WO2022149297A1 - Fatigue life prediction method, fatigue life prediction device, fatigue life prediction program, and recording medium - Google Patents
Fatigue life prediction method, fatigue life prediction device, fatigue life prediction program, and recording medium Download PDFInfo
- Publication number
- WO2022149297A1 WO2022149297A1 PCT/JP2021/024825 JP2021024825W WO2022149297A1 WO 2022149297 A1 WO2022149297 A1 WO 2022149297A1 JP 2021024825 W JP2021024825 W JP 2021024825W WO 2022149297 A1 WO2022149297 A1 WO 2022149297A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fatigue
- fatigue life
- test
- stress
- defect
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 85
- 230000007547 defect Effects 0.000 claims abstract description 93
- 238000009661 fatigue test Methods 0.000 claims abstract description 84
- 239000000463 material Substances 0.000 claims abstract description 76
- 238000012360 testing method Methods 0.000 claims abstract description 47
- 230000007423 decrease Effects 0.000 claims abstract description 15
- 238000004364 calculation method Methods 0.000 claims description 37
- 230000000644 propagated effect Effects 0.000 claims description 4
- 230000006870 function Effects 0.000 description 25
- 230000008569 process Effects 0.000 description 9
- 238000012545 processing Methods 0.000 description 9
- 238000004891 communication Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000007769 metal material Substances 0.000 description 5
- 238000007796 conventional method Methods 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 230000006399 behavior Effects 0.000 description 3
- 238000013500 data storage Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 239000012770 industrial material Substances 0.000 description 2
- 229910052755 nonmetal Inorganic materials 0.000 description 2
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000004141 dimensional analysis Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 150000002843 nonmetals Chemical class 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 102200082816 rs34868397 Human genes 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/32—Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces
Definitions
- the present disclosure relates to a fatigue life prediction method, a fatigue life prediction device, a fatigue life prediction program, and a storage medium.
- Patent Document 1 regarding fatigue life, based on the stress distribution inside a member without cracks, the relationship between crack depth and creep contribution, and the relationship between creep contribution and the values of parameters C and m of the Paris law, A method of estimating the growth behavior of a crack that grows in a member is shown. Further, for example, in Patent Document 2, as a method of predicting the fatigue limit of a metal material having minute defects with respect to the fatigue limit, a method of predicting a tensile fatigue limit and a shear fatigue limit using the latent fatigue crack length of the metal material. It is shown.
- the present disclosure has been made in view of the above, and an object of the present disclosure is to provide a technique capable of predicting fatigue life with higher accuracy.
- the fatigue life prediction method includes test results by a fatigue test under a plurality of conditions for an object, initial defect dimensions of a test piece used in the fatigue test, and the fatigue.
- Fatigue test data including test conditions related to the test are acquired, cracks grow from initial defects when a stress load exceeding the fatigue limit is applied to the object, and cracks grow from defects and defects.
- the material constant for calculating the amount of crack growth for one stress load is calculated based on the fatigue test data. , Predicting fatigue life based on the amount of crack growth when a certain stress is applied to the object using the material constants.
- the amount of crack growth for one stress load can be estimated by specifying the material constant for calculating the crack growth amount for one stress load.
- the fatigue life when a stress load exceeding the fatigue limit is applied to the object, the crack grows from the initial defect, and the fatigue limit decreases according to the size of the defect and the crack grown from the defect. Since it is a premise, the growth of defects (cracks) due to stress load and the accompanying decrease in fatigue limit are taken into consideration, so the net crack growth driving force in the repeatedly applied load is properly grasped and fatigue is achieved. Since the life is predicted, more accurate prediction is realized.
- the prediction of the fatigue life is to calculate the fatigue limit based on the defect of the object and the size of the crack extending from the defect, and once when the load is larger than the calculated fatigue limit. It includes calculating the amount of crack growth with respect to stress loading and calculating the number of stress loads until the size of the crack that has grown from the defect and the defect reaches the limit defect size.
- the fatigue life can be predicted with high accuracy regardless of the magnitude of the stress load on the object.
- the calculation of the material constant is an embodiment in which C * , m * and n * in the following mathematical formula (A) for calculating the crack growth amount ⁇ area for one stress load are calculated. Can be.
- ⁇ area is the amount of crack growth for one stress load
- ⁇ is the stress amplitude of the load
- ⁇ w is the fatigue limit when the load is applied
- ⁇ area is the dimension of the defect. .. ]
- the stress amplitude applied to the object can be constant or two or more steps.
- the magnitude of the load on the object is not particularly limited. Therefore, the fatigue life can be predicted with high accuracy under any condition when the stress amplitude to be applied is constant and when there are two or more stages.
- the fatigue life predictor includes test results of a fatigue test on an object under a plurality of conditions, initial defect dimensions of the test piece used in the fatigue test, and test conditions related to the fatigue test.
- Fatigue test result acquisition unit that acquires fatigue test data including With the material constant calculation unit that calculates the material constant for calculating the amount of crack growth for one stress load based on the fatigue test data, assuming that the fatigue limit decreases according to the dimensions.
- the fatigue life prediction program includes test results by a fatigue test under a plurality of conditions on an object, initial defect dimensions of a test piece used in the fatigue test, and test conditions related to the fatigue test.
- Fatigue test data including fatigue test data is obtained, cracks grow from initial defects when a stress load exceeding the fatigue limit is applied to the object, and the size of the defects and cracks grown from the defects
- the material constant for calculating the amount of crack growth for one stress load is calculated based on the fatigue test data, and the material constant is used.
- the computer system is made to predict the fatigue life when a certain stress is applied to the object. According to the above-mentioned life prediction program, the same effect as that of the above-mentioned life prediction method is obtained.
- the storage medium includes test results of a fatigue test on an object under a plurality of conditions, initial defect dimensions of the test piece used in the fatigue test, and test conditions related to the fatigue test.
- Fatigue test data is acquired, cracks grow from initial defects when a stress load exceeding the fatigue limit is applied to the object, and fatigue grows according to the dimensions of the defects and the cracks that grow from the defects.
- the material constant for calculating the amount of crack growth for one stress load is calculated on the premise that the limit is lowered, and the material constant is calculated using the material constant.
- a computer that stores a fatigue life prediction program that predicts the fatigue life when a certain stress is applied to the object based on the amount of crack growth for one stress load and causes the computer system to execute. It is a readable storage medium. According to the above-mentioned storage medium, the same effect as the above-mentioned life prediction method is obtained.
- FIG. 1 is a schematic view of a fatigue life prediction device according to one embodiment.
- FIG. 2 is a flowchart illustrating an example of a fatigue life prediction method.
- FIG. 3 is a flowchart illustrating an example of a fatigue life prediction method using material constants included in the fatigue life prediction method.
- FIG. 4 is a flowchart illustrating an example of a method for calculating material constants included in the fatigue life prediction method.
- FIG. 5 is a flowchart illustrating an example of a subroutine for obtaining N fpred included in FIG.
- FIG. 6 is a diagram showing an example of the hardware configuration of the fatigue life prediction device.
- FIG. 7 is a diagram for explaining the evaluation result of fatigue life prediction by the fatigue life prediction device.
- the fatigue life prediction device 1 shown in FIG. 1 is a device that predicts the fatigue life when a predetermined stress is applied to an object.
- the type of object for which the fatigue life is predicted is not particularly limited, but industrial products, structures, etc. and industrial materials that can be used for members of industrial products, structures, etc. can be the main objects. Further, it is considered that the fatigue life prediction device 1 can be used to predict the life of industrial materials, especially metals, with high accuracy. The above method can be applied to non-metals as long as the material can obtain an SN curve.
- the fatigue life predicted by the fatigue life prediction device 1 is the number of repeated stress loads until the object is repeatedly stressed when the object is repeatedly stressed. Generally, when a stress of a predetermined value or more is applied to an object, the object is destroyed at a stage exceeding a certain number of times.
- the fatigue life prediction device 1 has a function of predicting the number of repetitions of stress load until this fracture occurs.
- Fatigue life is generally predicted by creating an SN curve based on the results of fatigue tests. At this time, usually, an SN curve is created by applying the results of a plurality of fatigue tests acquired with a constant stress amplitude to a known model. However, when the stress fluctuates, the stress smaller than the fatigue limit based on the above SN curve may contribute to the growth of cracks. Therefore, the fatigue life can be estimated based on the SN curve. It is known that there is room for improvement.
- the amount of crack growth when a certain stress is applied to the object is calculated, and the crack dimensions (initial defects and cracks that have grown from the initial defects) are calculated.
- Predict fatigue life by updating (dimensions), continuing to perform the next assessment based on the fatigue limit according to the updated new crack dimensions, and identifying the stage at which the fatigue crack dimensions exceed the limit. ..
- the fatigue life prediction device 1 includes a fatigue test data acquisition unit 11 (fatigue test result acquisition unit), a prediction condition acquisition unit 12, a material constant calculation unit 13, a fatigue life prediction unit 14, and a result output unit. 15 (output unit) and a data storage unit 16 are included.
- the fatigue test data acquisition unit 11 has a function of acquiring data related to the fatigue test result of the object whose fatigue life is predicted.
- the data related to the fatigue test results acquired by the fatigue test data acquisition unit 11 is the data of general fatigue test results, and specifically, "a stress of a constant amplitude for a test piece having a defect of a certain size". These are the test conditions and their results when the test related to "the number of repetitions until breakage by applying a load" was performed. Details will be described later, but multiple of the above test results will be obtained and used for fatigue life prediction.
- the prediction condition acquisition unit 12 has a function of acquiring information specifying conditions for fatigue life prediction in the fatigue life prediction device 1.
- the information that specifies the conditions to be acquired by the prediction condition acquisition unit 12 includes, for example, the Vickers hardness (HV) of the object, the final crack size regarded as fracture, and the information necessary for calculating the above three types of material constants. Numerical ranges and increments of candidate material constants can be mentioned. Further, as the information specifying the conditions to be acquired by the prediction condition acquisition unit 12, for example, as the information necessary for predicting the fatigue life after calculating the material constant, the initial value of the defect dimension in the object and the fatigue life prediction The increment of the number of repetitions of the load and the upper limit value when performing the above are mentioned.
- the above information is necessary when the material constant is calculated and the fatigue life is predicted by the method described later, but depending on the actual calculation method, only a part of the above information may be used. However, information not included in the above may be used. Therefore, the type of information acquired by the prediction condition acquisition unit 12 can be changed according to a specific method for predicting fatigue life.
- the material constant calculation unit 13 has a function of calculating three types of material constants based on the information acquired by the fatigue test data acquisition unit 11 and the prediction condition acquisition unit 12. The method of calculating the material constant will be described later.
- the fatigue life prediction unit 14 has a function of predicting the fatigue life of an object by using the material constant calculated by the material constant calculation unit 13. The method of predicting fatigue life will be described later.
- the result output unit 15 has a function of outputting the result of the fatigue life prediction obtained by the processing of the fatigue life prediction unit 14.
- the output method is not particularly limited, but known methods such as file output, screen output, and return of values to other programs can be used.
- the material constant calculated by the material constant calculation unit 13 may be output together.
- the data storage unit 16 has a function of storing the information acquired by the fatigue test data acquisition unit 11 and the prediction condition acquisition unit 12 and the information required for the processing performed by each of the above units. It also has a function of storing the results obtained by the processing in the material constant calculation unit 13 and the fatigue life prediction unit 14.
- fatigue test data is acquired by the fatigue test data acquisition unit 11 (step S01). This process may be performed, for example, by the operator (user) of the fatigue life prediction device 1 operating the fatigue life prediction device 1. Further, the test results acquired by the fatigue test device designated in advance may be sequentially transmitted to the fatigue life prediction device 1, and the fatigue test data may be sequentially acquired by the fatigue life prediction device 1. May be.
- the fatigue test data prediction condition acquisition unit 12 acquires information that specifies conditions related to a series of processes related to fatigue life prediction in the fatigue life prediction device 1 (step S02). This process may be performed, for example, by the operator (user) of the fatigue life prediction device 1 operating the fatigue life prediction device 1.
- the order of step S01 and step S02 is not particularly limited, and for example, step S02 may be performed first, or step S01 and step S02 may be performed at the same time.
- the information for designating the conditions related to the fatigue life prediction may be in a state of being acquired and held in advance by the prediction condition acquisition unit 12 of the fatigue life prediction device 1.
- the material constant calculation unit 13 of the fatigue life prediction device 1 first calculates three material constants (C * , m * , n * ) based on the above information (step S03).
- the method of calculating the material constant is described in FIGS. 3 and 4, but the details will be described later.
- the fatigue life prediction unit 14 of the fatigue life prediction device 1 predicts the fatigue life using the result calculated by the material constant calculation unit 13 (step S04).
- the method for predicting fatigue life is described in FIG. 5, but details will be described later.
- the result output unit 15 of the fatigue life prediction device 1 outputs the result of the fatigue life prediction obtained by the processing of the fatigue life prediction unit 14 (step S05). At the time of output, conversion processing or the like for converting the prediction result into a state suitable for output may be performed.
- the fatigue limit ⁇ w stress amplitude
- the stress ratio R is defined by the ratio of the minimum value and the maximum value of the cyclic stress.
- This formula (1) is described in Takanori Murakami, "Metal Fatigue: Effects of MicroDefects and Occlusions," Yokendo, 1993.
- the above mathematical formula (1) shows that a defect exists in the material and the fatigue limit is determined by the dimension thereof.
- a load with a stress (stress amplitude) equal to or higher than the fatigue limit is applied to the object, cracks are generated from the previously existing defects in the object. Therefore, the size of the defect including the crack increases as the number of repeated stress loads increases.
- the fatigue limit ⁇ w gradually decreases according to the size of the defect (defect size). That is, even if the stress load is the same, the value of the mechanical quantity ⁇ / ⁇ w -1, which contributes to fatigue, gradually increases as the internal defect increases.
- the mechanical quantity ⁇ / ⁇ w -1 becomes the driving force (crack growth driving force) for expanding the defect (crack).
- the crack growth state using the above mechanical quantity can be described as the mathematical formula (2).
- a corresponds to the size of the defect ⁇ area
- da / dN is the amount of growth of the crack a per one cycle of the load
- C * , m * , and n * are material constants. .. It may be assumed that n * is usually 1.
- the above mathematical formula (2) is numerically integrated, and the place where the value of the crack dimension a becomes a sufficiently large value (generally about 1 mm or more) is predicted as a substantial fatigue life.
- step S11 input the parameters used for predicting the fatigue life (step S11). As shown in FIG. 3, the parameters shown in Table 1 below are prepared for predicting fatigue life.
- the initial defect dimension ⁇ area 0 is the dimension of the initial defect contained in the material of the object and is defined by the square root of the projected area where the defect is projected onto the plane perpendicular to the principal stress.
- a method of measuring using an optical method, an X-ray CT, or the like can be considered. It may also be set using the method described in Y. Murakami, “Metal Fatigue: Effects of MicroDefects and Enclosures,” Yokendo, 1993.
- the critical crack size ⁇ area crit may change depending on the material properties of the object, but may be set to 1 mm, for example, in consideration of the process from crack growth to fracture. Since the number of repetitions required from 1 mm to the final fracture is relatively small compared to the total number of repetitions, such a setting is also possible. Further, the upper limit N stop of the number of repetitions N may be set large (for example, 107 ) in consideration of the expiration date of the object and the repetition period of stress. Further, when the stress is a function ⁇ a (N) by N, the accuracy of predicting the fatigue life is improved by setting the increment ⁇ N according to the interval of fluctuation, and the calculation time is shortened. It can be compatible.
- step S12 the initial value is set.
- N 0 is set, and the initial defect dimension ⁇ area 0 is selected as ⁇ area.
- step S18 After calculating the fatigue limit ⁇ w , it is confirmed whether or not the stress ⁇ applied as a load is larger than the fatigue limit ⁇ w (step S18).
- the stress ⁇ applied as a load is equal to or less than the fatigue limit ⁇ w (S18-NO)
- the crack does not grow due to the repetition of the stress, and the cycle N is newly set and the above procedure (S13 to S18) is performed.
- the same study is performed on the stress applied next by repeating.
- the stress ⁇ applied as a load is larger than the fatigue limit ⁇ w (S18-YES)
- the crack growth amount per repetition is calculated using the formula (3)
- the new crack size is calculated using the formula (4).
- step S20 After calculating the new crack size ⁇ area, it is confirmed whether or not the new crack size ⁇ area is larger than the limit crack size ⁇ area crit (step S20).
- the new crack size ⁇ area is less than or equal to the limit crack size ⁇ area crit (S20-NO)
- a new cycle N is set, and the above procedure (S13 to S20) is repeated. ..
- the new crack size ⁇ area is larger than the limit crack size ⁇ area crit (S20-YES)
- the number of repeated breaks N f is set to the current number of cycles N (step S21).
- the fracture repetition number N f is output as a prediction result of the fatigue life (step S22). This completes a series of processes related to the prediction of fatigue life.
- FIG. 4 is a flowchart relating to one step included in the flowchart shown in FIG. As described above, the three material constants to be calculated are C * , m * , and n * .
- the mathematical formula used in the above-mentioned fatigue life prediction method is used. Specifically, using arbitrary C * , m * and n * , the predicted value N fpred of the number of repeated fractures N f is calculated based on the measurement conditions included in the results of the fatigue test. The difference between this predicted value N fpred and the measured value N fexp of the number of fracture repetitions N f obtained by the fatigue test is calculated, and the combination of C * , m * , and n * that minimizes this difference is obtained. By doing so, C * , m * and n * can be specified.
- the method for specifying the optimum material constants C * , m * , n * such that the difference between the predicted value N fpred and the measured value N fexp is minimized is not particularly limited, but in the following embodiment, the formula (5) A method for specifying the C * , m * , and n * that minimizes the objective function O by setting the objective function O shown in the above will be described.
- M is the number of sets of experimental data
- E i is the difference E in the logarithms of N fpred and N fpred in the i-th set of experimental data.
- E i is defined by the mathematical formula (6).
- iterative calculation can be used as a method for specifying C * , m * and n * that minimize the objective function O.
- iterative calculation can be used as a method for specifying C * , m * and n * that minimize the objective function O.
- various commonly used optimization algorithms can be used.
- the parameters used for calculating the material constants are input (step S31). As shown in FIG. 4, the parameters shown in Table 2 below are prepared for calculating the material constants.
- the number of data of fatigue test results is 1 to M, but when obtaining three material constants, at least three different test data (conditions are different from each other) are required (i ⁇ 3). ). However, in reality, it can be assumed that the material constant n * is 1, and in that case, the test data may be two.
- the initial value is set (step S32).
- the minimum values C * min , m * min , and n * min are set for C * , m * , and n * , respectively.
- Default 1000 is set.
- Update refers to the latest minimum value of the objective function, and is used as a reference when performing repeated calculations in the procedure described below.
- step S34 the predicted value N fpred of the number of repeated fractures N f is calculated (step S34).
- step S34 that is, the method of calculating the predicted value N fpred of the number of repeated fractures N f , is shown in FIG. 5, but is the same as the procedure shown in schematic FIG. 3, and will be briefly described.
- step S51 input the parameters used for predicting the fatigue life.
- a part of the parameters prepared in step S31 is input.
- the fatigue limit ⁇ w is calculated based on the mathematical formula (1) using the conditions used in the fatigue test (parameters input above) (step S52). As a result, the predicted fatigue limit based on the fatigue test data is calculated.
- the load stress ⁇ exp (i) used in the fatigue test is larger than the fatigue limit ⁇ w (step S53).
- the load stress ⁇ exp (i) is equal to or less than the fatigue limit ⁇ w (S53-NO)
- a notification is output indicating that the data cannot be used in the calculation of the fatigue life prediction (step S54). In this case, since the predicted value N fpred cannot be calculated, an error message or a warning may be output.
- step S55 0 is set as the initial value
- the initial defect dimension ⁇ area 0 is selected as ⁇ area (S55)
- N N + ⁇ N (S56)
- the predicted fatigue limit ⁇ w the predicted fatigue limit ⁇ w
- the crack growth amount ⁇ area and the new crack size ⁇ area are calculated (S57).
- These calculation methods are the same as steps S16 and S18 shown in FIG.
- the following mathematical formula (7) is used to calculate the crack growth amount ⁇ area.
- the formula (7) corresponds to the formula (3), except that the load ⁇ exp (i) used in the test is used as the stress ⁇ .
- step S58 After calculating the new crack size ⁇ area, it is confirmed whether or not the new crack size ⁇ area is larger than the limit crack size ⁇ area crit (step S58).
- the new crack dimension ⁇ area is less than or equal to the limit crack dimension ⁇ area crit (S58-NO)
- a new cycle N is set, and the above procedure (S56 to S57) is repeated. ..
- the predicted value N fpred of the number of repeated breaks N f is set to the current number of cycles N.
- Step S60 the predicted value N fpred is output as the predicted result of the fatigue life. In this series of procedures, the predicted value N fpred based on the fatigue test data can be obtained.
- the Update is changed (updated) to the calculation result of the current objective function O, and the result is changed (updated).
- the current C * , m * and n * used in the calculation of the objective function O are changed (updated) as C * updated , m * updated and n * updated (step S40 ). If the calculation result of the objective function O is equal to or greater than the minimum value of the objective function before that ( S39-NO), the update or the like is not updated (S40).
- the hardware configuration of the fatigue life prediction device 1 will be described with reference to FIG.
- FIG. 6 is a diagram showing an example of the hardware configuration of the fatigue life prediction device 1.
- the fatigue life predictor 1 includes one or more computers 100.
- the computer 100 includes a CPU (Central Processing Unit) 101, a main storage unit 102, an auxiliary storage unit 103, a communication control unit 104, an input device 105, and an output device 106.
- the fatigue life prediction device 1 is composed of one or a plurality of computers 100 composed of these hardware and software such as a program.
- the fatigue life prediction device 1 When the fatigue life prediction device 1 is composed of a plurality of computers 100, these computers 100 may be connected locally or may be connected via a communication network such as the Internet or an intranet. By this connection, one fatigue life prediction device 1 is logically constructed.
- the CPU 101 executes an operating system, an application program, and the like.
- the main storage unit 102 is composed of a ROM (Read Only Memory) and a RAM (Random Access Memory).
- the auxiliary storage unit 103 is a storage medium composed of a hard disk, a flash memory, or the like.
- the auxiliary storage unit 103 generally stores a larger amount of data than the main storage unit 102.
- At least a part of the material constant calculation unit 13 and the fatigue life prediction unit 14 is realized by the auxiliary storage unit 103.
- the communication control unit 104 is composed of a network card or a wireless communication module. At least a part of the fatigue test data acquisition unit 11, the prediction condition acquisition unit 12, and the result output unit 15 may be realized by the communication control unit 104.
- the input device 105 includes a keyboard, a mouse, a touch panel, a microphone for voice input, and the like.
- the prediction condition acquisition unit 12 may be realized by the input device 105.
- the output device 106 includes a display, a printer, and the like. At least a part of the result output unit 15 is realized by the output device 106.
- the output device 106 may display the result of fatigue life prediction on a display or the like.
- the auxiliary storage unit 103 stores the program 110 (fatigue life prediction program) and data necessary for processing in advance.
- the program 110 causes the computer 100 to execute each functional element of the fatigue life prediction device 1.
- the program 110 executes, for example, the processes related to steps S01 to S04 described above in the computer 100.
- the program 110 is read by the CPU 101 or the main storage unit 102, and operates at least one of the CPU 101, the main storage unit 102, the auxiliary storage unit 103, the communication control unit 104, the input device 105, and the output device 106.
- the program 110 reads and writes data in the main storage unit 102 and the auxiliary storage unit 103.
- the program 110 may be provided after being recorded on a tangible storage medium such as a CD-ROM, a DVD-ROM, or a semiconductor memory.
- the program 110 may be provided as a data signal via a communication network.
- the experimental data is as follows.
- the experimental data 1 and 2 are shown in a diagram (SN curve diagram) showing the correspondence between the fracture repetition number Nf and the stress amplitude ⁇ shown in FIG. 7.
- the initial defect dimension ⁇ area 0 in the test piece of the object was 92 ⁇ m.
- the initial defect dimension ⁇ area 0 was set to 92 ⁇ m.
- the size ⁇ area of the crack generated from the initial defect was 251 ⁇ m at the time when the stress loading in step 1 was completed.
- the fatigue limit at this time was predicted to be 169 MPa. From this result, it was estimated that the load stress in step 2 was lower than the fatigue limit in the initial state and higher than the fatigue limit at the end of the stress load in step 1.
- FIG. 7 shows the above test results.
- the material constant for calculating the crack growth amount for one stress load is specified, so that the crack growth amount for one stress load is specified. Can be estimated.
- the crack grows from the initial defect, and the fatigue limit decreases according to the size of the defect and the crack grown from the defect. Since it is a premise, the growth of defects (cracks) due to stress loading and the accompanying decrease in fatigue limit are taken into consideration. Therefore, the fatigue life is predicted by appropriately grasping the net crack growth driving force in the stress repeatedly applied, and the prediction with higher accuracy is realized.
- the above-mentioned fatigue life prediction method when a stress load exceeding the fatigue limit is applied to the object, cracks grow from the initial defect and the size of the defect and the crack grown from the defect. Assuming that the fatigue limit is lowered, the amount of crack growth for one stress load is calculated, and the fatigue life is predicted based on this result. In this way, by capturing the change in the object when stress is applied to the object and predicting the fatigue life, it is possible to predict the fatigue life with high accuracy unlike the conventional method. In particular, the above-mentioned fatigue life prediction method predicts the fatigue life after recognizing that the size of the crack increases when the object is repeatedly subjected to stress load, and as a result, the fatigue limit of the object decreases.
- the above fatigue life prediction method not only makes it possible to predict the fatigue life with higher accuracy, but also makes it possible to predict the fatigue life even when the magnitude of stress changes in the middle. It has become.
- the above method can significantly reduce the number of fatigue tests required to predict fatigue life.
- the number of material constants can be three (or two by adding assumptions), so that the number of fatigue tests may be at least three (or two).
- it has been considered to perform multiple fatigue tests to create an SN curve that is more in line with the actual situation, but it was desired to increase the number of fatigue tests in consideration of accuracy.
- it is conceivable to perform a fatigue test in which stress is actually applied using a test piece, but it is necessary to repeat the fatigue test every time the applied stress is changed. ..
- the method described in the above embodiment is advantageous over the conventional method in that the fatigue life can be predicted accurately from less fatigue test data.
- the above method can be easily recalculated, so that it can be applied to various conditions. It is advantageous for the method of.
- the fatigue limit is calculated based on the dimensions of the defect of the object and the cracks that have propagated from the defect, and for one stress load when the load is larger than the calculated fatigue limit. Calculation of the amount of crack growth and calculation of the number of stress loads until the size of the crack that has grown from the defect reaches the limit defect size are performed. Specifically, when a certain stress is applied and the load is larger than the calculated fatigue limit, the amount of crack growth for one stress load is calculated, while the load stress is higher than the calculated fatigue limit. When it is small, the amount of crack growth for one stress load is set to 0, and the number of stress loads until the defect and the crack propagated from the defect reach the limit defect dimension is calculated. Therefore, the fatigue life can be predicted with high accuracy regardless of the magnitude of the stress load.
- C * , m * and n * in the above-mentioned mathematical formula (3) for calculating the crack growth amount ⁇ area for one stress load are calculated.
- the stress amplitude applied to the object is constant or two or more steps.
- the magnitude of the load is not particularly limited. Therefore, the fatigue life can be predicted with high accuracy under any condition when the stress amplitude to be applied is constant and when there are two or more stages. In particular, it is clear from the above evaluation of effectiveness that even if the stress amplitude applied to the object is two or more steps, it can be predicted with high accuracy.
- the fatigue life prediction device 1 is configured by one computer system, but it may be configured by a plurality of computer systems.
- the fatigue life prediction device 1 and the fatigue life prediction method according to the above embodiment may be provided as a service via the Web or the like accessible to, for example, an unspecified number of users.
- Fatigue life prediction device 11 ... Fatigue test data acquisition unit, 12 ... Prediction condition acquisition unit, 13 ... Material constant calculation unit, 14 ... Fatigue life prediction unit, 15 ... Result output unit, 16 ... Data storage unit.
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
Abstract
This fatigue life prediction method includes: acquiring fatigue test data including test results from a fatigue test on a subject carried out under a plurality of conditions, initial defect dimensions of a test piece used in the fatigue test, and test conditions for the fatigue test; calculating, on the basis of the fatigue test data, material constants for calculating the amount of development of a crack per one application of stress load, on the assumption that a crack develops from the initial defect when a stress load equal to or greater than a fatigue limit is applied to the subject and that the fatigue limit decreases according to the dimensions of the defect and the crack developing from the defect; and predicting, on the basis of the amount of development of the crack per one application of stress load calculated using the material constants, the fatigue life when a certain stress is applied on the subject.
Description
本開示は、疲労寿命予測方法、疲労寿命予測装置、疲労寿命予測プログラムおよび記憶媒体に関する。
The present disclosure relates to a fatigue life prediction method, a fatigue life prediction device, a fatigue life prediction program, and a storage medium.
金属材料等の対象物の疲労破壊を評価する際には、疲労寿命および疲労限度が重要な評価要素となる場合が多く、種々の検討が行われている。例えば、特許文献1では、疲労寿命に関して、亀裂がない部材内部の応力分布、亀裂深さとクリープ寄与度の関係,およびクリープ寄与度とパリス則のパラメータCとmの値との関係に基づいて,部材を進展する亀裂の進展挙動を推定する方法が示されている。また、例えば、特許文献2では、疲労限度に関して、微小欠陥を有する金属材料における疲労限度を予測する方法として、金属材料の潜在疲労亀裂長さを用いて引張疲労限度およびせん断疲労限度を予測する方法が示されている。
When evaluating fatigue fracture of an object such as a metal material, fatigue life and fatigue limit are often important evaluation factors, and various studies have been conducted. For example, in Patent Document 1, regarding fatigue life, based on the stress distribution inside a member without cracks, the relationship between crack depth and creep contribution, and the relationship between creep contribution and the values of parameters C and m of the Paris law, A method of estimating the growth behavior of a crack that grows in a member is shown. Further, for example, in Patent Document 2, as a method of predicting the fatigue limit of a metal material having minute defects with respect to the fatigue limit, a method of predicting a tensile fatigue limit and a shear fatigue limit using the latent fatigue crack length of the metal material. It is shown.
しかしながら、負荷する応力が変動することを想定した対象物の疲労寿命の予測については、従来から知られている手法では精度の点から改善の余地があった。
However, there was room for improvement in terms of accuracy in predicting the fatigue life of an object assuming that the stress to be applied fluctuates.
本開示は上記を鑑みてなされたものであり、疲労寿命をより高い精度で予測することが可能な技術を提供することを目的とする。
The present disclosure has been made in view of the above, and an object of the present disclosure is to provide a technique capable of predicting fatigue life with higher accuracy.
上記目的を達成するため、本開示の一形態に係る疲労寿命予測方法は、対象物に関する複数条件での疲労試験による試験結果と、前記疲労試験に使用した試験片の初期欠陥寸法と、前記疲労試験に係る試験条件と、を含む疲労試験データを取得することと、前記対象物に対して疲労限度以上の応力負荷を与えた場合に初期欠陥から亀裂が進展することと、欠陥および欠陥から進展した亀裂の寸法に応じて前記疲労限度が低下することと、を前提として、前記疲労試験データに基づいて、1回の応力負荷に対する亀裂の進展量を算出するための材料定数を算出することと、前記材料定数を用いて、前記対象物に対してある応力を負荷した場合の亀裂の進展量に基づいて疲労寿命を予測することと、を含む。
In order to achieve the above object, the fatigue life prediction method according to one embodiment of the present disclosure includes test results by a fatigue test under a plurality of conditions for an object, initial defect dimensions of a test piece used in the fatigue test, and the fatigue. Fatigue test data including test conditions related to the test are acquired, cracks grow from initial defects when a stress load exceeding the fatigue limit is applied to the object, and cracks grow from defects and defects. On the premise that the fatigue limit decreases according to the dimensions of the cracks, the material constant for calculating the amount of crack growth for one stress load is calculated based on the fatigue test data. , Predicting fatigue life based on the amount of crack growth when a certain stress is applied to the object using the material constants.
上記の疲労寿命予測方法によれば、1回の応力負荷に対する亀裂の進展量を算出するための材料定数が特定されることで、1回の応力負荷に対する亀裂の進展量が推定可能となる。これを利用して、対象物の試験片に対してある応力を負荷した場合の疲労寿命の予測が可能となる。ここで、対象物に対して疲労限度以上の応力負荷を与えた場合に初期欠陥から亀裂が進展することと、欠陥および欠陥から進展した亀裂の寸法に応じて疲労限度が低下することと、を前提にしているので、応力負荷による欠陥(亀裂)の進展と、それにともなう疲労限度の低下とを考慮しているため、繰り返し与えられる負荷の中の正味の亀裂進展駆動力を適切に捉えて疲労寿命が予測されるため、より高い精度での予測が実現される。
According to the above fatigue life prediction method, the amount of crack growth for one stress load can be estimated by specifying the material constant for calculating the crack growth amount for one stress load. By utilizing this, it is possible to predict the fatigue life when a certain stress is applied to the test piece of the object. Here, when a stress load exceeding the fatigue limit is applied to the object, the crack grows from the initial defect, and the fatigue limit decreases according to the size of the defect and the crack grown from the defect. Since it is a premise, the growth of defects (cracks) due to stress load and the accompanying decrease in fatigue limit are taken into consideration, so the net crack growth driving force in the repeatedly applied load is properly grasped and fatigue is achieved. Since the life is predicted, more accurate prediction is realized.
ここで、前記疲労寿命を予測することは、前記対象物の欠陥および欠陥から進展した亀裂の寸法に基づく疲労限度を算出することと、前記算出した疲労限度よりも負荷が大きい場合の1回の応力負荷に対する亀裂の進展量を算出することと、前記欠陥および欠陥から進展した亀裂の寸法が限界欠陥寸法に達するまでの応力の負荷回数を算出することと、を含む。
Here, the prediction of the fatigue life is to calculate the fatigue limit based on the defect of the object and the size of the crack extending from the defect, and once when the load is larger than the calculated fatigue limit. It includes calculating the amount of crack growth with respect to stress loading and calculating the number of stress loads until the size of the crack that has grown from the defect and the defect reaches the limit defect size.
上記の構成とすることで、ある応力を負荷した際に、算出した疲労限度よりも負荷が大きい場合の1回の応力負荷に対する亀裂の進展量が算出され、欠陥および欠陥から進展した亀裂の寸法が限界欠陥寸法に達するまでの応力の負荷回数が算出される。したがって、対象物への応力負荷の大きさに関わらず、疲労寿命を高い精度で予測することができる。
With the above configuration, when a certain stress is applied, the amount of crack growth for one stress load when the load is larger than the calculated fatigue limit is calculated, and the dimensions of the defect and the crack propagated from the defect are calculated. The number of stress loads until the limit defect dimension is reached is calculated. Therefore, the fatigue life can be predicted with high accuracy regardless of the magnitude of the stress load on the object.
ここで、前記材料定数を算出することは、1回の応力負荷に対する亀裂の進展量Δ√areaを算出する下記の数式(A)におけるC*,m*およびn*を算出することである態様とすることができる。
Here, the calculation of the material constant is an embodiment in which C * , m * and n * in the following mathematical formula (A) for calculating the crack growth amount Δ√area for one stress load are calculated. Can be.
[ただし、Δ√areaは1回の応力負荷に対する亀裂の進展量であり、σは負荷の応力振幅であり、σwは負荷を与える際の疲労限度であり、√areaは欠陥の寸法である。]
[However, Δ√area is the amount of crack growth for one stress load, σ is the stress amplitude of the load, σw is the fatigue limit when the load is applied, and √area is the dimension of the defect. .. ]
上記の構成とすることで、1回の応力負荷に対する亀裂の進展量を適切に算出することが可能な材料定数を特定することができ、この材料定数を用いて、疲労寿命を高い精度で予測することができる。
With the above configuration, it is possible to specify a material constant that can appropriately calculate the amount of crack growth for one stress load, and using this material constant, predict the fatigue life with high accuracy. can do.
前記疲労寿命を予測することにおいて、前記対象物に対して負荷される応力振幅は一定もしくは2段階以上である態様とすることができる。
In predicting the fatigue life, the stress amplitude applied to the object can be constant or two or more steps.
上記の構成によれば、対象物に対する負荷の大きさは特に限定されない。したがって、負荷する応力振幅が一定である場合、および2段階以上である場合のいずれの条件でも疲労寿命を高い精度で予測することができる。
According to the above configuration, the magnitude of the load on the object is not particularly limited. Therefore, the fatigue life can be predicted with high accuracy under any condition when the stress amplitude to be applied is constant and when there are two or more stages.
本開示の一形態に係る疲労寿命予測装置は、対象物に関する複数条件での疲労試験による試験結果と、前記疲労試験に使用した試験片の初期欠陥寸法と、前記疲労試験に係る試験条件と、を含む疲労試験データを取得する疲労試験結果取得部と、前記対象物に対して疲労限度以上の応力負荷を与えた場合に初期欠陥から亀裂が進展することと、欠陥および欠陥から進展した亀裂の寸法に応じて前記疲労限度が低下することと、を前提として、前記疲労試験データに基づいて、1回の応力負荷に対する亀裂の進展量を算出するための材料定数を算出する材料定数算出部と、前記材料定数を用いて算出される1回の応力負荷に対する亀裂の進展量に基づいて、前記対象物に対してある応力を負荷した場合の疲労寿命を予測する疲労寿命予測部と、を含む。上記の寿命予測装置によれば、上述の寿命予測方法と同様の効果を奏する。
The fatigue life predictor according to one embodiment of the present disclosure includes test results of a fatigue test on an object under a plurality of conditions, initial defect dimensions of the test piece used in the fatigue test, and test conditions related to the fatigue test. Fatigue test result acquisition unit that acquires fatigue test data including With the material constant calculation unit that calculates the material constant for calculating the amount of crack growth for one stress load based on the fatigue test data, assuming that the fatigue limit decreases according to the dimensions. Includes a fatigue life prediction unit that predicts fatigue life when a certain stress is applied to the object based on the amount of crack growth for one stress load calculated using the material constants. .. According to the above-mentioned life prediction device, the same effect as the above-mentioned life prediction method is obtained.
本開示の一形態に係る疲労寿命予測プログラムは、対象物に関する複数条件での疲労試験による試験結果と、前記疲労試験に使用した試験片の初期欠陥寸法と、前記疲労試験に係る試験条件と、を含む疲労試験データを取得することと、前記対象物に対して疲労限度以上の応力負荷を与えた場合に初期欠陥から亀裂が進展することと、欠陥および欠陥から進展した亀裂の寸法に応じて前記疲労限度が低下することと、を前提として、前記疲労試験データに基づいて、1回の応力負荷に対する亀裂の進展量を算出するための材料定数を算出することと、前記材料定数を用いて算出される1回の応力負荷に対する亀裂の進展量に基づいて、前記対象物に対してある応力を負荷した場合の疲労寿命を予測することと、をコンピュータシステムに実行させる。上記の寿命予測プログラムによれば、上述の寿命予測方法と同様の効果を奏する。
The fatigue life prediction program according to one embodiment of the present disclosure includes test results by a fatigue test under a plurality of conditions on an object, initial defect dimensions of a test piece used in the fatigue test, and test conditions related to the fatigue test. Fatigue test data including fatigue test data is obtained, cracks grow from initial defects when a stress load exceeding the fatigue limit is applied to the object, and the size of the defects and cracks grown from the defects On the premise that the fatigue limit is lowered, the material constant for calculating the amount of crack growth for one stress load is calculated based on the fatigue test data, and the material constant is used. Based on the calculated amount of crack growth for one stress load, the computer system is made to predict the fatigue life when a certain stress is applied to the object. According to the above-mentioned life prediction program, the same effect as that of the above-mentioned life prediction method is obtained.
本開示の一形態に係る記憶媒体は、対象物に関する複数条件での疲労試験による試験結果と、前記疲労試験に使用した試験片の初期欠陥寸法と、前記疲労試験に係る試験条件と、を含む疲労試験データを取得することと、前記対象物に対して疲労限度以上の応力負荷を与えた場合に初期欠陥から亀裂が進展することと、欠陥および欠陥から進展した亀裂の寸法に応じて前記疲労限度が低下することと、を前提として、前記疲労試験データに基づいて、1回の応力負荷に対する亀裂の進展量を算出するための材料定数を算出することと、前記材料定数を用いて算出される1回の応力負荷に対する亀裂の進展量に基づいて、前記対象物に対してある応力を負荷した場合の疲労寿命を予測することと、をコンピュータシステムに実行させる疲労寿命予測プログラムを記憶するコンピュータ読取可能な記憶媒体である。上記の記憶媒体によれば、上述の寿命予測方法と同様の効果を奏する。
The storage medium according to one embodiment of the present disclosure includes test results of a fatigue test on an object under a plurality of conditions, initial defect dimensions of the test piece used in the fatigue test, and test conditions related to the fatigue test. Fatigue test data is acquired, cracks grow from initial defects when a stress load exceeding the fatigue limit is applied to the object, and fatigue grows according to the dimensions of the defects and the cracks that grow from the defects. Based on the fatigue test data, the material constant for calculating the amount of crack growth for one stress load is calculated on the premise that the limit is lowered, and the material constant is calculated using the material constant. A computer that stores a fatigue life prediction program that predicts the fatigue life when a certain stress is applied to the object based on the amount of crack growth for one stress load and causes the computer system to execute. It is a readable storage medium. According to the above-mentioned storage medium, the same effect as the above-mentioned life prediction method is obtained.
本開示によれば、疲労寿命をより高い精度で予測することが可能な技術が提供される。
According to the present disclosure, a technique capable of predicting fatigue life with higher accuracy is provided.
以下、添付図面を参照して、本開示を実施するための形態を詳細に説明する。なお、図面の説明においては同一要素には同一符号を付し、重複する説明を省略する。
Hereinafter, the mode for carrying out the present disclosure will be described in detail with reference to the attached drawings. In the description of the drawings, the same elements are designated by the same reference numerals, and duplicate description will be omitted.
[疲労寿命予測装置]
まず、図1を参照して、一実施形態に係る疲労寿命予測装置1の概略構成について説明する。図1に示す疲労寿命予測装置1は、対象物に対して所定の応力を付与した場合の疲労寿命を予測する装置である。 [Fatigue life predictor]
First, with reference to FIG. 1, a schematic configuration of the fatiguelife prediction device 1 according to the embodiment will be described. The fatigue life prediction device 1 shown in FIG. 1 is a device that predicts the fatigue life when a predetermined stress is applied to an object.
まず、図1を参照して、一実施形態に係る疲労寿命予測装置1の概略構成について説明する。図1に示す疲労寿命予測装置1は、対象物に対して所定の応力を付与した場合の疲労寿命を予測する装置である。 [Fatigue life predictor]
First, with reference to FIG. 1, a schematic configuration of the fatigue
疲労寿命の予測の対象となる対象物の種類は特に限定されないが、工業製品、構造物等および工業製品、構造物等の部材に使用され得る工業材料が主要な対象物となり得る。また、工業材料のうち特に金属については、疲労寿命予測装置1を用いて高い精度での寿命予測が可能となると考えられる。なお、上記の手法は、S-N曲線が取得できる材料であれば非金属にも適用可能である。
The type of object for which the fatigue life is predicted is not particularly limited, but industrial products, structures, etc. and industrial materials that can be used for members of industrial products, structures, etc. can be the main objects. Further, it is considered that the fatigue life prediction device 1 can be used to predict the life of industrial materials, especially metals, with high accuracy. The above method can be applied to non-metals as long as the material can obtain an SN curve.
また、疲労寿命予測装置1により予測する疲労寿命とは、対象物に対して繰り返し応力を負荷させた場合に、対象物が破壊するまでの応力負荷の繰返し数である。一般的に、対象物に対して所定の値以上の応力を負荷すると、ある回数を超えた段階で対象物の破壊が生じる。疲労寿命予測装置1では、この破壊が生じるまでの応力負荷の繰返し数を予測する機能を有する。
The fatigue life predicted by the fatigue life prediction device 1 is the number of repeated stress loads until the object is repeatedly stressed when the object is repeatedly stressed. Generally, when a stress of a predetermined value or more is applied to an object, the object is destroyed at a stage exceeding a certain number of times. The fatigue life prediction device 1 has a function of predicting the number of repetitions of stress load until this fracture occurs.
疲労寿命は、一般的に、疲労試験の結果に基づいてS-N曲線を作成して予測されることが多い。このとき、通常は、一定の応力振幅により取得した複数の疲労試験の結果を、公知のモデルに対して当てはめることでS-N曲線が作成される。ただし、応力が変動する場合には、上記のS-N曲線に基づいた疲労限度よりも小さな応力によって亀裂の進展に寄与することがあることから、S-N曲線に基づく疲労寿命の推定には改良の余地があることが知られている。
Fatigue life is generally predicted by creating an SN curve based on the results of fatigue tests. At this time, usually, an SN curve is created by applying the results of a plurality of fatigue tests acquired with a constant stress amplitude to a known model. However, when the stress fluctuates, the stress smaller than the fatigue limit based on the above SN curve may contribute to the growth of cracks. Therefore, the fatigue life can be estimated based on the SN curve. It is known that there is room for improvement.
本実施形態に係る疲労寿命予測装置1では、疲労の過程である材料内部での亀裂の進展挙動に着目し、その挙動を力学的根拠に基づき定式化することによって、変動応力下における疲労寿命の高精度な予測を実現し得る。なお、詳細は後述するが、疲労寿命予測装置1では、対象物に対して疲労限度を超える応力を負荷すると、対象物に存在する微小な亀裂(初期欠陥)が進展する(大きくなる)ことを前提とした上で、亀裂が大きくなることによる疲労限度の低下を考慮し、繰り返し与える負荷による亀裂の進展を評価することで、疲労寿命を予測する。そのために、まず、対象物に係る複数条件の疲労試験データから、疲労寿命予測に使用するパラメータである3種類の材料定数を算出する。その上で、算出された3種類の材料定数を利用して、対象物に対してある応力を与えた場合の亀裂の進展量を計算して亀裂寸法(初期欠陥および初期欠陥から進展した亀裂の寸法)を更新し、更新した新しい亀裂寸法に応じた疲労限度に基づいて次の評価を行うことを継続し、疲労による亀裂寸法が限界値を超える段階を特定することによって、疲労寿命を予測する。
The fatigue life prediction device 1 according to the present embodiment focuses on the crack growth behavior inside the material, which is the process of fatigue, and formulates the behavior based on mechanical grounds to determine the fatigue life under variable stress. Highly accurate prediction can be achieved. Although the details will be described later, in the fatigue life prediction device 1, when a stress exceeding the fatigue limit is applied to the object, minute cracks (initial defects) existing in the object grow (grow). Based on the premise, the fatigue life is predicted by evaluating the growth of cracks due to repeated load, considering the decrease in fatigue limit due to the increase in cracks. To this end, first, three types of material constants, which are parameters used for predicting fatigue life, are calculated from fatigue test data under a plurality of conditions relating to the object. Then, using the calculated three types of material constants, the amount of crack growth when a certain stress is applied to the object is calculated, and the crack dimensions (initial defects and cracks that have grown from the initial defects) are calculated. Predict fatigue life by updating (dimensions), continuing to perform the next assessment based on the fatigue limit according to the updated new crack dimensions, and identifying the stage at which the fatigue crack dimensions exceed the limit. ..
(疲労寿命予測装置の機能部)
図1を参照しながら、疲労寿命予測装置1の各部について説明する。図1に示されるように、疲労寿命予測装置1は、疲労試験データ取得部11(疲労試験結果取得部)、予測条件取得部12、材料定数算出部13、疲労寿命予測部14、結果出力部15(出力部)、および、データ記憶部16を含んで構成される。 (Functional part of fatigue life prediction device)
Each part of the fatiguelife prediction device 1 will be described with reference to FIG. As shown in FIG. 1, the fatigue life prediction device 1 includes a fatigue test data acquisition unit 11 (fatigue test result acquisition unit), a prediction condition acquisition unit 12, a material constant calculation unit 13, a fatigue life prediction unit 14, and a result output unit. 15 (output unit) and a data storage unit 16 are included.
図1を参照しながら、疲労寿命予測装置1の各部について説明する。図1に示されるように、疲労寿命予測装置1は、疲労試験データ取得部11(疲労試験結果取得部)、予測条件取得部12、材料定数算出部13、疲労寿命予測部14、結果出力部15(出力部)、および、データ記憶部16を含んで構成される。 (Functional part of fatigue life prediction device)
Each part of the fatigue
疲労試験データ取得部11は、疲労寿命予測の対象となる対象物の疲労試験結果に係るデータを取得する機能を有する。疲労試験データ取得部11が取得する疲労試験結果に係るデータとしては、一般的な疲労試験結果のデータであり、具体的には、「ある大きさの欠陥を有する試験片について、一定振幅の応力負荷を与えることによる破断までの繰り返し回数」に係る試験を行った際の試験条件およびその結果である。詳細は後述するが、上記の試験結果を複数取得し、疲労寿命予測に使用する。
The fatigue test data acquisition unit 11 has a function of acquiring data related to the fatigue test result of the object whose fatigue life is predicted. The data related to the fatigue test results acquired by the fatigue test data acquisition unit 11 is the data of general fatigue test results, and specifically, "a stress of a constant amplitude for a test piece having a defect of a certain size". These are the test conditions and their results when the test related to "the number of repetitions until breakage by applying a load" was performed. Details will be described later, but multiple of the above test results will be obtained and used for fatigue life prediction.
予測条件取得部12は、疲労寿命予測装置1における疲労寿命予測の条件を指定した情報を取得する機能を有する。予測条件取得部12が取得する条件を指定した情報としては、例えば、上記の3種類の材料定数の算出に必要な情報として、対象物のビッカース硬さ(HV)、破断とみなす最終亀裂寸法、材料定数の候補の数値範囲および刻み等が挙げられる。また、予測条件取得部12が取得する条件を指定した情報としては、例えば、材料定数を算出した後に疲労寿命予測を行う際に必要な情報として、対象物における欠陥寸法の初期値、疲労寿命予測を行う際の負荷の繰り返し数の増分および上限値等が挙げられる。なお、上述の情報は、材料定数の算出および疲労寿命の予測を後述の手法で行った場合に必要な情報であるが、実際の計算方法によっては、上記の情報の一部のみを用いる場合もあるし、上記には含まれない情報を用いる場合もある。したがって、疲労寿命予測を行うための具体的な手法に応じて、予測条件取得部12が取得する情報の種類は変更され得る。
The prediction condition acquisition unit 12 has a function of acquiring information specifying conditions for fatigue life prediction in the fatigue life prediction device 1. The information that specifies the conditions to be acquired by the prediction condition acquisition unit 12 includes, for example, the Vickers hardness (HV) of the object, the final crack size regarded as fracture, and the information necessary for calculating the above three types of material constants. Numerical ranges and increments of candidate material constants can be mentioned. Further, as the information specifying the conditions to be acquired by the prediction condition acquisition unit 12, for example, as the information necessary for predicting the fatigue life after calculating the material constant, the initial value of the defect dimension in the object and the fatigue life prediction The increment of the number of repetitions of the load and the upper limit value when performing the above are mentioned. The above information is necessary when the material constant is calculated and the fatigue life is predicted by the method described later, but depending on the actual calculation method, only a part of the above information may be used. However, information not included in the above may be used. Therefore, the type of information acquired by the prediction condition acquisition unit 12 can be changed according to a specific method for predicting fatigue life.
材料定数算出部13は、疲労試験データ取得部11および予測条件取得部12において取得された情報に基づいて、3種類の材料定数を算出する機能を有する。材料定数の算出方法については後述する。
The material constant calculation unit 13 has a function of calculating three types of material constants based on the information acquired by the fatigue test data acquisition unit 11 and the prediction condition acquisition unit 12. The method of calculating the material constant will be described later.
疲労寿命予測部14は、材料定数算出部13において算出された材料定数を用いて、対象物に係る疲労寿命を予測する機能を有する。疲労寿命の予測方法については後述する。
The fatigue life prediction unit 14 has a function of predicting the fatigue life of an object by using the material constant calculated by the material constant calculation unit 13. The method of predicting fatigue life will be described later.
結果出力部15は、疲労寿命予測部14の処理によって得られた疲労寿命予測の結果を出力する機能を有する。出力方法は特に限定されないが、ファイル出力、画面出力、他プログラムへの値の返却等の公知の手法を用いることができる。結果を出力する際に、例えば、材料定数算出部13によって算出した材料定数を併せて出力することとしてもよい。
The result output unit 15 has a function of outputting the result of the fatigue life prediction obtained by the processing of the fatigue life prediction unit 14. The output method is not particularly limited, but known methods such as file output, screen output, and return of values to other programs can be used. When outputting the result, for example, the material constant calculated by the material constant calculation unit 13 may be output together.
データ記憶部16は、疲労試験データ取得部11および予測条件取得部12が取得した情報と、上記の各部が行う処理に必要な情報と、を記憶する機能を有する。また、材料定数算出部13および疲労寿命予測部14における処理で得られた結果を記憶する機能も有する。
The data storage unit 16 has a function of storing the information acquired by the fatigue test data acquisition unit 11 and the prediction condition acquisition unit 12 and the information required for the processing performed by each of the above units. It also has a function of storing the results obtained by the processing in the material constant calculation unit 13 and the fatigue life prediction unit 14.
[疲労寿命予測方法]
次に、図2~図5を参照しながら、疲労寿命予測装置1による疲労寿命予測方法について説明する。 [Fatigue life prediction method]
Next, a fatigue life prediction method by the fatiguelife prediction device 1 will be described with reference to FIGS. 2 to 5.
次に、図2~図5を参照しながら、疲労寿命予測装置1による疲労寿命予測方法について説明する。 [Fatigue life prediction method]
Next, a fatigue life prediction method by the fatigue
まず、疲労寿命予測装置1では、疲労試験データ取得部11によって、疲労試験データが取得される(ステップS01)。この処理は、例えば、疲労寿命予測装置1の操作者(ユーザ)が疲労寿命予測装置1を操作することによって行われてもよい。また、予め指定された疲労試験装置において取得された試験結果が、疲労寿命予測装置1に対して逐次送信される構成であってもよく、疲労寿命予測装置1において疲労試験データを逐次取得する構成としてもよい。
First, in the fatigue life prediction device 1, fatigue test data is acquired by the fatigue test data acquisition unit 11 (step S01). This process may be performed, for example, by the operator (user) of the fatigue life prediction device 1 operating the fatigue life prediction device 1. Further, the test results acquired by the fatigue test device designated in advance may be sequentially transmitted to the fatigue life prediction device 1, and the fatigue test data may be sequentially acquired by the fatigue life prediction device 1. May be.
次に、疲労試験データの予測条件取得部12によって、疲労寿命予測装置1における疲労寿命予測に係る一連の処理に係る条件を指定した情報が取得される(ステップS02)。この処理は、例えば、疲労寿命予測装置1の操作者(ユーザ)が疲労寿命予測装置1を操作することによって行われてもよい。なお、ステップS01とステップS02との順序は特に限定されず、例えば、ステップS02が先に行われてもよいし、ステップS01とステップS02とが同時に行われてもよい。また、疲労寿命予測に係る条件を指定する情報は、疲労寿命予測装置1の予測条件取得部12において予め取得されて保持される状態としてもよい。
Next, the fatigue test data prediction condition acquisition unit 12 acquires information that specifies conditions related to a series of processes related to fatigue life prediction in the fatigue life prediction device 1 (step S02). This process may be performed, for example, by the operator (user) of the fatigue life prediction device 1 operating the fatigue life prediction device 1. The order of step S01 and step S02 is not particularly limited, and for example, step S02 may be performed first, or step S01 and step S02 may be performed at the same time. Further, the information for designating the conditions related to the fatigue life prediction may be in a state of being acquired and held in advance by the prediction condition acquisition unit 12 of the fatigue life prediction device 1.
次に、疲労寿命予測装置1の材料定数算出部13によって、まず、上記の情報に基づいて3つの材料定数(C*,m*,n*)の算出が行われる(ステップS03)。材料定数の算出方法については、図3および図4に記載されているが、詳細は後述する。
Next, the material constant calculation unit 13 of the fatigue life prediction device 1 first calculates three material constants (C * , m * , n * ) based on the above information (step S03). The method of calculating the material constant is described in FIGS. 3 and 4, but the details will be described later.
次に、疲労寿命予測装置1の疲労寿命予測部14によって、材料定数算出部13において算出された結果を用いて、疲労寿命の予測が行われる(ステップS04)。疲労寿命の予測方法については、図5に記載されているが、詳細は後述する。
Next, the fatigue life prediction unit 14 of the fatigue life prediction device 1 predicts the fatigue life using the result calculated by the material constant calculation unit 13 (step S04). The method for predicting fatigue life is described in FIG. 5, but details will be described later.
次に、疲労寿命予測装置1の結果出力部15によって、疲労寿命予測部14の処理によって得られた疲労寿命予測の結果が出力される(ステップS05)。出力時には、予測結果を、出力に適した状態に変換するための変換処理等を行ってもよい。
Next, the result output unit 15 of the fatigue life prediction device 1 outputs the result of the fatigue life prediction obtained by the processing of the fatigue life prediction unit 14 (step S05). At the time of output, conversion processing or the like for converting the prediction result into a state suitable for output may be performed.
(疲労寿命予測の基本的な考え方)
詳細な手順を説明する前に、本実施形態に記載の手法の基本的な考え方について示す。 (Basic concept of fatigue life prediction)
Before explaining the detailed procedure, the basic idea of the method described in this embodiment will be described.
詳細な手順を説明する前に、本実施形態に記載の手法の基本的な考え方について示す。 (Basic concept of fatigue life prediction)
Before explaining the detailed procedure, the basic idea of the method described in this embodiment will be described.
まず、材料にある寸法の欠陥が存在すると,その欠陥に対応した疲労限度σw(応力振幅)が決まるという考え方を用いる。このときの疲労限度は、例えば金属材料で応力比R=-1の場合には、以下の数式(1)を用いて予測することができる。ここで、応力比Rは繰返し応力の最小値と最大値の比で定義される。この数式(1)は、村上敬宜「金属疲労:微小欠陥と介在物の影響」養賢堂,1993年発行に記載されている。なお、σwを算出する方法は数式(1)に限定されない。例えば、R=-1でない場合や非金属材料に本手法を適用する場合などには、他の方法でσWを予測することが考えられる。
First, we use the idea that if there is a dimensional defect in the material, the fatigue limit σ w (stress amplitude) corresponding to the defect is determined. The fatigue limit at this time can be predicted by using the following mathematical formula (1), for example, in the case of a metal material and a stress ratio R = -1. Here, the stress ratio R is defined by the ratio of the minimum value and the maximum value of the cyclic stress. This formula (1) is described in Takanori Murakami, "Metal Fatigue: Effects of MicroDefects and Occlusions," Yokendo, 1993. The method for calculating σ w is not limited to the mathematical formula (1). For example, when R = -1, or when this method is applied to a non-metal material, it is conceivable to predict σ W by another method.
また、上記の数式(1)では、材料中に欠陥が存在し、その寸法によって疲労限度が決まることを示している。一方、疲労限度以上の応力(応力振幅)の負荷を対象物に対して与えた場合、対象物では、先に存在していた欠陥から亀裂が発生する。そのため、亀裂を含めた欠陥の寸法は、応力負荷の繰り返し数の増加によって大きくなる。数式(1)によれば欠陥の大きさ(欠陥寸法)に応じて疲労限度σwが徐々に低下することが分かる。つまり、同一の応力負荷であっても、内部の欠陥が大きくなると、疲労に寄与する力学量σ/σw-1の値は徐々に大きくなることになる。
Further, the above mathematical formula (1) shows that a defect exists in the material and the fatigue limit is determined by the dimension thereof. On the other hand, when a load with a stress (stress amplitude) equal to or higher than the fatigue limit is applied to the object, cracks are generated from the previously existing defects in the object. Therefore, the size of the defect including the crack increases as the number of repeated stress loads increases. According to the mathematical formula (1), it can be seen that the fatigue limit σ w gradually decreases according to the size of the defect (defect size). That is, even if the stress load is the same, the value of the mechanical quantity σ / σ w -1, which contributes to fatigue, gradually increases as the internal defect increases.
上記のように、力学量σ/σw-1が欠陥(亀裂)を拡大させる駆動力(亀裂進展駆動力)になるといえる。このとき、上記の力学量を用いた、亀裂の進展状態を数式(2)として記述することができる。
As described above, it can be said that the mechanical quantity σ / σ w -1 becomes the driving force (crack growth driving force) for expanding the defect (crack). At this time, the crack growth state using the above mechanical quantity can be described as the mathematical formula (2).
数式(2)では、aは、欠陥の大きさ√areaに対応し、da/dNは、負荷1サイクルあたりの亀裂aの進展量であり、C*,m*,n*は材料定数である。なお、n*は通常1であると仮定をしてもよい。上記の数式(2)を数値積分し、亀裂寸法aの値が十分に大きな値(一般に1mm程度以上)になったところを実質的な疲労寿命として予測する。
In the formula (2), a corresponds to the size of the defect √area, da / dN is the amount of growth of the crack a per one cycle of the load, and C * , m * , and n * are material constants. .. It may be assumed that n * is usually 1. The above mathematical formula (2) is numerically integrated, and the place where the value of the crack dimension a becomes a sufficiently large value (generally about 1 mm or more) is predicted as a substantial fatigue life.
上記の方法を用いた場合、対象物に対して負荷する応力の値が繰り返しの途中で変化した場合でも、亀裂の成長拡大を追跡することができる。したがって、荷重が変動する条件においても対象物の疲労寿命予測が可能になる。
When the above method is used, even if the value of the stress applied to the object changes during the repetition, the growth and expansion of the crack can be tracked. Therefore, it is possible to predict the fatigue life of an object even under conditions where the load fluctuates.
(疲労寿命の予測方法)
図3を参照しながら、ステップS04で行われる疲労寿命の予測方法について説明する。ここでは、上述の材料定数C*,m*,n*が後述の方法を用いて得られていることを前提として説明する。 (Fatigue life prediction method)
The method of predicting the fatigue life performed in step S04 will be described with reference to FIG. Here, it is assumed that the above-mentioned material constants C * , m * , and n * are obtained by using the method described later.
図3を参照しながら、ステップS04で行われる疲労寿命の予測方法について説明する。ここでは、上述の材料定数C*,m*,n*が後述の方法を用いて得られていることを前提として説明する。 (Fatigue life prediction method)
The method of predicting the fatigue life performed in step S04 will be described with reference to FIG. Here, it is assumed that the above-mentioned material constants C * , m * , and n * are obtained by using the method described later.
まず、疲労寿命の予測に使用するパラメータの入力を行う(ステップS11)。図3にも示す通り、疲労寿命の予測には以下の表1に示すパラメータが準備される。
First, input the parameters used for predicting the fatigue life (step S11). As shown in FIG. 3, the parameters shown in Table 1 below are prepared for predicting fatigue life.
上記の設定のうち、初期欠陥寸法√area0は、対象物の材料に含まれる初期欠陥の寸法であり、欠陥を主応力に直角な面に投影した投影面積の平方根で定義される。例えば、光学的手法やX線CT等を用いて測定する方法が考えられる。また、村上敬宜「金属疲労:微小欠陥と介在物の影響」養賢堂,1993年発行に記載された手法を用いて設定してもよい。
Of the above settings, the initial defect dimension √area 0 is the dimension of the initial defect contained in the material of the object and is defined by the square root of the projected area where the defect is projected onto the plane perpendicular to the principal stress. For example, a method of measuring using an optical method, an X-ray CT, or the like can be considered. It may also be set using the method described in Y. Murakami, "Metal Fatigue: Effects of MicroDefects and Enclosures," Yokendo, 1993.
また、限界亀裂寸法√areacritは、対象物の材料特性によっても変化し得るが、亀裂の進展から破断へ至る過程を考慮し、例えば、1mmと設定してもよい。1mmから最終破断までに要する繰り返し数は全体の繰り返し数に比較すれば相対的に少ないので、このような設定とすることも可能である。また、繰り返し数Nの上限Nstopは対象物の使用期限や応力の繰返し周期を考慮して大きく(例えば、107)設定してもよい。また、応力がNによる関数σa(N)である場合、変動の間隔等に応じて増分ΔNを設定することで疲労寿命の予測精度を高くすることと、計算時間を短縮することと、を両立することができる。
Further, the critical crack size √area crit may change depending on the material properties of the object, but may be set to 1 mm, for example, in consideration of the process from crack growth to fracture. Since the number of repetitions required from 1 mm to the final fracture is relatively small compared to the total number of repetitions, such a setting is also possible. Further, the upper limit N stop of the number of repetitions N may be set large (for example, 107 ) in consideration of the expiration date of the object and the repetition period of stress. Further, when the stress is a function σ a (N) by N, the accuracy of predicting the fatigue life is improved by setting the increment ΔN according to the interval of fluctuation, and the calculation time is shortened. It can be compatible.
次に、初期値の設定を行う(ステップS12)。初期値として、N=0とし、√areaとして初期欠陥寸法√area0を選択する。
Next, the initial value is set (step S12). As the initial value, N = 0 is set, and the initial defect dimension √area 0 is selected as √area.
次に、サイクルNにおけるσおよび√areaにおける疲労限度σwを算出する(ステップS13~ステップS16)。具体的には、まず、サイクルNを設定するために、N=N+ΔNとした(S13)後、Nが上限Nstop未満であることを確認し(S14)、計算を継続する場合(S14-YES)には、サイクルNに対応する応力振幅σ(Nの関数である場合には、σa(N)を設定し(S15)た上で、数式(1)に基づく疲労限度σwの算出を行う(S16)。このとき、欠陥や欠陥から進展した亀裂の位置に応じてF=1.43(表面欠陥の場合)またはF=1.56(内部欠陥の場合)を選択できるが、一般的には安全側となるF=1.43を用いる。
Next, σ in cycle N and fatigue limit σ w in √area are calculated (steps S13 to S16). Specifically, first, in order to set the cycle N, N = N + ΔN is set (S13), and then it is confirmed that N is less than the upper limit N stop (S14), and the calculation is continued (S14-YES). In), the stress amplitude σ corresponding to the cycle N (in the case of a function of N, σa (N) is set (S15), and then the fatigue limit σ w is calculated based on the equation (1). (S16). At this time, F = 1.43 (in the case of surface defects) or F = 1.56 (in the case of internal defects) can be selected depending on the position of the defect or the crack extending from the defect, but generally. Uses F = 1.43, which is the safe side.
なお、Nが上限Nstop以上となった場合(S14-NO)には、処理を終了し、非破断であったという結果を出力する(ステップS17)。
When N becomes equal to or greater than the upper limit N stop (S14-NO), the process is terminated and the result of non-breaking is output (step S17).
疲労限度σwを算出した後、負荷として与える応力σが疲労限度σwよりも大きいか否かを確認する(ステップS18)。負荷として与える応力σが疲労限度σw以下である場合(S18-NO)、その応力の繰返しによって亀裂は進展しないとして無視し、サイクルNを新たに設定して上記の手順(S13~S18)を繰り返すことで次に負荷される応力について同様な検討を行う。一方、負荷として与える応力σが疲労限度σwよりも大きい場合(S18-YES)、その応力の繰返しによって亀裂は進展するとして、亀裂の進展量を算出する(ステップS19)。具体的には、上記の数式(2)に基づいて、繰り返し1回あたりの亀裂進展量について数式(3)を用いて算出し、新しい亀裂寸法について数式(4)を用いて算出する。
After calculating the fatigue limit σ w , it is confirmed whether or not the stress σ applied as a load is larger than the fatigue limit σ w (step S18). When the stress σ applied as a load is equal to or less than the fatigue limit σ w (S18-NO), the crack does not grow due to the repetition of the stress, and the cycle N is newly set and the above procedure (S13 to S18) is performed. The same study is performed on the stress applied next by repeating. On the other hand, when the stress σ applied as a load is larger than the fatigue limit σ w (S18-YES), it is assumed that the crack grows due to the repetition of the stress, and the amount of crack growth is calculated (step S19). Specifically, based on the above formula (2), the crack growth amount per repetition is calculated using the formula (3), and the new crack size is calculated using the formula (4).
新しい亀裂寸法√areaを算出した後、新しい亀裂寸法√areaが限界亀裂寸法√areacritよりも大きいか否かを確認する(ステップS20)。新しい亀裂寸法√areaが限界亀裂寸法√areacrit以下である場合(S20-NO)、対象物はまだ破断しないと判定され、サイクルNを新たに設定して上記の手順(S13~S20)を繰り返す。一方、新しい亀裂寸法√areaが限界亀裂寸法√areacritより大きい場合(S20-YES)、対象物が破断したと判定し、破断繰り返し数Nfを現在のサイクル数Nとする(ステップS21)。そして、破断繰り返し数Nfを疲労寿命の予測結果として出力する(ステップS22)。これにより疲労寿命の予測に係る一連の処理が終了する。
After calculating the new crack size √area, it is confirmed whether or not the new crack size √area is larger than the limit crack size √area crit (step S20). When the new crack size √area is less than or equal to the limit crack size √area crit (S20-NO), it is determined that the object has not yet broken, a new cycle N is set, and the above procedure (S13 to S20) is repeated. .. On the other hand, when the new crack size √area is larger than the limit crack size √area crit (S20-YES), it is determined that the object has broken, and the number of repeated breaks N f is set to the current number of cycles N (step S21). Then, the fracture repetition number N f is output as a prediction result of the fatigue life (step S22). This completes a series of processes related to the prediction of fatigue life.
(材料定数の算出方法)
図4および図5を参照しながら、ステップS03で行われる材料定数の算出方法について説明する。図4は、図3に示すフローチャートに含まれる1ステップに係るフローチャートである。なお、上述の通り算出の対象となる3つの材料定数は、C*,m*,n*である。 (Calculation method of material constant)
The method of calculating the material constant performed in step S03 will be described with reference to FIGS. 4 and 5. FIG. 4 is a flowchart relating to one step included in the flowchart shown in FIG. As described above, the three material constants to be calculated are C * , m * , and n * .
図4および図5を参照しながら、ステップS03で行われる材料定数の算出方法について説明する。図4は、図3に示すフローチャートに含まれる1ステップに係るフローチャートである。なお、上述の通り算出の対象となる3つの材料定数は、C*,m*,n*である。 (Calculation method of material constant)
The method of calculating the material constant performed in step S03 will be described with reference to FIGS. 4 and 5. FIG. 4 is a flowchart relating to one step included in the flowchart shown in FIG. As described above, the three material constants to be calculated are C * , m * , and n * .
材料定数を算出する際には、上述の疲労寿命の予測方法で用いた数式を利用する。具体的には、任意のC*,m*およびn*を用いて、疲労試験の結果に含まれる測定条件に基づいて破断繰り返し数Nfの予測値Nfpredを算出する。この予測値Nfpredと、疲労試験によって得られた破断繰り返し数Nfの実測値Nfexpとの差分を算出し、この差分が最小となるようなC*,m*,n*の組み合わせを求めることで、C*,m*およびn*を特定することができる。予測値Nfpredと実測値Nfexpとの差分が最小となるような最適な材料定数C*,m*,n*を特定する方法は特に限定されないが、以下の実施形態では、数式(5)に示す目的関数Oを設定し、目的関数Oを最小化するC*,m*およびn*を特定する手法について説明する。数式(5)において、Mは実験データの組の数であり、Eiはi番目の実験データの組におけるNfpredとNfpredの対数の差Eである。Eiは、数式(6)により定義される。
When calculating the material constant, the mathematical formula used in the above-mentioned fatigue life prediction method is used. Specifically, using arbitrary C * , m * and n * , the predicted value N fpred of the number of repeated fractures N f is calculated based on the measurement conditions included in the results of the fatigue test. The difference between this predicted value N fpred and the measured value N fexp of the number of fracture repetitions N f obtained by the fatigue test is calculated, and the combination of C * , m * , and n * that minimizes this difference is obtained. By doing so, C * , m * and n * can be specified. The method for specifying the optimum material constants C * , m * , n * such that the difference between the predicted value N fpred and the measured value N fexp is minimized is not particularly limited, but in the following embodiment, the formula (5) A method for specifying the C * , m * , and n * that minimizes the objective function O by setting the objective function O shown in the above will be described. In formula (5), M is the number of sets of experimental data, and E i is the difference E in the logarithms of N fpred and N fpred in the i-th set of experimental data. E i is defined by the mathematical formula (6).
目的関数Oを最小化するC*,m*およびn*を特定する手法として、例えば、反復計算を用いることができる。具体的には、予め設定された範囲内のC*,m*およびn*に対してOを総当たり的に計算する方法が挙げられる。そのほか、一般に用いられる各種最適化アルゴリズムを用いることが可能である。
For example, iterative calculation can be used as a method for specifying C * , m * and n * that minimize the objective function O. Specifically, there is a method of brute force calculation of O for C * , m * and n * within a preset range. In addition, various commonly used optimization algorithms can be used.
図4および図5では、上記の手法を具体的に実行する際の手順の一例を説明する。
4 and 5 show an example of a procedure for concretely executing the above method.
まず、材料定数の算出に使用するパラメータの入力を行う(ステップS31)。図4にも示す通り、材料定数の算出には以下の表2に示すパラメータが準備される。
First, the parameters used for calculating the material constants are input (step S31). As shown in FIG. 4, the parameters shown in Table 2 below are prepared for calculating the material constants.
なお、疲労試験結果のデータ数は、1~Mとされているが、3つの材料定数を求める場合には、最低3つの互いに異なる(条件が互いに異なる)試験データが必要となる(i≧3)。ただし、実際には、材料定数n*は1であると仮定することもできるので、その場合には、試験データは2つであってもよい。
The number of data of fatigue test results is 1 to M, but when obtaining three material constants, at least three different test data (conditions are different from each other) are required (i ≧ 3). ). However, in reality, it can be assumed that the material constant n * is 1, and in that case, the test data may be two.
次に、初期値の設定を行う(ステップS32)。初期値として、C*,m*およびn*については、それぞれ最小値C*
min,m*
minおよびn*
minが設定される。また、目的関数Oの初期値の一例として、Oupdate=1000が設定される。上述の通り、目的関数を最小化できる材料定数を特定する手順であるため、初期値としては十分大きい値が設定される。なお、Oupdateは目的関数の最新の最小値を指すものであり、以降に説明する手順で繰り返し計算を行う際の基準として用いられる。
Next, the initial value is set (step S32). As initial values, the minimum values C * min , m * min , and n * min are set for C * , m * , and n * , respectively. Further, as an example of the initial value of the objective function O, Default = 1000 is set. As described above, since the procedure is to specify the material constants that can minimize the objective function, a sufficiently large value is set as the initial value. Note that Update refers to the latest minimum value of the objective function, and is used as a reference when performing repeated calculations in the procedure described below.
次に、まず、i=1として(ステップS33)、破断繰り返し数Nfの予測値Nfpredを算出する(ステップS34)。
Next, first, with i = 1 (step S33), the predicted value N fpred of the number of repeated fractures N f is calculated (step S34).
ステップS34の詳細、すなわち、破断繰り返し数Nfの予測値Nfpredの算出方法については、図5に示されているが、概略図3に示す手順と同様であるため、簡単に説明する。
The details of step S34, that is, the method of calculating the predicted value N fpred of the number of repeated fractures N f , is shown in FIG. 5, but is the same as the procedure shown in schematic FIG. 3, and will be briefly described.
まず、疲労寿命の予測に使用するパラメータの入力を行う(ステップS51)。ここでは、ステップS31で準備したパラメータの一部が入力される。
First, input the parameters used for predicting the fatigue life (step S51). Here, a part of the parameters prepared in step S31 is input.
次に、疲労試験に用いられた条件(上記で入力されたパラメータ)を用いて、数式(1)に基づく疲労限度σwの算出を行う(ステップS52)。これにより、疲労試験データに基づく予測疲労限度が算出される。疲労限度σwを算出した後、疲労試験で用いられた負荷応力σexp(i)が疲労限度σwよりも大きいか否かを確認する(ステップS53)。負荷応力σexp(i)が疲労限度σw以下である場合(S53-NO)、この負荷応力σexp(i)により亀裂が進展しない予測となるため、このσexp(i)に対応する実験データを疲労寿命予測の計算に使用できないことを示す通知を出力する(ステップS54)。この場合、予測値Nfpredの算出ができないため、エラーメッセージまたは警告を出力する構成としてもよい。
Next, the fatigue limit σ w is calculated based on the mathematical formula (1) using the conditions used in the fatigue test (parameters input above) (step S52). As a result, the predicted fatigue limit based on the fatigue test data is calculated. After calculating the fatigue limit σ w , it is confirmed whether or not the load stress σ exp (i) used in the fatigue test is larger than the fatigue limit σ w (step S53). When the load stress σ exp (i) is equal to or less than the fatigue limit σ w (S53-NO), it is predicted that cracks will not grow due to this load stress σ exp (i). A notification is output indicating that the data cannot be used in the calculation of the fatigue life prediction (step S54). In this case, since the predicted value N fpred cannot be calculated, an error message or a warning may be output.
一方、疲労試験で用いられた負荷σexp(i)が疲労限度σwよりも大きい場合(S53-YES)、亀裂の進展量を算出する(ステップS55~57)。具体的には、初期値として、N=0とし、√areaとして初期欠陥寸法√area0を選択した(S55)後、N=N+ΔNとし(S56)、予測の疲労限度σw、繰り返し1回あたりの亀裂進展量Δ√area、および、新しい亀裂寸法√areaを算出する(S57)。これらの算出方法は、図3に示すステップS16,S18と同じである。ただし、亀裂進展量Δ√areaの算出には、下記の数式(7)が用いられる。数式(7)は数式(3)に対応するものであるが、応力σとして試験で用いた負荷σexp(i)を用いる点が相違する。
On the other hand, when the load σ exp (i) used in the fatigue test is larger than the fatigue limit σ w (S53-YES), the amount of crack growth is calculated (steps S55 to 57). Specifically, N = 0 is set as the initial value, the initial defect dimension √area 0 is selected as √area (S55), then N = N + ΔN (S56), the predicted fatigue limit σ w , and one repetition. The crack growth amount Δ√area and the new crack size √area are calculated (S57). These calculation methods are the same as steps S16 and S18 shown in FIG. However, the following mathematical formula (7) is used to calculate the crack growth amount Δ√area. The formula (7) corresponds to the formula (3), except that the load σ exp (i) used in the test is used as the stress σ.
新しい亀裂寸法√areaを算出した後、新しい亀裂寸法√areaが限界亀裂寸法√areacritよりも大きいか否かを確認する(ステップS58)。新しい亀裂寸法√areaが限界亀裂寸法√areacrit以下である場合(S58-NO)、対象物はまだ破断しないと判定され、サイクルNを新たに設定して上記の手順(S56~S57)を繰り返す。一方、新しい亀裂寸法√areaが限界亀裂寸法√areacritより大きい場合(S58-YES)、対象物の破断が発生したと判定し、破断繰り返し数Nfの予測値Nfpredを現在のサイクル数Nとする(ステップS59)。そして、予測値Nfpredを疲労寿命の予測結果として出力する(ステップS60)。この一連の手順で、疲労試験データに基づく予測値Nfpredが得られる。
After calculating the new crack size √area, it is confirmed whether or not the new crack size √area is larger than the limit crack size √area crit (step S58). When the new crack dimension √area is less than or equal to the limit crack dimension √area crit (S58-NO), it is determined that the object has not yet broken, a new cycle N is set, and the above procedure (S56 to S57) is repeated. .. On the other hand, when the new crack size √area is larger than the limit crack size √area crit (S58-YES), it is determined that the object has broken, and the predicted value N fpred of the number of repeated breaks N f is set to the current number of cycles N. (Step S59). Then, the predicted value N fpred is output as the predicted result of the fatigue life (step S60). In this series of procedures, the predicted value N fpred based on the fatigue test data can be obtained.
図4に戻り、予測値Nfpredが得られると、上記の数式(6)に基づいて、試験結果と予測値との差E(i)を算出する(ステップ35)。この一連の処理をi=1~Mまでiを+1ずつ大きくしながら、繰り返し行う(ステップS36,37)。全ての疲労試験結果(i=1~M)について、試験結果と予測値との差E(i)の算出が終わると(S36-YES)、数式(5)に示す目的関数Oに対して代入し、計算結果を算出する(S38)。そして、目的関数Oの計算結果をOupdateと比較する(ステップS39)。現在の目的関数Oの計算結果がそれ以前の目的関数の最小値Oupdateよりも小さい場合(S39-YES)には、Oupdateを現在の目的関数Oの計算結果に変更(更新)するとともに、目的関数Oの計算に使用した現在のC*,m*およびn*を、C*
update,m*
updateおよびn*
updateとして変更(更新)する(ステップS40)。なお、目的関数Oの計算結果がそれ以前の目的関数の最小値Oupdate以上である場合(S39-NO)には、Oupdate等の更新(S40)は行わない。
Returning to FIG. 4, when the predicted value N fpred is obtained, the difference E (i) between the test result and the predicted value is calculated based on the above mathematical formula (6) (step 35). This series of processes is repeated while increasing i by +1 from i = 1 to M (steps S36 and 37). For all fatigue test results (i = 1 to M), when the calculation of the difference E (i) between the test result and the predicted value is completed (S36-YES), it is substituted for the objective function O shown in the formula (5). Then, the calculation result is calculated (S38). Then, the calculation result of the objective function O is compared with Update (step S39). When the calculation result of the current objective function O is smaller than the minimum value Update of the previous objective function (S39-YES), the Update is changed (updated) to the calculation result of the current objective function O, and the result is changed (updated). The current C * , m * and n * used in the calculation of the objective function O are changed (updated) as C * updated , m * updated and n * updated (step S40 ). If the calculation result of the objective function O is equal to or greater than the minimum value of the objective function before that ( S39-NO), the update or the like is not updated (S40).
以降は、C*,m*およびn*を変更しながら、上記の処理(S33~S40)を繰り返す。具体的には、まず、m*およびn*を最小値m*
min,n*
minに固定した状態でC*を増分ΔC*ずつ変更しながら、C*
maxとなるまで計算を繰り返す(ステップS41,42)。その結果、m*およびn*を固定した状態での最小値Oupdateの算出時に使用したC*
updateを特定することができる。その後、m*(ステップS43~S45)およびn*(ステップS46~S48)についてもそれぞれ同様の計算を行うことで、他の材料定数を最小値に固定した状態での最小値Oupdateの算出時に使用したm*
updateおよびn*
updateを算出することができる。
After that, the above processing (S33 to S40) is repeated while changing C * , m * and n * . Specifically, first, with m * and n * fixed at the minimum values m * min and n * min , the calculation is repeated until C * max is reached while changing C * in increments of ΔC * (step S41). , 42). As a result, it is possible to specify the C * update used when calculating the minimum value Update with m * and n * fixed. After that, by performing the same calculation for m * (steps S43 to S45) and n * (steps S46 to S48), when the minimum value Update is calculated with the other material constants fixed to the minimum value. The m * update and n * update used can be calculated.
この一連の反復計算を行うことで、m*
min≦m*≦m*
max,C*
min≦C*≦C*
max,n*
min≦n*≦n*
maxの範囲内で最小の目的関数Oを与える最適なC*
update,m*
updateおよびn*
updateが得られるので、これらを、C*,m*およびn*の計算結果として出力する(ステップS49)。
By performing this series of iterative calculations, the smallest objective function within the range of m * min ≤ m * ≤ m * max , C * min ≤ C * ≤ C * max , n * min ≤ n * ≤ n * max . Since the optimum C * update , m * update and n * update that give O are obtained, these are output as the calculation results of C * , m * and n * (step S49).
以上の手順により、疲労試験結果を利用して、C*,m*およびn*を算出することができる。
By the above procedure, C * , m * and n * can be calculated using the fatigue test results.
[ハードウェア構成]
図6を参照して、疲労寿命予測装置1のハードウェア構成について説明する。図6は、疲労寿命予測装置1のハードウェア構成の一例を示す図である。疲労寿命予測装置1は、1または複数のコンピュータ100を含む。コンピュータ100は、CPU(Central Processing Unit)101と、主記憶部102と、補助記憶部103と、通信制御部104と、入力装置105と、出力装置106とを有する。疲労寿命予測装置1は、これらのハードウェアと、プログラム等のソフトウェアとにより構成された1または複数のコンピュータ100によって構成される。 [Hardware configuration]
The hardware configuration of the fatiguelife prediction device 1 will be described with reference to FIG. FIG. 6 is a diagram showing an example of the hardware configuration of the fatigue life prediction device 1. The fatigue life predictor 1 includes one or more computers 100. The computer 100 includes a CPU (Central Processing Unit) 101, a main storage unit 102, an auxiliary storage unit 103, a communication control unit 104, an input device 105, and an output device 106. The fatigue life prediction device 1 is composed of one or a plurality of computers 100 composed of these hardware and software such as a program.
図6を参照して、疲労寿命予測装置1のハードウェア構成について説明する。図6は、疲労寿命予測装置1のハードウェア構成の一例を示す図である。疲労寿命予測装置1は、1または複数のコンピュータ100を含む。コンピュータ100は、CPU(Central Processing Unit)101と、主記憶部102と、補助記憶部103と、通信制御部104と、入力装置105と、出力装置106とを有する。疲労寿命予測装置1は、これらのハードウェアと、プログラム等のソフトウェアとにより構成された1または複数のコンピュータ100によって構成される。 [Hardware configuration]
The hardware configuration of the fatigue
疲労寿命予測装置1が複数のコンピュータ100によって構成される場合には、これらのコンピュータ100はローカルで接続されてもよいし、インターネット又はイントラネットなどの通信ネットワークを介して接続されてもよい。この接続によって、論理的に1つの疲労寿命予測装置1が構築される。
When the fatigue life prediction device 1 is composed of a plurality of computers 100, these computers 100 may be connected locally or may be connected via a communication network such as the Internet or an intranet. By this connection, one fatigue life prediction device 1 is logically constructed.
CPU101は、オペレーティングシステムやアプリケーション・プログラムなどを実行する。主記憶部102は、ROM(Read Only Memory)及びRAM(Random Access Memory)により構成される。補助記憶部103は、ハードディスク及びフラッシュメモリなどにより構成される記憶媒体である。補助記憶部103は、一般的に主記憶部102よりも大量のデータを記憶する。材料定数算出部13および疲労寿命予測部14の少なくとも一部は、補助記憶部103によって実現される。通信制御部104は、ネットワークカード又は無線通信モジュールにより構成される。疲労試験データ取得部11、予測条件取得部12、および結果出力部15の少なくとも一部は、通信制御部104によって実現されてもよい。入力装置105は、キーボード、マウス、タッチパネル、及び、音声入力用マイクなどにより構成される。例えば、予測条件取得部12の少なくとも一部は、入力装置105によって実現されてもよい。出力装置106は、ディスプレイ及びプリンタなどにより構成される。結果出力部15の少なくとも一部は、出力装置106によって実現される。例えば、出力装置106は、疲労寿命予測の結果をディスプレイ等に表示してもよい。
The CPU 101 executes an operating system, an application program, and the like. The main storage unit 102 is composed of a ROM (Read Only Memory) and a RAM (Random Access Memory). The auxiliary storage unit 103 is a storage medium composed of a hard disk, a flash memory, or the like. The auxiliary storage unit 103 generally stores a larger amount of data than the main storage unit 102. At least a part of the material constant calculation unit 13 and the fatigue life prediction unit 14 is realized by the auxiliary storage unit 103. The communication control unit 104 is composed of a network card or a wireless communication module. At least a part of the fatigue test data acquisition unit 11, the prediction condition acquisition unit 12, and the result output unit 15 may be realized by the communication control unit 104. The input device 105 includes a keyboard, a mouse, a touch panel, a microphone for voice input, and the like. For example, at least a part of the prediction condition acquisition unit 12 may be realized by the input device 105. The output device 106 includes a display, a printer, and the like. At least a part of the result output unit 15 is realized by the output device 106. For example, the output device 106 may display the result of fatigue life prediction on a display or the like.
補助記憶部103は、予め、プログラム110(疲労寿命予測プログラム)及び処理に必要なデータを格納している。プログラム110は、疲労寿命予測装置1の各機能要素をコンピュータ100に実行させる。プログラム110によって、例えば、上述したステップS01からステップS04に係る処理がコンピュータ100において実行される。例えば、プログラム110は、CPU101又は主記憶部102によって読み込まれ、CPU101、主記憶部102、補助記憶部103、通信制御部104、入力装置105、及び出力装置106の少なくとも1つを動作させる。例えば、プログラム110は、主記憶部102及び補助記憶部103におけるデータの読み出し及び書き込みを行う。
The auxiliary storage unit 103 stores the program 110 (fatigue life prediction program) and data necessary for processing in advance. The program 110 causes the computer 100 to execute each functional element of the fatigue life prediction device 1. The program 110 executes, for example, the processes related to steps S01 to S04 described above in the computer 100. For example, the program 110 is read by the CPU 101 or the main storage unit 102, and operates at least one of the CPU 101, the main storage unit 102, the auxiliary storage unit 103, the communication control unit 104, the input device 105, and the output device 106. For example, the program 110 reads and writes data in the main storage unit 102 and the auxiliary storage unit 103.
プログラム110は、例えば、CD-ROM、DVD-ROM、半導体メモリなどの有形の記憶媒体に記録された上で提供されてもよい。プログラム110は、データ信号として通信ネットワークを介して提供されてもよい。
The program 110 may be provided after being recorded on a tangible storage medium such as a CD-ROM, a DVD-ROM, or a semiconductor memory. The program 110 may be provided as a data signal via a communication network.
[疲労寿命予測結果の有効性]
上記の疲労寿命予測装置1による疲労寿命の予測結果の有効性を検証した結果を以下に示す。 [Effectiveness of fatigue life prediction results]
The results of verifying the effectiveness of the fatigue life prediction result by the fatiguelife prediction device 1 are shown below.
上記の疲労寿命予測装置1による疲労寿命の予測結果の有効性を検証した結果を以下に示す。 [Effectiveness of fatigue life prediction results]
The results of verifying the effectiveness of the fatigue life prediction result by the fatigue
まず、対象物として炭素鋼S45C(HV=176)の試験片を準備し、疲労試験によって、2点の実験データを得た。実験データは下記の通りである。
実験データ1: σ=270MPa,Nf=30,407
実験データ2: σ=235MPa,Nf=120,264
なお、実験データ1,2は、図7に示す破断繰り返し数Nfと応力振幅σとの対応関係を示す図(S-N曲線図)に示している。なお、対象物の試験片における初期欠陥寸法√area0は92μmであった。 First, a test piece of carbon steel S45C (HV = 176) was prepared as an object, and two experimental data were obtained by a fatigue test. The experimental data is as follows.
Experimental data 1: σ = 270MPa, N f = 30,407
Experimental data 2: σ = 235MPa, N f = 120, 264
Theexperimental data 1 and 2 are shown in a diagram (SN curve diagram) showing the correspondence between the fracture repetition number Nf and the stress amplitude σ shown in FIG. 7. The initial defect dimension √area 0 in the test piece of the object was 92 μm.
実験データ1: σ=270MPa,Nf=30,407
実験データ2: σ=235MPa,Nf=120,264
なお、実験データ1,2は、図7に示す破断繰り返し数Nfと応力振幅σとの対応関係を示す図(S-N曲線図)に示している。なお、対象物の試験片における初期欠陥寸法√area0は92μmであった。 First, a test piece of carbon steel S45C (HV = 176) was prepared as an object, and two experimental data were obtained by a fatigue test. The experimental data is as follows.
Experimental data 1: σ = 270MPa, N f = 30,407
Experimental data 2: σ = 235MPa, N f = 120, 264
The
次に、上記の2つの実験データを用いて、上述の材料定数C*,m*およびn*の算出手法により材料定数C*,m*およびn*を算出した。ただし、過去の実験データおよび次元解析よりn*=1と仮定したので、実際には、C*,m*を下記の通り算出した。
C*=10-3.4
m*=2.8 Next, using the above two experimental data, the material constants C * , m * and n * were calculated by the above-mentioned calculation method of the material constants C * , m * and n * . However, since it was assumed that n * = 1 from past experimental data and dimensional analysis, C * and m * were actually calculated as follows.
C * = 10-3.4
m * = 2.8
C*=10-3.4
m*=2.8 Next, using the above two experimental data, the material constants C * , m * and n * were calculated by the above-mentioned calculation method of the material constants C * , m * and n * . However, since it was assumed that n * = 1 from past experimental data and dimensional analysis, C * and m * were actually calculated as follows.
C * = 10-3.4
m * = 2.8
次に、上記の材料定数を用いて、以下の変動荷重を模擬した実験における対象物(試験片)の疲労寿命を予測した。なお、初期欠陥寸法√area0は92μmとした。
Next, using the above material constants, the fatigue life of the object (test piece) in the experiment simulating the following fluctuating load was predicted. The initial defect dimension √area 0 was set to 92 μm.
(試験条件)
ステップ1:σ=270MPaにてN=23,400まで応力負荷
ステップ2:ステップ1終了後,σ=185MPaにて破断まで応力負荷 (Test conditions)
Step 1: Stress load up to N = 23,400 at σ = 270 MPa Step 2: After completion ofstep 1, stress load until fracture at σ = 185 MPa
ステップ1:σ=270MPaにてN=23,400まで応力負荷
ステップ2:ステップ1終了後,σ=185MPaにて破断まで応力負荷 (Test conditions)
Step 1: Stress load up to N = 23,400 at σ = 270 MPa Step 2: After completion of
上述の疲労寿命予測方法に基づいた計算の結果、ステップ1の応力負荷を終了した時点で、初期欠陥から発生した亀裂の寸法√areaは251μmであると予測された。また、このときの疲労限度は169MPaと予測された。この結果から、ステップ2の負荷応力は、初期状態の疲労限度よりも低く、ステップ1の応力負荷終了時における疲労限度よりも高いと推定された。また、ステップ2における破断までの応力負荷回数の予測値(ステップ1,2の応力負荷の回数の予測値)である疲労寿命の予測値は、Nfpred=564,700であった。
As a result of the calculation based on the above-mentioned fatigue life prediction method, it was predicted that the size √area of the crack generated from the initial defect was 251 μm at the time when the stress loading in step 1 was completed. The fatigue limit at this time was predicted to be 169 MPa. From this result, it was estimated that the load stress in step 2 was lower than the fatigue limit in the initial state and higher than the fatigue limit at the end of the stress load in step 1. Further, the predicted value of fatigue life, which is the predicted value of the number of stress loads until fracture in step 2 (the predicted value of the number of stress loads in steps 1 and 2), was N fpred = 564,700.
一方、実際に試験片を用いて上記の試験条件によって疲労寿命を測定したところ、疲労寿命はNfexp=585,830であった。内訳は、ステップ1が23,400(実験条件)であり、ステップ2が562,430であった。
On the other hand, when the fatigue life was actually measured using the test piece under the above test conditions, the fatigue life was N fexp = 585,830. The breakdown was 23,400 (experimental conditions) in step 1 and 562,430 in step 2.
上記の予測値Nfpredと実測値Nfexpとを比較すると相対誤差が4%であった。この結果から、十分に高い精度で疲労寿命が予測できたといえる。
Comparing the above predicted value N fpred with the measured value N fexp , the relative error was 4%. From this result, it can be said that the fatigue life could be predicted with sufficiently high accuracy.
図7では、上記の試験結果を示している。なお、図7では、初期状態の条件から算出した疲労限度の推定値σW=199MPaをT1として示し、ステップ1からステップ2に切り替えた時点での疲労限度の推定値σW=169MPaをT2として示している。
FIG. 7 shows the above test results. In FIG. 7, the estimated fatigue limit value σ W = 199 MPa calculated from the conditions in the initial state is shown as T1, and the estimated fatigue limit value σ W = 169 MPa at the time of switching from step 1 to step 2 is set as T2. Shows.
[作用]
上記の疲労寿命予測装置1による疲労寿命予測方法によれば、1回の応力負荷に対する亀裂の進展量を算出するための材料定数が特定されることで、1回の応力負荷に対する亀裂の進展量が推定可能となる。これを利用して、対象物に対してある応力を負荷した場合の疲労寿命の予測が可能となる。ここで、対象物に対して疲労限度以上の応力負荷を与えた場合に初期欠陥から亀裂が進展することと、欠陥および欠陥から進展した亀裂の寸法に応じて疲労限度が低下することと、を前提にしているので、応力負荷による欠陥(亀裂)の進展と、それにともなう疲労限度の低下とを考慮していることになる。したがって、繰り返し負荷される応力の中の正味の亀裂進展駆動力を適切に捉えて疲労寿命が予測されるため、より高い精度での予測が実現される。 [Action]
According to the fatigue life prediction method by the fatiguelife prediction device 1 described above, the material constant for calculating the crack growth amount for one stress load is specified, so that the crack growth amount for one stress load is specified. Can be estimated. By utilizing this, it is possible to predict the fatigue life when a certain stress is applied to the object. Here, when a stress load exceeding the fatigue limit is applied to the object, the crack grows from the initial defect, and the fatigue limit decreases according to the size of the defect and the crack grown from the defect. Since it is a premise, the growth of defects (cracks) due to stress loading and the accompanying decrease in fatigue limit are taken into consideration. Therefore, the fatigue life is predicted by appropriately grasping the net crack growth driving force in the stress repeatedly applied, and the prediction with higher accuracy is realized.
上記の疲労寿命予測装置1による疲労寿命予測方法によれば、1回の応力負荷に対する亀裂の進展量を算出するための材料定数が特定されることで、1回の応力負荷に対する亀裂の進展量が推定可能となる。これを利用して、対象物に対してある応力を負荷した場合の疲労寿命の予測が可能となる。ここで、対象物に対して疲労限度以上の応力負荷を与えた場合に初期欠陥から亀裂が進展することと、欠陥および欠陥から進展した亀裂の寸法に応じて疲労限度が低下することと、を前提にしているので、応力負荷による欠陥(亀裂)の進展と、それにともなう疲労限度の低下とを考慮していることになる。したがって、繰り返し負荷される応力の中の正味の亀裂進展駆動力を適切に捉えて疲労寿命が予測されるため、より高い精度での予測が実現される。 [Action]
According to the fatigue life prediction method by the fatigue
上述のように、従来から、S-N曲線に基づく疲労限度および疲労寿命の推定には改良の余地があることは指摘されていた。この点に関して、例えば、有限の繰り返し数で破壊する領域を疲労限度以下に延長して設計曲線とする修正マイナー則(Modified Miner’s rule)のように、S-N曲線に対して新たな解釈を加えることは検討されていた。しかしながら、これらの手法は、実験結果とS-N曲線とを対応付けるための論理立てであり、力学的根拠が十分であるとはいえない点でも依然として改良の余地があった。
As mentioned above, it has been pointed out that there is room for improvement in the estimation of fatigue limit and fatigue life based on the SN curve. In this regard, a new interpretation is added to the SN curve, for example, the Modified Miner's rule, which extends the area destroyed by a finite number of iterations below the fatigue limit to form a design curve. That was being considered. However, these methods are logical for associating the experimental results with the SN curve, and there is still room for improvement in that the mechanical basis is not sufficient.
これに対して、上記の疲労寿命予測方法では、対象物に対して疲労限度以上の応力負荷を与えた場合に初期欠陥から亀裂が進展することと、欠陥および欠陥から進展した亀裂の寸法に応じて疲労限度が低下することと、を前提とし、1回の応力負荷に対する亀裂の進展量を算出し、この結果に基づいて、疲労寿命を予測している。このように、対象物に対して応力を負荷した際の対象物の変化を捉えて疲労寿命予測を行うことで、従来の手法とは異なり高い精度で疲労寿命を予測することが可能となる。特に、上記の疲労寿命予測方法は、対象物が応力負荷を繰り返し受けることによって亀裂の寸法が増大し、その結果、対象物の疲労限度が低下することを認識した上で疲労寿命を予測する点が従来の手法と大きく異なる。従来の手法では、応力負荷を繰り返し受ける間の亀裂の増大等については考慮されていなかった。これに対して、上記の疲労寿命予測方法では、亀裂の寸法の増大による疲労限度の低下を時々刻々と把握し、その結果を疲労寿命の予測に反映させる。そのため、上記の疲労寿命予測方法では、より高い精度で疲労寿命を予測することが可能となるだけでなく、応力の大きさが途中で変化した場合であっても疲労寿命を予測することが可能となっている。
On the other hand, in the above-mentioned fatigue life prediction method, when a stress load exceeding the fatigue limit is applied to the object, cracks grow from the initial defect and the size of the defect and the crack grown from the defect. Assuming that the fatigue limit is lowered, the amount of crack growth for one stress load is calculated, and the fatigue life is predicted based on this result. In this way, by capturing the change in the object when stress is applied to the object and predicting the fatigue life, it is possible to predict the fatigue life with high accuracy unlike the conventional method. In particular, the above-mentioned fatigue life prediction method predicts the fatigue life after recognizing that the size of the crack increases when the object is repeatedly subjected to stress load, and as a result, the fatigue limit of the object decreases. Is very different from the conventional method. In the conventional method, the increase of cracks during repeated stress loading is not taken into consideration. On the other hand, in the above-mentioned fatigue life prediction method, the decrease in the fatigue limit due to the increase in the size of the crack is grasped moment by moment, and the result is reflected in the prediction of the fatigue life. Therefore, the above fatigue life prediction method not only makes it possible to predict the fatigue life with higher accuracy, but also makes it possible to predict the fatigue life even when the magnitude of stress changes in the middle. It has become.
また、上記の手法では、疲労寿命の予測に必要な疲労試験の数を大幅に減らすことができる。上記実施形態で説明した手法によれば、材料定数は3つ(または仮定を加えることで2つ)とすることができるため、疲労試験の数も少なくとも3つ(または2つ)あればよい。従来は複数回の疲労試験を行ってより実態に則したS-N曲線を作成することが考えられたが、精度面を考慮すると疲労試験の回数を増やすことが望まれた。また、疲労寿命をより正確に算出しようとする場合、試験片を用いて実際に応力を負荷した疲労試験を行うことも考えられるが、負荷する応力を変更する度に疲労試験を繰り返す必要がある。一方、上記実施形態で説明した方法では、より少ない疲労試験データから精度良く疲労寿命予測ができるという点で従来の手法に対して有利である。また、疲労寿命予測を予測する条件として、負荷する応力を変更した場合にも、上記の方法では、簡単に再計算が可能であるため、種々の条件に適用が可能であるという点からも従来の手法に対して有利である。
In addition, the above method can significantly reduce the number of fatigue tests required to predict fatigue life. According to the method described in the above embodiment, the number of material constants can be three (or two by adding assumptions), so that the number of fatigue tests may be at least three (or two). Conventionally, it has been considered to perform multiple fatigue tests to create an SN curve that is more in line with the actual situation, but it was desired to increase the number of fatigue tests in consideration of accuracy. In addition, when trying to calculate the fatigue life more accurately, it is conceivable to perform a fatigue test in which stress is actually applied using a test piece, but it is necessary to repeat the fatigue test every time the applied stress is changed. .. On the other hand, the method described in the above embodiment is advantageous over the conventional method in that the fatigue life can be predicted accurately from less fatigue test data. In addition, even if the stress to be applied is changed as a condition for predicting fatigue life, the above method can be easily recalculated, so that it can be applied to various conditions. It is advantageous for the method of.
また、疲労寿命を予測する際には、対象物の欠陥および欠陥から進展した亀裂の寸法に基づく疲労限度を算出することと、算出した疲労限度よりも負荷が大きい場合の1回の応力負荷に対する亀裂の進展量を算出することと、欠陥および欠陥から進展した亀裂の寸法が限界欠陥寸法に達するまでの応力の負荷回数を算出することと、が行われる。具体的には、ある応力を負荷した際に、算出した疲労限度よりも負荷が大きい場合には1回の応力負荷に対する亀裂の進展量が算出される一方、算出した疲労限度よりも負荷応力が小さい場合には1回の応力負荷に対する亀裂の進展量は0とされ、その上で欠陥および欠陥から進展した亀裂の寸法が限界欠陥寸法に達するまでの応力の負荷回数が算出される。したがって、応力負荷の大きさに関わらず、疲労寿命を高い精度で予測することができる。
In addition, when predicting the fatigue life, the fatigue limit is calculated based on the dimensions of the defect of the object and the cracks that have propagated from the defect, and for one stress load when the load is larger than the calculated fatigue limit. Calculation of the amount of crack growth and calculation of the number of stress loads until the size of the crack that has grown from the defect reaches the limit defect size are performed. Specifically, when a certain stress is applied and the load is larger than the calculated fatigue limit, the amount of crack growth for one stress load is calculated, while the load stress is higher than the calculated fatigue limit. When it is small, the amount of crack growth for one stress load is set to 0, and the number of stress loads until the defect and the crack propagated from the defect reach the limit defect dimension is calculated. Therefore, the fatigue life can be predicted with high accuracy regardless of the magnitude of the stress load.
また、材料定数を算出することは、1回の応力負荷に対する亀裂の進展量Δ√areaを算出する上述の数式(3)におけるC*,m*およびn*を算出する。このような構成とすることで、1回の応力負荷に対する亀裂の進展量を適切に算出することが可能な材料定数を特定することができ、この材料定数を用いて、疲労寿命を高い精度で予測することができる。
Further, to calculate the material constant, C * , m * and n * in the above-mentioned mathematical formula (3) for calculating the crack growth amount Δ√area for one stress load are calculated. With such a configuration, it is possible to specify a material constant that can appropriately calculate the amount of crack growth for one stress load, and using this material constant, the fatigue life can be achieved with high accuracy. Can be predicted.
また、疲労寿命を予測することでは、対象物に対して負荷される応力振幅は一定もしくは2段階以上である。上述のように、本実施形態で説明した手法では、負荷の大きさは特に限定されない。したがって、負荷する応力振幅が一定である場合、および2段階以上である場合のいずれの条件でも疲労寿命を高い精度で予測することができる。特に、対象物に対して負荷される応力振幅が2段階以上であっても、高い精度で予測ができる点は、上記の有効性の評価からも明らかである。
Also, in predicting fatigue life, the stress amplitude applied to the object is constant or two or more steps. As described above, in the method described in this embodiment, the magnitude of the load is not particularly limited. Therefore, the fatigue life can be predicted with high accuracy under any condition when the stress amplitude to be applied is constant and when there are two or more stages. In particular, it is clear from the above evaluation of effectiveness that even if the stress amplitude applied to the object is two or more steps, it can be predicted with high accuracy.
[変形例]
以上、本開示は必ずしも上述した実施形態に限定されるものではなく、その要旨を逸脱しない範囲で様々な変更が可能である。 [Modification example]
As described above, the present disclosure is not necessarily limited to the above-described embodiment, and various changes can be made without departing from the gist thereof.
以上、本開示は必ずしも上述した実施形態に限定されるものではなく、その要旨を逸脱しない範囲で様々な変更が可能である。 [Modification example]
As described above, the present disclosure is not necessarily limited to the above-described embodiment, and various changes can be made without departing from the gist thereof.
上記実施形態では、疲労寿命予測装置1が1台のコンピュータシステムから構成される場合について説明したが、複数台のコンピュータシステムによって構成されてもよい。
In the above embodiment, the case where the fatigue life prediction device 1 is configured by one computer system has been described, but it may be configured by a plurality of computer systems.
上記実施形態では、操作者が疲労寿命予測装置1を直接操作して上述の処理を行うことを想定して説明している。しかしながら、上記実施形態に係る疲労寿命予測装置1および疲労寿命予測方法は、例えば不特定多数のユーザがアクセス可能なWeb等を介したサービスとして提供されていてもよい。
In the above embodiment, it is assumed that the operator directly operates the fatigue life prediction device 1 to perform the above-mentioned processing. However, the fatigue life prediction device 1 and the fatigue life prediction method according to the above embodiment may be provided as a service via the Web or the like accessible to, for example, an unspecified number of users.
1…疲労寿命予測装置、11…疲労試験データ取得部、12…予測条件取得部、13…材料定数算出部、14…疲労寿命予測部、15…結果出力部、16…データ記憶部。
1 ... Fatigue life prediction device, 11 ... Fatigue test data acquisition unit, 12 ... Prediction condition acquisition unit, 13 ... Material constant calculation unit, 14 ... Fatigue life prediction unit, 15 ... Result output unit, 16 ... Data storage unit.
1 ... Fatigue life prediction device, 11 ... Fatigue test data acquisition unit, 12 ... Prediction condition acquisition unit, 13 ... Material constant calculation unit, 14 ... Fatigue life prediction unit, 15 ... Result output unit, 16 ... Data storage unit.
Claims (7)
- 対象物に関する複数条件での疲労試験による試験結果と、前記疲労試験に使用した試験片の初期欠陥寸法と、前記疲労試験に係る試験条件と、を含む疲労試験データを取得することと、
前記対象物に対して疲労限度以上の応力負荷を与えた場合に初期欠陥から亀裂が進展することと、欠陥および欠陥から進展した亀裂の寸法に応じて前記疲労限度が低下することと、を前提として、前記疲労試験データに基づいて、1回の応力負荷に対する亀裂の進展量を算出するための材料定数を算出することと、
前記材料定数を用いて、前記対象物に対してある応力を負荷した場合の亀裂の進展量に基づいて疲労寿命を予測することと、
を含む、疲労寿命予測方法。 Obtaining fatigue test data including test results by fatigue test under multiple conditions for an object, initial defect dimensions of the test piece used in the fatigue test, and test conditions related to the fatigue test.
It is assumed that the crack grows from the initial defect when a stress load equal to or higher than the fatigue limit is applied to the object, and that the fatigue limit decreases according to the size of the defect and the crack developed from the defect. As a result, the material constant for calculating the amount of crack growth for one stress load is calculated based on the fatigue test data.
Using the material constants, predicting the fatigue life based on the amount of crack growth when a certain stress is applied to the object.
Fatigue life prediction methods, including. - 前記疲労寿命を予測することは、
前記対象物の欠陥寸法に基づく疲労限度を算出することと、
前記算出した疲労限度よりも負荷が大きい場合の1回の応力負荷に対する亀裂の進展量を算出することと、
前記欠陥および欠陥から進展した亀裂の寸法が限界欠陥寸法に達するまでの応力の負荷回数を算出することと、
を含む、請求項1に記載の疲労寿命予測方法。 Predicting the fatigue life is
To calculate the fatigue limit based on the defect size of the object,
To calculate the amount of crack growth for one stress load when the load is larger than the calculated fatigue limit,
To calculate the number of stress loads until the dimensions of the defects and cracks propagated from the defects reach the limit defect dimensions.
The fatigue life prediction method according to claim 1. - 前記材料定数を算出することは、1回の応力負荷に対する亀裂の進展量Δ√areaを算出する下記の数式(A)におけるC*,m*およびn*を算出することである、請求項1または2に記載の疲労寿命予測方法。
- 前記疲労寿命を予測することにおいて、前記対象物に対して負荷される応力振幅は一定もしくは2段階以上である、請求項1~3のいずれか一項に記載の疲労寿命予測方法。 The fatigue life prediction method according to any one of claims 1 to 3, wherein the stress amplitude applied to the object is constant or has two or more stages in predicting the fatigue life.
- 対象物に関する複数条件での疲労試験による試験結果と、前記疲労試験に使用した試験片の初期欠陥寸法と、前記疲労試験に係る試験条件と、を含む疲労試験データを取得する疲労試験結果取得部と、
前記対象物に対して疲労限度以上の応力負荷を与えた場合に初期欠陥から亀裂が進展することと、欠陥および欠陥から進展した亀裂の寸法に応じて前記疲労限度が低下することと、を前提として、前記疲労試験データに基づいて、1回の応力負荷に対する亀裂の進展量を算出するための材料定数を算出する材料定数算出部と、
前記材料定数を用いて算出される1回の応力負荷に対する亀裂の進展量に基づいて、前記対象物に対してある応力を負荷した場合の疲労寿命を予測する疲労寿命予測部と、
を含む、疲労寿命予測装置。 Fatigue test result acquisition unit that acquires fatigue test data including the test results of the fatigue test under multiple conditions for the object, the initial defect dimensions of the test piece used in the fatigue test, and the test conditions related to the fatigue test. When,
It is assumed that the crack grows from the initial defect when a stress load equal to or higher than the fatigue limit is applied to the object, and that the fatigue limit decreases according to the size of the defect and the crack developed from the defect. As a material constant calculation unit for calculating the material constant for calculating the amount of crack growth for one stress load based on the fatigue test data.
A fatigue life prediction unit that predicts the fatigue life when a certain stress is applied to the object based on the amount of crack growth for one stress load calculated using the material constants.
Fatigue life predictor, including. - 対象物に関する複数条件での疲労試験による試験結果と、前記疲労試験に使用した試験片の初期欠陥寸法と、前記疲労試験に係る試験条件と、を含む疲労試験データを取得することと、
前記対象物に対して疲労限度以上の応力負荷を与えた場合に初期欠陥から亀裂が進展することと、欠陥および欠陥から進展した亀裂の寸法に応じて前記疲労限度が低下することと、を前提として、前記疲労試験データに基づいて、1回の応力負荷に対する亀裂の進展量を算出するための材料定数を算出することと、
前記材料定数を用いて算出される1回の応力負荷に対する亀裂の進展量に基づいて、前記対象物に対してある応力を負荷した場合の疲労寿命を予測することと、
をコンピュータシステムに実行させる疲労寿命予測プログラム。 Obtaining fatigue test data including test results by fatigue test under multiple conditions for an object, initial defect dimensions of the test piece used in the fatigue test, and test conditions related to the fatigue test.
It is assumed that the crack grows from the initial defect when a stress load equal to or higher than the fatigue limit is applied to the object, and that the fatigue limit decreases according to the size of the defect and the crack developed from the defect. As a result, the material constant for calculating the amount of crack growth for one stress load is calculated based on the fatigue test data.
Predicting the fatigue life when a certain stress is applied to the object based on the amount of crack growth for one stress load calculated using the material constants.
Fatigue life prediction program that causes a computer system to execute. - 対象物に関する複数条件での疲労試験による試験結果と、前記疲労試験に使用した試験片の初期欠陥寸法と、前記疲労試験に係る試験条件と、を含む疲労試験データを取得することと、
前記対象物に対して疲労限度以上の応力負荷を与えた場合に初期欠陥から亀裂が進展することと、欠陥および欠陥から進展した亀裂の寸法に応じて前記疲労限度が低下することと、を前提として、前記疲労試験データに基づいて、1回の応力負荷に対する亀裂の進展量を算出するための材料定数を算出することと、
前記材料定数を用いて算出される1回の応力負荷に対する亀裂の進展量に基づいて、前記対象物に対してある応力を負荷した場合の疲労寿命を予測することと、
をコンピュータシステムに実行させる疲労寿命予測プログラムを記憶するコンピュータ読取可能な記憶媒体。
Obtaining fatigue test data including test results by fatigue test under multiple conditions for an object, initial defect dimensions of the test piece used in the fatigue test, and test conditions related to the fatigue test.
It is assumed that the crack grows from the initial defect when a stress load equal to or higher than the fatigue limit is applied to the object, and that the fatigue limit decreases according to the size of the defect and the crack developed from the defect. As a result, the material constant for calculating the amount of crack growth for one stress load is calculated based on the fatigue test data.
Predicting the fatigue life when a certain stress is applied to the object based on the amount of crack growth for one stress load calculated using the material constants.
A computer-readable storage medium that stores a fatigue life prediction program that causes a computer system to run.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021002058A JP6944736B1 (en) | 2021-01-08 | 2021-01-08 | Fatigue life prediction method, fatigue life prediction device, fatigue life prediction program and storage medium |
JP2021-002058 | 2021-01-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022149297A1 true WO2022149297A1 (en) | 2022-07-14 |
Family
ID=77915142
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/024825 WO2022149297A1 (en) | 2021-01-08 | 2021-06-30 | Fatigue life prediction method, fatigue life prediction device, fatigue life prediction program, and recording medium |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6944736B1 (en) |
TW (1) | TW202244476A (en) |
WO (1) | WO2022149297A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116189832A (en) * | 2023-04-14 | 2023-05-30 | 岚图汽车科技有限公司 | Material fatigue life curve determining method and related equipment |
CN116776586A (en) * | 2023-06-15 | 2023-09-19 | 上海发电设备成套设计研究院有限责任公司 | Method and device for monitoring rotor stress corrosion and fatigue long life of nuclear turbine |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114370995A (en) * | 2021-12-27 | 2022-04-19 | 浙江银轮机械股份有限公司 | Method for obtaining parameters for testing fatigue degree of trachea, application method and tail gas treatment system |
WO2024055271A1 (en) * | 2022-09-16 | 2024-03-21 | 华东理工大学 | Anti-fatigue and safety regulation and control method for service structure having ultra-long service life in extreme environment |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102129512A (en) * | 2011-02-24 | 2011-07-20 | 西北工业大学 | Fatigue life analyzing method based on Paris formula |
JP2011149873A (en) * | 2010-01-22 | 2011-08-04 | Nagoya Institute Of Technology | Fatigue characteristic determination method and fatigue life prediction method of material |
CN106886663A (en) * | 2017-03-29 | 2017-06-23 | 北京理工大学 | Tooth bending Prediction method for fatigue life and device |
JP2018185274A (en) * | 2017-04-27 | 2018-11-22 | 新日鐵住金株式会社 | Method and computer program for predicting fatigue limit |
JP2019007838A (en) * | 2017-06-23 | 2019-01-17 | 健 三堀 | Fatigue life estimation method of metal material and optimum design method applied with life fatigue estimation method |
-
2021
- 2021-01-08 JP JP2021002058A patent/JP6944736B1/en active Active
- 2021-06-30 WO PCT/JP2021/024825 patent/WO2022149297A1/en active Application Filing
- 2021-12-20 TW TW110147730A patent/TW202244476A/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011149873A (en) * | 2010-01-22 | 2011-08-04 | Nagoya Institute Of Technology | Fatigue characteristic determination method and fatigue life prediction method of material |
CN102129512A (en) * | 2011-02-24 | 2011-07-20 | 西北工业大学 | Fatigue life analyzing method based on Paris formula |
CN106886663A (en) * | 2017-03-29 | 2017-06-23 | 北京理工大学 | Tooth bending Prediction method for fatigue life and device |
JP2018185274A (en) * | 2017-04-27 | 2018-11-22 | 新日鐵住金株式会社 | Method and computer program for predicting fatigue limit |
JP2019007838A (en) * | 2017-06-23 | 2019-01-17 | 健 三堀 | Fatigue life estimation method of metal material and optimum design method applied with life fatigue estimation method |
Non-Patent Citations (1)
Title |
---|
KAMAYA MASAYUKI: " Damage Assessment of Low-Cycle Fatigue by Crack Growth Prediction (Development of Growth Prediction Model and Its Application)", THE JAPAN SOCIETY OF MECHANICAL ENGINEERS, 1 November 2012 (2012-11-01), pages 24 - 39, XP055954589, Retrieved from the Internet <URL:https://www.jstage.jst.go.jp/article/kikaia/78/795/78_1518/_pdf/-char/en> [retrieved on 20220824] * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116189832A (en) * | 2023-04-14 | 2023-05-30 | 岚图汽车科技有限公司 | Material fatigue life curve determining method and related equipment |
CN116189832B (en) * | 2023-04-14 | 2023-07-21 | 岚图汽车科技有限公司 | Material fatigue life curve determining method and related equipment |
CN116776586A (en) * | 2023-06-15 | 2023-09-19 | 上海发电设备成套设计研究院有限责任公司 | Method and device for monitoring rotor stress corrosion and fatigue long life of nuclear turbine |
Also Published As
Publication number | Publication date |
---|---|
TW202244476A (en) | 2022-11-16 |
JP6944736B1 (en) | 2021-10-06 |
JP2022107231A (en) | 2022-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022149297A1 (en) | Fatigue life prediction method, fatigue life prediction device, fatigue life prediction program, and recording medium | |
Williams et al. | A practical method for statistical analysis of strain–life fatigue data | |
JP5582211B1 (en) | Stress-strain relationship simulation method, springback amount prediction method, and springback analysis device | |
EP2909760B1 (en) | Method and system for probabilistic fatigue crack life estimation | |
González-Herrera et al. | Influence of minimum element size to determine crack closure stress by the finite element method | |
Cuesta et al. | Determination of the Gurson–Tvergaard damage model parameters for simulating small punch tests | |
Wang et al. | An Experimental‐Numerical Combined Method to Determine the True Constitutive Relation of Tensile Specimens after Necking | |
Zapatero et al. | Fatigue crack closure determination by means of finite element analysis | |
Hertel et al. | Short-crack-growth-based fatigue assessment of notched components under multiaxial variable amplitude loading | |
Olsson et al. | Fatigue of gears in the finite life regime—Experiments and probabilistic modelling | |
WO2013026500A2 (en) | System and method for generating a combined model for isothermal and anisothermal fatigue life | |
JP2010256351A (en) | Device and method for estimating fatigue fracture probability of member, and computer program | |
do Rêgo et al. | A methodology for fretting fatigue life estimation using strain-based fracture mechanics | |
Whelan et al. | Uncertainty quantification in ICME workflows for fatigue critical computational modeling | |
van Kuijk et al. | Unraveling the myth of closure corrections: Sharpening the definition of opening and closure stresses with an energy approach | |
CN111465837B (en) | Life evaluation device and life evaluation method | |
Infante et al. | Case studies of computational simulations of fatigue crack propagation using finite elements analysis tools | |
US8190402B2 (en) | Method of modeling flexural characteristics of a bar subjected to local heating | |
Zhang et al. | Investigation of the influence of small hole on the fatigue crack growth path | |
JP2019158474A (en) | Stress estimation device, stress estimation method, and program | |
Espinosa et al. | Determination of crack growth for 6082-T6 aluminium subjected to periodic single and block overloads and underloads using a two dimensional finite element model | |
JP2003083874A (en) | Method and system for analyzing viscoelastic material characteristic and storage medium | |
Tantideeravit et al. | An application of FEM in the determination of tensile properties for work-hardened carbon steel by means of small punch test | |
Hack et al. | Progress in developing a standard for dynamic strain analysis | |
JP2021156686A (en) | Heat treatment simulation method, heat treatment simulation device, and program |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21917522 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21917522 Country of ref document: EP Kind code of ref document: A1 |