TW202244476A - Fatigue life estimation method, fatigue life estimation apparatus, fatigue life estimation program and storage medium - Google Patents

Fatigue life estimation method, fatigue life estimation apparatus, fatigue life estimation program and storage medium Download PDF

Info

Publication number
TW202244476A
TW202244476A TW110147730A TW110147730A TW202244476A TW 202244476 A TW202244476 A TW 202244476A TW 110147730 A TW110147730 A TW 110147730A TW 110147730 A TW110147730 A TW 110147730A TW 202244476 A TW202244476 A TW 202244476A
Authority
TW
Taiwan
Prior art keywords
fatigue
fatigue life
aforementioned
stress
test
Prior art date
Application number
TW110147730A
Other languages
Chinese (zh)
Inventor
高城壽雄
村上敬宜
Original Assignee
日商壽控股有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商壽控股有限公司 filed Critical 日商壽控股有限公司
Publication of TW202244476A publication Critical patent/TW202244476A/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/32Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

A fatigue life estimation method according to the present invention comprises: acquiring fatigue test data which includes: test results of the fatigue test under various conditions relating to a target, an initial defect size of a test piece used in the fatigue test, and test conditions of the fatigue test; based on the fatigue test data, calculating a material constant which is used to calculate a developing amount of a crack to a load stress in one time, with the assumptions that the crack will develop from an initial defect when a load stress equal to or larger than a fatigue limit is applied to the target, and the fatigue limit will decrease according to the size of the detect and the crack developed from the detect; and using the material constant to estimate the fatigue life based on the developing amount of the crack when applying a certain load stress to the target.

Description

疲勞壽命預測方法、疲勞壽命預測裝置、疲勞壽命預測程式及記憶媒體 Fatigue life prediction method, fatigue life prediction device, fatigue life prediction program and storage medium

本揭示係有關於疲勞壽命預測方法、疲勞壽命預測裝置、疲勞壽命預測程式及記憶媒體。 The disclosure relates to a fatigue life prediction method, a fatigue life prediction device, a fatigue life prediction program and a memory medium.

在評價金屬材料等對象物的疲勞破壞時,疲勞壽命及疲勞限度經常成為重要的評價要素,因此有許多探討在進行。例如,在專利文獻1中顯示一種方法,關於疲勞壽命,其係依據沒有龜裂的元件內部的應力分布、龜裂深度與潛變影響的關係、及潛變影響與巴黎氏方程式(Paris equation)的參數C及m的值的關係,來推測在元件中進展的龜裂的進展行為。再者,例如在專利文獻2中,關於疲勞限度,作為預測具有微小缺陷的金屬材料的疲勞限度之方法,顯示了使用金屬材料的潛在疲勞龜裂長度而預測拉伸疲勞限度及剪斷疲勞限度之方法。 When evaluating the fatigue failure of objects such as metal materials, fatigue life and fatigue limit are often important evaluation factors, so many studies are underway. For example, Patent Document 1 shows a method based on the stress distribution inside the element without cracks, the relationship between the crack depth and the influence of creep, and the relationship between the influence of creep and the Paris equation (Paris equation) for the fatigue life. The relationship between the parameter C and the value of m can be used to estimate the progress behavior of cracks that develop in the device. Furthermore, for example, in Patent Document 2, regarding the fatigue limit, as a method of predicting the fatigue limit of a metal material having minute defects, it is shown that the tensile fatigue limit and the shear fatigue limit are predicted using the potential fatigue crack length of the metal material. method.

[習知技術文獻] [Prior art literature]

[專利文獻] [Patent Document]

專利文獻1:國際公開第2014/033927號 Patent Document 1: International Publication No. 2014/033927

專利文獻2:日本專利特開2018-185274號公報 Patent Document 2: Japanese Patent Laid-Open No. 2018-185274

然而,針對假定所負荷的應力會變動之對象物的疲勞壽命的預測,以往習知的手法就精度的點來看,仍有改善的餘地。 However, conventionally known methods for predicting the fatigue life of an object whose applied stress is assumed to fluctuate still have room for improvement in terms of accuracy.

本揭示係有鑑於上述情形所為者,目的在於提供一種可以更高精度來預測疲勞壽命的技術。 The present disclosure was made in view of the above circumstances, and an object thereof is to provide a technology capable of predicting fatigue life with higher accuracy.

為了達成上述目的,本揭示的一型態的疲勞壽命預測方法,係包含下列步驟:取得疲勞試驗資料,該疲勞試驗資料包含:關於對象物之在複數條件下的疲勞試驗的試驗結果、使用於前述疲勞試驗之試驗片的初期缺陷尺寸、及前述疲勞試驗的試驗條件;在特定的前提下,依據前述疲勞試驗資料,算出用以算出相對於一次的應力負荷之龜裂的進展量之材料常數,該特定的前提為:對於前述對象物賦予疲勞限度以上的應力負荷時會從初期缺陷進展為龜裂,及前述疲勞限度會因應缺陷及從缺陷進展之龜裂的尺寸而下降;以及使用前述材料常數,依據使前述對象物負荷某一應力時的龜裂的進展量來預測疲勞壽命。 In order to achieve the above object, a type of fatigue life prediction method disclosed in the present disclosure includes the following steps: Obtaining fatigue test data, the fatigue test data includes: test results of fatigue tests on objects under multiple conditions, used in The initial defect size of the test piece for the aforementioned fatigue test, and the test conditions of the aforementioned fatigue test; under specific conditions, based on the aforementioned fatigue test data, calculate the material constant used to calculate the progress of the crack relative to one stress load , the specific premise is: when a stress load above the fatigue limit is applied to the aforementioned object, it will develop from an initial defect to a crack, and the aforementioned fatigue limit will decrease in accordance with the size of the defect and the crack that progresses from the defect; and using the aforementioned The material constant predicts the fatigue life from the amount of progress of cracks when a certain stress is applied to the aforementioned object.

依據上述疲勞壽命預測方法,藉由指定用以算出相對於一次的應力負荷之龜裂的進展量之材料常數,能夠推測相對於一次的應力負荷之龜裂的進展量。利用此點,能夠進行使對象物的試驗片負荷某一應力時的疲勞壽命的預測。在此,係以對於對象物賦予疲勞限度以上的應力負荷時會從初期缺陷進展為 龜裂,及疲勞限度會因應缺陷及從缺陷進展之龜裂的尺寸而下降作為前提,所以考慮了應力負荷所造成的缺陷(龜裂)的進展、及伴隨於此之疲勞限度的下降,係適當地捕捉重複賦予的負荷中的真正的龜裂進展驅動力而預測疲勞壽命,故可實現更高精度的預測。 According to the above-mentioned fatigue life prediction method, by specifying the material constant for calculating the amount of crack progression with respect to one stress load, the amount of crack progression with respect to one stress load can be estimated. Utilizing this point, it is possible to predict the fatigue life when a certain stress is applied to the test piece of the object. Here, when a stress load exceeding the fatigue limit is applied to the object, the initial defect will progress to It is assumed that cracks and the fatigue limit will decrease according to the size of the defect and the crack that progresses from the defect. Therefore, the progress of the defect (crack) caused by the stress load and the decrease in the fatigue limit associated with it are considered. Since the fatigue life is predicted by appropriately capturing the true driving force of crack growth in the repeatedly applied load, it is possible to realize higher-precision prediction.

在此,預測前述疲勞壽命的步驟係包含:算出依據前述對象物的缺陷尺寸的疲勞限度;算出負荷比前述算出的疲勞限度還要大時之相對於一次的應力負荷的龜裂的進展量;以及算出缺陷及從缺陷進展之龜裂的尺寸到達界限缺陷尺寸為止之應力的負荷次數。 Here, the step of predicting the fatigue life includes: calculating the fatigue limit based on the defect size of the object; calculating the progress of the crack with respect to one stress load when the load is larger than the calculated fatigue limit; And the number of loads of stress until the size of the defect and the crack progressing from the defect reaches the limit defect size is calculated.

藉由設為上述的構成,在負荷某一應力時,係算出負荷比算出的疲勞限度還要大時之相對於一次的應力負荷的龜裂的進展量,且算出缺陷及從缺陷進展之龜裂的尺寸到達界限缺陷尺寸為止之應力的負荷次數。因此,不管對於對象物的應力負荷的大小為何,都能夠以高精度預測疲勞壽命。 With the above configuration, when a certain stress is applied, the amount of progress of cracks relative to one stress load is calculated when the load is greater than the calculated fatigue limit, and the defect and the crack progressing from the defect are calculated. The number of times the stress is loaded until the size of the crack reaches the limit defect size. Therefore, regardless of the magnitude of the stress load on the object, the fatigue life can be predicted with high accuracy.

在此,可為以下態樣:算出前述材料常數的步驟乃係算出下式(A)中的C*、m*及n*,該式(A)係算出相對於一次的應力負荷之龜裂的進展量△√area。 Here, it may be as follows: the step of calculating the aforementioned material constant is to calculate C*, m*, and n* in the following formula (A), which is to calculate the cracking relative to the primary stress load The amount of progress △√area.

Figure 110147730-A0202-12-0003-1
Figure 110147730-A0202-12-0003-1

[其中,△√area為相對於一次的應力負荷之龜裂的進展量,σ為負荷的應力振幅,σw為賦予負荷時的疲勞限度,√area為缺陷的尺寸] [In which, △√area is the amount of progress of the crack with respect to one stress load, σ is the stress amplitude of the load, σ w is the fatigue limit when the load is applied, and √area is the size of the defect]

藉由設為上述的構成,能夠指定材料常數,該材料常數可適切地算出相對於一次的應力負荷之龜裂的進展量,且可使用該材料常數而以高精度預測疲勞壽命。 With the above configuration, it is possible to designate a material constant that can appropriately calculate the amount of progress of a crack with respect to one stress load, and use this material constant to predict fatigue life with high accuracy.

可為以下態樣:在預測前述疲勞壽命的步驟中,使前述對象物所負荷的應力振幅為一定或為兩階段以上。 In the step of predicting the fatigue life, the amplitude of the stress applied to the object may be constant or two or more stages may be used.

依據上述的構成,不特別限制對於對象物的負荷大小。因此,負荷的應力振幅為一定時及為兩階段以上時的任一條件中,皆可以高精度預測疲勞壽命。 According to the above configuration, the magnitude of the load on the object is not particularly limited. Therefore, the fatigue life can be predicted with high accuracy in any of the conditions when the stress amplitude of the load is constant or in two or more stages.

本揭示的一型態的疲勞壽命預測裝置,係包含:疲勞試驗結果取得部,其係取得疲勞試驗資料,該疲勞試驗資料包含:關於對象物之在複數條件下的疲勞試驗的試驗結果、使用於前述疲勞試驗之試驗片的初期缺陷尺寸、及前述疲勞試驗的試驗條件;材料常數算出部,其係在特定的前提下,依據前述疲勞試驗資料,算出用以算出相對於一次的應力負荷之龜裂的進展量之材料常數,該特定的前提為:對於前述對象物賦予疲勞限度以上的應力負荷時會從初期缺陷進展為龜裂,及前述疲勞限度會因應缺陷及從缺陷進展之龜裂的尺寸而下降;以及疲勞壽命預測部,其係依據使用前述材料常數而被算出之相對於一次的應力負荷之龜裂的進展量,來預測使前述對象物負荷某一應力時的疲勞壽命。依據上述的疲勞壽命預測裝置,能夠達成與上述疲勞壽命預測方法同樣的功效。 A type of fatigue life prediction device disclosed in the present disclosure includes: a fatigue test result acquisition unit, which acquires fatigue test data, and the fatigue test data includes: test results of fatigue tests on objects under multiple conditions, use The initial flaw size of the test piece in the aforementioned fatigue test, and the test conditions of the aforementioned fatigue test; the material constant calculation unit, which is used to calculate the stress load relative to one time, based on the aforementioned fatigue test data under specific conditions. The material constant for the amount of progress of cracks. The specified premise is that when a stress load above the fatigue limit is applied to the aforementioned object, it will progress from the initial defect to cracks, and the aforementioned fatigue limit will respond to the defect and the crack that progresses from the defect. and a fatigue life predicting unit that predicts the fatigue life when a certain stress is applied to the object based on the amount of progress of cracking with respect to one stress load calculated using the material constant. According to the above-mentioned fatigue life prediction device, the same effect as the above-mentioned fatigue life prediction method can be achieved.

本揭示的一型態的疲勞壽命預測程式,係使電腦系統執行下列步驟:取得疲勞試驗資料,該疲勞試驗資料包含:關於對象物之在複數條件下的疲勞試驗的試驗結果、使用於前述疲勞試驗之試驗片的初期缺陷尺寸、及前述疲勞試驗的試驗條件;在特定的前提下,依據前述疲勞試驗資料,算出用以算出相對於一次的應力負荷之龜裂的進展量之材料常數,該特定的前提為:對於前述對象物賦予疲勞限度以上的應力負荷時會從初期缺陷進展為龜裂,及前述疲勞限度會因應缺陷及從缺陷進展之龜裂的尺寸而下降;以及依據使用前述材料常數而 被算出之相對於一次的應力負荷之龜裂的進展量,來預測使前述對象物負荷某一應力時的疲勞壽命。依據上述的疲勞壽命預測程式,能夠達成與上述疲勞壽命預測方法同樣的功效。 One type of fatigue life prediction program disclosed in the present disclosure is to make the computer system perform the following steps: obtain fatigue test data, the fatigue test data includes: test results of fatigue tests on the object under multiple conditions, used for the aforementioned fatigue The initial defect size of the test piece and the test conditions of the aforementioned fatigue test; under certain conditions, based on the aforementioned fatigue test data, the material constant used to calculate the progress of the crack relative to one stress load is calculated. The specific prerequisites are: when a stress load exceeding the fatigue limit is applied to the aforementioned object, cracks will progress from the initial defect, and the aforementioned fatigue limit will decrease according to the size of the defect and the crack that progresses from the defect; and based on the use of the aforementioned material constant while The fatigue life when a certain stress is applied to the aforementioned object is predicted from the calculated amount of progress of cracking with respect to one stress load. According to the above fatigue life prediction program, the same effect as the above fatigue life prediction method can be achieved.

本揭示的一型態的記憶媒體,係可被電腦讀取者,且其係記憶使電腦系統執行下列步驟的疲勞壽命預測程式:取得疲勞試驗資料,該疲勞試驗資料包含:關於對象物之在複數條件下的疲勞試驗的試驗結果、使用於前述疲勞試驗之試驗片的初期缺陷尺寸、及前述疲勞試驗的試驗條件;在特定的前提下,依據前述疲勞試驗資料,算出用以算出相對於一次的應力負荷之龜裂的進展量之材料常數,該特定的前提為:對於前述對象物賦予疲勞限度以上的應力負荷時會從初期缺陷進展為龜裂,及前述疲勞限度會因應缺陷及從缺陷進展之龜裂的尺寸而下降;以及依據使用前述材料常數而被算出之相對於一次的應力負荷之龜裂的進展量,來預測使前述對象物負荷某一應力時的疲勞壽命。依據上述的記憶媒體,能夠達成與上述疲勞壽命預測方法同樣的功效。 One type of memory medium disclosed in this disclosure is one that can be read by a computer, and it memorizes a fatigue life prediction program that causes the computer system to perform the following steps: Obtain fatigue test data, the fatigue test data includes: information about the existence of the object The test results of the fatigue test under multiple conditions, the initial defect size of the test piece used in the aforementioned fatigue test, and the test conditions of the aforementioned fatigue test; under specific conditions, based on the aforementioned fatigue test data, it is used to calculate the relative The specific premise is: when a stress load above the fatigue limit is applied to the aforementioned object, it will progress from initial defects to cracks, and the aforementioned fatigue limit will vary from defect to defect. The size of the progressing crack is reduced; and the fatigue life when the aforementioned object is loaded with a certain stress is predicted based on the amount of progress of the crack with respect to one stress load calculated using the aforementioned material constant. According to the above-mentioned memory medium, the same effect as the above-mentioned fatigue life prediction method can be achieved.

依據本揭示,提供一種能以更高精度來預測疲勞壽命的技術。 According to the present disclosure, a technique capable of predicting fatigue life with higher accuracy is provided.

1:疲勞壽命預測裝置 1: Fatigue life prediction device

11:疲勞試驗資料取得部 11: Fatigue test data acquisition department

12:預測條件取得部 12: Forecast Condition Acquisition Department

13:材料常數算出部 13:Material constant calculation part

14:疲勞壽命預測部 14: Fatigue Life Prediction Department

15:結果輸出部 15: Result output unit

16:資料記憶部 16: Data memory department

100:電腦 100: computer

101:CPU 101: CPU

102:主記憶部 102: Main memory

103:輔助記憶部 103: Auxiliary memory department

104:通信控制部 104: Communication Control Department

105:輸入裝置 105: input device

106:輸出裝置 106: output device

S01~S05,S11~S22,S31~S49,S51~S60:步驟 S01~S05, S11~S22, S31~S49, S51~S60: steps

圖1為一型態之疲勞壽命預測裝置的概略圖。 FIG. 1 is a schematic diagram of a type of fatigue life prediction device.

圖2為說明疲勞壽命預測方法之一例的流程圖。 FIG. 2 is a flowchart illustrating an example of a fatigue life prediction method.

圖3為說明使用了疲勞壽命預測方法所含的材料常數之疲勞壽命預測方法之一例的流程圖。 FIG. 3 is a flowchart illustrating an example of a fatigue life prediction method using material constants included in the fatigue life prediction method.

圖4為說明疲勞壽命預測方法所含的材料常數的算出方法之一例的流程圖。 4 is a flowchart illustrating an example of a method of calculating a material constant included in a fatigue life prediction method.

圖5為說明求取圖4所含的Nfpred的子常式(sub-routine)之一例的流程圖。 FIG. 5 is a flowchart illustrating an example of a sub-routine for obtaining N fpred included in FIG. 4 .

圖6為顯示疲勞壽命預測裝置的硬體構成之一例的圖。 FIG. 6 is a diagram showing an example of the hardware configuration of the fatigue life prediction device.

圖7為說明疲勞壽命預測裝置所為的疲勞壽命預測的評價結果的圖。 FIG. 7 is a diagram illustrating evaluation results of fatigue life prediction performed by the fatigue life prediction device.

以下參照所附圖式,詳細說明用以實施本揭示的型態。在圖式的說明中,同一要素係附加同一符號,並省略重複的說明。 The modes for implementing the present disclosure are described in detail below with reference to the accompanying drawings. In the description of the drawings, the same elements are attached with the same symbols, and overlapping descriptions are omitted.

[疲勞壽命預測裝置] [Fatigue life prediction device]

首先,參照圖1來說明一實施型態之疲勞壽命預測裝置1的概略構成。圖1所示的疲勞壽命預測裝置1為預測對於對象物賦予預定的應力時的疲勞壽命之裝置。 First, a schematic configuration of a fatigue life prediction device 1 according to an embodiment will be described with reference to FIG. 1 . The fatigue life prediction device 1 shown in FIG. 1 is a device for predicting the fatigue life when a predetermined stress is applied to an object.

成為疲勞壽命的預測對象的對象物的種類並不特別限定,惟工業製品、構造物等,及可使用於工業製品、構造物等的元件的工業材料可為主要的對象物。再者,工業材料中特別係針對金屬,可使用疲勞壽命預測裝置1而進行高精度的壽命預測。只要是可取得S-N曲線的材料,則上述的手法亦可應用於非金屬。 The types of objects to be predicted for fatigue life are not particularly limited, but industrial products, structures, etc., and industrial materials that can be used as components of industrial products, structures, etc., may be the main objects. Furthermore, among industrial materials, particularly metals, the fatigue life predictor 1 can be used to perform highly accurate life prediction. As long as it is a material that can obtain an S-N curve, the above method can also be applied to non-metals.

再者,由疲勞壽命預測裝置1所預測的疲勞壽命係指:對於對象物重複使其負荷應力時,對象物被破壞為止的應力負荷的重複次數。一般而言,當對於對象物負荷預定的值以上的應力,就會在超過某一次數的階段發生對象物的破壞。在疲勞壽命預測裝置1中,具有預測此破壞發生為止之應力負荷的重複次數的功能。 In addition, the fatigue life predicted by the fatigue life prediction device 1 refers to the number of repetitions of stress loading until the object is destroyed when stress is repeatedly applied to the object. In general, when a stress greater than a predetermined value is applied to an object, the object is destroyed over a certain number of times. The fatigue life prediction device 1 has a function of predicting the number of repetitions of the stress load until the failure occurs.

一般而言,疲勞壽命係依據疲勞試驗的結果,生成S-N曲線而進行預測的情形較多。此時,通常係將以一定的應力振幅所取得的複數的疲勞試驗的結果套入至習知的模型,藉此生成S-N曲線。然而,在應力會變動的情形中,會有比依據上述的S-N曲線的疲勞限度還要小的應力亦會影響龜裂的進展的情況,所以已知依據S-N曲線之疲勞壽命的推測技術尚有改良的餘地。 In general, the fatigue life is often predicted by generating an S-N curve based on the results of a fatigue test. In this case, usually, the results of multiple fatigue tests obtained at a constant stress amplitude are inserted into a known model to generate an S-N curve. However, in the case where the stress fluctuates, a stress smaller than the fatigue limit based on the above-mentioned S-N curve may also affect the progress of the crack. Therefore, it is known that the fatigue life estimation technology based on the S-N curve is not yet available. room for improvement.

在本實施型態的疲勞壽命預測裝置1中,係著眼於屬於疲勞的過程之於材料內部的龜裂的進展行為,並依據力學根據將該行為公式化,藉此能夠實現在變動應力下之疲勞壽命的高精度的預測。細節將後述,但在疲勞壽命預測裝置1中,係以「當對於對象物使其負荷超過疲勞限度的應力時,存在於對象物的微小的龜裂(初期缺陷)會進展(變大)」作為前提,考慮龜裂變大所造成的疲勞限度的下降而評價重複賦予之負荷所造成的龜裂的進展,藉此預測疲勞壽命。首先,係從對象物的複數條件的疲勞試驗資料,算出屬於使用於疲勞壽命預測的參數之三種材料常數。之後,利用所算出的三種材料常數,計算對於對象物賦予某一應力時的龜裂的進展量並更新龜裂尺寸(初期缺陷及從初期缺陷進展之龜裂的尺寸),依據因應更新後的新龜裂尺寸的疲勞限度而繼續進行之後的評價,並辨別龜裂尺寸因疲勞而超過界限值的階段,藉此而預測疲勞壽命。 In the fatigue life prediction device 1 of this embodiment, by focusing on the progress behavior of cracks inside the material as a process of fatigue, and formulating this behavior on the basis of mechanics, it is possible to achieve fatigue under variable stress. High-precision prediction of lifetime. The details will be described later, but in the fatigue life prediction device 1, it is said that "when the stress exceeding the fatigue limit is applied to the object, the micro cracks (initial defects) existing in the object will develop (increase in size)" As a premise, the fatigue life is predicted by evaluating the progress of cracks due to repeated loads in consideration of the decrease in the fatigue limit due to crack growth. First, three material constants, which are parameters used for fatigue life prediction, are calculated from the fatigue test data of the object under multiple conditions. Afterwards, using the calculated three material constants, calculate the progress of the crack when a certain stress is applied to the object and update the crack size (the initial defect and the size of the crack that progresses from the initial defect), based on the updated The fatigue limit of the new crack size will continue to be evaluated, and the stage where the crack size exceeds the limit value due to fatigue is identified, so as to predict the fatigue life.

(疲勞壽命預測裝置的功能部) (Function part of the fatigue life prediction device)

一邊參照圖1,一邊說明疲勞壽命預測裝置1的各部。如圖1所示,疲勞壽命預測裝置1係包含疲勞試驗資料取得部11(疲勞試驗結果取得部)、預測條件取得部12、材料常數算出部13、疲勞壽命預測部14、結果輸出部15(輸出部)及資料記憶部16而構成。 Each part of the fatigue life prediction device 1 will be described with reference to FIG. 1 . As shown in FIG. 1 , the fatigue life prediction device 1 includes a fatigue test data acquisition unit 11 (fatigue test result acquisition unit), a prediction condition acquisition unit 12, a material constant calculation unit 13, a fatigue life prediction unit 14, and a result output unit 15 ( Output unit) and data memory unit 16 and constitute.

疲勞試驗資料取得部11係具有取得成為疲勞壽命預測的對象的對象物的疲勞試驗結果的資料之功能。作為疲勞試驗資料取得部11所取得的疲勞試驗結果的資料,為一般的疲勞試驗結果的資料,具體而言為進行「針對具有某一大小的缺陷的試驗片,給予一定振幅的應力負荷所造成的破斷為止的重複次數」之試驗時的試驗條件及其結果。細節將後述,但係取得複數個上述的試驗結果,且使用於疲勞壽命預測。 The fatigue test data acquisition unit 11 has a function of acquiring the data of the fatigue test results of the object to be subjected to fatigue life prediction. The data of the fatigue test results acquired by the fatigue test data acquisition unit 11 is the data of the general fatigue test results, specifically, the data obtained by performing "a stress load of a certain amplitude to a test piece having a defect of a certain size." The test conditions and results during the test of the number of repetitions until the broken. Details will be described later, but a plurality of the above-mentioned test results were obtained and used for fatigue life prediction.

預測條件取得部12係具有取得資訊的功能,該資訊為已指定疲勞壽命預測裝置1中的疲勞壽命預測的條件者。就預測條件取得部12所取得之已指定條件的資訊而言,例如,作為算出上述三種材料常數所必須的資訊,可列舉出對象物的維氏硬度(HV)、視為破斷之最終龜裂尺寸、材料常數的候補的數值範圍及間隔(刻度)等。再者,作為預測條件取得部12所取得之已指定條件的資訊,例如係作為算出材料常數後進行疲勞壽命預測所必須的資訊,可列舉出對象物中的缺陷尺寸的初期值、進行疲勞壽命預測時的負荷的重複次數的增量及上限值等。上述的資訊雖然是以後述的手法進行材料常數的算出及疲勞壽命的預測時所必須的資訊,但依據實際的計算方法,亦有僅使用上述的資訊的一部分的情形,亦有使用未包含於上述之資訊的情形。因此,依據用以進行疲勞壽命預測之具體的手法,預測條件取得部12所取得之資訊的種類可被變更。 The prediction condition acquisition unit 12 has a function of acquiring information specifying conditions for fatigue life prediction in the fatigue life prediction device 1 . As for the information of the specified condition acquired by the prediction condition acquisition unit 12, for example, the Vickers hardness (HV) of the object, the final hardness of the object considered to be fractured, etc. Candidate numerical ranges and intervals (scales) of crack size and material constants, etc. In addition, as the information of the specified condition acquired by the prediction condition acquisition unit 12, for example, it is information necessary for fatigue life prediction after calculating the material constant, and examples include the initial value of the defect size in the object, the fatigue life Increment, upper limit, etc. of the number of repetitions of the load at the time of prediction. Although the above-mentioned information is necessary information for calculation of material constants and prediction of fatigue life by the method described later, depending on the actual calculation method, only a part of the above-mentioned information may be used, or it may not be included in The circumstances of the above information. Therefore, the type of information acquired by the prediction condition acquisition unit 12 can be changed depending on a specific method for fatigue life prediction.

材料常數算出部13係具有:依據在疲勞試驗資料取得部11及預測條件取得部12中所取得的資訊,而算出三種材料常數的功能。關於材料常數的算出方法係後述。 The material constant calculation unit 13 has a function of calculating three kinds of material constants based on the information acquired by the fatigue test data acquisition unit 11 and the prediction condition acquisition unit 12 . The method of calculating the material constant will be described later.

疲勞壽命預測部14係具有:使用在材料常數算出部13中所算出的材料常數,而預測對象物的疲勞壽命的功能。關於疲勞壽命的預測方法係後述。 The fatigue life prediction unit 14 has a function of predicting the fatigue life of the object using the material constant calculated by the material constant calculation unit 13 . The method of predicting the fatigue life will be described later.

結果輸出部15係具有:將藉由疲勞壽命預測部14的處理而得的疲勞壽命預測的結果予以輸出的功能。輸出方法並不特別限定,可使用檔案輸出、畫面輸出、對其他程式返還值等習知的手法。輸出結果時,例如亦可一併輸出藉由材料常數算出部13所算出的材料常數。 The result output unit 15 has a function of outputting the result of the fatigue life prediction obtained by the processing of the fatigue life prediction unit 14 . The output method is not particularly limited, and well-known methods such as file output, screen output, and return value to other programs can be used. When outputting the result, for example, the material constant calculated by the material constant calculation unit 13 may also be output together.

資料記憶部16係具有記憶資訊的功能,該資訊包含:疲勞試驗資料取得部11及預測條件取得部12所取得的資訊、及上述的各部進行的處理所必須的資訊。再者,亦具有記憶材料常數算出部13及疲勞壽命預測部14中的處理所得的結果的功能。 The data storage unit 16 has a function of storing information including information acquired by the fatigue test data acquisition unit 11 and the prediction condition acquisition unit 12 and information necessary for processing performed by the above-mentioned units. Furthermore, it also has a function of memorizing the results of the processing in the material constant calculation unit 13 and the fatigue life prediction unit 14 .

[疲勞壽命預測方法] [Fatigue life prediction method]

接著,一邊參照圖2至圖5,一邊說明疲勞壽命預測裝置1所為的疲勞壽命預測方法。 Next, the fatigue life prediction method performed by the fatigue life prediction device 1 will be described with reference to FIGS. 2 to 5 .

首先,在疲勞壽命預測裝置1中,藉由疲勞試驗資料取得部11而取得疲勞試驗資料(步驟S01)。此處理係例如亦可由疲勞壽命預測裝置1的操作者(使用者)操作疲勞壽命預測裝置1而進行。再者,可為預先指定之疲勞試驗裝置中所取得的試驗結果被依序發送給疲勞壽命預測裝置1的構成,也可為在疲勞壽命預測裝置1中依序取得疲勞試驗資料的構成。 First, in the fatigue life prediction device 1, fatigue test data is acquired by the fatigue test data acquisition unit 11 (step S01). This processing can also be performed, for example, by an operator (user) of the fatigue life prediction device 1 operating the fatigue life prediction device 1 . In addition, the test results obtained by the fatigue test device specified in advance may be sequentially sent to the fatigue life prediction device 1, or the fatigue test data may be sequentially obtained by the fatigue life prediction device 1.

再者,藉由疲勞試驗資料的預測條件取得部12而取得資訊,該資訊係已指定疲勞壽命預測裝置1中的疲勞壽命預測的一連串處理的條件(步驟S02)。此處理係例如亦可由疲勞壽命預測裝置1的操作者(使用者)操作疲勞壽命預測裝置1而進行。步驟S01與步驟S02的順序並不特別限定,例如可為步驟S02先進行,亦可為步驟S01與步驟S02同時進行。再者,指定疲勞壽命預測的條件的 資訊亦可為在疲勞壽命預測裝置1的預測條件取得部12被預先取得且被保持的狀態。 Furthermore, the fatigue test data prediction condition acquisition unit 12 acquires information specifying conditions for a series of processes of fatigue life prediction in the fatigue life prediction device 1 (step S02 ). This processing can also be performed, for example, by an operator (user) of the fatigue life prediction device 1 operating the fatigue life prediction device 1 . The sequence of step S01 and step S02 is not particularly limited, for example, step S02 may be performed first, or step S01 and step S02 may be performed simultaneously. Furthermore, specifying the conditions for fatigue life prediction The information may be acquired and held in advance by the prediction condition acquisition unit 12 of the fatigue life prediction device 1 .

再者,藉由疲勞壽命預測裝置1的材料常數算出部13,首先進行依據上述的資訊的三個材料常數(C*、m*、n*)的算出(步驟S03)。材料常數的算出方法係記載於圖3及圖4,細節後述。 Furthermore, the material constant calculation unit 13 of the fatigue life prediction device 1 first calculates the three material constants (C*, m*, n*) based on the above information (step S03). The calculation method of the material constant is described in Fig. 3 and Fig. 4, and the details will be described later.

再者,藉由疲勞壽命預測裝置1的疲勞壽命預測部14,使用在材料常數算出部13中算出的結果而進行疲勞壽命的預測(步驟S04)。疲勞壽命的預測方法係記載於圖5,細節後述。 Furthermore, the fatigue life is predicted by the fatigue life predicting unit 14 of the fatigue life predicting device 1 using the result calculated by the material constant calculating unit 13 (step S04 ). The method of predicting the fatigue life is shown in Fig. 5, and details will be described later.

再者,藉由疲勞壽命預測裝置1的結果輸出部15,輸出藉由疲勞壽命預測部14的處理所得到的疲勞壽命預測的結果(步驟S05)。輸出時,亦可進行用以變換為適合輸出之狀態的變換處理等。 Furthermore, the result of the fatigue life prediction obtained by the process of the fatigue life prediction part 14 is output by the result output part 15 of the fatigue life prediction apparatus 1 (step S05). At the time of output, conversion processing for converting to a state suitable for output, etc. may also be performed.

(疲勞壽命預測裝置1的基本的想法) (basic way of thinking of fatigue life prediction device 1)

在說明詳細的步驟之前,先顯示本實施型態所記載的手法的基本的想法。 Before describing the detailed steps, the basic idea of the method described in this embodiment will be shown.

首先,使用「當材料存在有某一尺寸的缺陷,就會決定對應於該缺陷之疲勞限度σw(應力振幅)」的想法。此時的疲勞限度,例如為金屬材料且應力比R=-1的情況下,可使用以下的式(1)來預測。在此,應力比R係以重複之應力的最小值與最大值的比來定義。此式(1)係記載於1993年由養賢堂發行的村上敬宜「金屬疲勞:微小缺陷與中介物的影響」。算出σw的方法並不限定於式(1)。例如,對不是R=-1的情況或非金屬材料應用本手法時,可考慮以其他的方法來預測σwFirst, use the idea that "when there is a defect of a certain size in the material, the fatigue limit σ w (stress amplitude) corresponding to the defect will be determined." The fatigue limit at this time can be predicted using the following formula (1), for example, when it is a metal material and the stress ratio R=-1. Here, the stress ratio R is defined by the ratio of the minimum value and the maximum value of repeated stress. This formula (1) is recorded in Murakami Keiyoshi "Metal Fatigue: The Influence of Small Defects and Intermediaries" published by Yokendo in 1993. The method of calculating σ w is not limited to the formula (1). For example, when applying this method to a situation other than R=-1 or non-metallic materials, other methods can be considered to predict σ w .

Figure 110147730-A0202-12-0010-2
Figure 110147730-A0202-12-0010-2

HV:維氏硬度 HV: Vickers hardness

Figure 110147730-A0202-12-0011-3
:缺陷尺寸(由將缺陷投影至應力負荷方向之影像的面積的平方根所定義)
Figure 110147730-A0202-12-0011-3
: defect size (defined by the square root of the area of the image projecting the defect onto the stress loading direction)

F:依缺陷的位置而定的常數(表面:1.43、表面正下方:1.41、內部:1.56) F: constant depending on the position of the defect (surface: 1.43, directly below the surface: 1.41, inside: 1.56)

在此想法中,係當作疲勞限度以下的應力不會影響疲勞。再者,若賦予比疲勞限度還大的負荷,則即為對於對象物賦予疲勞。換言之,可謂σ/σw-1係成為影響疲勞的力學量。 In this idea, it is assumed that stresses below the fatigue limit do not affect fatigue. Furthermore, when a load greater than the fatigue limit is applied, fatigue is applied to the object. In other words, the σ/σ w -1 system can be said to be a mechanical quantity affecting fatigue.

再者,上述的式(1)中係顯示材料中存在缺陷,且依據其尺寸決定疲勞限度。另一方面,在對於對象物賦予疲勞限度以上的應力(應力振幅)的負荷的情況,在對象物中,會從先前已存在的缺陷產生龜裂。因此,包含龜裂的缺陷的尺寸係因為應力負荷的重複次數的增加而變大。由式(1)可知,疲勞限度σw會因應缺陷的大小(缺陷尺寸)而逐漸變小。換言之,即使是相同的應力負荷,當內部的缺陷越大,影響疲勞的力學量σ/σw-1的值也會逐漸變大。 Furthermore, the above formula (1) shows that there are defects in the material, and the fatigue limit is determined according to their size. On the other hand, when a load of a stress (stress amplitude) exceeding the fatigue limit is applied to the object, cracks are generated in the object from defects that existed before. Therefore, the size of defects including cracks becomes larger as the number of repetitions of stress loading increases. It can be seen from formula (1) that the fatigue limit σ w will gradually become smaller according to the size of the defect (defect size). In other words, even with the same stress load, the value of the mechanical quantity σ/σ w -1 that affects fatigue will gradually increase as the internal defects become larger.

如上所述,可謂力學量σ/σw-1係成為使缺陷(龜裂)擴大的驅動力(龜裂進展驅動力)。此時,可將使用上述力學量之龜裂的進展狀態記載為式(2)。 As described above, it can be said that the mechanical quantity σ/σ w -1 is a driving force (crack growth driving force) for expanding defects (cracks). In this case, the progress state of the crack using the above-mentioned mechanical quantity can be expressed as the formula (2).

Figure 110147730-A0202-12-0011-4
Figure 110147730-A0202-12-0011-4

式(2)中,a係對應於缺陷的大小√area,da/dN為每負荷一循環的龜裂a的進展量,C*、m*及n*為材料常數。亦可假設n*通常為1。將上述式(2)積分,將龜裂尺寸a的值成為足夠大的值(一般為1mm程度以上)時預測為實質的疲勞壽命。 In formula (2), a corresponds to the size of the defect √area, da/dN is the progress of crack a per load cycle, and C*, m* and n* are material constants. It can also be assumed that n* is usually 1. By integrating the above formula (2), a substantial fatigue life is predicted when the value of the crack size a becomes a sufficiently large value (generally about 1 mm or more).

使用上述方法的情形時,即使是在對於對象物負荷之應力的值在重複的途中變化的情況中,也能夠追蹤龜裂的成長擴大。因此,在荷重變動的條件中也可進行對象物的疲勞壽命預測。 When the above method is used, it is possible to follow the growth and expansion of cracks even when the value of the stress applied to the object changes during repetition. Therefore, the fatigue life prediction of the object can be performed even under the condition of load fluctuation.

(疲勞壽命的預測方法) (Prediction method of fatigue life)

一邊參照圖3,一邊說明在步驟S04進行的疲勞壽命的預測方法。在此,係以上述的材料常數C*、m*、n*是使用後述的方法所得作為前提來進行說明。 The method of predicting the fatigue life performed in step S04 will be described with reference to FIG. 3 . Here, description will be made on the premise that the above-mentioned material constants C*, m*, and n* are obtained using a method described later.

首先,進行使用於疲勞壽命的預測的參數的輸入(步驟S11)。如圖3也顯示:對於疲勞壽命的預測係準備以下表1所示的參數。 First, parameters used for prediction of fatigue life are input (step S11). As shown in Figure 3, the parameters shown in Table 1 below are prepared for the prediction of fatigue life.

[表1]

Figure 110147730-A0202-12-0012-5
[Table 1]
Figure 110147730-A0202-12-0012-5

上述設定中,初期缺陷尺寸√area0為包含於對象物材料的初期缺陷的尺寸,且由將缺陷投影至直角的面之投影面積的平方根所定義。例如,可考慮使用光學手法或X光CT等而測量。再者,亦可使用1993年由養賢堂發行的村上敬宜「金屬疲勞:微小缺陷與中介物的影響」所記載的手法來設定。 In the above settings, the initial defect size √area 0 is the size of the initial defect included in the object material, and is defined by the square root of the projected area of the defect projected onto a right-angled surface. For example, it is conceivable to measure using an optical method, X-ray CT, or the like. Furthermore, it is also possible to use the method described in Keiki Murakami "Metal Fatigue: Influence of Micro Defects and Intermediaries" published by Yokendo in 1993.

再者,界限龜裂尺寸√areacrit雖亦可能依據對象物的材料特性而變化,但考慮從龜裂的進展到成為破斷的過程,例如亦可設定為1mm。從1mm到最終破斷為止所需的重複次數係相較於全體的重複次數為相對較少,所以也可進行這樣的設定。再者,重複次數N的上限Nstop係考慮對象物的使用期限、 應力的重複週期而可設定為較大(例如,107)。再者,在應力為依據N的函數σa(N)的情況中,可同時達成:依據變動的間隔而設定增量△N以提高疲勞壽命的預測精度,且縮短計算時間。 Furthermore, although the limit crack size √area crit may vary depending on the material properties of the object, it may be set to 1 mm, for example, in consideration of the process from the progress of the crack to the fracture. The number of repetitions required from 1 mm to the final breakage is relatively small compared to the overall number of repetitions, so this setting is also possible. In addition, the upper limit N stop of the number of repetitions N can be set relatively large (for example, 10 7 ) in consideration of the service life of the object and the repetition period of the stress. Furthermore, in the case where the stress is a function σ a (N) based on N, it is possible to set the increment ΔN according to the variation interval to improve the prediction accuracy of the fatigue life and shorten the calculation time at the same time.

再者,進行初期值的設定(步驟S12)。作為初期值係設為N=0,作為√area選擇初期缺陷尺寸√area0Furthermore, initial value setting is performed (step S12). As an initial value, N=0 is set, and an initial defect size √area 0 is selected as √area.

再者,算出循環N中的σ及√area中的疲勞限度σw(步驟S13至步驟S16)。具體而言,首先,為了設定循環N,設定N=N+△N(步驟S13)之後,確認N未達上限Nstop(步驟S14)而繼續計算的情形(步驟S14-是)時,係在設定對應於循環N的應力振幅σ(為N的函數時係σa(N))(步驟S15)後,進行依據式(1)的疲勞限度σw的算出(步驟S16)。此時,係依據缺陷及/或從缺陷進展的龜裂的位置而可選擇F=1.43(表面缺陷的情形)或F=1.56(內部缺陷的情形),但一般而言使用成為安全側的F=1.43。 Furthermore, σ in cycle N and fatigue limit σ w in √area are calculated (step S13 to step S16). Specifically, first, in order to set the cycle N, after setting N=N+ΔN (step S13), confirm that N has not reached the upper limit N stop (step S14) and continue the calculation (step S14-yes), the system is set After the stress amplitude σ corresponding to the cycle N (time system σ a (N) as a function of N) (step S15 ), calculation of the fatigue limit σ w according to the formula (1) is performed (step S16 ). In this case, F=1.43 (in the case of surface defects) or F=1.56 (in the case of internal defects) can be selected depending on the position of the defect and/or the crack that progresses from the defect, but generally, F that is on the safe side is used. =1.43.

N成為Nstop以上時(步驟S14-否),結束處理,並輸出非破斷之結果(步驟S17)。 When N is equal to or greater than Nstop (step S14-No), the process is terminated, and a non-breaking result is output (step S17).

算出疲勞限度σw後,確認作為負荷賦予的應力σ是否比疲勞限度σw還要大(步驟S18)。作為負荷賦予的應力σ為疲勞限度σw以下時(步驟S18-否),當作龜裂不會因為該應力的重複而進展而予以忽視,重新設定循環N而重複以上的步驟(S13至S18),藉此,針對接下來負荷的應力也進行同樣的探討。另一方面,作為負荷賦予的應力σ比疲勞限度σw還要大時(步驟S18-是),當作龜裂會因為該應力的重複而進展,而算出龜裂的進展量(步驟S19)。具體而言,係依據上述式(2),使用式(3)而算出重複一次的龜裂進展量,使用式(4)而算出新的龜裂尺寸。 After the fatigue limit σ w is calculated, it is checked whether the stress σ applied as a load is larger than the fatigue limit σ w (step S18 ). When the stress σ given as the load is below the fatigue limit σw (step S18-No), it is ignored as the crack does not progress due to the repetition of the stress, and the cycle N is reset to repeat the above steps (S13 to S18 ), and by doing so, the same investigation is carried out for the stress of the next load. On the other hand, when the stress σ applied as the load is larger than the fatigue limit σ w (step S18-Yes), the crack is considered to progress due to the repetition of the stress, and the amount of progress of the crack is calculated (step S19) . Specifically, based on the above-mentioned formula (2), the amount of progress of the crack that is repeated once is calculated using the formula (3), and the new crack size is calculated using the formula (4).

Figure 110147730-A0202-12-0014-6
Figure 110147730-A0202-12-0014-6

Figure 110147730-A0202-12-0014-7
Figure 110147730-A0202-12-0014-7

算出新的龜裂尺寸√area之後,確認新的龜裂尺寸√area是否比界限龜裂尺寸√areacrit還要大(步驟S20)。當新的龜裂尺寸√area為界限龜裂尺寸√areacrit以下時(步驟S20-否),判定對象物尚未破斷,且重新設定循環N並重複上述的步驟(步驟S13至S20)。另一方面,當新的龜裂尺寸√area比界限龜裂尺寸√areacrit還要大時(步驟S20-是),判定對象物已破斷,且將破斷重複次數Nf設定為現在的循環數N(步驟S21)。然後,將破斷重複次數Nf作為疲勞壽命的預測結果而輸出(步驟S22)。據此,結束疲勞壽命的預測的一連串處理。 After calculating the new crack size √area, it is checked whether the new crack size √area is larger than the limit crack size √area crit (step S20). When the new crack size √area is below the limit crack size √area crit (step S20-No), it is determined that the object has not been broken, and the cycle N is reset and the above steps are repeated (steps S13 to S20). On the other hand, when the new crack size √area is larger than the limit crack size √area crit (step S20-Yes), it is determined that the object has been broken, and the number of repetitions of breaking Nf is set to the current cycle Number N (step S21). Then, the number of repetitions of fracture Nf is output as a fatigue life prediction result (step S22). With this, a series of processes for predicting the fatigue life ends.

(材料係數的算出方法) (Calculation method of material factor)

一邊參照圖4及圖5,一邊說明在步驟S03所進行的材料係數的算出方法。圖4為圖2所示的流程圖所包含的一步驟的流程圖。如上所述,成為算出的對象的三個材料常數為C*、m*、n*。 The calculation method of the material coefficient performed in step S03 is demonstrated, referring FIG.4 and FIG.5. FIG. 4 is a flowchart of a step included in the flowchart shown in FIG. 2 . As described above, the three material constants to be calculated are C*, m*, and n*.

算出材料係數時,係利用上述的疲勞壽命的預測方法所使用的式子。具體而言,係使用任意的C*、m*及n*,依據疲勞試驗的結果所包含的測量條件而算出破斷重複次數Nf的預測值Nfpred。算出此預測值Nfpred與由疲勞試驗所得的破斷重複次數Nf的實測值Nfexp的差分,求出此差分成為最小之C*、m*、n*的組合,藉此能夠指定C*、m*及n*。指定使預測值Nfpred與實測值Nfexp的差分成為最小之最適合的材料常數C*、m*及n*的方法並不特別限定,但在以下的實施型態中,係說明設定如式(5)所示的目的函數O,並指定使目的函數O 最小化的C*、m*及n*之手法。在式(5)中,M為實驗資料的組數,Ei為第i個實驗資料組中的Nfpred與Nfexp之對數的差E。Ei係由式(6)所定義。 When calculating the material factor, the formula used in the above-mentioned method of predicting the fatigue life is used. Specifically, using arbitrary C*, m*, and n*, the predicted value N fpred of the number of repetitions of breaking N f is calculated based on the measurement conditions included in the results of the fatigue test. Calculate the difference between this predicted value N fpred and the actual measured value N fexp of the number of breaking repetitions N f obtained from the fatigue test, and find the combination of C*, m*, and n* that minimizes the difference, thereby specifying C* , m* and n*. The method of specifying the most suitable material constants C*, m*, and n* to minimize the difference between the predicted value N fpred and the measured value N fexp is not particularly limited, but in the following implementation forms, it is explained that the settings are as follows: (5) The objective function O shown in (5), and specify the methods of C*, m* and n* to minimize the objective function O. In formula (5), M is the number of groups of experimental data, and E i is the logarithmic difference E between N fpred and N fexp in the i-th experimental data group. E i is defined by formula (6).

Figure 110147730-A0202-12-0015-8
Figure 110147730-A0202-12-0015-8

E(i)=log N fpred (i)-log N fexp(i) (6) E ( i )=log N fpred ( i ) - log N f exp ( i ) (6)

作為指定使目的函數O最小化的C*、m*及n*之手法,例如可使用反覆計算。具體而言,可列舉對於預先設定的範圍內之C*、m*及n*循環地計算之方法。除此之外,亦可使用一般使用的各種最適化演算法。 As a method of designating C*, m*, and n* that minimize the objective function O, iterative calculation can be used, for example. Specifically, a method of cyclically calculating C*, m*, and n* within a preset range may be mentioned. In addition, various optimization algorithms generally used may also be used.

於圖4及圖5中,說明具體地執行上述手法時的步驟的一例。 4 and 5 , an example of the procedure when the above-mentioned method is specifically executed will be described.

首先,進行使用於材料常數的算出的參數的輸入(步驟S31)。如圖4亦顯示:對於材料常數的算出係準備以下表2所示的參數。 First, parameters used for calculation of material constants are input (step S31). As shown in Fig. 4, the parameters shown in Table 2 below are prepared for the calculation of the material constant.

[表2]

Figure 110147730-A0202-12-0016-9
[Table 2]
Figure 110147730-A0202-12-0016-9

疲勞試驗的資料數雖設為1至M,但在求取三個材料常數的情形中,最少需要三個彼此相異(條件彼此相異)的試驗資料(i≧3)。然而,實際上亦可假設材料常數n*為1,所以在該情形中試驗資料也可為2個。 The number of fatigue test data is set from 1 to M, but at least three test data (i≧3) different from each other (conditions different from each other) are required in order to obtain three material constants. However, in practice, it is also possible to assume that the material constant n* is 1, so in this case, two pieces of test data may also be used.

再者,進行初期值的設定(步驟S32)。作為初期值,針對C*、m*及n*係分別設定最小值C*min、m*min及n*min。作為目的函數O的初期值的一例,係設定Oupdate=1000。如上所述,由於為指定可將目的函數最小化之材料常數的步驟,所以作為初期值係設定充分大的值。再者,Oupdate係指目的函數的最新的最小值,使用作為以下所說明的步驟中進行重複計算時的基準。 Furthermore, initial value setting is performed (step S32). As initial values, minimum values C* min , m* min and n* min are respectively set for the C*, m* and n* systems. As an example of the initial value of the objective function O, O update =1000 is set. As described above, since this is a step of specifying the material constant that can minimize the objective function, a sufficiently large value is set as the initial value. Furthermore, O update refers to the latest minimum value of the objective function, which is used as a reference for repeated calculations in the steps described below.

再者,首先,設i=1(步驟S33),算出破斷重複次數Nf的預測值Nfpred(步驟S34)。 In addition, first, i=1 (step S33), and the predicted value N fpred of the number N f of breaking repetitions is calculated (step S34).

步驟S34的細節,亦即破斷重複次數Nf的預測值Nfpred的算出方法係顯示於圖5,由於其大致與圖3所示步驟相同,進行簡單說明。 The details of step S34, that is, the calculation method of the predicted value N fpred of the number of breaking repetitions N f is shown in FIG. 5 , and since it is roughly the same as the steps shown in FIG. 3 , it will be briefly described.

首先,進行使用於疲勞壽命的預測的參數的輸入(步驟S51)。在此係輸入在步驟S31準備的參數的一部分。 First, parameters used for prediction of fatigue life are input (step S51). Part of the parameters prepared in step S31 is input here.

再者,使用用於疲勞試驗的條件(上述所輸入的參數),進行依據式(1)的疲勞限度σw的算出(步驟S52)。藉此,依據疲勞試驗資料的預測疲勞限度被算出。算出疲勞限度σw後,確認在疲勞試驗中使用的負荷應力σexp(i)是否比疲勞限度σw還要大(步驟S53)。負荷應力σexp(i)為疲勞限度σw以下時(步驟S53-否),由於將預測龜裂不會因為此負荷應力σexp(i)而進展,所以輸出顯示對應於該σexp(i)的實驗資料不能使用於疲勞壽命預測的計算之通知(步驟S54)。此情形中,由於無法算出預測值Nfpred,所以可設為輸出錯誤訊息或警告之構成。 Furthermore, the fatigue limit σ w based on the formula (1) is calculated using the conditions for the fatigue test (the above-mentioned input parameters) (step S52 ). Thereby, the predicted fatigue limit based on the fatigue test data is calculated. After the fatigue limit σ w is calculated, it is checked whether the load stress σ exp (i) used in the fatigue test is larger than the fatigue limit σ w (step S53 ). When the load stress σ exp (i) is below the fatigue limit σ w (step S53-No), since it is predicted that the crack will not progress due to the load stress σ exp (i), the output display corresponding to the σ exp (i ) is notified that the experimental data cannot be used for the calculation of fatigue life prediction (step S54). In this case, since the predicted value N fpred cannot be calculated, an error message or a warning may be output.

另一方面,用於疲勞試驗的負荷σexp(i)比疲勞限度σw還要大時(步驟S53-是),算出龜裂的進展量(步驟S55至S57)。具體而言,作為初期值係設為N=0,作為√area選擇初期缺陷尺寸√area0(步驟S55)之後,設定N=N+△N(步驟S56),算出重複一次的龜裂進展量△√area及新的龜裂尺寸√area(步驟S57)。這些算出方法與圖3所示的步驟S16、S18相同。惟龜裂進展量△√area的算出係使用下式(7)。式(7)雖為與式(3)對應的式子,但作為應力σ係使用試驗中所用的負荷σexp(i),此點與式(3)不同。 On the other hand, when the load σ exp (i) used for the fatigue test is larger than the fatigue limit σ w (step S53-Yes), the amount of progress of the crack is calculated (steps S55 to S57). Specifically, set N=0 as the initial value, select the initial defect size √area 0 as √area (step S55), set N=N+ΔN (step S56), and calculate the amount of crack progress Δ √area and the new crack size √area (step S57). These calculation methods are the same as steps S16 and S18 shown in FIG. 3 . However, the calculation of the amount of crack progress △√area uses the following formula (7). Although Equation (7) corresponds to Equation (3), it is different from Equation (3) in that the load σ exp (i) used in the test is used as the stress σ.

Figure 110147730-A0202-12-0017-10
Figure 110147730-A0202-12-0017-10

算出新的龜裂尺寸√area之後,確認新的龜裂尺寸√area是否比界限龜裂尺寸√areacrit還要大(步驟S58)。當新的龜裂尺寸√area為界限龜裂尺寸√areacrit以下時(步驟S58-否),判定對象物尚未破斷,且重新設定循環N並 重複上述的步驟(步驟S56至S57)。另一方面,當新的龜裂尺寸√area比界限龜裂尺寸√areacrit還要大時(步驟S58-是),判定對象物已破斷,且將破斷重複次數Nf的預測值Nfpred設定為現在的循環數N(步驟S59)。然後,將預測值Nfpred作為疲勞壽命的預測結果而輸出(步驟S60)。藉由此一連串的步驟,得到依據疲勞試驗資料的預測值NfpredAfter calculating the new crack size √area, it is confirmed whether the new crack size √area is larger than the limit crack size √area crit (step S58). When the new crack size √area is below the limit crack size √area crit (step S58-No), it is determined that the object has not been broken, and the cycle N is reset and the above steps are repeated (steps S56 to S57). On the other hand, when the new crack size √area is larger than the limit crack size √area crit (step S58-Yes), it is determined that the object is broken, and the predicted value N fpred of the number of times of breaking repetition Nf is determined. Set as the current cycle number N (step S59). Then, the predicted value N fpred is output as the predicted result of the fatigue life (step S60 ). Through this series of steps, the predicted value N fpred based on the fatigue test data is obtained.

回到圖4,當得到預測值Nfpred,就依據上述式(6)而算出試驗結果與預測值的差E(i)(步驟S35)。從i=1至M,每次將i+1而逐漸加大,而重複進行此一連串處理(步驟S36、S37)。當針對所有的疲勞試驗結果(i=1至M)皆完成試驗結果與預測值的差E(i)的算出(步驟S36-是),則代入式(5)所示的目的函數O,算出計算結果(步驟S38)。再者,比較目的函數0的計算結果及Oupdate(步驟S39)。當現在的目的函數O的計算結果比之前的目的函數O的最小值Oupdate還要小時(步驟S39-是),則將Oupdate變更(更新)為現在的目的函數O的計算結果,並將使用於目的函數O的計算之現在的C*、m*及n*作為C**update、m*update及n*update而變更(更新)(步驟S40)。當現在的目的函數0的計算結果為之前的目的函數O的最小值Oupdate以上時(步驟S39-否),則不進行Oupdate等的更新(步驟S40)。 Returning to FIG. 4 , when the predicted value N fpred is obtained, the difference E(i) between the test result and the predicted value is calculated according to the above formula (6) (step S35 ). From i=1 to M, each time i+1 is gradually increased, and this series of processing is repeated (steps S36, S37). When the calculation of the difference E(i) between the test result and the predicted value is completed for all fatigue test results (i=1 to M) (step S36-yes), then substitute into the objective function O shown in formula (5) to calculate The result is calculated (step S38). Furthermore, compare the calculation result of the objective function 0 with O update (step S39). When the calculation result of the current objective function O is smaller than the minimum value O update of the previous objective function O (step S39-yes), then O update is changed (updated) to the calculation result of the current objective function O, and The current C*, m*, and n* used in the calculation of the objective function O are changed (updated) as C** update , m* update , and n* update (step S40). When the calculation result of the current objective function 0 is above the minimum value O update of the previous objective function O (step S39-No), update such as O update is not performed (step S40).

之後,一邊變更C*、m*及n*,一邊重複上述的處理(步驟S33至S40)。具體而言,首先,在將m*及n*固定為最小值m*min、n*min的狀態下將C*每次以增量△C進行變更,重複計算直到成為C*max為止(步驟S41、S42)。其結果,能夠指定將m*及n*固定之狀態下的最小值Oupdate的算出時所使用的C*update。之後,針對m*及n*也分別進行同樣的計算,藉此能夠算出將其他的材料常數 固定在最小值之狀態下的最小值Oupdate的算出時所使用的m*update及n*updateThereafter, the above-described processing is repeated while changing C*, m*, and n* (steps S33 to S40). Specifically, at first, in the state that m* and n* are fixed at the minimum values m* min and n* min , C* is changed by increments ΔC each time, and the calculation is repeated until it becomes C* max (step S41, S42). As a result, it is possible to designate C* update used when calculating the minimum value Oupdate in a state where m* and n* are fixed. Thereafter, m* update and n* update , which are used for calculating the minimum value O update in a state where other material constants are fixed at minimum values, can be calculated by performing the same calculations for m* and n* respectively.

藉由進行此一連串的反覆計算,可以在m*min≦m*≦m*max、C*min≦C*≦C*max、n*min≦n*≦n*max的範圍內得到賦予最小的目的函數O之最適合的C*update、m*update及n*update,將此等作為C*、m*、n*的計算結果而輸出(步驟S49)。 By performing this series of iterative calculations, the minimum value assigned can be obtained within the range of m* min ≦m*≦m* max , C* min ≦C*≦C* max , n* min ≦n*≦n* max The most suitable C* update , m* update , and n* update of the objective function O are output as calculation results of C*, m*, and n* (step S49).

藉由以上的步驟,能夠利用疲勞試驗結果而算出C*、m*、n*。 Through the above steps, C*, m*, and n* can be calculated using the fatigue test results.

[硬體構成] [hardware configuration]

參照圖6來說明疲勞壽命預測裝置1的硬體構成。圖6為顯示疲勞壽命預測裝置的硬體構成之一例的圖。疲勞壽命預測裝置1係包含一或複數台電腦100。電腦100係具有CPU(Central Processing Unit,中央處理單元)101、主記憶部102、輔助記憶部103、通信控制部104、輸入裝置105及輸出裝置106。疲勞壽命預測裝置1係由一或複數台電腦100所構成,該電腦100係由此等硬體及程式等軟體所構成。 The hardware configuration of the fatigue life prediction device 1 will be described with reference to FIG. 6 . FIG. 6 is a diagram showing an example of the hardware configuration of the fatigue life prediction device. The fatigue life prediction device 1 includes one or a plurality of computers 100 . The computer 100 includes a CPU (Central Processing Unit) 101 , a main memory 102 , an auxiliary memory 103 , a communication control 104 , an input device 105 and an output device 106 . The fatigue life prediction device 1 is composed of one or a plurality of computers 100, and the computers 100 are composed of such hardware and software such as programs.

疲勞壽命預測裝置1由複數台電腦100構成的情形中,該些電腦100可以本地連接,亦可經由網際網路或內部網路等的通信網路而連接。藉由該連接而邏輯性地構築一台疲勞壽命預測裝置1。 When the fatigue life prediction device 1 is constituted by a plurality of computers 100, these computers 100 may be connected locally or via a communication network such as the Internet or an intranet. One fatigue life prediction device 1 is logically constructed by this connection.

CPU 101係執行作業系統及/或應用程式等。主記憶部102係由ROM(Read only Memory,唯讀記憶體)及RAM(Random Access Memory,隨機存取記憶體)所構成。輔助記憶部103為由硬碟及快閃記憶體等所構成的記憶媒體。輔助記憶部103一般而言係記憶比主記憶部102更大量的資料。材料常數算出部13及疲勞壽命預測部14的至少一部分係由輔助記憶部103來實現。通信控制部104係由網路卡或無線通信模組所構成。疲勞試驗資料取得部11、預測條件取得 部12及結果輸出部15的至少一部分可由通信控制部104來實現。輸入裝置105係由鍵盤、滑鼠、觸控面板、及音源輸入麥克風等所構成。例如,預測條件取得部12的至少一部分可由輸入裝置105來實現。輸出裝置106係由顯示器及印表機等所構成。結果輸出部15的至少一部分係由輸出裝置106來實現。例如,輸出裝置106可將疲勞壽命預測的結果顯示在顯示器等。 The CPU 101 executes an operating system and/or application programs and the like. The main memory unit 102 is composed of ROM (Read only Memory, read only memory) and RAM (Random Access Memory, random access memory). The auxiliary storage unit 103 is a storage medium including a hard disk, a flash memory, and the like. Generally speaking, the auxiliary memory unit 103 stores a larger amount of data than the main memory unit 102 . At least a part of the material constant calculation unit 13 and the fatigue life prediction unit 14 are realized by the auxiliary memory unit 103 . The communication control unit 104 is composed of a network card or a wireless communication module. Fatigue test data acquisition department 11. Acquisition of prediction conditions At least part of the unit 12 and the result output unit 15 can be realized by the communication control unit 104 . The input device 105 is composed of a keyboard, a mouse, a touch panel, and a sound input microphone. For example, at least a part of the prediction condition acquisition unit 12 can be realized by the input device 105 . The output device 106 is composed of a display, a printer, and the like. At least a part of the result output unit 15 is realized by the output device 106 . For example, the output device 106 can display the result of fatigue life prediction on a display or the like.

輔助記憶部103係預先儲存有程式110(疲勞壽命預測程式)及處理所必須的資料。程式110係使電腦100執行疲勞壽命預測裝置1的各功能要素。藉由程式110,例如,上述之步驟S01至步驟S04的處理係在電腦100中被執行。例如,程式110係被CPU 101或主記憶部102讀取,使CPU 101、主記憶部102、輔助記憶部103、通信控制部104、輸入裝置105及輸出裝置106的至少一者進行動作。例如,程式110係進行主記憶部102及輔助記憶部103中的資料讀取及寫入。 The auxiliary memory unit 103 stores the program 110 (fatigue life prediction program) and data necessary for processing in advance. The program 110 causes the computer 100 to execute each functional element of the fatigue life prediction device 1 . By means of the program 110 , for example, the processing of the above-mentioned step S01 to step S04 is executed in the computer 100 . For example, the program 110 is read by the CPU 101 or the main storage unit 102 to cause at least one of the CPU 101 , the main storage unit 102 , the auxiliary storage unit 103 , the communication control unit 104 , the input device 105 and the output device 106 to operate. For example, the program 110 reads and writes data in the main memory unit 102 and the auxiliary memory unit 103 .

程式110係例如可記錄在CD-ROM、DVD-ROM、半導體記憶體等有形的記憶媒體後被提供。程式110係亦可作為資料訊號經由通信網路而被提供。 The program 110 can be provided after being recorded on a tangible storage medium such as a CD-ROM, DVD-ROM, or semiconductor memory, for example. The program 110 may also be provided as a data signal via a communication network.

[疲勞壽命預測結果的有效性] [Validity of Fatigue Life Prediction Results]

下文顯示,驗證藉由上述疲勞壽命預測裝置1所得之疲勞壽命的預測結果的有效性之結果。 The results of verifying the validity of the fatigue life prediction results obtained by the above-mentioned fatigue life prediction device 1 are shown below.

首先,準備碳鋼S45C(HV=176)的試驗片作為對象物,藉由疲勞試驗得到了兩個實驗資料。實驗資料如下所示。 First, a test piece of carbon steel S45C (HV=176) was prepared as an object, and two experimental data were obtained by a fatigue test. The experimental data are shown below.

實驗資料1:σ=270MPa,Nf=30、407 Experimental data 1: σ=270MPa, N f =30, 407

實驗資料2:σ=235MPa,Nf=120、264 Experimental data 2: σ=235MPa, N f =120, 264

實驗資料1、2係顯示於圖7所示的圖,該圖顯示破斷重複次數Nf與應力振幅σ的對應關係(S-N曲線圖)。對象物的試驗片中的初期缺陷尺寸√area0為92μm。 Experimental data 1 and 2 are shown in the graph shown in Figure 7, which shows the corresponding relationship between the number of fracture repetitions N f and the stress amplitude σ (SN curve graph). The initial defect size √area 0 in the test piece of the object was 92 μm.

接著,使用上述的兩個實驗資料,藉由上述的材料常數C*、m*、n*的算出手法而算出了材料常數C*、m*、n*。惟係藉由過去的實驗資料及次元解析而假設n*=1,故實際係如下算出了C*、m*。 Next, the material constants C*, m*, and n* were calculated by the calculation method of the above-mentioned material constants C*, m*, and n* using the above-mentioned two experimental data. However, it is assumed that n*=1 based on past experimental data and dimensional analysis, so C* and m* are actually calculated as follows.

C*=10-3.4 C*=10 -3.4

m*=2.8 m*=2.8

接著,使用上述的材料常數,預測了以下的模擬變動荷重之實驗中對象物(試驗片)的疲勞壽命。設初期缺陷尺寸√area0為92μm。 Next, using the above-mentioned material constants, the fatigue life of the object (test piece) in the following simulated variable load experiment was predicted. Let the initial defect size √area 0 be 92 μm.

(試驗條件) (Test conditions)

步驟1:以σ=270MPa進行應力負荷至N=23400為止 Step 1: Stress load at σ=270MPa until N=23400

步驟2:結束步驟1後,以σ=185MPa進行應力負荷至破斷為止 Step 2: After completing Step 1, carry out stress loading at σ=185MPa until it breaks

依據上述的疲勞壽命預測方法之計算的結果,係預測在結束步驟1之時點,從初期缺陷產生的龜裂的尺寸√area為251μm。再者,係預測此時的疲勞限度為169MPa。從此結果,係推測步驟2的負荷應力係比初期狀態的疲勞限度還要低,且比步驟1的應力負荷結束時的疲勞限度還要高。再者,步驟2中之破斷為止的應力負荷次數的預測值(步驟1、2的應力負荷的次數的預測值),亦即疲勞壽命的預測值為Nfpred=564700。 Based on the calculation results of the above-mentioned fatigue life prediction method, it is predicted that the size √area of the crack generated from the initial defect is 251 μm at the point when step 1 is completed. Furthermore, it is estimated that the fatigue limit at this time is 169 MPa. From the results, it is speculated that the load stress of step 2 is lower than the fatigue limit of the initial state, and higher than the fatigue limit of the stress load of step 1 at the end. In addition, the predicted value of the number of times of stress loading until fracture in step 2 (the predicted value of the number of times of stress loading in steps 1 and 2), that is, the predicted value of fatigue life is N fpred =564700.

另一方面,實際使用試驗片而依據上述的試驗條件測量疲勞壽命的結果,疲勞壽命為Nfexp=585830。其中步驟1為23400(實驗條件),步驟2為562430。 On the other hand, as a result of measuring the fatigue life under the above-mentioned test conditions using the test piece actually, the fatigue life was N fexp =585830. Where step 1 is 23400 (experimental conditions), step 2 is 562430.

比較上述預測值Nfpred與實測值Nfexp,相對誤差為4%。由此結果,可謂能夠以相當高的精度預測疲勞壽命。 Comparing the above predicted value N fpred with the measured value N fexp , the relative error is 4%. As a result, it can be said that the fatigue life can be predicted with considerably high accuracy.

圖7顯示上述的試驗結果。在圖7中,以T1顯示從初期狀態的條件算出的疲勞限度的推測值σw=199MPa,以T2顯示從步驟1切換至步驟2之時點的疲勞限度的推測值σw=169MPa。 Fig. 7 shows the above test results. In FIG. 7 , T1 shows the estimated value of fatigue limit σ w =199 MPa calculated from the conditions of the initial state, and T2 shows the estimated value of fatigue limit σ w =169 MPa at the time of switching from step 1 to step 2 .

[作用] [effect]

依據由上述的疲勞壽命預測裝置1所為的疲勞壽命預測方法,藉由指定用於算出相對於一次的應力負荷之龜裂的進展量的材料常數,能夠推測對於一次的應力負荷之龜裂的進展量。利用此點,能夠預測使對象物負荷某一應力時的疲勞壽命。在此,係以對於對象物賦予疲勞限度以上的應力負荷時會從初期缺陷進展為龜裂,及疲勞限度會因應缺陷及從缺陷進展之龜裂的尺寸而下降作為前提,所以考慮了應力負荷所造成的缺陷(龜裂)的進展、及伴隨於此之疲勞限度的下降。因此,係適當地捕捉重複負荷之應力中的真正的龜裂進展驅動力來預測疲勞壽命,故可實現更高精度的預測。 According to the fatigue life prediction method performed by the above-mentioned fatigue life prediction device 1, by designating a material constant for calculating the amount of progress of cracks with respect to one stress load, the progress of cracks with respect to one stress load can be estimated. quantity. Utilizing this point, it is possible to predict the fatigue life when a certain stress is applied to the object. Here, it is assumed that when a stress load exceeding the fatigue limit is applied to the object, the initial defect will develop into a crack, and the fatigue limit will decrease according to the size of the defect and the crack that progresses from the defect, so the stress load is considered. The progress of the resulting defects (cracks) and the accompanying decrease in the fatigue limit. Therefore, since the fatigue life is predicted by properly capturing the true driving force of crack growth in the stress of repeated loads, higher accuracy prediction can be realized.

如前所述,以往已被指出依據S-N曲線之疲勞限度及疲勞壽命的推測尚有改良的餘地。關於此點,例如已有探討如修正線性毀損律(Modified Miner’s rule)一般對S-N曲線添加新的解釋,該修正線性毀損律係將以有限的重複次數破壞的領域延長至疲勞限度以下而作成設計曲線。然而,此等手法僅為用來將實驗結果與S-N曲線賦予對應關係的理論構築,無法稱為有充分的力學根據,此點仍有改良的餘地。 As mentioned above, it has been pointed out in the past that there is still room for improvement in the estimation of fatigue limit and fatigue life based on the S-N curve. Regarding this point, for example, it has been discussed to add a new interpretation to the S-N curve such as the modified linear damage law (Modified Miner's rule). curve. However, these methods are only theoretical constructions for assigning corresponding relationships between experimental results and S-N curves, and cannot be said to have sufficient mechanical basis, and there is still room for improvement in this regard.

相對於此,上述的疲勞壽命預測方法中,係以對於對象物賦予疲勞限度以上的應力負荷時會從初期缺陷進展為龜裂,及疲勞限度會因應缺陷及 從缺陷進展之龜裂的尺寸而下降作為前提,算出對於一次的應力負荷之龜裂的進展量,並依據此結果而預測疲勞壽命。如此,藉由捕捉對於對象物使其負荷應力時之對象物的變化而進行疲勞壽命預測,係與習知的手法不同,能夠以高精度預測疲勞壽命。特別是,上述的疲勞壽命預測方法係在認知到對象物會因為重複承受應力負荷而使龜裂的尺寸增大,其結果使對象物的疲勞限度下降之前提下預測疲勞壽命,此點與習知的手法大大的不同。習知的手法中,並未考慮重複承受應力負荷期間的龜裂的增大等。相對於此,上述的疲勞壽命預測方法係時時刻刻把握因龜裂的尺寸增大所造成的疲勞限度的下降,並將該結果反映於疲勞壽命的預測。因此,在上述的疲勞壽命預測方法中,不僅能夠以更高的精度預測疲勞壽命,且在應力大小在中途變化的情形中也可預測疲勞壽命。 On the other hand, in the above-mentioned fatigue life prediction method, when a stress load exceeding the fatigue limit is applied to the object, the initial defect will develop into a crack, and the fatigue limit will vary depending on the defect and Based on the premise that the size of cracks in which defects progress decreases, the amount of progress of cracks with respect to one stress load is calculated, and the fatigue life is predicted based on the results. In this way, the fatigue life prediction is performed by capturing the change of the object when the stress is applied to the object, and it is possible to predict the fatigue life with high accuracy, unlike conventional methods. In particular, the above-mentioned fatigue life prediction method predicts the fatigue life on the premise that the object will increase the size of the crack due to repeated stress loading, and as a result, the fatigue limit of the object will decrease. This point is different from the conventional Knowing methods are very different. In conventional techniques, growth of cracks during repeated stress loads, etc. are not taken into consideration. On the other hand, the fatigue life prediction method described above constantly grasps the reduction of the fatigue limit due to the increase in the size of the cracks, and reflects the result in the prediction of the fatigue life. Therefore, in the fatigue life prediction method described above, not only the fatigue life can be predicted with higher accuracy, but also the fatigue life can be predicted even in the case where the magnitude of the stress changes midway.

再者,在上述的手法中,可大幅減少疲勞壽命的預測所需要的疲勞試驗的次數。依據以上述實施型態說明的手法,由於可將材料常數設為三個(或藉由加上假設而為兩個),所以疲勞試驗的次數至少只要有三次(或兩次)即可。以往係考慮進行複數次的疲勞試驗以生成更符合實際狀態的S-N曲線,若考慮精度方面則希望增加疲勞試驗的次數。又,若要更正確地算出疲勞壽命,則考慮使用試驗片實際使其負荷應力而進行疲勞試驗,但每次變更負荷的應力皆必須重複疲勞試驗。另一方面,在以上述實施型態說明的方法中,能夠以較少的疲勞試驗資料而高精度地預測疲勞壽命,此點係較以往的手法有利。再者,作為預測疲勞壽命預測的條件,即使是在變更所負荷的應力的情形中,依據上述的方法係能夠簡單地再度計算,故可應用於種種的條件,此點亦較以往的手法有利。 Furthermore, with the above method, the number of fatigue tests required for fatigue life prediction can be significantly reduced. According to the method described in the above embodiment, since the material constant can be set to three (or two by adding assumptions), the number of fatigue tests only needs to be at least three (or two). In the past, it was considered to perform multiple fatigue tests to generate an S-N curve that is more in line with the actual state. If the accuracy is considered, it is desirable to increase the number of fatigue tests. Also, in order to calculate the fatigue life more accurately, it is conceivable to perform a fatigue test by actually applying a stress to a test piece, but it is necessary to repeat the fatigue test every time the stress of the load is changed. On the other hand, in the method described in the above-mentioned embodiment, the fatigue life can be predicted with high accuracy with less fatigue test data, which is more advantageous than the conventional method. Furthermore, even when the applied stress is changed as a condition for predicting fatigue life prediction, the above-mentioned method can be easily recalculated, so it can be applied to various conditions, which is also more advantageous than conventional methods. .

再者,在預測疲勞壽命時,係進行以下動作:算出依據從對象物的缺陷及從缺陷進展之龜裂的尺寸的疲勞限度;算出負荷比算出的疲勞限度還 要大時之相對於一次的應力負荷的龜裂的進展量;以及算出缺陷及從缺陷進展之龜裂的尺寸到達界限缺陷尺寸為止的應力的負荷次數。具體而言,負荷某一應力時,當負荷比算出的疲勞限度還要大時,算出相對於一次的應力負荷的龜裂的進展量;另一方面,當負荷應力比算出的疲勞限度還要小時,設相對於一次的應力負荷的龜裂的進展量為0,並算出缺陷及從缺陷進展之龜裂的尺寸到達界限缺陷尺寸為止的應力的負荷次數。因此,不管應力負荷的大小為何,都能夠以高精度預測疲勞壽命。 Furthermore, when predicting the fatigue life, the system performs the following operations: calculate the fatigue limit based on the size of the defect from the object and the crack progressing from the defect; When it is large, the amount of progress of the crack relative to one stress load; and calculate the number of stress loads until the size of the defect and the crack progressing from the defect reaches the limit defect size. Specifically, when a certain stress is applied, when the load is greater than the calculated fatigue limit, the amount of progress of the crack with respect to one stress load is calculated; on the other hand, when the load stress is greater than the calculated fatigue limit The number of stress loads until the size of the flaw and the crack progressing from the flaw reaches the limit flaw size is calculated by setting the amount of progress of the crack with respect to one stress load as 0. Therefore, regardless of the magnitude of the stress load, the fatigue life can be predicted with high accuracy.

再者,算出材料常數的步驟乃係算出上述式(3)中的C*、m*及n*,該式(3)係算出相對於一次的應力負荷之龜裂的進展量△√area。藉由這樣的構成,能夠指定材料常數,該材料常數可適切地算出相對於一次的應力負荷之龜裂的進展量,且可使用該材料常數而以高精度預測疲勞壽命。 Furthermore, the step of calculating the material constant is to calculate C*, m* and n* in the above formula (3), and the formula (3) is to calculate the progress amount Δ√area of the crack relative to one stress load. With such a configuration, it is possible to designate a material constant that can appropriately calculate the amount of progress of cracks with respect to one stress load, and use this material constant to predict the fatigue life with high accuracy.

再者,在預測前述疲勞壽命的動作中,對於對象物所負荷的應力振幅為一定或為兩階段以上。如上所述,以本實施型態說明的手法中,負荷的大小並無特別限制。因此,負荷的應力振幅為一定時及為兩階段以上時的任一條件中,皆可以高精度預測疲勞壽命。特別是,即使在對於對象物所負荷的應力振幅為兩階段以上的情形時也能夠以高精度預測疲勞壽命,此點從前述有效性評價可明顯得知。 In addition, in the operation of predicting the aforementioned fatigue life, the stress amplitude applied to the object is constant or has two or more stages. As described above, in the technique described in this embodiment, the magnitude of the load is not particularly limited. Therefore, the fatigue life can be predicted with high accuracy in any of the conditions when the stress amplitude of the load is constant or when it is two or more stages. In particular, the fact that the fatigue life can be predicted with high accuracy even when the stress amplitude applied to the object has two or more stages is evident from the aforementioned effectiveness evaluation.

[變形例] [modified example]

如以上所述,但本揭示並不必然限於上述實施型態,在不脫離其精神的範圍內可進行各種的變更。 As described above, the present disclosure is not necessarily limited to the above-described embodiment, and various changes can be made without departing from the spirit.

上述實施型態係說明了疲勞壽命預測裝置1由一台電腦系統構成的情形,但亦可由複數台電腦系統構成。 The above-mentioned embodiment described the case where the fatigue life prediction device 1 is constituted by one computer system, but it may also be constituted by plural computer systems.

上述實施型態係假設並說明了操作者直接操作疲勞壽命預測裝置1而進行上述處理。然而,上述實施型態的疲勞壽命預測裝置1及疲勞壽命預測方法係例如亦可作為經由不特定多數的使用者可存取的Web等之服務來提供。 The above-mentioned embodiment assumes and explains that the operator directly operates the fatigue life prediction device 1 to perform the above-mentioned processing. However, the fatigue life prediction device 1 and the fatigue life prediction method of the above-mentioned embodiment may be provided as a service such as the Web that can be accessed by an unspecified number of users, for example.

S01~S05:步驟 S01~S05: Steps

Claims (7)

一種疲勞壽命預測方法,係包含下列步驟: A fatigue life prediction method comprises the following steps: 取得疲勞試驗資料,該疲勞試驗資料包含:關於對象物之在複數條件下的疲勞試驗的試驗結果、使用於前述疲勞試驗之試驗片的初期缺陷尺寸、及前述疲勞試驗的試驗條件; Obtain fatigue test data, the fatigue test data includes: the test results of the fatigue test on the object under multiple conditions, the initial defect size of the test piece used in the aforementioned fatigue test, and the test conditions of the aforementioned fatigue test; 在特定的前提下,依據前述疲勞試驗資料,算出用以算出相對於一次的應力負荷之龜裂的進展量之材料常數,該特定的前提為:對於前述對象物賦予疲勞限度以上的應力負荷時會從初期缺陷進展為龜裂,及前述疲勞限度會因應缺陷及從缺陷進展之龜裂的尺寸而下降;以及 On the basis of the aforementioned fatigue test data, the material constant used to calculate the amount of progress of the crack with respect to one stress load is calculated. The specific premise is: when a stress load exceeding the fatigue limit is applied to the aforementioned object will progress from the initial defect to a crack, and the aforementioned fatigue limit will decrease according to the size of the defect and the crack progressing from the defect; and 使用前述材料常數,依據使前述對象物負荷某一應力時的龜裂的進展量來預測疲勞壽命。 The fatigue life is predicted from the amount of progress of cracks when a certain stress is applied to the object using the material constant. 如請求項1所述之疲勞壽命預測方法,其中,預測前述疲勞壽命的步驟係包含: The fatigue life prediction method as described in Claim 1, wherein the step of predicting the aforementioned fatigue life includes: 算出依據前述對象物的缺陷尺寸的疲勞限度; Calculate the fatigue limit based on the defect size of the aforementioned object; 算出負荷比前述算出的疲勞限度還要大時之相對於一次的應力負荷的龜裂的進展量;以及 Calculate the progress of cracking with respect to one stress load when the load is greater than the fatigue limit calculated above; and 算出前述缺陷及從缺陷進展之龜裂的尺寸到達界限缺陷尺寸為止之應力的負荷次數。 The number of loads of the stress until the size of the defect and the crack progressing from the defect reaches the limit defect size is calculated. 如請求項1或2所述之疲勞壽命預測方法,其中,算出前述材料常數的步驟係算出下式(A)中的C*、m*及n*,該式(A)係算出相對於一次的應力負荷之龜裂的進展量△√area, The fatigue life prediction method as described in claim 1 or 2, wherein the step of calculating the aforementioned material constant is to calculate C*, m* and n* in the following formula (A), the formula (A) is calculated relative to a The progress of the crack under the stress load △√area,
Figure 110147730-A0202-13-0001-20
Figure 110147730-A0202-13-0001-20
其中,△√area為相對於一次的應力負荷之龜裂的進展量,σ為負荷的應力振幅,σw為賦予負荷時的疲勞限度,√area為缺陷的尺寸。 Here, Δ√area is the amount of progress of the crack with respect to one stress load, σ is the stress amplitude of the load, σ w is the fatigue limit when the load is applied, and √area is the size of the defect.
如請求項1至3中任一項所述之疲勞壽命預測方法,其中,在預測前述疲勞壽命的步驟中,使前述對象物所負荷的應力振幅為一定或為兩階段以上。 The fatigue life prediction method according to any one of claims 1 to 3, wherein, in the step of predicting the fatigue life, the amplitude of the stress applied to the object is made constant or in two or more stages. 一種疲勞壽命預測裝置,係包含: A fatigue life prediction device, comprising: 疲勞試驗結果取得部,其係取得疲勞試驗資料,該疲勞試驗資料包含:關於對象物之在複數條件下的疲勞試驗的試驗結果、使用於前述疲勞試驗之試驗片的初期缺陷尺寸、及前述疲勞試驗的試驗條件; The Fatigue Test Result Acquisition Department acquires fatigue test data including: test results of fatigue tests on objects under multiple conditions, initial defect sizes of test pieces used in the aforementioned fatigue tests, and the aforementioned fatigue test results. the test conditions of the test; 材料常數算出部,其係在特定的前提下,依據前述疲勞試驗資料,算出用以算出相對於一次的應力負荷之龜裂的進展量之材料常數,該特定的前提為:對於前述對象物賦予疲勞限度以上的應力負荷時會從初期缺陷進展為龜裂,及前述疲勞限度會因應缺陷及從缺陷進展之龜裂的尺寸而下降;以及 The material constant calculation unit calculates the material constant for calculating the amount of crack progress with respect to one stress load based on the aforementioned fatigue test data under a specific premise. The initial defect progresses to a crack when subjected to stress loading above the fatigue limit, and the aforementioned fatigue limit decreases with the size of the defect and the crack progressing from the defect; and 疲勞壽命預測部,其係依據使用前述材料常數而被算出之相對於一次的應力負荷之龜裂的進展量,來預測使前述對象物負荷某一應力時的疲勞壽命。 The fatigue life predicting unit predicts the fatigue life when a certain stress is applied to the object based on the amount of progress of cracks with respect to one stress load calculated using the material constant. 一種疲勞壽命預測程式,係使電腦系統執行下列步驟: A fatigue life prediction program that causes a computer system to perform the following steps: 取得疲勞試驗資料,該疲勞試驗資料包含:關於對象物之在複數條件下的疲勞試驗的試驗結果、使用於前述疲勞試驗之試驗片的初期缺陷尺寸、及前述疲勞試驗的試驗條件; Obtain fatigue test data, the fatigue test data includes: the test results of the fatigue test on the object under multiple conditions, the initial defect size of the test piece used in the aforementioned fatigue test, and the test conditions of the aforementioned fatigue test; 在特定的前提下,依據前述疲勞試驗資料,算出用以算出相對於一次的應力負荷之龜裂的進展量之材料常數,該特定的前提為:對於前述對象物賦予疲勞限 度以上的應力負荷時會從初期缺陷進展為龜裂,及前述疲勞限度會因應缺陷及從缺陷進展之龜裂的尺寸而下降;以及 On the basis of the aforementioned fatigue test data, the material constant used to calculate the amount of progress of cracks with respect to one stress load is calculated on the basis of a specific premise. Cracks will progress from initial defects when subjected to a stress load above 100 degrees, and the aforementioned fatigue limit will decrease according to the size of the defects and the cracks progressing from the defects; and 依據使用前述材料常數而被算出之相對於一次的應力負荷之龜裂的進展量,來預測使前述對象物負荷某一應力時的疲勞壽命。 The fatigue life when a certain stress is applied to the aforementioned object is predicted from the amount of progress of cracks with respect to one stress load calculated using the aforementioned material constants. 一種記憶媒體,係可被電腦讀取者,且其係記憶使電腦系統執行下列步驟的疲勞壽命預測程式: A memory medium that can be read by a computer and that stores a fatigue life prediction program that enables the computer system to perform the following steps: 取得疲勞試驗資料,該疲勞試驗資料包含:關於對象物之在複數條件下的疲勞試驗的試驗結果、使用於前述疲勞試驗之試驗片的初期缺陷尺寸、及前述疲勞試驗的試驗條件; Obtain fatigue test data, the fatigue test data includes: the test results of the fatigue test on the object under multiple conditions, the initial defect size of the test piece used in the aforementioned fatigue test, and the test conditions of the aforementioned fatigue test; 在特定的前提下,依據前述疲勞試驗資料,算出用以算出相對於一次的應力負荷之龜裂的進展量之材料常數,該特定的前提為:對於前述對象物賦予疲勞限度以上的應力負荷時會從初期缺陷進展為龜裂,及前述疲勞限度會因應缺陷及從缺陷進展之龜裂的尺寸而下降;以及 On the basis of the aforementioned fatigue test data, the material constant used to calculate the amount of progress of the crack with respect to one stress load is calculated. The specific premise is: when a stress load exceeding the fatigue limit is applied to the aforementioned object will progress from the initial defect to a crack, and the aforementioned fatigue limit will decrease according to the size of the defect and the crack progressing from the defect; and 依據使用前述材料常數而被算出之相對於一次的應力負荷之龜裂的進展量,來預測使前述對象物負荷某一應力時的疲勞壽命。 The fatigue life when a certain stress is applied to the aforementioned object is predicted from the amount of progress of cracks with respect to one stress load calculated using the aforementioned material constants.
TW110147730A 2021-01-08 2021-12-20 Fatigue life estimation method, fatigue life estimation apparatus, fatigue life estimation program and storage medium TW202244476A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-002058 2021-01-08
JP2021002058A JP6944736B1 (en) 2021-01-08 2021-01-08 Fatigue life prediction method, fatigue life prediction device, fatigue life prediction program and storage medium

Publications (1)

Publication Number Publication Date
TW202244476A true TW202244476A (en) 2022-11-16

Family

ID=77915142

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110147730A TW202244476A (en) 2021-01-08 2021-12-20 Fatigue life estimation method, fatigue life estimation apparatus, fatigue life estimation program and storage medium

Country Status (3)

Country Link
JP (1) JP6944736B1 (en)
TW (1) TW202244476A (en)
WO (1) WO2022149297A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114370995A (en) * 2021-12-27 2022-04-19 浙江银轮机械股份有限公司 Method for obtaining parameters for testing fatigue degree of trachea, application method and tail gas treatment system
WO2024055271A1 (en) * 2022-09-16 2024-03-21 华东理工大学 Anti-fatigue and safety regulation and control method for service structure having ultra-long service life in extreme environment
CN116189832B (en) * 2023-04-14 2023-07-21 岚图汽车科技有限公司 Material fatigue life curve determining method and related equipment
CN116776586A (en) * 2023-06-15 2023-09-19 上海发电设备成套设计研究院有限责任公司 Method and device for monitoring rotor stress corrosion and fatigue long life of nuclear turbine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011149873A (en) * 2010-01-22 2011-08-04 Nagoya Institute Of Technology Fatigue characteristic determination method and fatigue life prediction method of material
CN102129512A (en) * 2011-02-24 2011-07-20 西北工业大学 Fatigue life analyzing method based on Paris formula
CN106886663B (en) * 2017-03-29 2020-04-03 北京理工大学 Method and device for predicting bending fatigue life of gear
JP6780575B2 (en) * 2017-04-27 2020-11-04 日本製鉄株式会社 Fatigue limit prediction methods and computer programs
JP2019007838A (en) * 2017-06-23 2019-01-17 健 三堀 Fatigue life estimation method of metal material and optimum design method applied with life fatigue estimation method

Also Published As

Publication number Publication date
WO2022149297A1 (en) 2022-07-14
JP6944736B1 (en) 2021-10-06
JP2022107231A (en) 2022-07-21

Similar Documents

Publication Publication Date Title
TW202244476A (en) Fatigue life estimation method, fatigue life estimation apparatus, fatigue life estimation program and storage medium
US9280620B2 (en) Method and system for probabilistic fatigue crack life estimation
US20140192837A1 (en) System and method for generating a combined model for isothermal and anisothermal fatigue life
US20120065934A1 (en) Member fatigue fracture probability estimating apparatus, member fatigue fracture probability estimating method, and computer readable medium
JP2007078659A (en) Method and device for determining analysis condition of digital image correlation method
Hajy Akbary et al. Elastic strain measurement of miniature tensile specimens
CN115004004A (en) Crack estimation device, fault diagnosis device, crack estimation method, and fault diagnosis method for rotating electrical machine
Leung et al. Evaluating the use of rate-based monitoring for improved fatigue remnant life predictions
CN111465837B (en) Life evaluation device and life evaluation method
JP2010164430A (en) Method and apparatus for evaluating creep damage of metallic material
Espinosa et al. Determination of crack growth for 6082-T6 aluminium subjected to periodic single and block overloads and underloads using a two dimensional finite element model
Saggar et al. Fatigue life prediction under variable loading based on a new damage model devoted for defective material
Toteva et al. Comparison of the methods for determination of calibration and verification intervals of measuring devices
JPWO2015037067A1 (en) Ductile fracture evaluation system and ductile fracture evaluation method
KR20170070902A (en) Apparatus and method for monitoring facility
JP5583489B2 (en) Method and apparatus for evaluating damage of metal materials
Aranda et al. Hybrid numerical–experimental strategy for damage characterization of SAE 1045 steel
KR101982842B1 (en) Apparatus and method for analyzing failure characteristic of material
US7865315B2 (en) Methods and apparatus for calibrating striation density models for materials
Bretschneider et al. Experimental investigation of crack initiation and crack propagation in aluminum demonstrator specimens
WO2023175659A1 (en) Crack growth prediction device, crack inspection system, and crack growth prediction method
KR102230275B1 (en) Equipment management information providing apparatus through field data analysis based of MTBF and method therefor
Paulus Fatigue damage accumulation due to complex random vibration environments: application to single-axis and multi-axis vibration
Perry et al. Fracture and Fatigue Properties of Cobalt Chrome Alloys Used For Medical Implants
Chang et al. Fatigue prediction based on computational fracture mechanics