1~4には、熱弾性応力測定法の測定精度を高める方法について提案されているものの、上記の問題を解決できるものではない。 Patent documents 1 to 4 propose methods for improving the measurement accuracy of thermoelastic stress measurement, but they do not solve the above problems.

矢尾板達也、他2名、「赤外線カメラによる応力測定と疲労限界点の予測測定」、自動車技術会秋季学術講演会、No.98-03、(2003)Tatsuya Yaoita and two others, "Stress measurement using infrared camera and prediction measurement of fatigue limit point", Society of Automotive Engineers of Japan Autumn Academic Conference, No. 98-03, (2003)

特開2018-179730号公報JP 2018-179730 A 特開2015-001392号公報JP 2015-001392 A 特開2016-024057号公報JP 2016-024057 A 特開2018-128431号公報JP 2018-128431 A

本発明は、上記のような従来技術の問題点を解決するためになされたものであり、熱弾性応力測定法の測定結果を用いてスポット溶接継手の溶接部の内面応力を評価可能な方法を提供することを課題とする。また、熱弾性応力測定法の測定結果を容易に評価可能な熱弾性応力測定法の評価方法を提供することを課題とする。 The present invention has been made to solve the problems of the conventional technology as described above, and has an object to provide a method capable of evaluating the internal stress of a welded portion of a spot-welded joint using the measurement results of a thermoelastic stress measurement method . Another object of the present invention is to provide an evaluation method of the thermoelastic stress measurement method capable of easily evaluating the measurement results of the thermoelastic stress measurement method.

前記課題を解決するため、本発明者らは鋭意検討し、以下の(1)~(4)の知見を得た。
(1)スポット溶接継手の数値解析モデルを対象として、スポット溶接継手に付加する繰り返し荷重の最大荷重及び最小荷重を用いて熱弾性応力測定法を模擬した応力場及び温度場の連成有限要素法解析を実行することで、熱弾性応力測定法で測定した溶接部の外面応力と同等の外面応力σhzを算出可能である。ただし、連成有限要素法解析で算出される外面応力σhzには、熱弾性応力測定法と同様に、スポット溶接継手の板材の板厚tやスポット溶接継手に付加する繰り返し荷重の周波数Hzに応じた熱伝導の影響が生じる。
(2)スポット溶接継手の数値解析モデルを対象として、スポット溶接継手に付加する繰り返し荷重の最大荷重を用いた静的有限要素法解析を実行することで、溶接部に実際に生じる外面応力と同等の外面応力σfを算出可能である。また、静的有限要素法解析を実行することで、溶接部の外面応力σfに対する内面応力σiの比率(内外応力比)を精度良く算出可能である。ただし、静的有限要素法で算出される内外応力比は、スポット溶接継手の板材の板厚tの影響を受ける。
(3)上記の(1)及び(2)から、スポット溶接継手の数値解析モデルを対象として、静的有限要素法解析及び連成有限要素法解析を実行することで、連成有限要素法解析を実行することで算出した溶接部の外面応力σhzと、板材の板厚tと、繰り返し荷重の周波数Hzとを入力パラメータとして、静的有限要素法解析を実行することで算出される溶接部の内面応力σiを推定するための関係式を導出可能である。そして、この関係式は、溶接部の複雑な形状の影響を受け難いし、繰り返し荷重の荷重値の影響を受けない。換言すれば、有限要素法解析において溶接部の正確なモデル化が困難であっても、推定精度の高い関係式を導出可能である。
(4)したがい、熱弾性応力測定法を用いて測定した評価対象であるスポット溶接継手の溶接部の外面応力σirと、予め認識可能な評価対象であるスポット溶接継手の板材の板厚tと、予め認識可能な評価対象であるスポット溶接継手に付加する繰り返し荷重の周波数Hzとを、上記の(3)で導出した関係式に入力すれば(関係式の入力パラメータである外面応力σhzの代わりに、熱弾性応力測定法を用いて測定した評価対象であるスポット溶接継手の溶接部の外面応力σirを入力すれば)、評価対象であるスポット溶接継手の溶接部の内面応力σi’を溶接部に実際に生じる内面応力と同等に精度良く算出可能である。
In order to solve the above problems, the present inventors have conducted extensive research and have obtained the following findings (1) to (4).
(1) By performing coupled finite element analysis of stress field and temperature field simulating the thermoelastic stress measurement method using the maximum and minimum loads of the repeated load applied to the spot welded joint for a numerical analysis model of the spot welded joint, it is possible to calculate an outer surface stress σhz equivalent to the outer surface stress of the weld measured by the thermoelastic stress measurement method. However, as with the thermoelastic stress measurement method, the outer surface stress σhz calculated by the coupled finite element analysis is affected by heat conduction according to the plate thickness t of the plate material of the spot welded joint and the frequency Hz of the repeated load applied to the spot welded joint.
(2) By performing a static finite element method analysis using the maximum load of the repeated load applied to the spot welded joint as the target of a numerical analysis model of the spot welded joint, it is possible to calculate an outer surface stress σf equivalent to the outer surface stress actually generated in the welded part. In addition, by performing a static finite element method analysis, it is possible to accurately calculate the ratio of the inner surface stress σi to the outer surface stress σf of the welded part (inner and outer stress ratio). However, the inner and outer stress ratio calculated by the static finite element method is affected by the plate thickness t of the plate material of the spot welded joint.
(3) From the above (1) and (2), by performing a static finite element method analysis and a coupled finite element method analysis on a numerical analysis model of a spot-welded joint, it is possible to derive a relational expression for estimating an inner stress σi of a weld calculated by performing a static finite element method analysis using the outer stress σhz of the weld calculated by performing the coupled finite element method analysis, the plate thickness t of the plate material, and the frequency Hz of the repeated load as input parameters. This relational expression is not easily affected by the complex shape of the weld and is not affected by the load value of the repeated load. In other words, even if it is difficult to accurately model the weld in the finite element method analysis, it is possible to derive a relational expression with high estimation accuracy.
(4) Therefore, by inputting the outer stress σir of the welded part of the spot-welded joint to be evaluated, measured using a thermoelastic stress measurement method, the plate thickness t of the plate material of the spot-welded joint to be evaluated, which can be known in advance, and the frequency Hz of the repeated load applied to the spot-welded joint to be evaluated, which can be known in advance, into the relational equation derived in (3) above (by inputting the outer stress σir of the welded part of the spot-welded joint to be evaluated, measured using a thermoelastic stress measurement method, instead of the outer stress σhz, which is an input parameter of the relational equation), the inner stress σi' of the welded part of the spot-welded joint to be evaluated can be calculated with the same accuracy as the inner stress actually occurring in the welded part.

本発明は、本発明者らの上記の知見に基づき完成したものである。
すなわち、前記課題を解決するため、本発明は、重ね合わせられた板材をスポット溶接することにより形成されるスポット溶接継手にせん断方向の繰り返し荷重を付加した場合の前記スポット溶接継手の溶接部の内面応力を評価する方法であって、以下の(A)~(C)の手順を含む、ことを特徴とするスポット溶接継手の内面応力評価方法を提供する。
(A)関係式導出手順:前記スポット溶接継手の数値解析モデルを対象として、前記繰り返し荷重の想定最大荷重を用いた静的有限要素法解析と、前記繰り返し荷重の想定最大荷重及び想定最小荷重を用いた応力場及び温度場の連成有限要素法解析とを実行することで、連成有限要素法解析を実行することで算出した前記溶接部の外面応力σhzと、前記板材の板厚tと、前記繰り返し荷重の周波数Hzとを入力パラメータとして、静的有限要素法解析を実行することで算出される前記溶接部の内面応力σiを推定するための関係式を導出する。
(B)外面応力測定手順:評価対象である前記スポット溶接継手に前記繰り返し荷重を付加し、熱弾性応力測定法を用いて、前記溶接部の外面応力σirを測定する。
(C)内面応力算出手順:前記外面応力測定手順で測定した前記評価対象である前記スポット溶接継手の前記溶接部の外面応力σirと、前記評価対象である前記スポット溶接継手の前記板材の板厚tと、前記評価対象である前記スポット溶接継手に付加するせん断方向の繰り返し荷重の周波数Hzとを、前記関係式導出手順で導出した関係式に入力することで、前記評価対象である前記スポット溶接継手の前記溶接部の内面応力σi’を算出する。
The present invention has been completed based on the above findings of the present inventors.
In other words, in order to solve the above-mentioned problems, the present invention provides a method for evaluating the internal stress of a welded portion of a spot welded joint formed by spot welding overlapping plate materials when a repeated load in a shear direction is applied to the spot welded joint, the method comprising the following steps (A) to (C).
(A) Procedure for deriving the relational equation: A static finite element method analysis using the assumed maximum load of the repeated load and a coupled finite element method analysis of the stress field and temperature field using the assumed maximum load and assumed minimum load of the repeated load are performed on a numerical analysis model of the spot welded joint, and a relational equation for estimating the internal stress σi of the welded portion calculated by performing a static finite element method analysis is derived using the outer surface stress σhz of the welded portion calculated by performing the coupled finite element method analysis, the plate thickness t of the plate material, and the frequency Hz of the repeated load as input parameters.
(B) Outer surface stress measurement procedure: The repeated load is applied to the spot welded joint to be evaluated, and the outer surface stress σir of the weld is measured using a thermoelastic stress measurement method.
(C) Inner surface stress calculation procedure: The outer surface stress σir of the welded portion of the spot welded joint to be evaluated measured in the outer surface stress measurement procedure, the plate thickness t of the plate material of the spot welded joint to be evaluated, and the frequency Hz of the repeated load in the shear direction applied to the spot welded joint to be evaluated are input into the relational equation derived in the relational equation derivation procedure to calculate the inner surface stress σi' of the welded portion of the spot welded joint to be evaluated.

本発明において、「せん断方向」とは、板材の重ね合わせ方向に直交する方向を意味する。
本発明において、「内面応力」とは、板材の重ね合わせ面側の応力を意味する。また、「溶接部の内面応力」として、具体的には、溶接部のナゲットの中心部の応力を例示できる。ただし、これに限るものではなく、溶接部の内面応力として、溶接部のナゲットと熱影響部との境界部分の応力や、溶接部の内面側の所定部位の平均応力等を算出することも可能である。
本発明において、「外面応力」とは、板材の重ね合わせ面と反対側の面側の応力を意味する。また、「溶接部の外面応力」として、具体的には、板材の重ね合わせ方向から見て、溶接部のナゲットの中心部に対応する位置にある溶接部の熱影響部の応力を例示できる。ただし、これに限るものではなく、溶接部のナゲットと熱影響部との境界部分に対応する位置にある熱影響部の応力や、溶接部の外面側の所定部位の平均応力等を算出することも可能である。
本発明において、「想定最大荷重」とは、スポット溶接継手の数値解析モデルに付加するものとして設定した繰り返し荷重の最大荷重を意味する。外面応力測定手順でスポット溶接継手に実際に付加する繰り返し荷重の最大荷重と必ずしも同じ値である必要はない。実際に付加する繰り返し荷重の最大荷重が不明である場合、想定最大荷重は任意の値に設定すればよい。
本発明において、「想定最小荷重」とは、スポット溶接継手の数値解析モデルに付加するものとして設定した繰り返し荷重の最小荷重を意味する。外面応力測定手順でスポット溶接継手に実際に付加する繰り返し荷重の最小荷重と必ずしも同じ値である必要はない。実際に付加する繰り返し荷重の最小荷重が不明である場合、想定最小荷重は任意の値に設定すればよい。
本発明において、「板材の板厚」とは、重ね合わせられた各板材の重ね合わせ方向の寸法を意味する。
本発明において、「溶接部の外面応力を測定する」とは、溶接部の外面応力そのものを測定する場合の他、溶接部の外面応力の時間的変化を測定する場合も含む概念である。
本発明において、「溶接部の内面応力を算出する」とは、溶接部の内面応力そのものを算出する場合の他、溶接部の内面応力の時間的変化を算出する場合も含む概念である。
本発明において、内面応力算出手順で関係式に入力する板材の板厚t及び繰り返し荷重の周波数Hzとしては、設定値を用いてもよいし、実測値を用いてもよい。
In the present invention, the "shear direction" means a direction perpendicular to the overlapping direction of the plate materials.
In the present invention, "internal stress" refers to the stress on the overlapping surface side of the plate material. In addition, the "internal stress of the weld" can be specifically exemplified by the stress at the center of the nugget of the weld. However, this is not limited thereto, and it is also possible to calculate the stress at the boundary between the nugget and the heat-affected zone of the weld, the average stress at a specified portion on the internal side of the weld, etc.
In the present invention, "external stress" refers to stress on the surface side opposite to the overlapping surface of the plate material. In addition, specifically, the "external stress of the welded portion" can be exemplified by stress in the heat-affected portion of the welded portion located at a position corresponding to the center of the nugget of the welded portion when viewed from the overlapping direction of the plate material. However, this is not limited thereto, and it is also possible to calculate stress in the heat-affected portion located at a position corresponding to the boundary between the nugget and the heat-affected portion of the welded portion, average stress in a predetermined portion on the outer surface side of the welded portion, etc.
In the present invention, the "assumed maximum load" refers to the maximum load of the repeated load set to be applied to the numerical analysis model of the spot welded joint. It does not necessarily have to be the same value as the maximum load of the repeated load actually applied to the spot welded joint in the external stress measurement procedure. If the maximum load of the repeated load actually applied is unknown, the assumed maximum load may be set to any value.
In the present invention, the "assumed minimum load" means the minimum load of the repeated load set to be applied to the numerical analysis model of the spot welded joint. It does not necessarily have to be the same value as the minimum load of the repeated load actually applied to the spot welded joint in the external stress measurement procedure. If the minimum load of the repeated load actually applied is unknown, the assumed minimum load may be set to any value.
In the present invention, the "thickness of a plate material" means the dimension of each plate material in the overlapping direction.
In the present invention, the term "measuring the external stress of a weld" is a concept that includes not only the measurement of the external stress of a weld itself, but also the measurement of the change in the external stress of a weld over time.
In the present invention, the term "calculating the internal stress of a weld" is a concept that includes not only the calculation of the internal stress of a weld itself, but also the calculation of the change in the internal stress of a weld over time.
In the present invention, the plate thickness t of the plate material and the frequency Hz of the repeated load input to the relational expression in the procedure for calculating the internal stress may be set values or may be actual measured values.

本発明によれば、関係式導出手順において、静的有限要素法解析及び連成有限要素法解析を実行することで、溶接部の外面応力σhzと、板材の板厚tと、繰返し荷重の周波数Hzとを入力パラメータとして、溶接部の内面応力σiを推定するための関係式を導出する。次に、外面応力測定手順において、評価対象であるスポット溶接継手に繰り返し荷重を付加し、熱弾性応力測定法を用いて、溶接部の外面応力σirを実際に測定する。最後に、内面応力算出手順において、外面応力測定手順で実際に測定した評価対象であるスポット溶接継手の溶接部の外面応力σirと、評価対象であるスポット溶接継手の板材の板厚tと、評価対象であるスポット溶接継手に付加する繰り返し荷重の周波数Hzとを、関係式導出手順で導出した関係式に入力することで、評価対象であるスポット溶接継手の溶接部の内面応力σi’を算出する。
以上のように、本発明によれば、関係式導出手順で導出した関係式と、外面応力測定手順で実際に測定した評価対象であるスポット溶接継手の溶接部の外面応力σirとを用いて、スポット溶接継手の溶接部の内面応力σi’を算出可能である。関係式には、板材の板厚t及び繰り返し荷重の周波数Hzを入力パラメータとして入力するため、板材の板厚t及び繰り返し荷重の周波数Hzによる熱伝導の影響が低減し、溶接部の内面応力σi’を精度良く算出可能である。
According to the present invention, in the relational expression derivation procedure, a static finite element method analysis and a coupled finite element method analysis are performed to derive a relational expression for estimating an inner surface stress σi of a welded portion, using the outer surface stress σhz of the welded portion, the plate thickness t of the plate material, and the frequency Hz of the repeated load as input parameters. Next, in the outer surface stress measurement procedure, a repeated load is applied to the spot-welded joint to be evaluated, and the outer surface stress σir of the welded portion is actually measured using a thermoelastic stress measurement method. Finally, in the inner surface stress calculation procedure, the outer surface stress σir of the welded portion of the spot-welded joint to be evaluated, which is actually measured in the outer surface stress measurement procedure, the plate thickness t of the spot-welded joint to be evaluated, and the frequency Hz of the repeated load applied to the spot-welded joint to be evaluated are input into the relational expression derived in the relational expression derivation procedure, to calculate the inner surface stress σi' of the welded portion of the spot-welded joint to be evaluated.
As described above, according to the present invention, the inner surface stress σi' of the welded portion of a spot-welded joint can be calculated using the relational equation derived in the relational equation derivation procedure and the outer surface stress σir of the welded portion of the spot-welded joint that is the evaluation target actually measured in the outer surface stress measurement procedure. Since the plate thickness t of the plate material and the frequency Hz of the repeated load are input as input parameters into the relational equation, the influence of heat conduction due to the plate thickness t of the plate material and the frequency Hz of the repeated load is reduced, and the inner surface stress σi' of the welded portion can be calculated with high accuracy.

また、本発明によれば、評価対象であるスポット溶接継手に実際に付加する繰り返し荷重の荷重値(最大荷重、最小荷重)を必要とせずに溶接部の内面応力σi’を算出できるため、評価対象について繰り返し荷重の荷重値が不明である場合にも適用できるという利点を有する。
さらに、本発明によれば、熱弾性応力測定法を用いて実際に測定した評価対象であるスポット溶接継手の溶接部の外面応力σirを用いるため(有限要素法解析を用いるのは関係式導出手順で関係式を導出するときだけであるため)、スポット溶接継手の溶接部のような正確なモデル化が困難な複雑な形状にも適用できるという利点を有する。
In addition, according to the present invention, the internal stress σi′ of the weld can be calculated without requiring the load values (maximum load, minimum load) of the cyclic load actually applied to the spot-welded joint to be evaluated, and therefore has the advantage of being applicable even when the load value of the cyclic load for the object to be evaluated is unknown.
Furthermore, according to the present invention, the outer surface stress σir of the weld of the spot-welded joint, which is the evaluation target, is used, which is actually measured using a thermoelastic stress measurement method (the finite element method analysis is used only when deriving the relational equation in the relational equation derivation procedure), so it has the advantage of being applicable to complex shapes that are difficult to model accurately, such as the weld of a spot-welded joint.

なお、本発明において、関係式導出手順を1回実行して関係式を導出しておけば、複数の評価対象に対して外面応力測定手順及び内面応力算出手順を実行する際に、導出した同じ関係式を繰り返し用いることが可能である。すなわち、本発明によって複数の評価対象の溶接部の内面応力を評価する際、関係式導出手順を評価対象の数だけ実行する必要はなく、予め1回だけ実行しておけばよい。 In addition, in the present invention, if the relational equation deriving procedure is performed once to derive the relational equation, the same derived relational equation can be repeatedly used when performing the outer surface stress measurement procedure and the inner surface stress calculation procedure for multiple evaluation objects. In other words, when evaluating the inner surface stress of the welds of multiple evaluation objects using the present invention, it is not necessary to perform the relational equation deriving procedure as many times as the number of evaluation objects, and it is sufficient to perform it only once in advance.

ここで、本発明の関係式導出手順で実行する連成有限要素法解析を、繰り返し荷重を付加する所定時間だけ行うには、繰り返し荷重の周期毎に所定時間だけ計算を繰り返す必要があり、計算時間が増大するため、膨大なコストがかかるという問題がある。
そこで、本発明者らは鋭意検討し、線形変形の弾性解析であれば、繰り返し荷重によって生じる応力の時間的変化が、繰り返し荷重の各周期間で殆ど変わらないことに着目し、これを利用すればよいことに想到した。具体的には、応力場の解析は、繰り返し荷重の周期毎に計算を繰り返すことなく、1周期における繰り返し荷重の想定最大荷重及び想定最小荷重を条件として用いて1回だけ行い、これにより算出される応力の時間的変化を温度場の解析に利用すれば、熱弾性効果によって生じる温度変化のみを、迅速に且つ十分な精度で容易に算出できることに想到した。
Here, in order to perform the coupled finite element method analysis executed in the relational equation derivation procedure of the present invention for a specified time period during which a repeated load is applied, it is necessary to repeat calculations for a specified time period for each cycle of the repeated load, which increases the calculation time and results in a problem of huge costs.
Therefore, the inventors have conducted extensive research and have come to the conclusion that, in the case of elastic analysis of linear deformation, the change in stress over time caused by repeated loading hardly changes between cycles of the repeated loading, and that this fact can be utilized. Specifically, the analysis of the stress field is performed only once using the assumed maximum load and assumed minimum load of the repeated loading in one cycle as conditions, without repeating the calculation for each cycle of the repeated loading, and the change in stress over time calculated in this way is utilized in the analysis of the temperature field, thereby making it possible to quickly and easily calculate only the temperature change caused by the thermoelastic effect with sufficient accuracy.

以下の好ましい方法は、本発明者らの上記の知見に基づき完成したものである。
すなわち、好ましくは、前記関係式導出手順で実行する連成有限要素法解析は、前記数値解析モデルを対象として、前記繰り返し荷重の想定最大荷重及び想定最小荷重を用いた応力解析を行い、前記数値解析モデルの応力分布を算出する応力解析ステップと、前記応力解析ステップで算出した前記数値解析モデルの応力分布と、前記スポット溶接継手の材料特性と、前記繰り返し荷重の周波数Hzとを用いて、熱流束を算出する熱流束算出ステップと、前記熱流束算出ステップで算出した熱流束を用いた伝熱解析を行い、前記数値解析モデルの温度分布を算出する伝熱解析ステップと、を含み、前記熱流束算出ステップ及び前記伝熱解析ステップを前記繰り返し荷重を付加する所定時間だけ繰り返し実行することで、前記所定時間経過後の前記数値解析モデルの温度分布を算出し、前記所定時間経過後の前記数値解析モデルの温度分布に基づき、前記溶接部の外面温度を算出し、前記溶接部の外面温度を前記溶接部の外面応力σhzに換算する換算ステップを更に含む。
The following preferred method has been completed based on the above findings of the present inventors.
That is, preferably, the coupled finite element method analysis performed in the relational equation derivation procedure includes a stress analysis step of performing a stress analysis using an assumed maximum load and an assumed minimum load of the repeated load on the numerical analysis model to calculate a stress distribution of the numerical analysis model, a heat flux calculation step of calculating a heat flux using the stress distribution of the numerical analysis model calculated in the stress analysis step, the material properties of the spot welded joint, and the frequency Hz of the repeated load, and a heat transfer analysis step of performing a heat transfer analysis using the heat flux calculated in the heat flux calculation step to calculate a temperature distribution of the numerical analysis model, and further includes a conversion step of calculating a temperature distribution of the numerical analysis model after the predetermined time has elapsed by repeatedly executing the heat flux calculation step and the heat transfer analysis step for a predetermined time during which the repeated load is applied, and calculating an outer surface temperature of the welded portion based on the temperature distribution of the numerical analysis model after the predetermined time has elapsed, and converting the outer surface temperature of the welded portion into an outer surface stress σhz of the welded portion.

上記の好ましい方法において、「溶接部の外面温度を算出」するとは、溶接部の外面温度そのものを算出する場合の他、溶接部の外面温度の時間的変化を算出する場合も含む概念である。
上記の好ましい方法によれば、応力解析ステップにおいて、スポット溶接継手の数値解析モデルを対象として、繰り返し荷重の想定最大荷重及び想定最小荷重を用いた応力解析を行い、数値解析モデルの応力分布を算出する。この応力解析ステップは、繰り返し実行する必要がなく、繰り返し荷重の想定最大荷重及び想定最小荷重を用いて1回実行すればよい。
次に、上記の好ましい方法によれば、熱流束算出ステップにおいて、応力解析ステップで算出した数値解析モデルの応力分布と、スポット溶接継手の材料特性と、繰り返し荷重の周波数Hzとを用いて、熱流束を算出する。熱流束算出ステップで用いるスポット溶接継手の材料特性としては、スポット溶接継手(板材)の熱弾性係数、密度及び比熱を例示できる。
次に、上記の好ましい方法によれば、伝熱解析ステップにおいて、熱流束算出ステップで算出した熱流束を用いた伝熱解析を行い、数値解析モデルの温度分布を算出する。
そして、上記の熱流束算出ステップ及び伝熱解析ステップを繰り返し荷重を付加する所定時間だけ繰り返し実行することで、所定時間経過後の数値解析モデルの温度分布を算出可能である。
最後に、上記の好ましい方法によれば、換算ステップにおいて、所定時間経過後の数値解析モデルの温度分布に基づき、溶接部の外面温度を算出可能であり、この溶接部の外面温度を溶接部の外面応力σhzに換算可能である。溶接部の外面温度を外面応力σhzに換算するには、温度と応力との間の公知の関係式を用いればよい。
In the above-mentioned preferred method, "calculating the outer surface temperature of the weld" is a concept that includes not only the calculation of the outer surface temperature of the weld itself, but also the calculation of the change in the outer surface temperature of the weld over time.
According to the above-mentioned preferred method, in the stress analysis step, a stress analysis is performed using an assumed maximum load and an assumed minimum load of a repeated load on a numerical analysis model of a spot welded joint, and a stress distribution of the numerical analysis model is calculated. This stress analysis step does not need to be performed repeatedly, and it is sufficient to perform it once using the assumed maximum load and the assumed minimum load of the repeated load.
Next, according to the above-mentioned preferred method, in the heat flux calculation step, the heat flux is calculated using the stress distribution of the numerical analysis model calculated in the stress analysis step, the material properties of the spot-welded joint, and the frequency Hz of the repeated load. Examples of the material properties of the spot-welded joint used in the heat flux calculation step include the thermoelastic coefficient, density, and specific heat of the spot-welded joint (plate material).
Next, according to the above-mentioned preferred method, in the heat transfer analysis step, a heat transfer analysis is performed using the heat flux calculated in the heat flux calculation step, and a temperature distribution in the numerical analysis model is calculated.
Then, by repeatedly executing the above-mentioned heat flux calculation step and heat transfer analysis step for a predetermined time during which the repeated load is applied, it is possible to calculate the temperature distribution of the numerical analysis model after the predetermined time has elapsed.
Finally, according to the above-mentioned preferred method, in the conversion step, the outer surface temperature of the welded portion can be calculated based on the temperature distribution of the numerical analysis model after a predetermined time has elapsed, and the outer surface temperature of the welded portion can be converted into the outer surface stress σhz of the welded portion. To convert the outer surface temperature of the welded portion into the outer surface stress σhz, a known relationship between temperature and stress may be used.

本発明において、具体的には、前記関係式導出手順は、前記板材の板厚tを変更した複数の前記数値解析モデルを対象として、静的有限要素法解析を実行することで、前記溶接部の外面応力σf及び内面応力σiを算出し、前記溶接部の外面応力σfに対する内面応力σiの比率である内外応力比Rtを前記板厚t毎に算出して、前記内外応力比Rtを前記板厚tの指数関数で表した第1関係式を導出する第1関係式導出ステップと、前記板材の板厚tを変更した複数の前記数値解析モデルを対象として、それぞれ前記繰り返し荷重の周波数Hzを変更した複数の連成有限要素法解析を実行することで、前記繰り返し荷重の周波数Hz毎に前記溶接部の外面応力σhzを算出し、連成有限要素法解析を実行することで算出した前記溶接部の外面応力σhzに対する静的有限要素法解析を実行することで算出した前記溶接部の外面応力σfの比率である応力変換比Rhzを前記繰り返し荷重の周波数Hz毎に算出して、前記応力変換比Rhzを前記繰り返し荷重の周波数Hzの累乗関数で表した第2関係式を前記板材の板厚t毎に導出する第2関係式導出ステップと、前記累乗関数の係数を前記板材の板厚tの線形関数で表した第3関係式を導出する第3関係式導出ステップと、を含むことが好ましい。 In the present invention, specifically, the procedure for deriving the relational equation includes a first relational equation deriving step of calculating the outer surface stress σf and the inner surface stress σi of the welded portion by performing a static finite element method analysis on a plurality of the numerical analysis models in which the plate thickness t of the plate material is changed, calculating an inner and outer stress ratio Rt, which is the ratio of the inner surface stress σi to the outer surface stress σf of the welded portion, for each plate thickness t, and deriving a first relational equation in which the inner and outer stress ratio Rt is expressed as an exponential function of the plate thickness t; and performing a plurality of coupled finite element method analyses in which the frequency Hz of the repeated load is changed on a plurality of the numerical analysis models in which the plate thickness t of the plate material is changed. It is preferable that the method includes a second relational equation deriving step of calculating the outer surface stress σhz of the welded portion for each frequency Hz of the repeated load, calculating a stress conversion ratio Rhz, which is the ratio of the outer surface stress σf of the welded portion calculated by performing static finite element analysis to the outer surface stress σhz of the welded portion calculated by performing coupled finite element analysis, for each frequency Hz of the repeated load, and deriving a second relational equation in which the stress conversion ratio Rhz is expressed as a power function of the frequency Hz of the repeated load for each thickness t of the plate material, and a third relational equation deriving step of deriving a third relational equation in which the coefficient of the power function is expressed as a linear function of the thickness t of the plate material.

また、具体的には、前記内面応力算出手順は、前記評価対象である前記スポット溶接継手の前記板材の板厚tを前記第3関係式に入力することで、前記累乗関数の係数を算出する係数算出ステップと、前記評価対象である前記スポット溶接継手に付加するせん断方向の繰り返し荷重の周波数Hzと、前記算出した前記累乗関数の係数とを前記第2関係式に入力することで、前記応力変換比Rhzを算出する応力変換比算出ステップと、前記外面応力測定手順で測定した前記評価対象である前記スポット溶接継手の前記溶接部の外面応力σirに前記算出した応力変換比Rhzを乗じて、前記溶接部の補正後の外面応力σf’を算出する外面応力補正ステップと、前記評価対象である前記スポット溶接継手の前記板材の板厚tを前記第1関係式に入力することで、前記内外応力比Rtを算出する内外応力比算出ステップと、前記算出した補正後の外面応力σf’に前記算出した内外応力比Rtを乗じて、前記溶接部の内面応力σi’を算出する内面応力算出ステップと、を含むことが好ましい。
なお、前記課題を解決するため、本発明は、被測定物に繰り返し荷重を所定時間だけ付加しながら、赤外線撮像装置を用いて前記被測定物を連続的に撮像することで、前記被測定物の温度分布の時間的変化を測定し、前記測定した温度分布の時間的変化を前記被測定物の応力分布の時間的変化に換算する熱弾性応力測定法の評価方法であって、前記被測定物の数値解析モデルを対象として、前記繰り返し荷重の想定最大荷重及び想定最小荷重を用いた応力解析を行い、前記数値解析モデルの応力分布を算出する応力解析ステップと、前記応力解析ステップで算出した前記数値解析モデルの応力分布と、前記被測定物の材料特性と、前記繰り返し荷重の周波数とを用いて、熱流速を算出する熱流速算出ステップと、前記熱流速算出ステップで算出した熱流速を用いた伝熱解析を行い、前記数値解析モデルの温度分布を算出する伝熱解析ステップと、を含み、前記熱流速算出ステップ及び前記伝熱解析ステップを前記繰り返し荷重を付加する所定時間だけ繰り返し実行することで、前記所定時間経過後の前記数値解析モデルの温度分布を算出する、ことを特徴とする熱弾性応力測定法の評価方法としても提供される。
本発明に係る熱弾性応力測定法の評価方法として、前記熱流速算出ステップは、以下の式(5)に基づき、前記数値解析モデルの要素毎に温度の時間的変化を算出するステップと、以下の式(6)又は式(7)に基づき、前記数値解析モデルの要素毎に熱流速を算出するステップと、を含む、ことが好ましい。
ΔT=-K・T・Δσ ・・・(5)
F=-2・ΔT・ρ・Cp・Hz ・・・(6)
F=2・ΔT・ρ・Cp・Hz ・・・(7)
上記の式(5)において、ΔTは温度の時間的変化を、Kは被測定物の熱弾性係数を、Δσは応力の時間的変化を、Tは数値解析モデルの温度を意味する。
上記の式(6)及び式(7)において、Fは熱流速を、ρは被測定物の密度を、Cpは被測定物の比熱を、Hzは繰り返し荷重の周波数を意味する。圧縮方向に荷重が変化するときには上記の式(6)が用いられ、引張方向に荷重が変化するときには上記の式(7)が用いられる。
Specifically, the internal stress calculation procedure preferably includes a coefficient calculation step of calculating the coefficient of the power function by inputting the plate thickness t of the plate material of the spot welded joint to be evaluated into the third relational expression; a stress conversion ratio calculation step of calculating the stress conversion ratio Rhz by inputting the frequency Hz of the repeated load in the shear direction applied to the spot welded joint to be evaluated and the calculated coefficient of the power function into the second relational expression; an external stress correction step of multiplying the external stress σir of the welded portion of the spot welded joint to be evaluated measured in the external stress measurement procedure by the calculated stress conversion ratio Rhz to calculate a corrected external stress σf ' of the welded portion; an internal stress ratio calculation step of calculating the internal and external stress ratio Rt by inputting the plate thickness t of the plate material of the spot welded joint to be evaluated into the first relational expression; and an internal stress calculation step of multiplying the calculated corrected external stress σf ' by the calculated internal and external stress ratio Rt to calculate the internal stress σi ' of the welded portion.
In order to solve the above-mentioned problem, the present invention provides an evaluation method for a thermoelastic stress measurement method, which measures a time-varying temperature distribution of an object to be measured by continuously imaging the object to be measured using an infrared imaging device while applying a cyclic load to the object to be measured for a predetermined time, and converts the measured time-varying temperature distribution into a time-varying stress distribution of the object to be measured, the method comprising: a stress analysis step of performing a stress analysis using an assumed maximum load and an assumed minimum load of the cyclic load on a numerical analysis model of the object to be measured, and calculating a stress distribution of the numerical analysis model; a heat flow velocity calculation step of calculating a heat flow velocity using the stress distribution of the numerical analysis model calculated in the stress analysis step, material properties of the object to be measured, and a frequency of the cyclic load; and a heat transfer analysis step of performing a heat transfer analysis using the heat flow velocity calculated in the heat flow velocity calculation step, and calculating a temperature distribution of the numerical analysis model, the heat flow velocity calculation step and the heat transfer analysis step being repeatedly performed for the predetermined time during which the cyclic load is applied, thereby calculating a temperature distribution of the numerical analysis model after the predetermined time has elapsed.
In the evaluation method of the thermoelastic stress measurement method according to the present invention, it is preferable that the heat flow rate calculation step includes a step of calculating a change in temperature over time for each element of the numerical analysis model based on the following equation (5), and a step of calculating a heat flow rate for each element of the numerical analysis model based on the following equation (6) or (7).
ΔT=−K T Δσ (5)
F = -2 · ΔT · ρ · Cp · Hz ... (6)
F = 2 · ΔT · ρ · Cp · Hz ... (7)
In the above formula (5), ΔT represents the change in temperature over time, K represents the thermoelastic coefficient of the object to be measured, Δσ represents the change in stress over time, and T represents the temperature of the numerical analysis model.
In the above formulas (6) and (7), F is the heat flow rate, ρ is the density of the object to be measured, Cp is the specific heat of the object to be measured, and Hz is the frequency of the repeated load. When the load changes in the compression direction, the above formula (6) is used, and when the load changes in the tension direction, the above formula (7) is used.

本発明によれば、熱弾性応力測定法の測定結果を用いてスポット溶接継手の溶接部の内面応力を評価可能である。また、本発明によれば、熱弾性応力測定法の測定結果を容易に評価可能である。 According to the present invention, it is possible to evaluate the internal stress of the welded portion of a spot-welded joint using the measurement results of the thermoelastic stress measurement method. Also, according to the present invention, it is possible to easily evaluate the measurement results of the thermoelastic stress measurement method.

本発明の一実施形態に係るスポット溶接継手の内面応力評価方法の手順を概略的に示すフロー図である。1 is a flow chart showing an outline of a procedure for evaluating an internal stress of a spot-welded joint according to an embodiment of the present invention; スポット溶接継手の数値解析モデル(有限要素解析モデル)の一例を示す。An example of a numerical analysis model (finite element analysis model) of a spot welded joint is shown. 図1に示す関係式導出手順S1の内容を具体的に示すフロー図である。FIG. 2 is a flow chart specifically showing the contents of a relational equation deriving step S1 shown in FIG. 1 . 図3に示す第1関係式導出ステップS11において、板厚t毎に算出した内外応力比Rtの一例を示す図である。FIG. 4 is a diagram showing an example of an internal and external stress ratio Rt calculated for each plate thickness t in the first relational expression derivation step S11 shown in FIG. 3. 図3に示す第2関係式導出ステップS12において、ある板厚tの数値解析モデルについて、繰り返し荷重の周波数Hz毎に算出した応力変換比Rhzの一例を示す図である。FIG. 4 is a diagram showing an example of a stress conversion ratio Rhz calculated for each frequency Hz of repeated load for a numerical analysis model having a certain plate thickness t in the second relational expression derivation step S12 shown in FIG. 3. 数値解析モデルの板材の板厚tと、図3に示す第2関係式導出ステップS12で導出した第2関係式の累乗関数の係数s1、s2との関係の一例を示す図である。4 is a diagram showing an example of the relationship between the plate thickness t of the plate material in the numerical analysis model and the coefficients s1 and s2 of the power function of the second relational expression derived in the second relational expression derivation step S12 shown in FIG. 3 . FIG. 図1に示す内面応力算出手順S3の内容を具体的に示すフロー図である。FIG. 2 is a flow chart specifically showing the contents of an inner surface stress calculation procedure S3 shown in FIG. 1 . 図3に示す第2関係式導出ステップS12で実行する連成有限要素法解析の手順を概略的に示すフロー図である。FIG. 4 is a flow chart showing an outline of a procedure of coupled finite element analysis executed in the second relational expression deriving step S12 shown in FIG. 3 . 本発明の実施例において、静的有限要素法解析を実行することで得られた数値解析モデルの外面応力分布の一例を示す。1 shows an example of an outer surface stress distribution of a numerical analysis model obtained by performing a static finite element method analysis in an embodiment of the present invention. 本発明の実施例において、連成有限要素法解析を実行することで得られた数値解析モデルの外面応力分布の一例を示す。1 shows an example of an outer surface stress distribution of a numerical analysis model obtained by performing a coupled finite element method analysis in an embodiment of the present invention. 本発明の実施例において、熱弾性応力測定法を実行することで得られた、最大荷重を付加したときの外面応力分布である。1 shows an outer surface stress distribution when a maximum load is applied, obtained by performing a thermoelastic stress measurement method in an embodiment of the present invention.

以下、添付図面を適宜参照しつつ、本発明の一実施形態に係るスポット溶接継手の内面応力評価方法(以下、適宜、単に「内面応力評価方法」という)について説明する。
図1は、本実施形態に係る内面応力評価方法の手順を概略的に示すフロー図である。図2は、スポット溶接継手の数値解析モデル(有限要素解析モデル)の一例を示す。図2(a)は数値解析モデルの半分を示す斜視図であり、図2(b)は図2(a)の破線Aで囲った領域の拡大斜視図である。図2において、X方向は、スポット溶接継手に繰り返し荷重を付加する方向(せん断方向)を示す。Z方向は、スポット溶接継手の板材の重ね合わせ方向を示す。Y方向は、スポット溶接継手に繰り返し荷重を付加する方向及びスポット溶接継手の板材の重ね合わせ方向に直交する方向を示す。図2(a)は、数値解析モデル全体を溶接部の中心を通りXZ平面に平行な平面で分割した数値解析モデルの半分である。
Hereinafter, a method for evaluating internal stress of a spot-welded joint according to one embodiment of the present invention (hereinafter, simply referred to as "internal stress evaluation method") will be described with reference to the attached drawings as appropriate.
FIG. 1 is a flow diagram showing a schematic procedure of the inner surface stress evaluation method according to the present embodiment. FIG. 2 shows an example of a numerical analysis model (finite element analysis model) of a spot welded joint. FIG. 2(a) is a perspective view showing half of the numerical analysis model, and FIG. 2(b) is an enlarged perspective view of the area surrounded by the dashed line A in FIG. 2(a). In FIG. 2, the X direction indicates the direction in which a repeated load is applied to the spot welded joint (shear direction). The Z direction indicates the overlapping direction of the plate materials of the spot welded joint. The Y direction indicates the direction in which a repeated load is applied to the spot welded joint and the direction perpendicular to the overlapping direction of the plate materials of the spot welded joint. FIG. 2(a) shows half of the numerical analysis model obtained by dividing the entire numerical analysis model by a plane that passes through the center of the weld and is parallel to the XZ plane.

図2に示すように、本実施形態に係る内面応力評価方法は、重ね合わせられた板材11、12をスポット溶接することにより形成されるスポット溶接継手10に、疲労試験機等によってせん断方向(X方向)の繰り返し荷重を付加して、スポット溶接継手10の溶接部13の内面応力を評価する方法である。溶接部13の内面応力は、溶接部13に生じる応力のうち、板材11、12の重ね合わせ面(板材11、12の互いに対向する面である、板材11の面11a及び板材12の面12a)側の応力を意味する。具体的には、溶接部13の内面応力として、溶接部13のナゲット13aの中心部131の応力を例示できる。なお、溶接部13の外面応力は、溶接部13に生じる応力のうち、板材11、12の重ね合わせ面と反対側の面(板材11の面11b及び板材12の面12b)側の応力を意味する。具体的には、溶接部13の外面応力として、板材11、12の重ね合わせ方向(Z方向)から見て、溶接部13のナゲット13aの中心部131に対応する位置にある溶接部13の熱影響部の部位111又は部位121の応力を例示できる。 2, the method for evaluating the internal stress according to the present embodiment is a method for evaluating the internal stress of the welded portion 13 of the spot welded joint 10 formed by spot welding the overlapping plate materials 11 and 12 by applying repeated loads in the shear direction (X direction) using a fatigue testing machine or the like to the spot welded joint 10. The internal stress of the welded portion 13 means the stress on the overlapping surfaces of the plate materials 11 and 12 (surface 11a of the plate material 11 and surface 12a of the plate material 12, which are the opposing surfaces of the plate materials 11 and 12) among the stresses generated in the welded portion 13. Specifically, the stress of the center portion 131 of the nugget 13a of the welded portion 13 can be exemplified as the internal stress of the welded portion 13. The external stress of the welded portion 13 means the stress on the surface opposite to the overlapping surfaces of the plate materials 11 and 12 (surface 11b of the plate material 11 and surface 12b of the plate material 12) among the stresses generated in the welded portion 13. Specifically, an example of the external stress of the welded portion 13 is the stress of the portion 111 or portion 121 of the heat-affected portion of the welded portion 13, which is located at a position corresponding to the center portion 131 of the nugget 13a of the welded portion 13 when viewed from the overlapping direction (Z direction) of the plate materials 11 and 12.

なお、本実施形態では、後述の外面応力測定手順S2において、赤外線撮像装置を板材11の表面(外面)に対向配置し、溶接部13の板材11側の外面応力を測定する場合を例に挙げるため、後述の関係式導出手順S1や内面応力算出手順S3で用いる板材の板厚として、板材11の板厚tを使用する。ただし、後述の外面応力測定手順S2において、赤外線撮像装置を板材12の表面(外面)に対向配置し、溶接部13の板材12側の外面応力を測定することも可能である。この場合には、後述の関係式導出手順S1や内面応力算出手順S3で用いる板材の板厚として、板材12の板厚tを使用する。図2に示す例では、板材11、12の板厚は同じ値のtであるが、異なる値にすることも可能である。 In this embodiment, in the external stress measurement procedure S2 described later, an infrared imaging device is placed opposite the surface (outer surface) of the plate material 11 to measure the external stress on the plate material 11 side of the welded portion 13, so the plate thickness t of the plate material 11 is used as the plate thickness used in the relational equation derivation procedure S1 and the internal stress calculation procedure S3 described later. However, in the external stress measurement procedure S2 described later, an infrared imaging device can be placed opposite the surface (outer surface) of the plate material 12 to measure the external stress on the plate material 12 side of the welded portion 13. In this case, the plate thickness t of the plate material 12 is used as the plate thickness used in the relational equation derivation procedure S1 and the internal stress calculation procedure S3 described later. In the example shown in FIG. 2, the plate thicknesses t of the plates 11 and 12 are the same value, but they can also be different values.

図1に示すように、本実施形態に係る内面応力評価方法は、関係式導出手順S1と、外面応力測定手順S2と、内面応力算出手順S3と、を含む。以下、各手順S1~S3について順に説明する。 As shown in FIG. 1, the method for evaluating inner surface stress according to this embodiment includes a relational equation deriving step S1, an outer surface stress measuring step S2, and an inner surface stress calculation step S3. Each of steps S1 to S3 will be described below in order.

<関係式導出手順S1>
図1に示す関係式導出手順S1では、図2に示すようなスポット溶接継手10の数値解析モデルを対象として、繰り返し荷重の想定最大荷重を用いた静的有限要素法解析(静的FEM解析)と、繰り返し荷重の想定最大荷重及び想定最小荷重を用いた応力場及び温度場の連成有限要素法解析(連成FEM解析)とを実行する。
そして、関係式導出手順S1では、連成FEM解析を実行することで算出した溶接部13の外面応力σhzと、板材11の板厚t(図2(a)参照)と、繰り返し荷重の周波数Hzとを入力パラメータとして、溶接部13の内面応力σiを推定するための関係式を導出する。この関係式は、後述の第1関係式~第3関係式と、後述の内外応力比Rtを定義する式(Rt=σi/σf)と、後述の応力変換比Rhzを定義する式(Rhz=σf/σhz)と、によって構成される。
<Relational Equation Deriving Procedure S1>
In the relational equation derivation procedure S1 shown in FIG. 1, a static finite element method analysis (static FEM analysis) using an assumed maximum load of repeated loads and a coupled finite element method analysis (coupled FEM analysis) of a stress field and a temperature field using an assumed maximum load and an assumed minimum load of repeated loads are performed on a numerical analysis model of a spot welded joint 10 as shown in FIG. 2.
Then, in the relational equation derivation step S1, the outer surface stress σhz of the welded portion 13 calculated by executing the coupled FEM analysis, the plate thickness t of the plate material 11 (see FIG. 2A), and the frequency Hz of the repeated load are used as input parameters to derive a relational equation for estimating the inner surface stress σi of the welded portion 13. This relational equation is composed of first to third relational equations described below, an equation (Rt=σi/σf) defining an inner and outer stress ratio Rt described below, and an equation (Rhz=σf/σhz) defining a stress conversion ratio Rhz described below.

図3は、関係式導出手順S1の内容を具体的に示すフロー図である。
図3に示すように、本実施形態の関係式導出手順S1は、第1関係式導出ステップS11と、第2関係式導出ステップS12と、第3関係式導出ステップS13と、を含む。以下、各ステップS11~S13について順に説明する。
FIG. 3 is a flow chart specifically showing the contents of the relational expression deriving step S1.
3, the relational equation deriving procedure S1 of this embodiment includes a first relational equation deriving step S11, a second relational equation deriving step S12, and a third relational equation deriving step S13. Each of steps S11 to S13 will be described in order below.

[第1関係式導出ステップS11]
第1関係式導出ステップS11では、板材11の板厚tを変更した複数の数値解析モデルを対象として、繰り返し荷重の想定最大荷重を用いた静的FEM解析を実行することで、溶接部13の外面応力σf及び内面応力σiを算出する。具体的には、静的FEM解析には、スポット溶接継手10に付加される繰り返し荷重の想定最大荷重の他、板材11、12のヤング率及びポアソン比や、境界条件(対称条件、拘束条件など)が用いられる。
本実施形態では、静的FEM解析を実行することで、スポット溶接継手10の数値解析モデルの応力分布の時間的変化を算出する。換言すれば、数値解析モデルの要素毎に応力(主応力和ともいう)の時間的変化を算出する。そして、応力分布の初期値(例えば、0)に応力分布の時間的変化を加算することで、想定最大荷重付加後の応力分布を算出し、この算出した応力分布に基づき、溶接部13の外面応力σf及び内面応力σiを算出する。
なお、静的FEM解析を実行するためのソフトウェアとしては、例えば、SIMULIA社製の汎用非線形有限要素解析プログラム「Abaqus」を好適に用いることができるが、本発明はこれに限るものではない。
[First relational equation derivation step S11]
In the first relational equation deriving step S11, a static FEM analysis using an assumed maximum load of the repeated load is performed on a plurality of numerical analysis models in which the plate thickness t of the plate material 11 is changed, thereby calculating the outer surface stress σf and the inner surface stress σi of the welded portion 13. Specifically, in addition to the assumed maximum load of the repeated load applied to the spot-welded joint 10, the Young's modulus and Poisson's ratio of the plate materials 11 and 12, and boundary conditions (symmetry conditions, constraint conditions, etc.) are used in the static FEM analysis.
In this embodiment, a static FEM analysis is performed to calculate the change over time in stress distribution of a numerical analysis model of the spot-welded joint 10. In other words, the change over time in stress (also called the sum of principal stresses) is calculated for each element of the numerical analysis model. Then, the stress distribution after application of the expected maximum load is calculated by adding the change over time in the stress distribution to an initial value (e.g., 0) of the stress distribution, and the outer surface stress σf and inner surface stress σi of the welded portion 13 are calculated based on this calculated stress distribution.
As software for performing static FEM analysis, for example, the general-purpose nonlinear finite element analysis program "Abaqus" manufactured by SIMULIA Corporation can be suitably used, but the present invention is not limited to this.

次に、第1関係式導出ステップS11では、上記のようにして算出した溶接部13の外面応力σfに対する内面応力σiの比率である内外応力比Rt(Rt=σi/σf)を板厚t毎に算出する。
図4は、板厚t毎に算出した内外応力比Rtの一例を示す図である。図4に示す例では、板厚t=0.8mm、1.2mm、1.6mm、2.0mm毎に内外応力比Rtを算出している。図4に示すように、本発明者らの知見によれば、内外応力比Rtを板厚tの指数関数で精度良く近似できることが分かった。したがい、第1関係式導出ステップS11では、板厚t毎に算出した内外応力比Rtに基づき、最小二乗法等の近似計算によって、内外応力比Rtを板厚tの指数関数で表した第1関係式を導出する。すなわち、以下の式(1)で表される第1関係式を導出する。
Rt=c1・ed1・t ・・・(1)
上記の式(1)において、c1、d1は所定の係数(定数)を意味する。eは自然対数の底を意味する。
Next, in the first relational equation deriving step S11, the internal/external stress ratio Rt (Rt = σi/σf), which is the ratio of the internal stress σi to the external stress σf of the welded portion 13 calculated as described above, is calculated for each plate thickness t.
FIG. 4 is a diagram showing an example of the internal and external stress ratio Rt calculated for each plate thickness t. In the example shown in FIG. 4, the internal and external stress ratio Rt is calculated for each plate thickness t = 0.8 mm, 1.2 mm, 1.6 mm, and 2.0 mm. As shown in FIG. 4, according to the knowledge of the inventors, it was found that the internal and external stress ratio Rt can be accurately approximated by an exponential function of the plate thickness t. Therefore, in the first relational expression deriving step S11, based on the internal and external stress ratio Rt calculated for each plate thickness t, a first relational expression in which the internal and external stress ratio Rt is expressed as an exponential function of the plate thickness t is derived by an approximation calculation such as the least squares method. That is, the first relational expression represented by the following formula (1) is derived.
Rt = c1 · e d1 · t ... (1)
In the above formula (1), c1 and d1 are predetermined coefficients (constants), and e is the base of the natural logarithm.

[第2関係式導出ステップS12]
第2関係式導出ステップS12では、板材11の板厚tを変更した複数の数値解析モデルを対象として、それぞれ繰り返し荷重の周波数Hzを変更した複数の連成FEM解析を実行することで、繰り返し荷重の周波数Hz毎に溶接部13の外面応力σhzを算出する。第2関係式導出ステップS12で実行する連成FEM解析の具体的な内容については後述する。
[Step S12 for deriving the second relational expression]
In the second relational equation deriving step S12, a plurality of coupled FEM analyses are performed with different frequencies Hz of the repeated load for a plurality of numerical analysis models with different thicknesses t of the plate material 11, thereby calculating the outer surface stress σhz of the weld 13 for each frequency Hz of the repeated load. The specific content of the coupled FEM analysis performed in the second relational equation deriving step S12 will be described later.

次に、第2関係式導出ステップS12では、連成FEM解析を実行することで算出した溶接部13の外面応力σhzに対する静的FEM解析を実行することで算出した溶接部13の外面応力σfの比率である応力変換比Rhz(Rhz=σf/σhz)を繰り返し荷重の周波数Hz毎に算出する。具体的には、ある板厚tの数値解析モデルについて、応力変換比Rhzを繰り返し荷重の周波数Hz毎に算出し、次に、別の板厚tの数値解析モデルについて、応力変換比Rhzを繰り返し荷重の周波数Hz毎に算出する。以上の手順を全ての板厚tの数値解析モデルについて繰り返し実行する。
図5は、ある板厚tの数値解析モデルについて、繰り返し荷重の周波数Hz毎に算出した応力変換比Rhzの一例を示す図である。図5に示す例では、板厚t=1.2mmの数値解析モデルについて、周波数Hz=1Hz、3Hz、5Hz、7Hz、10Hz、15Hz、50Hz、100Hz、200Hz、400Hz毎に応力変換比Rhzを算出している。図5に示すように、本発明者らの知見によれば、いずれの板厚tの数値解析モデルについても、応力変換比Rhzを繰り返し荷重の周波数Hzの累乗関数で精度良く近似できることが分かった。したがい、第2関係式導出ステップS12では、繰り返し荷重の周波数Hz毎に算出した応力変換比Rhzに基づき、最小二乗法等の近似計算によって、応力変換比Rhzを繰り返し荷重の周波数Hzの累乗関数で表した第2関係式を板厚t毎に導出する。すなわち、以下の式(2)で表される第2関係式を板厚t毎に導出する。
Rhz=s1・Hzs2 ・・・(2)
上記の式(2)において、s1、s2は所定の係数を意味する。
Next, in the second relational expression derivation step S12, a stress conversion ratio Rhz (Rhz=σf/σhz), which is the ratio of the outer surface stress σf of the welded portion 13 calculated by performing static FEM analysis to the outer surface stress σhz of the welded portion 13 calculated by performing coupled FEM analysis, is calculated for each frequency Hz of the repeated load. Specifically, for a numerical analysis model of a certain plate thickness t, the stress conversion ratio Rhz is calculated for each frequency Hz of the repeated load, and then, for a numerical analysis model of another plate thickness t, the stress conversion ratio Rhz is calculated for each frequency Hz of the repeated load. The above procedure is repeatedly performed for the numerical analysis models of all plate thicknesses t.
FIG. 5 is a diagram showing an example of the stress conversion ratio Rhz calculated for each frequency Hz of the repeated load for a numerical analysis model with a certain plate thickness t. In the example shown in FIG. 5, for a numerical analysis model with a plate thickness t = 1.2 mm, the stress conversion ratio Rhz is calculated for each frequency Hz = 1 Hz, 3 Hz, 5 Hz, 7 Hz, 10 Hz, 15 Hz, 50 Hz, 100 Hz, 200 Hz, and 400 Hz. As shown in FIG. 5, according to the knowledge of the inventors, it was found that for any numerical analysis model with a plate thickness t, the stress conversion ratio Rhz can be accurately approximated by a power function of the frequency Hz of the repeated load. Therefore, in the second relational expression derivation step S12, based on the stress conversion ratio Rhz calculated for each frequency Hz of the repeated load, a second relational expression in which the stress conversion ratio Rhz is expressed as a power function of the frequency Hz of the repeated load is derived for each plate thickness t by an approximation calculation such as the least squares method. That is, the second relational expression represented by the following formula (2) is derived for each plate thickness t.
Rhz = s1 · Hz s2 ... (2)
In the above formula (2), s1 and s2 represent predetermined coefficients.

[第3関係式導出ステップS13]
図6は、数値解析モデルの板材11の板厚tと、第2関係式導出ステップS12で導出した第2関係式の累乗関数の係数s1、s2との関係の一例を示す図である。
図6に示すように、本発明者らの知見によれば、第2関係式の累乗関数の係数s1、s2を板材11の板厚tの線形関数で精度良く近似できることが分かった。したがい、第3関係式導出ステップS13では、各板厚t(図6に示す例では、板厚t=0.8mm、1.2mm、1.6mm、2.0mm)に対応する係数s1、s2の値に基づき、最小二乗法等の近似計算によって、累乗関数の係数s1、s2を板材11の板厚tの線形関数で表した第3関係式を導出する。すなわち、以下の式(3)及び式(4)で表される第3関係式を導出する。
s1=a1・t+b1 ・・・(3)
s2=a2・t+b2 ・・・(4)
上記の式(3)において、a1、b1は所定の係数(定数)を意味する。上記の式(4)において、a2、b2は所定の係数(定数)を意味する。
[Third relational expression derivation step S13]
FIG. 6 is a diagram showing an example of the relationship between the plate thickness t of the plate material 11 in the numerical analysis model and the coefficients s1 and s2 of the power function of the second relational expression derived in the second relational expression deriving step S12.
As shown in Fig. 6, according to the findings of the present inventors, it has been found that the coefficients s1 and s2 of the power function of the second relational expression can be accurately approximated by a linear function of the thickness t of the plate material 11. Therefore, in the third relational expression derivation step S13, a third relational expression in which the coefficients s1 and s2 of the power function are expressed by a linear function of the thickness t of the plate material 11 is derived by an approximation calculation such as the least squares method based on the values of the coefficients s1 and s2 corresponding to each plate thickness t (in the example shown in Fig. 6, the plate thicknesses t = 0.8 mm, 1.2 mm, 1.6 mm, and 2.0 mm). That is, the third relational expression represented by the following formulas (3) and (4) is derived.
s1=a1·t+b1... (3)
s2 = a2 · t + b2 ... (4)
In the above formula (3), a1 and b1 are predetermined coefficients (constants), and in the above formula (4), a2 and b2 are predetermined coefficients (constants).

本実施形態の関係式導出手順S1では、以上に説明した第1関係式導出ステップS11~第3関係式導出ステップS13を実行することで、式(1)~式(4)で表される第1関係式~第3関係式を導出する。そして、第1関係式~第3関係式と、内外応力比Rtを定義する式(Rt=σi/σf)と、応力変換比Rhzを定義する式(Rhz=σf/σhz)と、によって構成される関係式は、連成FEM解析を実行することで算出した溶接部13の外面応力σhzと、板材11の板厚tと、繰り返し荷重の周波数Hzとを入力パラメータとして、静的FEM解析を実行することで算出される溶接部13の内面応力σiを推定するための関係式になる。
具体的には、入力パラメータである板厚tを第3関係式に入力することで、係数s1、s2が算出される。この係数s1、s2と、入力パラメータである繰り返し荷重の周波数Hzとを第2関係式に入力することで、応力変換比Rhzが算出される。この応力変換比Rhzを入力パラメータである溶接部13の外面応力σhzに乗じると、応力変換比Rhzを定義する式から、外面応力σfが算出される。一方、入力パラメータである板厚tを第1関係式に入力することで、内外応力比Rtが算出される。この内外応力比Rtを上記のようにして算出される外面応力σfに乗じると、内外応力比Rtを定義する式から、内面応力σiが算出される。したがい、第1関係式~第3関係式と、内外応力比Rtを定義する式と、応力変換比Rhzを定義する式と、によって構成される関係式は、溶接部13の外面応力σhzと、板材11の板厚tと、繰り返し荷重の周波数Hzとを入力パラメータとして、溶接部13の内面応力σiを推定するための関係式になっている。
In the relational equation deriving procedure S1 of this embodiment, the first relational equation to the third relational equation represented by the formulas (1) to (4) are derived by executing the first relational equation to the third relational equation, the formula (Rt=σi/σf) defining the internal/external stress ratio Rt, and the formula (Rhz=σf/σhz) defining the stress conversion ratio Rhz, which are relational equations for estimating the inner surface stress σi of the welded portion 13 calculated by executing a static FEM analysis using the outer surface stress σhz of the welded portion 13 calculated by executing a coupled FEM analysis, the plate thickness t of the plate material 11, and the frequency Hz of the repeated load as input parameters.
Specifically, coefficients s1 and s2 are calculated by inputting the plate thickness t, which is an input parameter, into the third relational expression. The coefficients s1 and s2 and the frequency Hz of the repeated load, which is an input parameter, are input into the second relational expression to calculate the stress conversion ratio Rhz. When the stress conversion ratio Rhz is multiplied by the external stress σhz of the welded portion 13, which is an input parameter, the external stress σf is calculated from the equation that defines the stress conversion ratio Rhz. On the other hand, the internal/external stress ratio Rt is calculated by inputting the plate thickness t, which is an input parameter, into the first relational expression. When the internal/external stress ratio Rt is multiplied by the external stress σf calculated as above, the internal stress σi is calculated from the equation that defines the internal/external stress ratio Rt. Therefore, the relational equation composed of the first to third relational equations, the equation defining the internal and external stress ratio Rt, and the equation defining the stress conversion ratio Rhz is a relational equation for estimating the internal stress σi of the welded portion 13 using the external stress σhz of the welded portion 13, the plate thickness t of the plate material 11, and the frequency Hz of the repeated load as input parameters.

<外面応力測定手順S2>
図1に示す外面応力測定手順S2では、評価対象であるスポット溶接継手10に繰り返し荷重を付加し、熱弾性応力測定法を用いて、評価対象であるスポット溶接継手10の溶接部13の外面応力σirを実際に測定する。具体的には、板材11の表面(外面)に対向配置した赤外線撮像装置を用いて、疲労試験機等によってせん断方向の繰り返し荷重が所定時間だけ付加されるスポット溶接継手10の溶接部13を含む板材11の表面(外面)を連続的に撮像する。そして、好適には、赤外線撮像装置から出力された画像信号から、測定対象とする熱弾性効果によって生じる温度変化に応じた信号波形をロックイン処理する。これにより、評価対象であるスポット溶接継手10の撮像領域の外面応力の分布を測定でき、ひいては溶接部13の外面応力σirを測定可能である。なお、熱弾性応力測定法のより具体的な内容については公知であるため、ここでは詳細な説明を省略する。
<External surface stress measurement procedure S2>
In the external stress measurement procedure S2 shown in FIG. 1, a repeated load is applied to the spot welded joint 10 to be evaluated, and the external stress σir of the welded portion 13 of the spot welded joint 10 to be evaluated is actually measured using a thermoelastic stress measurement method. Specifically, an infrared imaging device arranged opposite the surface (outer surface) of the plate material 11 is used to continuously image the surface (outer surface) of the plate material 11 including the welded portion 13 of the spot welded joint 10 to which a repeated load in the shear direction is applied for a predetermined time by a fatigue testing machine or the like. Then, preferably, a signal waveform corresponding to the temperature change caused by the thermoelastic effect to be measured is locked-in from the image signal output from the infrared imaging device. This makes it possible to measure the distribution of the external stress in the imaging area of the spot welded joint 10 to be evaluated, and thus to measure the external stress σir of the welded portion 13. Note that the specific content of the thermoelastic stress measurement method is publicly known, so a detailed description thereof will be omitted here.

<内面応力算出手順S3>
図1に示す内面応力算出手順S3では、外面応力測定手順S2で測定した評価対象であるスポット溶接継手10の溶接部13の外面応力σirと、評価対象であるスポット溶接継手10の板材11の板厚tと、評価対象であるスポット溶接継手10に付加するせん断方向の繰り返し荷重の周波数Hzとを、関係式導出手順S1で導出した関係式に入力する。これにより、評価対象であるスポット溶接継手10の溶接部13の内面応力σi’を算出する。
<Inner surface stress calculation procedure S3>
1, the outer surface stress σir of the welded portion 13 of the spot-welded joint 10 to be evaluated measured in the outer surface stress measurement procedure S2, the plate thickness t of the plate material 11 of the spot-welded joint 10 to be evaluated, and the frequency Hz of the repeated load in the shear direction applied to the spot-welded joint 10 to be evaluated are input into the relational equation derived in the relational equation derivation procedure S1. In this way, the inner surface stress σi' of the welded portion 13 of the spot-welded joint 10 to be evaluated is calculated.

図7は、内面応力算出手順S3の内容を具体的に示すフロー図である。
図7に示すように、本実施形態の内面応力算出手順S3は、係数算出ステップS31と、応力変換比算出ステップS32と、外面応力補正ステップS33と、内外応力比算出ステップS34と、内面応力算出ステップS35と、を含む。以下、各ステップS31~S35について順に説明する。
FIG. 7 is a flow chart specifically showing the contents of the inner surface stress calculation procedure S3.
7, the inner surface stress calculation procedure S3 of this embodiment includes a coefficient calculation step S31, a stress conversion ratio calculation step S32, an outer surface stress correction step S33, an inner/outer stress ratio calculation step S34, and an inner surface stress calculation step S35. Each of steps S31 to S35 will be described below in order.

[係数算出ステップS31]
係数算出ステップS31では、評価対象であるスポット溶接継手10の板材11の板厚tを第3関係式(s1=a1・t+b1、s2=a2・t+b2)に入力することで、第2関係式の累乗関数の係数s1、s2を算出する。
[Coefficient calculation step S31]
In the coefficient calculation step S31, the plate thickness t of the plate material 11 of the spot welded joint 10 to be evaluated is input into the third relational equation (s1 = a1 · t + b1, s2 = a2 · t + b2) to calculate the coefficients s1 and s2 of the power function of the second relational equation.

[応力変換比算出ステップS32]
応力変換比算出ステップS32では、評価対象であるスポット溶接継手10に付加するせん断方向の繰り返し荷重の周波数Hzと、係数算出ステップS31で算出した累乗関数の係数s1、s2とを第2関係式(Rhz=s1・Hzs2 )に入力することで、応力変換比Rhzを算出する。
[Stress conversion ratio calculation step S32]
In the stress conversion ratio calculation step S32, the frequency Hz of the repeated load in the shear direction applied to the spot welded joint 10 to be evaluated and the coefficients s1 and s2 of the power function calculated in the coefficient calculation step S31 are input into a second relational equation (Rhz = s1 · Hz s2 ) to calculate the stress conversion ratio Rhz.

[外面応力補正ステップS33]
外面応力補正ステップS33では、外面応力測定手順S2で測定した評価対象であるスポット溶接継手10の溶接部13の外面応力σirに、応力変換比算出ステップS32で算出した応力変換比Rhzを乗じて、溶接部13の補正後の外面応力σf’を算出する。外面応力測定手順S2で測定した外面応力σirは、溶接部13に実際に生じた外面応力よりも小さな値となる可能性があるが、応力変換比Rhzを乗じることで、実際に生じた外面応力と同等の外面応力σf’を算出可能である。
[External surface stress correction step S33]
In the outer surface stress correction step S33, the outer surface stress σir of the welded portion 13 of the spot-welded joint 10 to be evaluated, measured in the outer surface stress measurement procedure S2, is multiplied by the stress conversion ratio Rhz calculated in the stress conversion ratio calculation step S32 to calculate a corrected outer surface stress σf' of the welded portion 13. The outer surface stress σir measured in the outer surface stress measurement procedure S2 may be a value smaller than the outer surface stress actually generated in the welded portion 13, but by multiplying by the stress conversion ratio Rhz, it is possible to calculate an outer surface stress σf' equivalent to the outer surface stress actually generated.

[内外応力比算出ステップS34]
内外応力比算出ステップS34では、評価対象であるスポット溶接継手10の板材11の板厚tを第1関係式(Rt=c1・ed1・t)に入力することで、内外応力比Rtを算出する。
[Internal and external stress ratio calculation step S34]
In the internal/external stress ratio calculation step S34, the plate thickness t of the plate material 11 of the spot welded joint 10 to be evaluated is input into a first relational expression (Rt=c1·e d1 ·t ) to calculate the internal/external stress ratio Rt.

[内面応力算出ステップS35]
内面応力算出ステップS35では、外面応力補正ステップS33で算出した補正後の外面応力σf’に、内外応力比算出ステップS34で算出した内外応力比Rtを乗じて、溶接部13の内面応力σi’を算出する。前述のように、外面応力σf’は、実際に生じた外面応力と同等であることが期待できるため、これに内外応力比Rtを乗じて算出される内面応力σi’も実際に生じた内面応力と同等であることが期待できる。
[Inner surface stress calculation step S35]
In the internal stress calculation step S35, the corrected external stress σf′ calculated in the external stress correction step S33 is multiplied by the internal/external stress ratio Rt calculated in the internal/external stress ratio calculation step S34 to calculate the internal stress σi′ of the welded portion 13. As described above, the external stress σf′ can be expected to be equivalent to the external stress that actually occurs, and therefore the internal stress σi′ calculated by multiplying it by the internal/external stress ratio Rt can also be expected to be equivalent to the internal stress that actually occurs.

本実施形態の内面応力算出手順S3では、以上に説明した係数算出ステップS31~内面応力算出ステップS35を実行することで、溶接部13の内面応力σi’を算出する。換言すれば、溶接部13の内面応力σiを推定するための関係式(第1関係式~第3関係式、Rt=σi/σf、Rhz=σf/σhz)の入力パラメータの一つである溶接部13の外面応力σhzの代わりに、外面応力測定手順S2で測定した溶接部13の外面応力σirを入力することで、溶接部13の内面応力σi’を精度良く算出可能である。
なお、本実施形態の内面応力算出手順S3では、係数算出ステップS31、応力変換比算出ステップS32、外面応力補正ステップS33、内外応力比算出ステップS34及び内面応力算出ステップS35の順に実行するが、本発明はこれに限るものではない。内面応力算出ステップS35は最後に実行し、係数算出ステップS31、応力変換比算出ステップS32及び外面応力補正ステップS33は、この順に実行する必要がある。しかしながら、内外応力比算出ステップS34は、係数算出ステップS31の前に実行してもよいし、係数算出ステップS31と応力変換比算出ステップS32との間で実行してもよいし、応力変換比算出ステップS32と外面応力補正ステップS33との間で実行してもよい。
In the inner surface stress calculation procedure S3 of this embodiment, the coefficient calculation step S31 to the inner surface stress calculation step S35 described above are executed to calculate the inner surface stress σi' of the welded portion 13. In other words, by inputting the outer surface stress σir of the welded portion 13 measured in the outer surface stress measurement procedure S2 instead of the outer surface stress σhz of the welded portion 13, which is one of the input parameters of the relational expressions (first relational expression to third relational expression, Rt = σi/σf, Rhz = σf/σhz) for estimating the inner surface stress σi of the welded portion 13, the inner surface stress σi' of the welded portion 13 can be calculated with high accuracy.
In the present embodiment, the inner stress calculation procedure S3 is performed in the order of coefficient calculation step S31, stress conversion ratio calculation step S32, outer surface stress correction step S33, inner and outer stress ratio calculation step S34, and inner stress calculation step S35, but the present invention is not limited to this. The inner stress calculation step S35 is performed last, and the coefficient calculation step S31, stress conversion ratio calculation step S32, and outer surface stress correction step S33 must be performed in this order. However, the inner and outer stress ratio calculation step S34 may be performed before the coefficient calculation step S31, between the coefficient calculation step S31 and the stress conversion ratio calculation step S32, or between the stress conversion ratio calculation step S32 and the outer surface stress correction step S33.

以下、関係式導出手順S1の第2関係式導出ステップS12で実行する連成FEM解析の具体的な内容について説明する。
図8は、第2関係式導出ステップS12で実行する連成FEM解析の手順を概略的に示すフロー図である。図8に示すように、第2関係式導出ステップS12で実行する連成FEM解析は、応力解析ステップS121と、熱流束算出ステップS122と、伝熱解析ステップS123と、換算ステップS125と、を含む。以下、各ステップS121~S125について順に説明する。
Hereinafter, the specific contents of the coupled FEM analysis executed in the second relational equation deriving step S12 of the relational equation deriving procedure S1 will be described.
8 is a flow diagram showing an outline of the procedure of the coupled FEM analysis executed in the second relational expression deriving step S12. As shown in FIG. 8, the coupled FEM analysis executed in the second relational expression deriving step S12 includes a stress analysis step S121, a heat flux calculation step S122, a heat transfer analysis step S123, and a conversion step S125. Each of steps S121 to S125 will be described in order below.

[応力解析ステップS121]
応力解析ステップS121では、図2に示すようなスポット溶接継手10の数値解析モデルを対象として、スポット溶接継手10に付加される繰り返し荷重の想定最大荷重及び想定最小荷重を用いた応力解析を行い、数値解析モデルの応力分布を算出する。この応力解析には、スポット溶接継手10に付加される繰り返し荷重の想定最大荷重及び想定最小荷重の他、板材11、12のヤング率及びポアソン比や、境界条件(対称条件、拘束条件など)が用いられる。
具体的には、本実施形態の応力解析ステップS121では、応力解析を実行することで、数値解析モデルの応力分布の時間的変化を算出する。換言すれば、数値解析モデルの要素毎に応力(主応力和ともいう)の時間的変化Δσを算出する。
なお、応力解析を実行するためのソフトウェアとしては、例えば、SIMULIA社製の汎用非線形有限要素解析プログラム「Abaqus」を好適に用いることができるが、本発明はこれに限るものではない。算出した数値解析モデルの応力分布の時間的変化は、後述の熱流束算出ステップS122で用いるため、例えば、各ステップS121~S125を実行するためのコンピュータが具備するメモリ、ハードディスク、CD-ROM等の記憶媒体に保存すればよい。
[Stress analysis step S121]
2, stress analysis is performed using an assumed maximum load and an assumed minimum load of the repeated load applied to the spot-welded joint 10, and stress distribution in the numerical analysis model is calculated. In addition to the assumed maximum load and assumed minimum load of the repeated load applied to the spot-welded joint 10, Young's modulus and Poisson's ratio of the plate materials 11, 12, and boundary conditions (symmetry conditions, constraint conditions, etc.) are used in this stress analysis.
Specifically, in the stress analysis step S121 of the present embodiment, the stress analysis is performed to calculate the change over time in the stress distribution of the numerical analysis model. In other words, the change over time Δσ in stress (also called the sum of principal stresses) is calculated for each element of the numerical analysis model.
As software for performing the stress analysis, for example, the general-purpose nonlinear finite element analysis program "Abaqus" manufactured by SIMULIA, Inc. can be suitably used, but the present invention is not limited to this. The calculated change in stress distribution over time of the numerical analysis model is used in the heat flux calculation step S122 described later, and may be stored in a storage medium such as a memory, a hard disk, or a CD-ROM provided in a computer for executing each of steps S121 to S125.

[熱流束算出ステップS122]
熱流束算出ステップS122では、応力解析ステップS121で算出した数値解析モデルの応力分布(応力分布の時間的変化)と、スポット溶接継手10の材料特性(例えば、板材11、12の熱弾性係数、密度及び比熱)と、繰り返し荷重の周期Hzとを用いて、熱流束を算出する。
具体的には、本実施形態の熱流束算出ステップS122では、まず以下の式(5)に基づき、数値解析モデルの要素毎に温度の時間的変化ΔTを算出する。
ΔT=-K・T・Δσ ・・・(5)
上記の式(5)において、ΔTは温度の時間的変化を、Kは板材11、12の熱弾性係数を、Δσは応力の時間的変化を、Tは数値解析モデルの温度を意味する。なお、熱流束算出ステップS122を最初に実行する際、Tには初期温度として雰囲気温度(例えば、20℃)が入力される。
[Heat flux calculation step S122]
In the heat flux calculation step S122, the heat flux is calculated using the stress distribution (change in stress distribution over time) of the numerical analysis model calculated in the stress analysis step S121, the material properties of the spot welded joint 10 (e.g., the thermoelastic coefficient, density, and specific heat of the plate materials 11 and 12), and the period Hz of the repeated load.
Specifically, in the heat flux calculation step S122 of this embodiment, first, a time change ΔT in temperature is calculated for each element of the numerical analysis model based on the following equation (5).
ΔT=−K T Δσ (5)
In the above formula (5), ΔT is the change in temperature over time, K is the thermoelastic coefficient of the plate materials 11 and 12, Δσ is the change in stress over time, and T is the temperature of the numerical analysis model. When the heat flux calculation step S122 is executed for the first time, the ambient temperature (e.g., 20° C.) is input as the initial temperature in T.

次に、熱流束算出ステップS122では、以下の式(6)又は式(7)に基づき、数値解析モデルの要素毎に熱流束Fを算出する。
F=-2・ΔT・ρ・Cp・Hz ・・・(6)
F=2・ΔT・ρ・Cp・Hz ・・・(7)
上記の式(6)及び式(7)において、Fは熱流束を、ρは板材11、12の密度を、Cpは板材11、12の比熱を、Hzは繰り返し荷重の周波数を意味する。圧縮方向に荷重が変化するときには上記の式(6)が用いられ、引張方向に荷重が変化するときには上記の式(7)が用いられる。
なお、熱流束算出ステップS122を実行するためのソフトウェアは、例えば、上記の式(5)~式(7)を実行するプログラムをSIMULIA社製の汎用非線形有限要素解析プログラム「Abaqus」が具備するユーザーサブルーチンとして作成することができるが、本発明はこれに限るものではない。
Next, in a heat flux calculation step S122, a heat flux F is calculated for each element of the numerical analysis model based on the following formula (6) or (7).
F = -2 · ΔT · ρ · Cp · Hz ... (6)
F = 2 · ΔT · ρ · Cp · Hz ... (7)
In the above formulas (6) and (7), F represents the heat flux, ρ represents the density of the plate materials 11 and 12, Cp represents the specific heat of the plate materials 11 and 12, and Hz represents the frequency of the repeated load. When the load changes in the compression direction, the above formula (6) is used, and when the load changes in the tension direction, the above formula (7) is used.
The software for executing the heat flux calculation step S122 can be created as a user subroutine of the general-purpose nonlinear finite element analysis program "Abaqus" manufactured by SIMULIA, for example, a program for executing the above equations (5) to (7), but the present invention is not limited to this.

[伝熱解析ステップS123]
伝熱解析ステップS123では、熱流束算出ステップS122で算出した熱流束Fを用いた伝熱解析を行い、数値解析モデルの温度分布を算出する。具体的には、本実施形態の伝熱解析ステップS123では、伝熱解析を実行することで、数値解析モデルの温度分布の時間的変化を算出する。換言すれば、数値解析モデルの要素毎に温度の時間的変化ΔTを算出する。
具体的には、伝熱解析には、熱流束Fの他、数値解析モデルの温度T、板材11、12の対流熱伝達係数及び放射率が用いられる。なお、伝熱解析ステップS123を最初に実行する際、Tには初期温度として雰囲気温度(例えば、20℃)が入力される。
なお、伝熱解析を実行するためのソフトウェアとしては、例えば、SIMULIA社製の汎用非線形有限要素解析プログラム「Abaqus」を好適に用いることができるが、本発明はこれに限るものではない。
[Heat transfer analysis step S123]
In the heat transfer analysis step S123, a heat transfer analysis is performed using the heat flux F calculated in the heat flux calculation step S122, and a temperature distribution of the numerical analysis model is calculated. Specifically, in the heat transfer analysis step S123 of this embodiment, a heat transfer analysis is performed to calculate a change in temperature distribution over time in the numerical analysis model. In other words, a change in temperature over time ΔT is calculated for each element of the numerical analysis model.
Specifically, in addition to the heat flux F, the heat transfer analysis uses the temperature T of the numerical analysis model, and the convection heat transfer coefficients and emissivity of the plate materials 11 and 12. When the heat transfer analysis step S123 is executed for the first time, the ambient temperature (e.g., 20° C.) is input as the initial temperature in T.
As software for performing the heat transfer analysis, for example, the general-purpose nonlinear finite element analysis program "Abaqus" manufactured by SIMULIA Corporation can be suitably used, but the present invention is not limited to this.

そして、関係式導出手順S1(第2関係式導出ステップS12)では、上記の熱流束算出ステップS122及び伝熱解析ステップS123を所定時間(外面応力測定手順S2で実際に赤外線撮像装置を用いてスポット溶接継手10を連続的に撮像する所定時間と同じ時間)だけ繰り返し実行する。すなわち、図8のステップS124で、所定時間が経過したか否かを判断し、所定時間が経過していない場合(図8のステップS124で「No」の場合)には、再び熱流束算出ステップS122及び伝熱解析ステップS123を実行する。所定時間が経過した場合(図8のステップS124で「Yes」の場合)には、熱流束算出ステップS122及び伝熱解析ステップS123での計算を終了する。これにより、所定時間経過後の数値解析モデルの温度分布の時間的変化を算出可能である。 In the relational equation derivation procedure S1 (second relational equation derivation step S12), the above heat flux calculation step S122 and heat transfer analysis step S123 are repeatedly executed for a predetermined time (the same time as the predetermined time for continuously capturing images of the spot welded joint 10 using an infrared imaging device in the external stress measurement procedure S2). That is, in step S124 of FIG. 8, it is determined whether the predetermined time has elapsed, and if the predetermined time has not elapsed (if "No" in step S124 of FIG. 8), the heat flux calculation step S122 and heat transfer analysis step S123 are executed again. If the predetermined time has elapsed (if "Yes" in step S124 of FIG. 8), the calculations in the heat flux calculation step S122 and heat transfer analysis step S123 are terminated. This makes it possible to calculate the change over time in the temperature distribution of the numerical analysis model after the predetermined time has elapsed.

[換算ステップS125]
換算ステップS125では、所定時間経過後の数値解析モデルの温度分布(温度分布の時間的変化)に基づき、溶接部13の外面温度を算出する。そして、この溶接部13の外面温度を溶接部13の外面応力σhzに換算する。外面応力σhzへの換算には、温度と応力との間の公知の関係式を用いればよい。
[Conversion step S125]
In the conversion step S125, the outer surface temperature of the welded portion 13 is calculated based on the temperature distribution (temporal change in temperature distribution) of the numerical analysis model after a predetermined time has elapsed. Then, this outer surface temperature of the welded portion 13 is converted into the outer surface stress σhz of the welded portion 13. A known relational expression between temperature and stress may be used for the conversion into the outer surface stress σhz.

以上に説明した連成FEM解析を関係式導出手順S1の第2関係式導出ステップS12で実行することにより、外面応力測定手順S2で熱弾性応力測定法を用いて測定する溶接部13の外面応力σirと同等の外面応力σhzを算出可能である。
したがい、上記の連成FEM解析は、熱弾性応力測定法の測定結果を評価する方法として用いることも可能である。この熱弾性応力測定法の評価方法は、熱弾性応力測定法を適用する被測定物がスポット溶接継手に限るものではなく、その他の溶接構造物など任意の被測定物に用いることができる。具体的には、被測定物の数値解析モデルを対象として、前述の応力解析ステップS121~伝熱解析ステップS123を実行する(所定時間が経過するまで熱流束算出ステップS122及び伝熱解析ステップS123を繰り返し実行することも含む)ことで、被測定物の数値解析モデルの温度分布を算出する一方、被測定物の温度分布を熱弾性応力測定法(赤外線撮像装置)を用いて実際に測定し、双方の結果を対比すれば、熱弾性応力測定法の測定結果を評価することが可能である。また、換算ステップS125まで実行することで、被測定物の数値解析モデルの応力分布を算出する一方、被測定物の応力分布を熱弾性応力測定法を用いて実際に測定し、双方の結果を対比することで、熱弾性応力測定法の測定結果を評価することも可能である。
By performing the above-described coupled FEM analysis in the second relational equation derivation step S12 of the relational equation derivation procedure S1, it is possible to calculate the outer surface stress σhz equivalent to the outer surface stress σir of the welded portion 13 measured using a thermoelastic stress measurement method in the outer surface stress measurement procedure S2.
Therefore, the above-mentioned coupled FEM analysis can also be used as a method for evaluating the measurement results of the thermoelastic stress measurement method. The evaluation method of the thermoelastic stress measurement method is not limited to a spot-welded joint as a measurement object to which the thermoelastic stress measurement method is applied, and can be used for any measurement object such as other welded structures. Specifically, the above-mentioned stress analysis step S121 to heat transfer analysis step S123 are performed for a numerical analysis model of the measurement object (including repeatedly performing the heat flux calculation step S122 and the heat transfer analysis step S123 until a predetermined time has elapsed), thereby calculating the temperature distribution of the numerical analysis model of the measurement object, while actually measuring the temperature distribution of the measurement object using the thermoelastic stress measurement method (infrared imaging device), and comparing the two results, it is possible to evaluate the measurement results of the thermoelastic stress measurement method. In addition, by performing up to the conversion step S125, it is also possible to calculate the stress distribution of the numerical analysis model of the measurement object, while actually measuring the stress distribution of the measurement object using the thermoelastic stress measurement method, and comparing the two results, it is also possible to evaluate the measurement results of the thermoelastic stress measurement method.

以上に説明した本実施形態に係る内面応力評価方法によれば、関係式導出手順S1で導出した関係式と、外面応力測定手順S2で実際に測定した評価対象であるスポット溶接継手10の溶接部13の外面応力σirとを用いて、スポット溶接継手10の溶接部13の内面応力σi’を算出可能である。関係式には、板材11の板厚t及び繰り返し荷重の周波数Hzを入力パラメータとして入力するため、板材11の板厚t及び繰り返し荷重の周波数Hzによる熱伝導の影響が低減し、溶接部13の内面応力σi’を精度良く算出可能である。
また、本実施形態に係る内面応力評価方法によれば、評価対象であるスポット溶接継手10に付加する繰り返し荷重の荷重値を必要とせずに溶接部13の内面応力σi’を算出できるため、評価対象について繰り返し荷重の荷重値が不明である場合にも適用できるという利点を有する。
さらに、本実施形態に係る内面応力評価方法によれば、熱弾性応力測定法を用いて実際に測定した評価対象であるスポット溶接継手10の溶接部13の外面応力σirを用いるため(FEM解析を用いるのは関係式導出手順S1で関係式を導出するときだけであるため)、スポット溶接継手10の溶接部13のような正確なモデル化が困難な複雑な形状にも適用できるという利点を有する。
According to the inner surface stress evaluation method of the present embodiment described above, it is possible to calculate the inner surface stress σi′ of the welded portion 13 of the spot-welded joint 10 by using the relational equation derived in the relational equation derivation procedure S1 and the outer surface stress σir of the welded portion 13 of the spot-welded joint 10 that is the evaluation target actually measured in the outer surface stress measurement procedure S2. Since the plate thickness t of the plate material 11 and the frequency Hz of the repeated load are input as input parameters into the relational equation, the influence of heat conduction due to the plate thickness t of the plate material 11 and the frequency Hz of the repeated load is reduced, and the inner surface stress σi′ of the welded portion 13 can be calculated with high accuracy.
In addition, according to the internal stress evaluation method of this embodiment, the internal stress σi′ of the welded portion 13 can be calculated without requiring the load value of the repeated load applied to the spot-welded joint 10 to be evaluated, and therefore has the advantage of being applicable even when the load value of the repeated load for the evaluation object is unknown.
Furthermore, according to the internal stress evaluation method of this embodiment, the external stress σir of the welded portion 13 of the spot-welded joint 10, which is the evaluation object actually measured using a thermoelastic stress measurement method, is used (FEM analysis is used only when deriving the relational equation in the relational equation derivation step S1), so it has the advantage of being applicable to complex shapes that are difficult to model accurately, such as the welded portion 13 of the spot-welded joint 10.

以下、本実施形態に係る内面応力評価方法を実行した実施例について説明する。 Below, we will explain an example of implementing the internal stress evaluation method according to this embodiment.

本実施例では、板厚tが1.2mmの590Mpa級鋼板である板材11、12をスポット溶接することにより形成されるスポット溶接継手10を評価対象として、疲労試験機を用いて最大荷重:2.736kN、最小荷重:0.136kN、周波数Hz:7Hzの条件のせん断方向の繰り返し荷重(引張荷重)を所定時間(10sec)だけ付加し、その溶接部13の内面応力を評価した。 In this example, the spot welded joint 10 formed by spot welding plate materials 11 and 12, which are 590 MPa-class steel plates with a plate thickness t of 1.2 mm, was evaluated. A fatigue testing machine was used to apply repeated loads (tensile loads) in the shear direction under the conditions of maximum load: 2.736 kN, minimum load: 0.136 kN, and frequency Hz: 7 Hz for a specified time (10 sec), and the internal stress of the welded portion 13 was evaluated.

本実施例において、関係式導出手順S1の第1関係式導出ステップS11では、図2に示すような複数(板厚t=0.8mm、1.2mm、1.6mm、2.0mmの4種類)の数値解析モデルを対象として、繰り返し荷重の想定最大荷重(実際の最大荷重と同じ2.736kN)を用いた静的FEM解析を実行することで、溶接部13の外面応力σf及び内面応力σiを算出した。静的FEM解析において、板材11、12のヤング率を205.9GPa、ポアソン比を0.3とした。
図9は、本実施例において、静的FEM解析を実行することで得られた数値解析モデルの外面応力分布の一例を示す。具体的には、図9は、板厚t=1.2mmの数値解析モデル全体を溶接部13の中心を通りXZ平面に平行な平面で分割した数値解析モデルの半分の外面応力分布を示す。図9に示す数値解析モデルの外面応力分布に基づき算出された溶接部13の外面応力σfは457MPa(圧縮応力)であった。また、静的FEM解析を実行することで得られた数値解析モデルの内面応力分布(図示省略)に基づき算出された溶接部13の内面応力σiは1279MPa(圧縮応力)であった。なお、上記のようにして算出された外面応力σfは、ひずみゲージを用いて測定した溶接部13に実際に生じる外面応力と同等の値であった。
また、第1関係式導出ステップS11では、内外応力比Rt(Rt=σi/σf)を板厚t毎に算出した。前述の図4に示す例は、本実施例によって得られた板厚t毎の内外応力比Rtである。これにより、内外応力比Rtを板厚tの指数関数で表した第1関係式を導出した。
In this embodiment, in the first relational equation deriving step S11 of the relational equation deriving procedure S1, a static FEM analysis was performed using a maximum assumed load (2.736 kN, which is the same as the actual maximum load) for repeated loads for a plurality of numerical analysis models (four types of plate thicknesses t=0.8 mm, 1.2 mm, 1.6 mm, and 2.0 mm) as shown in Fig. 2, to calculate the outer surface stress σf and the inner surface stress σi of the weld 13. In the static FEM analysis, the Young's modulus of the plate materials 11 and 12 was set to 205.9 GPa, and the Poisson's ratio was set to 0.3.
FIG. 9 shows an example of the outer surface stress distribution of the numerical analysis model obtained by performing static FEM analysis in this embodiment. Specifically, FIG. 9 shows the outer surface stress distribution of half of the numerical analysis model obtained by dividing the entire numerical analysis model with a plate thickness t = 1.2 mm by a plane passing through the center of the welded portion 13 and parallel to the XZ plane. The outer surface stress σf of the welded portion 13 calculated based on the outer surface stress distribution of the numerical analysis model shown in FIG. 9 was 457 MPa (compressive stress). In addition, the inner surface stress σi of the welded portion 13 calculated based on the inner surface stress distribution (not shown) of the numerical analysis model obtained by performing static FEM analysis was 1279 MPa (compressive stress). The outer surface stress σf calculated as described above was a value equivalent to the outer surface stress actually generated in the welded portion 13 measured using a strain gauge.
In the first relational expression deriving step S11, the internal and external stress ratio Rt (Rt = σi/σf) was calculated for each plate thickness t. The example shown in Fig. 4 above is the internal and external stress ratio Rt for each plate thickness t obtained in this embodiment. As a result, the first relational expression was derived in which the internal and external stress ratio Rt is expressed as an exponential function of the plate thickness t.

本実施例において、関係式導出手順S1の第2関係式導出ステップS12では、第1関係式導出ステップS11と同様に、図2に示すような複数(板厚t=0.8mm、1.2mm、1.6mm、2.0mmの4種類)の数値解析モデルを対象として、それぞれ繰り返し荷重の周波数Hzを1~400Hzの範囲で変更した複数の連成FEM解析を実行することで、繰り返し荷重の周波数Hz毎に溶接部13の外面応力σhzを算出した。
連成FEM解析の熱流束算出ステップS122では、数値解析モデルの初期温度を20℃とし、板材11、12の熱弾性係数Kを3.14e-6(eは自然対数の底)とした。また、板材11、12の密度ρを7.8e-6kg/mm(eは自然対数の底)とし、板材11、12の比熱Cpを460kJ/kgとした。さらに、熱流束Fを算出する際に、繰り返し荷重の想定最大荷重(実際の最大荷重と同じ2.736kN)から想定最小荷重(実際の最小荷重と同じ0.136kN)に変化する際には前述の式(6)を用い、想定最小荷重から想定最大荷重に変化する際には前述の式(7)を用いた。
連成FEM解析の伝熱解析ステップS123では、数値解析モデルの初期温度を20℃とし、板材11、12の対流熱伝達係数を11.628W/mとし、板材11、12の放射率を0.8とした。
In this embodiment, in the second relational equation derivation step S12 of the relational equation derivation procedure S1, similarly to the first relational equation derivation step S11, multiple coupled FEM analyses were performed on multiple numerical analysis models (four types, plate thickness t = 0.8 mm, 1.2 mm, 1.6 mm, and 2.0 mm) as shown in Figure 2, with the frequency Hz of the repeated load changed in the range of 1 to 400 Hz, to calculate the outer surface stress σhz of the weld 13 for each frequency Hz of the repeated load.
In the heat flux calculation step S122 of the coupled FEM analysis, the initial temperature of the numerical analysis model was set to 20° C., and the thermoelastic coefficient K of the plate materials 11 and 12 was set to 3.14e −6 (e is the base of the natural logarithm). The density ρ of the plate materials 11 and 12 was set to 7.8e −6 kg/mm 3 (e is the base of the natural logarithm), and the specific heat Cp of the plate materials 11 and 12 was set to 460 kJ/kg. Furthermore, when calculating the heat flux F, the above-mentioned formula (6) was used when the repeated load changed from the assumed maximum load (2.736 kN, the same as the actual maximum load) to the assumed minimum load (0.136 kN, the same as the actual minimum load), and the above-mentioned formula (7) was used when the repeated load changed from the assumed minimum load to the assumed maximum load.
In the heat transfer analysis step S123 of the coupled FEM analysis, the initial temperature of the numerical analysis model was set to 20° C., the convection heat transfer coefficient of the plates 11 and 12 was set to 11.628 W/m 2 , and the emissivity of the plates 11 and 12 was set to 0.8.

図10は、本実施例において、連成FEM解析を実行することで得られた数値解析モデルの外面応力分布の一例を示す。具体的には、図10は、周波数Hzが7Hzの繰り返し荷重の想定最大荷重(2.736kN)を付加した場合における外面応力分布であり、板厚t=1.2mmの数値解析モデル全体を溶接部13の中心を通りXZ平面に平行な平面で分割した数値解析モデルの半分の外面応力分布を示す。図10に示す外面応力分布は、図9に示す静的FEM解析を実行することで得られた数値解析モデルの外面応力分布よりも応力の値が小さくなっていることが分かる。図10に示す数値解析モデルの外面応力分布に基づき算出された溶接部13の外面応力σhzは135MPa(圧縮応力)であった。
また、第2関係式導出ステップS12では、連成FEM解析を実行することで算出した溶接部13の外面応力σhzに対する静的FEM解析を実行することで算出した溶接部13の外面応力σfの比率である応力変換比Rhz(Rhz=σf/σhz)を繰り返し荷重の周波数Hz毎に算出した。前述の図5に示す例は、本実施例の板厚t=1.2mmの場合に得られた周波数Hz毎の応力変換比Rhzである。これにより、応力変換比Rhzを繰り返し荷重の周波数Hzの累乗関数で表した第2関係式を導出した。
そして、関係式導出手順S1の第3関係式導出ステップS13では、第2関係式の累乗関数の係数s1、s2を板材11の板厚tの線形関数で表した第3関係式を導出した。前述の図6は、本実施例の第3関係式を導出するのに用いた板材11の板厚tと累乗関数の係数s1、s2との関係を示している。
FIG. 10 shows an example of the outer surface stress distribution of the numerical analysis model obtained by performing the coupled FEM analysis in this embodiment. Specifically, FIG. 10 shows the outer surface stress distribution when the assumed maximum load (2.736 kN) of the repeated load with a frequency of 7 Hz is applied, and shows the outer surface stress distribution of half of the numerical analysis model obtained by dividing the entire numerical analysis model with a plate thickness t = 1.2 mm by a plane passing through the center of the welded portion 13 and parallel to the XZ plane. It can be seen that the outer surface stress distribution shown in FIG. 10 has a smaller stress value than the outer surface stress distribution of the numerical analysis model obtained by performing the static FEM analysis shown in FIG. The outer surface stress σhz of the welded portion 13 calculated based on the outer surface stress distribution of the numerical analysis model shown in FIG. 10 was 135 MPa (compressive stress).
In the second relational expression deriving step S12, the stress conversion ratio Rhz (Rhz=σf/σhz), which is the ratio of the outer surface stress σf of the welded portion 13 calculated by performing the static FEM analysis to the outer surface stress σhz of the welded portion 13 calculated by performing the coupled FEM analysis, was calculated for each frequency Hz of the repeated load. The example shown in Fig. 5 above is the stress conversion ratio Rhz for each frequency Hz obtained in the case of the plate thickness t = 1.2 mm in this embodiment. As a result, the second relational expression in which the stress conversion ratio Rhz is expressed as a power function of the frequency Hz of the repeated load was derived.
Then, in the third relational equation deriving step S13 of the relational equation deriving procedure S1, a third relational equation was derived in which the coefficients s1 and s2 of the power function of the second relational equation were expressed as a linear function of the thickness t of the plate material 11. The above-mentioned Fig. 6 shows the relationship between the thickness t of the plate material 11 and the coefficients s1 and s2 of the power function used to derive the third relational equation of this embodiment.

本実施例において、外面応力測定手順S2では、前述のように、評価対象であるスポット溶接継手10に疲労試験機を用いて最大荷重:2.736kN、最小荷重:0.136kN、周波数Hz:7Hzの条件のせん断方向の繰り返し荷重(引張荷重)を所定時間(10sec)だけ付加し、熱弾性応力測定法(ロックイン処理あり)を用いて、溶接部13の外面応力σirを実際に測定した。
図11は、本実施例において、熱弾性応力測定法を実行することで得られた、最大荷重を付加したときの外面応力分布である。図11に示す外面応力分布は、図10に示す連成FEM解析を実行することで得られた数値解析モデルの外面応力分布に近似した分布になっていることが分かる。図11に示す外面応力分布に基づき算出された外面応力σirは139MPa(圧縮応力)であった。
In this embodiment, in the external stress measurement procedure S2, as described above, a fatigue testing machine was used to apply repeated loads (tensile loads) in the shear direction to the spot-welded joint 10 to be evaluated under conditions of maximum load: 2.736 kN, minimum load: 0.136 kN, and frequency: 7 Hz for a predetermined time (10 sec), and the external stress σir of the welded portion 13 was actually measured using a thermoelastic stress measurement method (with lock-in processing).
Fig. 11 shows the outer surface stress distribution when the maximum load was applied, which was obtained by performing the thermoelastic stress measurement method in this embodiment. It can be seen that the outer surface stress distribution shown in Fig. 11 is a distribution that is close to the outer surface stress distribution of the numerical analysis model obtained by performing the coupled FEM analysis shown in Fig. 10. The outer surface stress σir calculated based on the outer surface stress distribution shown in Fig. 11 was 139 MPa (compressive stress).

本実施例において、内面応力算出手順S3の係数算出ステップS31では、板材11の板厚t=1.2mmを第3関係式に入力することで、係数s1=4.99、係数s2=-0.20を算出した。
内面応力算出手順S3の応力変換比算出ステップS32では、繰り返し荷重の周波数Hz=7Hz、係数s1=4.99、係数s2=-0.20を第2関係式に入力することで、応力変換比Rhz=3.4を算出した。
内面応力算出手順S3の外面応力補正ステップS33では、溶接部13の外面応力σir=139MPaに応力変換比Rhz=3.4を乗じて、溶接部13の補正後の外面応力σf’=473MPa(圧縮応力)を算出した。
内面応力算出手順S3の内外応力比算出ステップS34では、板材11の板厚t=1.2mmを第1関係式に入力することで、内外応力比Rt=2.66を算出した。
内面応力算出手順S3の内面応力算出ステップS35では、補正後の外面応力σf’=473MPaに、内外応力比Rt=2.66を乗じて、溶接部13の内面応力σi’=1258MPa(圧縮応力)を算出した。
In this embodiment, in the coefficient calculation step S31 of the internal stress calculation procedure S3, the plate thickness t of the plate material 11, ie, 1.2 mm, was input into the third relational expression to calculate the coefficient s1=4.99 and the coefficient s2=-0.20.
In the stress conversion ratio calculation step S32 of the inner surface stress calculation procedure S3, the stress conversion ratio Rhz = 3.4 was calculated by inputting the repeated load frequency Hz = 7 Hz, coefficient s1 = 4.99, and coefficient s2 = -0.20 into the second relational equation.
In the outer stress correction step S33 of the inner stress calculation procedure S3, the outer stress σir of the welded portion 13 = 139 MPa was multiplied by the stress conversion ratio Rhz = 3.4 to calculate the corrected outer stress σf' of the welded portion 13 = 473 MPa (compressive stress).
In the internal/external stress ratio calculation step S34 of the internal stress calculation procedure S3, the plate thickness t of the plate material 11 of 1.2 mm was input into the first relational expression to calculate the internal/external stress ratio Rt of 2.66.
In the inner surface stress calculation step S35 of the inner surface stress calculation procedure S3, the corrected outer surface stress σf′=473 MPa was multiplied by the inner/outer stress ratio Rt=2.66 to calculate the inner surface stress σi′=1258 MPa (compressive stress) of the welded portion 13.

以上のように、本実施例で算出した溶接部13の内面応力σi’=1258MPaであり、静的FEM解析で算出した内面応力σi=1279MPaを真値と仮定するならば、誤差((σi’-σi)/σi×100)の絶対値はわずか1.6%であるため、熱弾性応力測定法の測定結果を用いてスポット溶接継手10の溶接部13の内面応力σi’を精度良く評価可能であることが分かった。
なお、上記の評価後に、本実施例での評価対象であるスポット溶接継手10の溶接部13を切断してその断面を観察したところ、溶接部13は比較的単純な形状であった。したがい、上記のように静的FEM解析で算出した内面応力σiを真値と仮定しても問題はないと考えられる。
As described above, the inner stress σi' of the welded portion 13 calculated in this embodiment is 1258 MPa, and if we assume that the inner stress σi = 1279 MPa calculated by static FEM analysis is the true value, the absolute value of the error ((σi' - σi)/σi x 100) is only 1.6%, so it is found that the inner stress σi' of the welded portion 13 of the spot welded joint 10 can be accurately evaluated using the measurement results of the thermoelastic stress measurement method.
After the above evaluation, the welded portion 13 of the spot-welded joint 10 to be evaluated in this example was cut and its cross section was observed, and it was found that the welded portion 13 had a relatively simple shape. Therefore, it is considered that there is no problem in assuming that the internal stress σi calculated by the static FEM analysis as described above is a true value.

10・・・スポット溶接継手
11、12・・・板材
13・・・溶接部
S1・・・関係式導出手順
S2・・・外面応力測定手順
S3・・・内面応力算出手順
10: Spot welded joint 11, 12: Plate material 13: Welded part S1: Procedure for deriving relational equation S2: Procedure for measuring outer surface stress S3: Procedure for calculating inner surface stress

Claims (6)

重ね合わせられた板材をスポット溶接することにより形成されるスポット溶接継手にせん断方向の繰り返し荷重を付加した場合の前記スポット溶接継手の溶接部の内面応力を評価する方法であって、
前記スポット溶接継手の数値解析モデルを対象として、前記繰り返し荷重の想定最大荷重を用いた静的有限要素法解析と、前記繰り返し荷重の想定最大荷重及び想定最小荷重を用いた応力場及び温度場の連成有限要素法解析とを実行することで、連成有限要素法解析を実行することで算出した前記溶接部の外面応力σhzと、前記板材の板厚tと、前記繰り返し荷重の周波数Hzとを入力パラメータとして、静的有限要素法解析を実行することで算出される前記溶接部の内面応力σiを推定するための関係式を導出する関係式導出手順と、
評価対象である前記スポット溶接継手に前記繰り返し荷重を付加し、熱弾性応力測定法を用いて、前記溶接部の外面応力σirを測定する外面応力測定手順と、
前記外面応力測定手順で測定した前記評価対象である前記スポット溶接継手の前記溶接部の外面応力σirと、前記評価対象である前記スポット溶接継手の前記板材の板厚tと、前記評価対象である前記スポット溶接継手に付加するせん断方向の繰り返し荷重の周波数Hzとを、前記関係式導出手順で導出した関係式に入力することで、前記評価対象である前記スポット溶接継手の前記溶接部の内面応力σi’を算出する内面応力算出手順と、を含む、
ことを特徴とするスポット溶接継手の内面応力評価方法。
A method for evaluating an internal stress of a welded portion of a spot welded joint formed by spot welding overlapping plate materials when a repeated load in a shear direction is applied to the spot welded joint, comprising:
a relational equation derivation step of deriving a relational equation for estimating an inner surface stress σi of the welded portion calculated by performing a static finite element method analysis using an assumed maximum load of the repeated load and a coupled finite element method analysis of a stress field and a temperature field using an assumed maximum load and an assumed minimum load of the repeated load on a numerical analysis model of the spot welded joint, with the outer surface stress σhz of the welded portion calculated by performing the coupled finite element method analysis, the plate thickness t of the plate material, and the frequency Hz of the repeated load as input parameters;
an outer surface stress measurement procedure of applying the cyclic load to the spot welded joint to be evaluated and measuring an outer surface stress σir of the welded portion using a thermoelastic stress measurement method;
an inner surface stress calculation step of calculating an inner surface stress σ′ of the weld portion of the spot welded joint to be evaluated by inputting the outer surface stress σir of the weld portion of the spot welded joint to be evaluated measured in the outer surface stress measurement step, the plate thickness t of the plate material of the spot welded joint to be evaluated, and the frequency Hz of a repeated load in a shear direction applied to the spot welded joint to be evaluated into the relational equation derived in the relational equation derivation step.
A method for evaluating internal stress of a spot welded joint.
前記関係式導出手順で実行する連成有限要素法解析は、
前記数値解析モデルを対象として、前記繰り返し荷重の想定最大荷重及び想定最小荷重を用いた応力解析を行い、前記数値解析モデルの応力分布を算出する応力解析ステップと、
前記応力解析ステップで算出した前記数値解析モデルの応力分布と、前記スポット溶接継手の材料特性と、前記繰り返し荷重の周波数Hzとを用いて、熱流束を算出する熱流束算出ステップと、
前記熱流束算出ステップで算出した熱流束を用いた伝熱解析を行い、前記数値解析モデルの温度分布を算出する伝熱解析ステップと、を含み、
前記熱流束算出ステップ及び前記伝熱解析ステップを前記繰り返し荷重を付加する所定時間だけ繰り返し実行することで、前記所定時間経過後の前記数値解析モデルの温度分布を算出し、
前記所定時間経過後の前記数値解析モデルの温度分布に基づき、前記溶接部の外面温度を算出し、前記溶接部の外面温度を前記溶接部の外面応力σhzに換算する換算ステップを更に含む、
ことを特徴とする請求項1に記載のスポット溶接継手の内面応力評価方法。
The coupled finite element analysis performed in the procedure for deriving the relational equation is
a stress analysis step of performing a stress analysis using an assumed maximum load and an assumed minimum load of the repeated load on the numerical analysis model, and calculating a stress distribution of the numerical analysis model;
a heat flux calculation step of calculating a heat flux using the stress distribution of the numerical analysis model calculated in the stress analysis step, the material properties of the spot welded joint, and the frequency Hz of the repeated load;
a heat transfer analysis step of performing a heat transfer analysis using the heat flux calculated in the heat flux calculation step, and calculating a temperature distribution of the numerical analysis model,
by repeatedly executing the heat flux calculation step and the heat transfer analysis step for a predetermined time during which the repeated load is applied, a temperature distribution of the numerical analysis model after the predetermined time has elapsed is calculated;
The method further includes a conversion step of calculating an outer surface temperature of the welded portion based on a temperature distribution of the numerical analysis model after the predetermined time has elapsed, and converting the outer surface temperature of the welded portion into an outer surface stress σhz of the welded portion.
The method for evaluating internal stress of a spot welded joint according to claim 1.
前記関係式導出手順は、
前記板材の板厚tを変更した複数の前記数値解析モデルを対象として、静的有限要素法解析を実行することで、前記溶接部の外面応力σf及び内面応力σiを算出し、前記溶接部の外面応力σfに対する内面応力σiの比率である内外応力比Rtを前記板厚t毎に算出して、前記内外応力比Rtを前記板厚tの指数関数で表した第1関係式を導出する第1関係式導出ステップと、
前記板材の板厚tを変更した複数の前記数値解析モデルを対象として、それぞれ前記繰り返し荷重の周波数Hzを変更した複数の連成有限要素法解析を実行することで、前記繰り返し荷重の周波数Hz毎に前記溶接部の外面応力σhzを算出し、連成有限要素法解析を実行することで算出した前記溶接部の外面応力σhzに対する静的有限要素法解析を実行することで算出した前記溶接部の外面応力σfの比率である応力変換比Rhzを前記繰り返し荷重の周波数Hz毎に算出して、前記応力変換比Rhzを前記繰り返し荷重の周波数Hzの累乗関数で表した第2関係式を前記板材の板厚t毎に導出する第2関係式導出ステップと、
前記累乗関数の係数を前記板材の板厚tの線形関数で表した第3関係式を導出する第3関係式導出ステップと、を含む、
ことを特徴とする請求項1又は2に記載のスポット溶接継手の内面応力評価方法。
The procedure for deriving the relational expression is as follows:
a first relational equation deriving step of calculating an outer surface stress σf and an inner surface stress σi of the welded portion by performing a static finite element method analysis on a plurality of the numerical analysis models in which the plate thickness t of the plate material is changed, and calculating an inner and outer stress ratio Rt, which is a ratio of the inner surface stress σi to the outer surface stress σf of the welded portion, for each plate thickness t, and deriving a first relational equation in which the inner and outer stress ratio Rt is expressed as an exponential function of the plate thickness t;
A second relational equation deriving step of calculating an outer surface stress σhz of the welded portion for each frequency Hz of the repeated load by performing a plurality of coupled finite element method analyses with a different frequency Hz of the repeated load for a plurality of the numerical analysis models in which the thickness t of the plate material is changed, and calculating a stress conversion ratio Rhz, which is the ratio of the outer surface stress σf of the welded portion calculated by performing a static finite element method analysis to the outer surface stress σhz of the welded portion calculated by performing the coupled finite element method analysis, for each frequency Hz of the repeated load, and deriving a second relational equation in which the stress conversion ratio Rhz is expressed as a power function of the frequency Hz of the repeated load for each thickness t of the plate material;
A third relational equation deriving step of deriving a third relational equation in which the coefficient of the power function is expressed as a linear function of the plate thickness t of the plate material.
3. The method for evaluating internal stress of a spot welded joint according to claim 1 or 2.
前記内面応力算出手順は、
前記評価対象である前記スポット溶接継手の前記板材の板厚tを前記第3関係式に入力することで、前記累乗関数の係数を算出する係数算出ステップと、
前記評価対象である前記スポット溶接継手に付加するせん断方向の繰り返し荷重の周波数Hzと、前記算出した前記累乗関数の係数とを前記第2関係式に入力することで、前記応力変換比Rhzを算出する応力変換比算出ステップと、
前記外面応力測定手順で測定した前記評価対象である前記スポット溶接継手の前記溶接部の外面応力σirに前記算出した応力変換比Rhzを乗じて、前記溶接部の補正後の外面応力σf’を算出する外面応力補正ステップと、
前記評価対象である前記スポット溶接継手の前記板材の板厚tを前記第1関係式に入力することで、前記内外応力比Rtを算出する内外応力比算出ステップと、
前記算出した補正後の外面応力σf’に前記算出した内外応力比Rtを乗じて、前記溶接部の内面応力σi’を算出する内面応力算出ステップと、を含む、
ことを特徴とする請求項3に記載のスポット溶接継手の内面応力評価方法。
The inner surface stress calculation procedure includes:
A coefficient calculation step of calculating a coefficient of the power function by inputting a plate thickness t of the plate material of the spot welded joint to be evaluated into the third relational expression;
A stress conversion ratio calculation step of calculating the stress conversion ratio Rhz by inputting the frequency Hz of a repeated load in a shear direction applied to the spot welded joint to be evaluated and the coefficient of the calculated power function into the second relational expression;
an outer surface stress correction step of multiplying the outer surface stress σir of the welded portion of the spot welded joint to be evaluated, measured in the outer surface stress measurement procedure, by the calculated stress conversion ratio Rhz to calculate a corrected outer surface stress σf' of the welded portion;
An internal and external stress ratio calculation step of calculating the internal and external stress ratio Rt by inputting the plate thickness t of the plate material of the spot welded joint to be evaluated into the first relational expression;
and an inner surface stress calculation step of multiplying the calculated corrected outer surface stress σf′ by the calculated internal and external stress ratio Rt to calculate an inner surface stress σi′ of the welded portion.
The method for evaluating internal stress of a spot welded joint according to claim 3.
被測定物に繰り返し荷重を所定時間だけ付加しながら、赤外線撮像装置を用いて前記被測定物を連続的に撮像することで、前記被測定物の温度分布の時間的変化を測定し、前記測定した温度分布の時間的変化を前記被測定物の応力分布の時間的変化に換算する熱弾性応力測定法の評価方法であって、A method for evaluating a thermoelastic stress measurement method, comprising the steps of: applying a repeated load to an object to be measured for a predetermined period of time, continuously imaging the object using an infrared imaging device, measuring a change in temperature distribution over time in the object to be measured, and converting the measured change in temperature distribution over time into a change in stress distribution over time in the object to be measured, comprising:
前記被測定物の数値解析モデルを対象として、前記繰り返し荷重の想定最大荷重及び想定最小荷重を用いた応力解析を行い、前記数値解析モデルの応力分布を算出する応力解析ステップと、a stress analysis step of performing a stress analysis using an assumed maximum load and an assumed minimum load of the repeated load on a numerical analysis model of the object to be measured, and calculating a stress distribution of the numerical analysis model;
前記応力解析ステップで算出した前記数値解析モデルの応力分布と、前記被測定物の材料特性と、前記繰り返し荷重の周波数とを用いて、熱流速を算出する熱流速算出ステップと、a heat flow rate calculation step of calculating a heat flow rate using the stress distribution of the numerical analysis model calculated in the stress analysis step, the material properties of the object to be measured, and the frequency of the repeated load;
前記熱流速算出ステップで算出した熱流速を用いた伝熱解析を行い、前記数値解析モデルの温度分布を算出する伝熱解析ステップと、を含み、a heat transfer analysis step of performing a heat transfer analysis using the heat flow rate calculated in the heat flow rate calculation step, and calculating a temperature distribution in the numerical analysis model;
前記熱流速算出ステップ及び前記伝熱解析ステップを前記繰り返し荷重を付加する所定時間だけ繰り返し実行することで、前記所定時間経過後の前記数値解析モデルの温度分布を算出する、The heat flow rate calculation step and the heat transfer analysis step are repeatedly performed for a predetermined time during which the repeated load is applied, thereby calculating a temperature distribution in the numerical analysis model after the predetermined time has elapsed.
ことを特徴とする熱弾性応力測定法の評価方法。A method for evaluating a thermoelastic stress measurement method.
前記熱流速算出ステップは、The heat flow rate calculation step includes:
以下の式(5)に基づき、前記数値解析モデルの要素毎に温度の時間的変化を算出するステップと、calculating a change in temperature over time for each element of the numerical analysis model based on the following formula (5);
以下の式(6)又は式(7)に基づき、前記数値解析モデルの要素毎に熱流速を算出するステップと、を含む、Calculating a heat flow rate for each element of the numerical analysis model based on the following formula (6) or (7),
ことを特徴とする請求項5に記載の熱弾性応力測定法の評価方法。The evaluation method for thermoelastic stress measurement according to claim 5 .
ΔT=-K・T・Δσ ・・・(5)ΔT=−K T Δσ (5)
F=-2・ΔT・ρ・Cp・Hz ・・・(6)F = -2 · ΔT · ρ · Cp · Hz ... (6)
F=2・ΔT・ρ・Cp・Hz ・・・(7)F = 2 · ΔT · ρ · Cp · Hz ... (7)
上記の式(5)において、ΔTは温度の時間的変化を、Kは被測定物の熱弾性係数を、Δσは応力の時間的変化を、Tは数値解析モデルの温度を意味する。In the above formula (5), ΔT represents the change in temperature over time, K represents the thermoelastic coefficient of the object to be measured, Δσ represents the change in stress over time, and T represents the temperature of the numerical analysis model.
上記の式(6)及び式(7)において、Fは熱流速を、ρは被測定物の密度を、Cpは被測定物の比熱を、Hzは繰り返し荷重の周波数を意味する。圧縮方向に荷重が変化するときには上記の式(6)が用いられ、引張方向に荷重が変化するときには上記の式(7)が用いられる。In the above formulas (6) and (7), F is the heat flow rate, ρ is the density of the object to be measured, Cp is the specific heat of the object to be measured, and Hz is the frequency of the repeated load. When the load changes in the compression direction, the above formula (6) is used, and when the load changes in the tension direction, the above formula (7) is used.
JP2020136648A 2020-08-13 2020-08-13 Method for evaluating internal stress of spot welded joints and evaluation method for thermoelastic stress measurement Active JP7469660B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020136648A JP7469660B2 (en) 2020-08-13 2020-08-13 Method for evaluating internal stress of spot welded joints and evaluation method for thermoelastic stress measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020136648A JP7469660B2 (en) 2020-08-13 2020-08-13 Method for evaluating internal stress of spot welded joints and evaluation method for thermoelastic stress measurement

Publications (2)

Publication Number Publication Date
JP2022032646A JP2022032646A (en) 2022-02-25
JP7469660B2 true JP7469660B2 (en) 2024-04-17

Family

ID=80350008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020136648A Active JP7469660B2 (en) 2020-08-13 2020-08-13 Method for evaluating internal stress of spot welded joints and evaluation method for thermoelastic stress measurement

Country Status (1)

Country Link
JP (1) JP7469660B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020112548A1 (en) 2000-11-17 2002-08-22 Pingsha Dong Structural stress analysis
JP2013036902A (en) 2011-08-09 2013-02-21 Toshiba Corp Analyzer, evaluation device, analysis method, and evaluation method
JP2017215258A (en) 2016-06-01 2017-12-07 新日鐵住金株式会社 Method for measuring stress distribution

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020112548A1 (en) 2000-11-17 2002-08-22 Pingsha Dong Structural stress analysis
JP2013036902A (en) 2011-08-09 2013-02-21 Toshiba Corp Analyzer, evaluation device, analysis method, and evaluation method
JP2017215258A (en) 2016-06-01 2017-12-07 新日鐵住金株式会社 Method for measuring stress distribution

Also Published As

Publication number Publication date
JP2022032646A (en) 2022-02-25

Similar Documents

Publication Publication Date Title
Lockwood et al. Simulation of the global response of a friction stir weld using local constitutive behavior
Gouge et al. The finite element method for the thermo-mechanical modeling of additive manufacturing processes
Liakat et al. Rapid estimation of fatigue entropy and toughness in metals
Palumbo et al. Characterisation of steel welded joints by infrared thermographic methods
JP6397678B2 (en) Fatigue limit stress identification system and fatigue limit stress identification method
JP2016197080A (en) Notch factor estimation method, notch factor estimation system and notch factor estimation device
Hajy Akbary et al. Elastic strain measurement of miniature tensile specimens
JP7469661B2 (en) Method for estimating load value applied to spot welded joints
Talemi et al. Experimental and numerical study on effect of forming process on low‐cycle fatigue behaviour of high‐strength steel
Palumbo et al. Thermoelastic Phase Analysis (TPA): a new method for fatigue behaviour analysis of steels
JP4578384B2 (en) Stress measurement method and strength evaluation method using infrared imaging device
Karimian et al. Thermodynamic entropy to detect fatigue crack initiation using digital image correlation, and effect of overload spectrums
JP2022178583A (en) Plate thickness estimation method for spot welded joint
JP7469660B2 (en) Method for evaluating internal stress of spot welded joints and evaluation method for thermoelastic stress measurement
Liu et al. Rapid inverse parameter estimation using reduced-basis approximation with asymptotic error estimation
Brommesson et al. Correlation between crack length and load drop for low-cycle fatigue crack growth in Ti-6242
US20160178492A1 (en) Joint analyzing method, product designing method, and joint analyzing system
Stankovičová et al. Nondestructive testing of metal parts by using infrared camera
Curà et al. Mechanical and thermal parameters for high‐cycle fatigue characterization in commercial steels
Skozrit et al. Validation of numerical model by means of digital image correlation and thermography
JP6634959B2 (en) Stress distribution measurement method
Stankovičová et al. Fatigue limit estimation using IR camera
Wells et al. Analytical Round Robin for Elastic-Plastic Analysis of Surface Cracked Plates: Phase I Results
JP7229731B2 (en) Fatigue limit estimation device, fatigue limit estimation method and fatigue limit estimation program
Marsili et al. Study of the causes of uncertainty in thermoelasticity measurements of mechanical components

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210510

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240318

R150 Certificate of patent or registration of utility model

Ref document number: 7469660

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150