JP2018185274A - Method and computer program for predicting fatigue limit - Google Patents

Method and computer program for predicting fatigue limit Download PDF

Info

Publication number
JP2018185274A
JP2018185274A JP2017088509A JP2017088509A JP2018185274A JP 2018185274 A JP2018185274 A JP 2018185274A JP 2017088509 A JP2017088509 A JP 2017088509A JP 2017088509 A JP2017088509 A JP 2017088509A JP 2018185274 A JP2018185274 A JP 2018185274A
Authority
JP
Japan
Prior art keywords
stress
area
fatigue limit
fatigue
defect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017088509A
Other languages
Japanese (ja)
Other versions
JP6780575B2 (en
Inventor
守 早川
Mamoru Hayakawa
守 早川
小澤 修司
Shuji Ozawa
修司 小澤
真也 寺本
Shinya Teramoto
真也 寺本
根石 豊
Yutaka Neishi
豊 根石
泰三 牧野
Taizo Makino
泰三 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2017088509A priority Critical patent/JP6780575B2/en
Publication of JP2018185274A publication Critical patent/JP2018185274A/en
Application granted granted Critical
Publication of JP6780575B2 publication Critical patent/JP6780575B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for predicting the fatigue limit of a metal material with fine defects.SOLUTION: The method according to the present invention includes the steps of: determining a potential crack length √(area) of a metal material (step S1); determining an apparent actual breaking stress σof the metal material (step S2); and determining the fatigue limit τ'of the metal material when the stress ratio is R, the stress amplitude is τ, the defective area protruded to the maximum principal stress surface is area, and the residual stress is σ(step S3).SELECTED DRAWING: Figure 1

Description

本発明は、疲労限度を予測する方法及びコンピュータプログラムに関する。   The present invention relates to a method and a computer program for predicting a fatigue limit.

要素部品として用いられるコイルばねは、引張や圧縮を受ける。このとき、コイルばねの素線にはねじり負荷が加わるが、引張コイルばねには引張方向にのみ、圧縮コイルばねには圧縮方向にのみ繰返し変形が作用する。このため、素線には片振りの繰返しねじり負荷が付与される。この繰返しねじり負荷が駆動力となり、表面部に生じる線間接触傷、腐食によるピット、素線内部に存在する介在物といった、微小欠陥が起点となる疲労破壊が引き起こされる。このため、微小欠陥が疲労強度に及ぼす影響が、コイルばねの設計において重要視されている。   A coil spring used as an element part is subjected to tension and compression. At this time, a torsional load is applied to the wire of the coil spring, but the deformation is repeatedly applied only to the tension coil spring in the tension direction and to the compression coil spring only in the compression direction. For this reason, one-way repeated torsional load is applied to the strands. This repeated torsional load becomes a driving force, which causes fatigue failure starting from minute defects such as line contact scratches generated on the surface, pits due to corrosion, and inclusions existing inside the strands. For this reason, the influence of minute defects on fatigue strength is regarded as important in the design of coil springs.

特許第5445727号公報には、サンプルから介在物を抽出し、抽出した介在物の数、及び寸法が所定の閾値を超える介在物の数等に基づいて、機械部品の破壊性能を評価する方法が開示されている。   Japanese Patent No. 5445727 discloses a method of extracting the inclusions from a sample and evaluating the fracture performance of the machine part based on the number of extracted inclusions and the number of inclusions whose dimensions exceed a predetermined threshold. .

特開2015−1409号公報には、欠陥の寸法、欠陥部の残留応力、欠陥部にかかる外力等から応力拡大係数範囲を求め、この応力拡大係数範囲に基づいて設定した試験片荷重条件のもとで疲労試験を実施する、構造物の疲労寿命評価方法が開示されている。   Japanese Patent Application Laid-Open No. 2015-1409 obtains a stress intensity factor range from a defect size, a residual stress of the defect portion, an external force applied to the defect portion, and the like, and a test piece load condition set based on the stress intensity factor range is also obtained. And a fatigue life evaluation method for a structure is disclosed.

高橋宏治、村上敬宜、「ねじり疲労強度に及ぼす引張圧縮疲労試験により導入した微小き裂の影響」、日本機械学会論文集(A編)、68巻668号、第645−652頁には、微小欠陥を有する材料の疲労限度を予測する下記の式(A)が提案されている。   Koji Takahashi, Takayoshi Murakami, “Effect of Microcracks Introduced by Tension / Compression Fatigue Test on Torsional Fatigue Strength”, Transactions of the Japan Society of Mechanical Engineers (A), 68, 668, 645-652, The following formula (A) for predicting the fatigue limit of a material having a minute defect has been proposed.

Figure 2018185274
ここで、τはせん断疲労限度[MPa]、HVは材料のビッカース硬さ、√areaは最大主応力面に投影した欠陥面積の平方根[μm]、Fは応力特異場の形状補正係数、b/aは表面欠陥のアスペクト比である。
Figure 2018185274
Where τ W is the shear fatigue limit [MPa], HV is the Vickers hardness of the material, √area is the square root [μm] of the defect area projected on the maximum principal stress surface, F is the shape correction factor of the stress singular field, b / A is the aspect ratio of the surface defect.

特許第5445727号公報Japanese Patent No. 5445727 特開2015−1409号公報Japanese Patent Laid-Open No. 2015-1409

高橋宏治、村上敬宜、「ねじり疲労強度に及ぼす引張圧縮疲労試験により導入した微小き裂の影響」、日本機械学会論文集(A編)、68巻668号、第645−652頁Koji Takahashi, Takayoshi Murakami, “Effect of microcrack introduced by tensile compression fatigue test on torsional fatigue strength”, Transactions of the Japan Society of Mechanical Engineers (A), 68, 668, 645-652 K. Tanaka, Y. Nakai, M. Yamashita, "Fatigue Growth threshold of small cracks", International Journal of Fracture, Vol. 17, No. 5, October 1981, pp. 519-533K. Tanaka, Y. Nakai, M. Yamashita, "Fatigue Growth threshold of small cracks", International Journal of Fracture, Vol. 17, No. 5, October 1981, pp. 519-533

上記式(A)は、HV175の鋼材の疲労試験の結果に基づく経験式である。式(A)では、介在物の寸法が小さくなるほど疲労強度が向上し、介在物の寸法が0では疲労強度が無限大となる。このため、HV175と極端に異なる高強度材料や、微小介在物を有する材料に対しては、式(A)では疲労限度を正しく予測することができない。   The above formula (A) is an empirical formula based on the results of fatigue testing of HV175 steel. In the formula (A), the fatigue strength is improved as the size of the inclusion is reduced. When the size of the inclusion is 0, the fatigue strength is infinite. For this reason, the fatigue limit cannot be correctly predicted by the formula (A) for a high-strength material extremely different from HV175 or a material having minute inclusions.

本発明の目的は、微小欠陥を有する金属材料の疲労限度を予測する方法、及びコンピュータプログラムを提供することである。   An object of the present invention is to provide a method and a computer program for predicting the fatigue limit of a metal material having a minute defect.

本発明の一実施形態による方法は、金属材料の疲労限度を予測する方法であって、最大主応力面に投影した欠陥面積がareaである試験片の応力比cにおける疲労限度τ’W(R=c,√(area1))、及び下記の式(1)に基づいて、前記金属材料の潜在き裂長さ√(area)を求める工程と、前記金属材料の見掛けの真破断応力σを求める工程と、下記の式(2)に基づいて、応力比がR、応力振幅がτ、最大主応力面に投影した欠陥面積がarea、残留応力がσresのときの前記金属材料の疲労限度τ’W(R,√(area),σres)を求める工程とを備える。

Figure 2018185274
ここで、τW(R=C)は、応力比cにおける平滑材の疲労限度である。 A method according to an embodiment of the present invention is a method for predicting a fatigue limit of a metal material, and a fatigue limit τ ′ W () at a stress ratio c of a specimen having a defect area projected onto the maximum principal stress surface of area 1. R = c, √ (area1)) and the following equation (1) to obtain the latent crack length √ (area 0 ) of the metal material, and the apparent true rupture stress σ T of the metal material And the following equation (2), the stress ratio is R, the stress amplitude is τ a , the defect area projected onto the maximum principal stress surface is area, and the residual stress is σ res . And a step of obtaining a fatigue limit τ ′ W (R, √ (area), σres) .
Figure 2018185274
Here, τ W (R = C) is the fatigue limit of the smooth material at the stress ratio c.

本発明の一実施形態によるコンピュータプログラムは、金属材料の疲労限度を予測するコンピュータプログラムであって、最大主応力面に投影した欠陥面積がareaである試験片の応力比cにおける疲労限度τ’W(R=c,√(area1))、及び下記の式(1)に基づいて、前記金属材料の潜在き裂長さ√(area)を求める工程と、前記金属材料の見掛けの真破断応力σを求める工程と、下記の式(2)に基づいて、応力比がR、応力振幅がτ、最大主応力面に投影した欠陥面積がarea、残留応力がσresのときの前記金属材料の疲労限度τ’W(R,√(area),σres)を求める工程とをコンピュータに実行させる。

Figure 2018185274
ここで、τW(R=C)は、応力比cにおける平滑材の疲労限度である。 A computer program according to an embodiment of the present invention is a computer program for predicting a fatigue limit of a metal material, and a fatigue limit τ ′ at a stress ratio c of a specimen having a defect area projected onto a maximum principal stress surface of area 1. Based on W (R = c, √ (area1)) and the following equation (1), a step of obtaining a latent crack length √ (area 0 ) of the metal material, and an apparent true rupture stress of the metal material The metal when the stress ratio is R, the stress amplitude is τ a , the defect area projected onto the maximum principal stress surface is area, and the residual stress is σ res based on the step of obtaining σ T and the following equation (2) And causing the computer to execute a step of obtaining a fatigue limit τ ′ W (R, √ (area), σres) of the material.
Figure 2018185274
Here, τ W (R = C) is the fatigue limit of the smooth material at the stress ratio c.

本発明によれば、微小欠陥を有する金属材料の疲労限度を予測することができる。   According to the present invention, the fatigue limit of a metal material having a minute defect can be predicted.

図1は、本発明の一実施形態による疲労限度の予測方法のフロー図である。FIG. 1 is a flowchart of a fatigue limit prediction method according to an embodiment of the present invention. 図2は、応力比R及び応力振幅τと平均応力との関係を示す図である。FIG. 2 is a diagram showing the relationship between the stress ratio R and the stress amplitude τ a and the average stress. 図3は、平滑材の疲労限度線L1と、欠陥寸法が√(area)の材料の疲労限度線L2との関係を示す図である。FIG. 3 is a diagram showing a relationship between the fatigue limit line L1 of the smooth material and the fatigue limit line L2 of the material having a defect size of √ (area). 図4は、本発明の第1の実施形態を説明するための図である。FIG. 4 is a diagram for explaining the first embodiment of the present invention. 図5は、本発明の第2の実施形態を説明するための図である。FIG. 5 is a diagram for explaining a second embodiment of the present invention. 図6は、本発明の第3の実施形態を説明するための図である。FIG. 6 is a diagram for explaining a third embodiment of the present invention. 図7は、コンピュータの構成の一例を示すブロック図である。FIG. 7 is a block diagram illustrating an example of the configuration of a computer. 図8は、疲労試験に用いる試験片の斜視図である。FIG. 8 is a perspective view of a test piece used in the fatigue test. 図9は、疲労試験に用いる試験片の平面図である。FIG. 9 is a plan view of a test piece used in the fatigue test. 図10は、疲労試験によって得られたS−N線図である。FIG. 10 is an SN diagram obtained by the fatigue test. 図11は、図9のXI−XI線に沿った断面図である。11 is a cross-sectional view taken along line XI-XI in FIG. 図12は、平滑材の疲労限度線と、所定の欠陥寸法√(area)の材料の疲労限度線との関係を示す図である。FIG. 12 is a diagram showing the relationship between the fatigue limit line of a smooth material and the fatigue limit line of a material having a predetermined defect size √ (area). 図13は、疲労試験の結果と、式(2)によって予測される疲労限度とを示すグラフである。FIG. 13 is a graph showing the results of the fatigue test and the fatigue limit predicted by Equation (2). 図14は、疲労試験の結果と、式(2)によって予測される疲労限度とを示すグラフである。FIG. 14 is a graph showing the results of the fatigue test and the fatigue limit predicted by Equation (2).

本発明者らは、10〜1000μmの微小欠陥を人工的に導入した試験片を用いて、ねじり疲労試験を実施した。その結果、下記の知見を得た。   The present inventors conducted a torsional fatigue test using a test piece in which a micro defect of 10 to 1000 μm was artificially introduced. As a result, the following knowledge was obtained.

(a)Haddadらの提案した潜在疲労き裂長さに基づく疲労限度の予測式を、曲げ試験だけでなく、軸力引張試験やせん断・ねじり試験にも適用することができる。ねじり応力が加わる場合、ねじりモーメントの方向と45°の角度をなす面に最大の主応力、同方向と−45°の角度をなす面に最小の主応力が負荷されるが、45°の角度をなす面だけに主応力が負荷されていると近似することで、ねじり疲労限度を予測できる。 (A) The fatigue limit prediction formula based on the latent fatigue crack length proposed by Haddad et al. Can be applied not only to a bending test but also to an axial force tensile test and a shear / torsion test. When torsional stress is applied, the maximum principal stress is applied to the surface that forms an angle of 45 ° with the direction of the torsional moment, and the minimum principal stress is applied to the surface that forms an angle of −45 ° with the same direction. The approximate torsional fatigue limit can be predicted by approximating that the principal stress is applied only to the surface forming

(b)微小欠陥を有する材料に平均応力が加わる場合、微小欠陥を有する金属材料の疲労限度と平滑材の疲労限度との比が、切欠き係数のように働く。 (B) When an average stress is applied to a material having a minute defect, the ratio between the fatigue limit of a metal material having a minute defect and the fatigue limit of a smooth material works like a notch coefficient.

上記(a)及び(b)を組み合わせることで、任意の欠陥寸法、平均応力、及び残留応力の場合における引張疲労限度及びせん断疲労限度を予測することができる。   By combining the above (a) and (b), it is possible to predict the tensile fatigue limit and the shear fatigue limit in the case of an arbitrary defect size, average stress, and residual stress.

以上の知見に基づいて、本発明は完成された。以下、図面を参照し、本発明の実施の形態を詳しく説明する。図中同一又は相当部分には同一符号を付してその説明は繰り返さない。各図に示された構成部材間の寸法比は、必ずしも実際の寸法比を示すものではない。   Based on the above findings, the present invention has been completed. Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated. The dimensional ratio between the constituent members shown in each drawing does not necessarily indicate the actual dimensional ratio.

図1は、本発明の一実施形態による疲労限度の予測方法のフロー図である。この方法は、測定対象の金属材料(以下「測定対象材料」又は単に「材料」と呼ぶ。)の潜在き裂長さ√(area)を求める工程(ステップS1)と、測定対象材料の見掛けの真破断応力σを求める工程(ステップS2)と、疲労限度τ’W(R,√(area),σres)を求める工程(ステップS3)とを備える。以下、各工程を詳述する。 FIG. 1 is a flowchart of a fatigue limit prediction method according to an embodiment of the present invention. This method includes a step (step S1) of obtaining a latent crack length √ (area 0 ) of a metal material to be measured (hereinafter referred to as “measuring material” or simply “material”), and an apparent appearance of the measuring material. A step of determining the true rupture stress σ T (step S2) and a step of determining the fatigue limit τ ′ W (R, √ (area), σres) (step S3). Hereinafter, each process is explained in full detail.

[潜在き裂長さ√(area)を求める工程]
まず、測定対象材料の潜在き裂長さ√(area)を求める(ステップS1)。具体的には、最大主応力面に投影した欠陥面積がareaである試験片の応力比cにおける疲労限度τ’W(R=c,√(area1))、及び下記の式(1)に基づいて、材料の潜在き裂長さ√(area)を求める
[Step of obtaining latent crack length √ (area 0 )]
First, the latent crack length √ (area 0 ) of the material to be measured is obtained (step S1). Specifically, the fatigue limit τ ′ W (R = c, √ (area1)) at the stress ratio c of the specimen whose area of defect projected onto the maximum principal stress surface is area 1 and the following equation (1): Based on this, the latent crack length √ (area 0 ) of the material is obtained.

Figure 2018185274
Figure 2018185274

式(1)は、Haddadらの提案した曲げ疲労限度の予測式を、せん断・ねじり応力に拡張したものである。τW(R=C)は、応力比cにおける平滑材(欠陥面積areaが0の材料)の疲労限度である。潜在き裂長さ√(area)は、材料に固有の値であり、欠陥面積areaが疲労限度に与える影響の大きさの指標である。潜在き裂長さ√(area)が大きいほど、欠陥面積areaの影響は小さくなる。 Equation (1) is an extension of the prediction formula for bending fatigue limit proposed by Haddad et al. To shear / torsional stress. τ W (R = C) is a fatigue limit of a smooth material (a material having a defect area area 1 of 0 ) at a stress ratio c. The latent crack length √ (area 0 ) is a value inherent to the material and is an index of the magnitude of the influence of the defect area area 1 on the fatigue limit. The larger the latent crack length √ (area 0 ), the smaller the influence of the defect area area 1 .

欠陥面積areaは、上述のとおり、最大主応力面に投影した欠陥面積である。具体的には、引張負荷に対する疲労限度を予測する場合、引張方向に垂直な面に投影した欠陥の面積である。ねじり負荷に対する疲労限度を予測する場合、モーメントの方向と45°の角度をなす面に投影した欠陥の面積である。材料にねじり負荷が加わる場合、実際にはモーメントの方向と−45°の角度をなす面にも応力が加わるが、45°の角度をなす面だけに主応力が負荷されていると近似することができる。 As described above, the defect area area 1 is a defect area projected on the maximum principal stress surface. Specifically, when the fatigue limit with respect to the tensile load is predicted, it is the area of the defect projected on the plane perpendicular to the tensile direction. When predicting the fatigue limit for a torsional load, it is the area of a defect projected on a surface that forms an angle of 45 ° with the direction of the moment. When a torsional load is applied to a material, the stress is actually applied to a surface that forms an angle of -45 ° with the direction of the moment. Can do.

以下、欠陥面積areaの平方根√(area)を欠陥寸法と呼ぶ。潜在き裂長さ√(area)は、例えば、欠陥寸法√(area)が異なる2種以上の試験片を同一の応力比で測定して得られた疲労限度に基づいて求めることができる。すなわち、応力比c、及び欠陥寸法√(area)のときのせん断疲労限度τ’W(R=c,√(area1))が与えられているとき、式(1)の未知変数は平滑材の疲労限度τW(R=c)及び潜在き裂長さ√(area)である。2つの測定結果を式(1)に代入して連立方程式を解くことで、疲労限度τW(R=C)及び潜在き裂長さ√(area)を求めることができる。また、3つ以上の測定結果を使用して、最小自乗法等によるフィッティングを行ってもよい。 Hereinafter referred to the square root √ defect area area 1 a (area 1) and defect size. The latent crack length √ (area 0 ) can be obtained, for example, based on the fatigue limit obtained by measuring two or more test pieces having different defect dimensions √ (area 1 ) at the same stress ratio. That is, when the stress ratio c and the shear fatigue limit τ ′ W (R = c, √ (area1)) at the time of the defect size √ (area 1 ) are given, the unknown variable of the equation (1) is a smoothing material. Fatigue limit τ W (R = c) and latent crack length √ (area 0 ). The fatigue limit τ W (R = C) and the latent crack length √ (area 0 ) can be obtained by substituting the two measurement results into equation (1) and solving the simultaneous equations. Further, fitting by the least square method or the like may be performed using three or more measurement results.

ここで、欠陥寸法√(area)が異なる2種以上の試験片の一方は、平滑材であってもよい。すなわち、平滑材の疲労限度τW(R=c)を直接測定してもよい。 Here, one of the two or more kinds of test pieces having different defect dimensions √ (area 1 ) may be a smooth material. That is, the fatigue limit τ W (R = c) of the smooth material may be directly measured.

また、平滑材の疲労限度τW(R=c)は、材料の引張強さ等との相関による経験式を用いて算出することもできる。例えば、c=0.1のときの平滑材の疲労限度τW(R=0.1)は、極限引張強さσUTSから下記の式で求めることができる。 Further, the fatigue limit τ W (R = c) of the smooth material can be calculated using an empirical formula based on a correlation with the tensile strength of the material. For example, the fatigue limit τ W (R = 0.1) of the smoothing material when c = 0.1 can be obtained from the ultimate tensile strength σ UTS by the following equation.

Figure 2018185274
Figure 2018185274

また、極限引張強さσUTSは、材料のビッカース硬さHVから下記の式で求めることができる。 Moreover, ultimate tensile strength (sigma) UTS can be calculated | required by the following formula from the Vickers hardness HV of material.

Figure 2018185274
Figure 2018185274

[見掛けの真破断応力σを求める工程]
次に、測定対象材料の見掛けの真破断応力σを求める(ステップS2)。
[Process for obtaining apparent true breaking stress σ T ]
Next, an apparent true breaking stress σ T of the material to be measured is obtained (step S2).

見掛けの真破断応力σは、例えば、同一の欠陥寸法の試験片を2種以上の応力比で測定して得られた疲労限度に基づいて求めることができる。具体的には、2種以上の応力比で測定して得られた疲労限度を、横軸に平均応力(外力により与えられた平均応力+残留応力)、縦軸に疲労限度としてプロットする。すなわち、疲労限度線図を作成する。プロットを結ぶ線と横軸との交点が見掛けの真破断応力σになる。 The apparent true rupture stress σ T can be obtained, for example, based on a fatigue limit obtained by measuring a test piece having the same defect size with two or more stress ratios. Specifically, the fatigue limit obtained by measuring at two or more stress ratios is plotted as the average stress (average stress applied by external force + residual stress) on the horizontal axis and the fatigue limit on the vertical axis. That is, a fatigue limit diagram is created. Intersection of the lines and the horizontal axis connecting the plot is true rupture stress sigma T apparent.

このとき、同一の欠陥寸法の試験片を少なくとも2種の応力比で測定すれば、2点を結ぶ直線を引くことができ、見掛けの真破断応力σを求めることができる。この場合、2つの疲労限度試験の応力比が互いに離れている方が、見掛けの真破断応力σをより正確に求めることができる。そのため、2つの疲労限度試験の一方は、応力比が−1(すなわち、両振りの疲労限度試験)であることが好ましい。なお、3種以上の応力比で疲労限度を測定して、最小自乗法等によるフィッティングを行ってもよい。 At this time, if a test piece having the same defect size is measured with at least two kinds of stress ratios, a straight line connecting the two points can be drawn, and the apparent true breaking stress σ T can be obtained. In this case, the apparent true rupture stress σ T can be obtained more accurately when the stress ratios of the two fatigue limit tests are separated from each other. Therefore, it is preferable that one of the two fatigue limit tests has a stress ratio of -1 (that is, a two-way fatigue limit test). Note that the fatigue limit may be measured at three or more stress ratios, and fitting by the least square method or the like may be performed.

見掛けの真破断応力σは、材料の引張強さ等との相関による経験式を用いて算出することもできる。見掛けの真破断応力σは、例えば、極限引張強さσUTSから下記の式で求めることができる。 The apparent true breaking stress σ T can also be calculated using an empirical formula based on the correlation with the tensile strength of the material. The apparent true breaking stress σ T can be obtained from the ultimate tensile strength σ UTS by the following equation, for example.

Figure 2018185274
Figure 2018185274

[疲労限度τ’W(R,√(area),σres)を求める工程]
次に、式(2)に基づいて、応力比がR、応力振幅がτ、最大主応力面に投影した欠陥面積がarea、残留応力がσresのときの測定対象材料の疲労限度τ’W(R,√(area),σres)を求める(ステップS3)。
[Step of obtaining fatigue limit τ ′ W (R, √ (area), σres) ]
Next, based on the equation (2), the fatigue limit τ ′ of the measurement target material when the stress ratio is R, the stress amplitude is τ a , the defect area projected onto the maximum principal stress surface is area, and the residual stress is σ res W (R, √ (area), σres) is obtained (step S3).

Figure 2018185274
Figure 2018185274

なお、式(2)の「(1+R)/(1−R)τ」は平均応力である(図2を参照)。 In addition, “(1 + R) / (1−R) τ a ” in the formula (2) is an average stress (see FIG. 2).

図3は、平滑材の疲労限度線L1と、欠陥寸法が√(area)の材料の疲労限度線L2との関係を示す図である。微小欠陥を有する材料に平均応力が加わる場合、微小欠陥を有する材料の疲労限度と平滑材の疲労限度との比が、切欠き係数のように働く。図2の点P1と点P2とから疲労限度線L2の傾きaが計算でき、上記の式(2)が得られる。   FIG. 3 is a diagram showing a relationship between the fatigue limit line L1 of the smooth material and the fatigue limit line L2 of the material having a defect size of √ (area). When average stress is applied to a material having microdefects, the ratio between the fatigue limit of the material having microdefects and the fatigue limit of the smoothing material works like a notch coefficient. The slope a of the fatigue limit line L2 can be calculated from the points P1 and P2 in FIG. 2, and the above equation (2) is obtained.

式(2)によれば、ステップS1及びS2において潜在き裂長さ√(area)及び見掛けの真破断応力σを求めた材料について、任意の欠陥寸法、平均応力、残留応力のときの疲労限度τ’W(R,√(area),σres)を予測することができる。すなわち、τa/τ’W(R,√(area),σres)が1未満であれば破断せず、τa/τ’W(R,√(area),σres)が1以上であれば破断すると予測することができる。 According to the equation (2), the fatigue at the time of arbitrary defect size, average stress, and residual stress for the material for which the latent crack length √ (area 0 ) and the apparent true fracture stress σ T were obtained in steps S1 and S2. The limit τ ′ W (R, √ (area), σres) can be predicted. That is, if τa / τ′W (R, √ (area), σres) is less than 1, it does not break, and if τa / τ′W (R, √ (area), σres) is 1 or more, it breaks. Can be predicted.

以上、本発明の一実施形態による疲労限度の予測方法を説明した。本実施形態において、測定対象材料は金属材料であれば特に限定されないが、鉄鋼材料の疲労限度を予測する場合に特に好適であり、硬さが500〜700HVの高強度鋼の疲労限度を予測する場合に特に好適である。   The fatigue limit prediction method according to the embodiment of the present invention has been described above. In the present embodiment, the material to be measured is not particularly limited as long as it is a metal material, but is particularly suitable for predicting the fatigue limit of a steel material, and predicting the fatigue limit of a high-strength steel having a hardness of 500 to 700 HV. It is particularly suitable for the case.

本実施形態は、試験片にせん断・ねじり負荷が加わる場合の疲労限度の予測に特に好適であるが、本実施形態はこれに限定されず、任意の疲労試験(軸力引張試験、せん断・ねじり試験、曲げ試験)の疲労限度を予測することができる。なお、潜在き裂長さ√(area)は、疲労試験の種類(軸力引張試験、せん断・ねじり試験、曲げ試験)によって異なる。そのため、潜在き裂長さ√(area)を求める工程(ステップS1)では、疲労限度を予測したい疲労試験の種類と同じ種類の疲労試験によって測定された疲労限度τ’W(R=c,√(area1))を用いる。 The present embodiment is particularly suitable for predicting the fatigue limit when a shear / torsion load is applied to the test piece. However, the present embodiment is not limited to this, and any fatigue test (axial tension test, shear / torsion) The fatigue limit of the test and bending test can be predicted. The latent crack length √ (area 0 ) varies depending on the type of fatigue test (axial tension test, shear / torsion test, bending test). Therefore, in the step of obtaining the latent crack length √ (area 0 ) (step S1), the fatigue limit τ ′ W (R = c, √) measured by the same type of fatigue test as the type of fatigue test for which the fatigue limit is to be predicted. (Area1)) is used.

[疲労限度を予測する方法の具体例]
以下、本実施形態による疲労限度を予測する方法のより具体的な例を説明する。
[Specific examples of methods for predicting fatigue limits]
Hereinafter, a more specific example of the method for predicting the fatigue limit according to the present embodiment will be described.

[第1の実施形態]
第1の実施形態では、3つの条件で疲労限度を測定して、潜在き裂長さ√(area)及び見掛けの真破断応力σを求める。具体的にはまず、平滑材及び欠陥寸法が√(area)の試験片を用いて応力比cで疲労試験を行い、それぞれの疲労限度を求める。さらに、平滑材を用いて両振り(R=−1)の疲労試験を行い、疲労限度を求める。
[First Embodiment]
In the first embodiment, the fatigue limit is measured under three conditions to determine the latent crack length √ (area 0 ) and the apparent true fracture stress σ T. Specifically, first, a fatigue test is performed at a stress ratio c using a smoothing material and a test piece having a defect size of √ (area 1 ), and each fatigue limit is obtained. Furthermore, a fatigue test is performed by swinging (R = −1) using a smooth material to determine the fatigue limit.

図4は、上述した3つの条件での疲労限度を疲労限度線図上にプロットしたものである。点P3は、平滑材を用いて応力比cで疲労試験をしたときの疲労限度であり、点P4は、欠陥寸法が√(area)の試験片を用いて応力比cで疲労試験をしたときの疲労限度であり、点P5は、平滑材を用いて両振り(R=−1)で疲労試験をしたときの疲労限度である。点P3と点P4とから、潜在き裂長さ√(area)を求めることができ、点P3と点P5と結ぶ直線と横軸との交点から、見掛けの真破断応力σを求めることができる。 FIG. 4 is a plot of fatigue limits under the three conditions described above on a fatigue limit diagram. Point P3 is a fatigue limit when a fatigue test is performed with a stress ratio c using a smooth material, and point P4 is a fatigue test with a stress ratio c using a test piece having a defect size of √ (area 1 ). The point P5 is a fatigue limit when a fatigue test is performed by using a smooth material with a double swing (R = -1). The latent crack length √ (area 0 ) can be obtained from the points P3 and P4, and the apparent true rupture stress σ T can be obtained from the intersection of the straight line connecting the points P3 and P5 and the horizontal axis. it can.

これらの値を式(2)に代入することで、任意の欠陥寸法、平均応力、残留応力のときの疲労限度τ’W(R,√(area),σres)を予測することができる。 By substituting these values into equation (2), it is possible to predict the fatigue limit τ ′ W (R, √ (area), σres) at an arbitrary defect size, average stress, and residual stress.

この実施形態では、潜在き裂長さ√(area)を求めるために、平滑材を用いて応力比cで疲労試験をしたときの疲労限度(点P3)と、欠陥寸法が√(area)の試験片を用いて応力比cで疲労試験をしたときの疲労限度(点P4)とを用いている。しかし、潜在き裂長さ√(area)を求めるためには、欠陥寸法が異なる2種以上の試験片を同一の応力比で測定して得られた疲労限度を用いればよく、試験片の一方が平滑材であることは必須ではない。 In this embodiment, in order to obtain the latent crack length √ (area 0 ), the fatigue limit (point P3) when a fatigue test is performed with a stress ratio c using a smoothing material and the defect size is √ (area 1 ). The fatigue limit (point P4) when a fatigue test is performed with the stress ratio c using the above test piece is used. However, in order to obtain the latent crack length √ (area 0 ), it is sufficient to use the fatigue limit obtained by measuring two or more types of test pieces having different defect dimensions at the same stress ratio. It is not essential that is a smooth material.

この実施形態では、見掛けの真破断応力σを求めるために、平滑材を用いて応力比cで疲労試験をしたときの疲労限度(点P3)と、平滑材を用いて両振りで疲労試験をしたときの疲労限度(点P5)とを用いている。しかし、見掛けの真破断応力σを求めるためには、同一の欠陥寸法の試験片を2種以上の応力比で測定して得られた疲労限度を用いればよい。そのため、平滑材の試験片を用いることは必須ではない。また、疲労試験の一方が両振りであることも必須ではない。 In this embodiment, in order to obtain the apparent true breaking stress σ T , the fatigue limit (point P3) when a fatigue test is performed with a stress ratio c using a smoothing material, and the fatigue test with both swings using a smoothing material. The fatigue limit (point P5) when used is used. However, in order to obtain the apparent true rupture stress σ T , the fatigue limit obtained by measuring a test piece having the same defect size with two or more stress ratios may be used. Therefore, it is not essential to use a smooth specimen. Also, it is not essential that one side of the fatigue test is a double swing.

[第2の実施形態]
第2の実施形態では、2つの条件で疲労限度を測定する(図5を参照)。具体的には、第1の実施形態と同様に、平滑材及び欠陥寸法が√(area)の試験片を用いて応力比cで疲労試験を行い、それぞれの疲労限度を求める。一方、第2の実施形態では、見掛けの真破断応力σを求めるための疲労限度の測定は実施せず、見掛けの真破断応力σを式(5)によって求める。
[Second Embodiment]
In the second embodiment, the fatigue limit is measured under two conditions (see FIG. 5). Specifically, similarly to the first embodiment, a fatigue test is performed at a stress ratio c using a smoothing material and a test piece having a defect size of √ (area 1 ), and each fatigue limit is obtained. On the other hand, in the second embodiment, the measurement of the fatigue limit for determining the true fracture stress sigma T The apparent not performed, the true stress at break sigma T apparent obtained by equation (5).

本実施形態によっても、任意の欠陥寸法、平均応力、残留応力のときの疲労限度τ’W(R,√(area),σres)を予測することができる。 Also according to the present embodiment, the fatigue limit τ ′ W (R, √ (area), σres) at an arbitrary defect size, average stress, and residual stress can be predicted.

[第3の実施形態]
第3の実施形態では、1つの条件で疲労限度を測定する(図6を参照)。具体的には、欠陥寸法が√(area)の試験片を用いて応力比0.1で疲労試験を行って疲労限度を求める。第3の実施形態では、平滑材の試験の応力比0.1における疲労限度τW(R=0.1)を式(3)によって求め、この値と、測定した疲労限度とから潜在き裂長さ√(area)を求める。さらに、見掛けの真破断応力σを式(5)によって求める。
[Third Embodiment]
In the third embodiment, the fatigue limit is measured under one condition (see FIG. 6). Specifically, the fatigue limit is obtained by conducting a fatigue test at a stress ratio of 0.1 using a test piece having a defect size of √ (area 1 ). In the third embodiment, the fatigue limit τ W (R = 0.1) at a stress ratio of 0.1 in the test of the smooth material is obtained by the equation (3), and the latent crack length √ is obtained from this value and the measured fatigue limit. Find (area 0 ). Further, the apparent true breaking stress σ T is obtained by the equation (5).

本実施形態によっても、任意の欠陥寸法、平均応力、残留応力のときの疲労限度τ’W(R,√(area),σres)を予測することができる。 Also according to the present embodiment, the fatigue limit τ ′ W (R, √ (area), σres) at an arbitrary defect size, average stress, and residual stress can be predicted.

[疲労限度を予測するコンピュータプログラム]
本発明の一実施形態によるコンピュータプログラムは、上述した工程をコンピュータに実行させる。図7は、本実施形態によるコンピュータプログラムを実行するコンピュータの一例であるコンピュータ10の構成を示すブロック図である。コンピュータ10は、入力装置11、演算装置12、記憶装置13、及び出力装置14を備えている。コンピュータプログラムは、記憶装置13に格納されている。
[Computer program to predict fatigue limit]
A computer program according to an embodiment of the present invention causes a computer to execute the above-described steps. FIG. 7 is a block diagram illustrating a configuration of a computer 10 that is an example of a computer that executes the computer program according to the present embodiment. The computer 10 includes an input device 11, an arithmetic device 12, a storage device 13, and an output device 14. The computer program is stored in the storage device 13.

まず、入力装置11を介して、最大主応力面に投影した欠陥面積がareaである試験片の応力比cにおける疲労限度τ’W(R=c,√(area1))が、演算装置12に入力される。演算装置12は、この疲労限度τ’W(R=c,√(area1))、及び記憶装置13に格納されている式(1)に基づいて、測定対象材料の潜在き裂長さ√(area)を求める。求めた潜在き裂長さ√(area)は、記憶装置13に格納される。 First, through the input device 11, the fatigue limit defect area projected in the maximum principal stress surface in stress ratio c of the specimen is area 1 τ 'W (R = c, √ (area1)) is, the arithmetic unit 12 Is input. Based on the fatigue limit τ ′ W (R = c, √ (area1)) and the equation (1) stored in the storage device 13, the arithmetic unit 12 calculates the latent crack length √ (area) of the material to be measured. 0 ). The obtained latent crack length √ (area 0 ) is stored in the storage device 13.

潜在き裂長さ√(area)は、同一の欠陥寸法の試験片を2種以上の応力比で測定して得られた疲労限度を入力させて、この値に基づいて求めるようにしてもよい。潜在き裂長さ√(area)はあるいは、欠陥面積がareaである試験片の応力比cにおける疲労限度τ’W(R=c,√(area1))と、測定対象の材料の引張強さ又は硬さとを入力させて、これらの値と、記憶装置13に格納されている式(3)及び式(4)とに基づいて求めるようにしてもよい。 The latent crack length √ (area 0 ) may be obtained based on this value by inputting a fatigue limit obtained by measuring a test piece having the same defect size with two or more stress ratios. . The latent crack length √ (area 0 ) or the fatigue limit τ ′ W (R = c, √ ( area 1 )) at the stress ratio c of the specimen having a defect area of area 1 and the tensile strength of the material to be measured It is also possible to input the thickness or hardness and obtain these values based on these values and the equations (3) and (4) stored in the storage device 13.

次に、演算装置12が、見掛けの真破断応力σを求める。求めた見掛けの真破断応力σは、記憶装置13に格納される。 Next, the arithmetic unit 12 calculates an apparent true breaking stress σ T. The obtained apparent true rupture stress σ T is stored in the storage device 13.

見掛けの真破断応力σは、同一の欠陥寸法の試験片を2種以上の応力比で測定して得られた疲労限度を入力させて、この値に基づいて求めるようにしてもよい。見掛けの真破断応力σはあるいは、測定対象の材料の引張強さ又は硬さを入力させて、この値と、記憶装置13に格納されている式(5)及び式(4)に基づいて求めるようにしてもよい。 The apparent true breaking stress σ T may be obtained based on this value by inputting a fatigue limit obtained by measuring a test piece having the same defect size at two or more stress ratios. The apparent true rupture stress σ T is input based on the tensile strength or hardness of the material to be measured and this value and the equations (5) and (4) stored in the storage device 13. You may make it ask.

次に、入力装置11を介して、疲労限度を予測したい条件(応力比R、応力振幅τ、残留応力σres、欠陥寸法√(area))が演算装置12に入力される。演算装置12は、これらの値、並びに記憶装置13に格納されている潜在き裂長さ√(area)、見掛けの真破断応力σ、及び式(2)に基づいて、測定対象材料の疲労限度τ’W(R,√(area),σres)を求める。 Next, conditions (stress ratio R, stress amplitude τ a , residual stress σ res , defect size √ (area)) for which a fatigue limit is to be predicted are input to the arithmetic device 12 via the input device 11. Based on these values, the latent crack length √ (area 0 ), the apparent true fracture stress σ T , and the equation (2) stored in the storage device 13, the arithmetic unit 12 determines the fatigue of the measurement target material. The limit τ ′ W (R, √ (area), σres) is obtained.

演算装置12は、必要に応じて、求めた疲労限度τ’W(R,√(area),σres)を記憶装置13に格納したり、出力装置14に出力したりすることができる。 The computing device 12 can store the obtained fatigue limit τ ′ W (R, √ (area), σres) in the storage device 13 or output it to the output device 14 as necessary.

演算装置12は、さらに判定処理を実施してもよい。判定処理を実施する場合、τ/τ’W(R,√(area),σres)の値が1未満であれば破断しないと判定し、1以上であれば破断すると判定する。演算装置12は、必要に応じて、判定結果を記憶措置13に格納したり、出力装置14に出力したりすることができる。 The arithmetic device 12 may further perform a determination process. When the determination process is performed, if the value of τ a / τ ′ W (R, √ (area), σres) is less than 1, it is determined not to break, and if it is 1 or more, it is determined to break. The arithmetic unit 12 can store the determination result in the storage unit 13 or output it to the output unit 14 as necessary.

以下、実施例によって本発明をより具体的に説明する。本発明はこれらの実施例に限定されない。   Hereinafter, the present invention will be described more specifically with reference to examples. The present invention is not limited to these examples.

弁ばね用鋼SAE(Society of Automotive Engineers)9254にVを添加した化学組成を有するφ4mmの線材を準備した。この線材を熱処理して焼戻しマルテンサイト組織とし、表1に示す機械的特性を有する供試材を作製した。   A φ4 mm wire having a chemical composition in which V was added to valve spring steel SAE (Society of Automotive Engineers) 9254 was prepared. This wire was heat-treated to obtain a tempered martensite structure, and specimens having mechanical properties shown in Table 1 were produced.

Figure 2018185274
Figure 2018185274

この供試材から、図8及び図9に示す形状の試験片20を採取した。試験片20は、外径φ=3.5mm、長さL=60mm、評点部断面径φ1=2.3mm、評点部長さL1=10mmであった。評点部をダイヤモンドバフ#3000まで研磨後、ドリル加工で寸法の異なる微小穴をあけて、表2に示す寸法の人工欠陥21を形成した。   A test piece 20 having the shape shown in FIGS. 8 and 9 was collected from this test material. The test piece 20 had an outer diameter φ = 3.5 mm, a length L = 60 mm, a score portion cross-sectional diameter φ1 = 2.3 mm, and a score portion length L1 = 10 mm. After the graded part was polished to diamond buff # 3000, micro holes with different dimensions were drilled to form artificial defects 21 having the dimensions shown in Table 2.

Figure 2018185274
Figure 2018185274

試験片20を用いて、片振りのねじり疲労試験を行った。具体的には、試験片の一方の端部をトルクセルに固定し、他方の端部をモータに接続して、トルク制御で繰り返しねじり負荷を加えた。応力比R=0.1、入力波形は正弦波とし、周波数10〜20Hz、打ち切り繰り返し数は10回とした。評点部外面で発生する最大せん断応力振幅τa、及び破断繰り返し数Nで試験結果を整理し、疲労限度を求めた。 Using the test piece 20, a one-way torsional fatigue test was performed. Specifically, one end of the test piece was fixed to the torque cell, the other end was connected to the motor, and a torsional load was repeatedly applied by torque control. The stress ratio R = 0.1, the input waveform was a sine wave, the frequency was 10 to 20 Hz, and the number of repetitions was 10 7 times. The test results were arranged by the maximum shear stress amplitude τa generated on the outer surface of the score part and the number of repetitions N, and the fatigue limit was determined.

図10は、疲労試験によって得られたS−N線図である。人工欠陥の寸法が大きくなるにしたがって、疲労限度が低下する傾向がみられた。各試験片は人工欠陥を起点に破断し、最大主応力面である45°方向(図9のXI−XI線方向)にき裂進展していた。   FIG. 10 is an SN diagram obtained by the fatigue test. There was a tendency for the fatigue limit to decrease as the size of the artificial defect increased. Each test piece broke with an artificial defect as a starting point, and cracks propagated in the 45 ° direction (XI-XI line direction in FIG. 9), which is the maximum principal stress surface.

図11は、図9のXI−XI線に沿った断面図である。人工欠陥21の形状を半楕円形状に近似して、下記の式から最大主応力面に投影した人工欠陥21の面積areaを求めた。面積areaの平方根をとって各試験片の欠陥寸法√(area)とした。各試験片の欠陥寸法√(area)の値を前掲の表2に示す。
area=1/2・rdπ
11 is a cross-sectional view taken along line XI-XI in FIG. By approximating the shape of the artificial defect 21 to a semi-elliptical shape, the area area of the artificial defect 21 projected onto the maximum principal stress surface was obtained from the following equation. The square root of the area area was taken as the defect size √ (area) of each test piece. The value of defect size √ (area) of each test piece is shown in Table 2 above.
area = 1/2 · rdπ

平滑材の試験結果とφ150の試験結果とを式(1)に代入して、潜在き裂長さ√(area)を求めた。得られた潜在き裂長さ√(area)は151μmであった。 By substituting the test result of the smoothing material and the test result of φ150 into the equation (1), the latent crack length √ (area 0 ) was obtained. The obtained latent crack length √ (area 0 ) was 151 μm.

次に、平滑材を用いて両振り(R=−1)のねじり疲労試験を行い、疲労限度を求めた。平滑材のR=−1及びR=0.1の試験結果を、図12に示すように疲労限度線図上にプロットし、横軸との交点から見掛けの真破断応力σを求めた。得られた見掛けの真破断応力σは3774MPaであった。さらに、この交点と平滑材の試験結果とを結ぶことで、平滑材の疲労限度線図の傾きa(平滑材)とy軸切片b(平滑材)とを求めた。また、この交点とφ150の試験結果とを結ぶことで、φ150の疲労限度線図の傾きa(φ150)とy軸切片b(φ150)とを求めた。 Next, a torsional fatigue test with a swing (R = -1) was performed using a smooth material to determine the fatigue limit. The test results of R = −1 and R = 0.1 of the smooth material were plotted on the fatigue limit diagram as shown in FIG. 12, and the apparent true rupture stress σ T was determined from the intersection with the horizontal axis. The apparent true breaking stress σ T obtained was 3774 MPa. Furthermore, the inclination a (smooth material) and the y-axis intercept b (smooth material) of the fatigue limit diagram of the smooth material were obtained by connecting the intersection and the test result of the smooth material. Further, by connecting the intersection and the test result of φ150, the inclination a (φ150) and the y-axis intercept b (φ150) of the fatigue limit diagram of φ150 were obtained.

以上により、疲労限度の予測に必要なパラメータをすべて求めた。以下、式(2)を用いて各試験結果を予測できるかどうかを検証した。   As described above, all parameters necessary for predicting the fatigue limit were obtained. Hereinafter, it was verified whether each test result was predictable using Formula (2).

図13は、前述したφ30、φ45、φ80に対する疲労試験の結果(白抜きのマーク)と、式(2)によって予測される疲労限度(実線)とを示すグラフである。図13には、式(2)のパラメータの導出に用いた平滑材、φ150の試験結果(中実のマーク)も合わせて示している。なお、平滑材の欠陥寸法は0であるが、対数グラフに表示するため、便宜上10μmとしている。図13にはまた、従来技術の予測式(式(A))による疲労限度(破線)も合わせて示している。   FIG. 13 is a graph showing the fatigue test results (open marks) for φ30, φ45, and φ80 described above and the fatigue limit (solid line) predicted by Equation (2). FIG. 13 also shows the smoothing material used for deriving the parameters of the equation (2) and the test result (solid mark) of φ150. The defect size of the smoothing material is 0, but is 10 μm for convenience in order to display it on a logarithmic graph. FIG. 13 also shows the fatigue limit (broken line) based on the prediction formula (formula (A)) of the prior art.

図13から、従来技術の予測式は、実際の疲労限度よりも大きく安全側に疲労限度を予測していることがわかる。これに対し、本発明によれば、高精度に疲労限度を予測することができる。   From FIG. 13, it can be seen that the prediction formula of the prior art predicts a fatigue limit on the safe side that is larger than the actual fatigue limit. On the other hand, according to the present invention, the fatigue limit can be predicted with high accuracy.

続いて、ドリル加工により人工欠陥を形成した後、ショット加工で表面に約850MPaの圧縮残留応力を付与した試験片を作製した。さらに、放電加工によって人工欠陥を形成した試験片を作製した。この試験片は、放電加工時の加熱・冷却によって表面に約560MPaの引張残留応力が付与されているものと推測した。これらの試験片を用いて、上記と同じ条件でねじり疲労試験を行って疲労限度を求めた。   Subsequently, after forming an artificial defect by drilling, a test piece in which a compressive residual stress of about 850 MPa was applied to the surface by shot processing was produced. Furthermore, the test piece which formed the artificial defect by electric discharge machining was produced. This test piece was presumed that a tensile residual stress of about 560 MPa was applied to the surface by heating and cooling during electric discharge machining. Using these test pieces, the torsional fatigue test was performed under the same conditions as described above to determine the fatigue limit.

図14は、これらの疲労試験の結果と、式(2)によって予測される疲労限度とを示すグラフである。図14において、マークは疲労限度の実測値であり、実線、破線、及び鎖線は式(2)にそれぞれσres=0、σres=−850、σres=560を代入した値である。 FIG. 14 is a graph showing the results of these fatigue tests and the fatigue limit predicted by equation (2). In FIG. 14, the mark is an actual measurement value of the fatigue limit, and the solid line, the broken line, and the chain line are values obtained by substituting σ res = 0, σ res = −850, and σ res = 560, respectively, into Equation (2).

図14に示すように、本発明の予測式は、実測値をよく再現していた。   As shown in FIG. 14, the prediction formula of the present invention reproduced the measured values well.

以上の結果から、本発明によって任意の欠陥寸法、平均応力、残留応力のときの疲労限度を予測できることが確認された。   From the above results, it was confirmed that the fatigue limit at the time of arbitrary defect size, average stress, and residual stress can be predicted by the present invention.

以上、本発明の実施の形態を説明した。上述した実施の形態は本発明を実施するための例示に過ぎない。よって、本発明は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変形して実施することが可能である。   The embodiment of the present invention has been described above. The above-described embodiments are merely examples for carrying out the present invention. Therefore, the present invention is not limited to the above-described embodiment, and can be implemented by appropriately modifying the above-described embodiment without departing from the spirit thereof.

10 コンピュータ
11 入力装置
12 演算装置
13 記憶装置
14 出力装置
20 試験片
21 人工欠陥
10 Computer 11 Input Device 12 Arithmetic Device 13 Storage Device 14 Output Device 20 Specimen 21 Artificial Defect

Claims (6)

金属材料の疲労限度を予測する方法であって、
最大主応力面に投影した欠陥面積がareaである試験片の応力比cにおける疲労限度τ’W(R=c,√(area1))、及び下記の式(1)に基づいて、前記金属材料の潜在き裂長さ√(area)を求める工程と、
前記金属材料の見掛けの真破断応力σを求める工程と、
下記の式(2)に基づいて、応力比がR、応力振幅がτ、最大主応力面に投影した欠陥面積がarea、残留応力がσresのときの前記金属材料の疲労限度τ’W(R,√(area),σres)を求める工程とを備える、方法。
Figure 2018185274
ここで、τW(R=C)は、応力比cにおける平滑材の疲労限度である。
A method for predicting the fatigue limit of a metallic material,
Based on the fatigue limit τ ′ W (R = c, √ (area1)) at the stress ratio c of the test piece whose area of defect projected onto the maximum principal stress surface is area 1 and the following equation (1): Obtaining a latent crack length √ (area 0 ) of the material;
Obtaining an apparent true breaking stress σ T of the metal material;
Based on the following equation (2), the fatigue limit τ ′ W of the metal material when the stress ratio is R, the stress amplitude is τ a , the defect area projected onto the maximum principal stress surface is area, and the residual stress is σ res. Determining (R, √ (area), σres) .
Figure 2018185274
Here, τ W (R = C) is the fatigue limit of the smooth material at the stress ratio c.
請求項1に記載の方法であって、
前記潜在き裂長さ√(area)を求める工程は、欠陥寸法が異なる2種以上の試験片を同一の応力比で測定して得られた疲労限度に基づいて、前記潜在き裂長さ√(area)を求める、方法。
The method of claim 1, comprising:
The step of obtaining the latent crack length √ (area 0 ) is based on a fatigue limit obtained by measuring two or more types of test pieces having different defect dimensions at the same stress ratio, and the latent crack length √ ( area 0 ).
請求項1又は2に記載の方法であって、
前記真破断応力σを求める工程は、同一の欠陥寸法の試験片を2種以上の応力比で測定して得られた疲労限度に基づいて、前記見掛けの真破断応力σを求める、方法。
The method according to claim 1 or 2, wherein
Step of determining the true fracture stress sigma T are based on specimens of the same defect size in fatigue limit obtained by measuring at two or more stress ratio, determine the true fracture stress sigma T of the apparent method .
金属材料の疲労限度を予測するコンピュータプログラムであって、
最大主応力面に投影した欠陥面積がareaである試験片の応力比cにおける疲労限度τ’W(R=c,√(area1))、及び下記の式(1)に基づいて、前記金属材料の潜在き裂長さ√(area)を求める工程と、
前記金属材料の見掛けの真破断応力σを求める工程と、
下記の式(2)に基づいて、応力比がR、応力振幅がτ、最大主応力面に投影した欠陥面積がarea、残留応力がσresのときの前記金属材料の疲労限度τ’W(R,√(area),σres)を求める工程とをコンピュータに実行させる、コンピュータプログラム。
Figure 2018185274
ここで、τW(R=C)は、応力比cにおける平滑材の疲労限度である。
A computer program for predicting the fatigue limit of a metal material,
Based on the fatigue limit τ ′ W (R = c, √ (area1)) at the stress ratio c of the test piece whose area of defect projected onto the maximum principal stress surface is area 1 and the following equation (1): Obtaining a latent crack length √ (area 0 ) of the material;
Obtaining an apparent true breaking stress σ T of the metal material;
Based on the following equation (2), the fatigue limit τ ′ W of the metal material when the stress ratio is R, the stress amplitude is τ a , the defect area projected onto the maximum principal stress surface is area, and the residual stress is σ res. The computer program which makes a computer perform the process of calculating | requiring (R, (root), (sigma) res) .
Figure 2018185274
Here, τ W (R = C) is the fatigue limit of the smooth material at the stress ratio c.
請求項4に記載のコンピュータプログラムであって、
前記潜在き裂長さ√(area)を求める工程は、欠陥寸法が異なる2種以上の試験片を同一の応力比で測定して得られた疲労限度に基づいて、前記潜在き裂長さ√(area)を求める、コンピュータプログラム。
A computer program according to claim 4,
The step of obtaining the latent crack length √ (area 0 ) is based on a fatigue limit obtained by measuring two or more types of test pieces having different defect dimensions at the same stress ratio, and the latent crack length √ ( area 0 ).
請求項4又は5に記載のコンピュータプログラムであって、
前記真破断応力σを求める工程は、同一の欠陥寸法の試験片を2種以上の応力比で測定して得られた疲労限度に基づいて、前記見掛けの真破断応力σを求める、コンピュータプログラム。
A computer program according to claim 4 or 5,
Step of determining the true fracture stress sigma T are based on specimens of the same defect size in fatigue limit obtained by measuring at two or more stress ratio, determine the true fracture stress sigma T of the apparent, computer program.
JP2017088509A 2017-04-27 2017-04-27 Fatigue limit prediction methods and computer programs Active JP6780575B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017088509A JP6780575B2 (en) 2017-04-27 2017-04-27 Fatigue limit prediction methods and computer programs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017088509A JP6780575B2 (en) 2017-04-27 2017-04-27 Fatigue limit prediction methods and computer programs

Publications (2)

Publication Number Publication Date
JP2018185274A true JP2018185274A (en) 2018-11-22
JP6780575B2 JP6780575B2 (en) 2020-11-04

Family

ID=64357231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017088509A Active JP6780575B2 (en) 2017-04-27 2017-04-27 Fatigue limit prediction methods and computer programs

Country Status (1)

Country Link
JP (1) JP6780575B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110849753A (en) * 2019-12-09 2020-02-28 大连理工大学 Metal material fatigue strength prediction method based on micro scratches
JP6944736B1 (en) * 2021-01-08 2021-10-06 株式会社寿ホールディングス Fatigue life prediction method, fatigue life prediction device, fatigue life prediction program and storage medium

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002131190A (en) * 2000-10-24 2002-05-09 Chuo Motor Wheel Co Ltd Method for analyzing life of disk wheel for vehicle
JP2007102589A (en) * 2005-10-05 2007-04-19 Denso Corp Design method for screw fastening element
JP2008128863A (en) * 2006-11-22 2008-06-05 Sanyo Special Steel Co Ltd Method for estimating diameter of inclusion in steel
US20080262754A1 (en) * 2006-11-20 2008-10-23 Alexandre Oudovikine System and method for fatigue forecasting and strain measurement using Integral Strain Gauge (ISG)
JP2009265028A (en) * 2008-04-28 2009-11-12 Nippon Steel Corp Method and device for predicting breaking, and program and recording medium therefor
JP2010216983A (en) * 2009-03-17 2010-09-30 Toshiba Corp System and method for evaluating equipment life
JP2012215397A (en) * 2011-03-31 2012-11-08 Ihi Corp Method and device for estimating fatigue characteristics based on finish
JP5445727B1 (en) * 2012-05-29 2014-03-19 新日鐵住金株式会社 Component destruction evaluation apparatus, component destruction evaluation method, and computer program
JP2015001409A (en) * 2013-06-13 2015-01-05 株式会社Ihi Fatigue life evaluation method of structure
JP2016197080A (en) * 2015-04-06 2016-11-24 三菱重工業株式会社 Notch factor estimation method, notch factor estimation system and notch factor estimation device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002131190A (en) * 2000-10-24 2002-05-09 Chuo Motor Wheel Co Ltd Method for analyzing life of disk wheel for vehicle
JP2007102589A (en) * 2005-10-05 2007-04-19 Denso Corp Design method for screw fastening element
US20080262754A1 (en) * 2006-11-20 2008-10-23 Alexandre Oudovikine System and method for fatigue forecasting and strain measurement using Integral Strain Gauge (ISG)
JP2008128863A (en) * 2006-11-22 2008-06-05 Sanyo Special Steel Co Ltd Method for estimating diameter of inclusion in steel
JP2009265028A (en) * 2008-04-28 2009-11-12 Nippon Steel Corp Method and device for predicting breaking, and program and recording medium therefor
JP2010216983A (en) * 2009-03-17 2010-09-30 Toshiba Corp System and method for evaluating equipment life
JP2012215397A (en) * 2011-03-31 2012-11-08 Ihi Corp Method and device for estimating fatigue characteristics based on finish
JP5445727B1 (en) * 2012-05-29 2014-03-19 新日鐵住金株式会社 Component destruction evaluation apparatus, component destruction evaluation method, and computer program
JP2015001409A (en) * 2013-06-13 2015-01-05 株式会社Ihi Fatigue life evaluation method of structure
JP2016197080A (en) * 2015-04-06 2016-11-24 三菱重工業株式会社 Notch factor estimation method, notch factor estimation system and notch factor estimation device

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
M. CIAVARELLA, F. MONNO: "On the possible generalizations of the Kitagawa-Takahashi diagram and of the El Haddad equation to f", INTERNATIONAL JOURNAL OF FATIGUE, vol. 28, no. 12, JPN6020035014, 2 November 2006 (2006-11-02), GB, pages 1826 - 1837, XP025096551, ISSN: 0004345986, DOI: 10.1016/j.ijfatigue.2005.12.001 *
S. GOTZ, K.-G. EULITZ: "Concepts to estimate the endurance limit of notched parts - A statistical evaluation using a broad d", INTERNATIONAL JOURNAL OF FATIGUE, vol. 52, JPN6020035016, 20 June 2013 (2013-06-20), GB, pages 1 - 10, ISSN: 0004345987 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110849753A (en) * 2019-12-09 2020-02-28 大连理工大学 Metal material fatigue strength prediction method based on micro scratches
CN110849753B (en) * 2019-12-09 2020-09-29 大连理工大学 Metal material fatigue strength prediction method based on micro scratches
JP6944736B1 (en) * 2021-01-08 2021-10-06 株式会社寿ホールディングス Fatigue life prediction method, fatigue life prediction device, fatigue life prediction program and storage medium
WO2022149297A1 (en) * 2021-01-08 2022-07-14 株式会社寿ホールディングス Fatigue life prediction method, fatigue life prediction device, fatigue life prediction program, and recording medium

Also Published As

Publication number Publication date
JP6780575B2 (en) 2020-11-04

Similar Documents

Publication Publication Date Title
Yekta et al. Effect of quality control parameter variations on the fatigue performance of ultrasonic impact treated welds
Apetre et al. Probabilistic model of mean stress effects in strain-life fatigue
Topper et al. Effects of mean stress and prestrain on fatigue damage summation
CN109255202A (en) A kind of predictor method for mechanical component fatigue crack initiation life
RU2539095C1 (en) Non-destructive testing of flexible composite items
Ghahremani et al. High cycle fatigue behaviour of impact treated welds under variable amplitude loading conditions
Simunek et al. Fatigue crack growth under constant and variable amplitude loading at semi-elliptical and V-notched steel specimens
YuanZhou et al. Local stress variation in welded joints by ICR treatment
JP6780575B2 (en) Fatigue limit prediction methods and computer programs
Javaheri et al. Fatigue assessment of the welded joints containing process relevant imperfections
Milošević et al. Influence of size effect and stress gradient on the high-cycle fatigue strength of a 1.4542 steel
Li et al. Fatigue properties and cracking mechanisms of a 7075 aluminum alloy under axial and torsional loadings
Margetin et al. Multiaxial fatigue criterion based on parameters from torsion and axial SN curve
Jimenez et al. Estimated SN curve for nodular cast iron: A steering knuckle case study
RU2748457C1 (en) Method for determining endurance limit of sheet material
Saggar et al. Fatigue life prediction under variable loading based on a new damage model devoted for defective material
Gandiolle et al. Experimental analysis and modeling of the crack arrest condition under severe plastic fretting fatigue conditions
Bader et al. Effect of stress ratio and v notch shape on fatigue life in steel beam
Auclair et al. Appropriate Techniques for Internal Cleanliness Assessment Reference: Auclair, G., and Daguier, P.," Appropriate Techniques for Internal Cleanliness Assessment," Bearing Steel Technology, ASTM STP 1419, JM Beswick, Eds., American Society for Testing Materials International, West Conshohocken, PA
RU2298164C2 (en) Method of determining durability of sheet material
RU2554306C2 (en) Method of assessment of micromechanical characteristics of local areas of metals
RU2700328C2 (en) Method for determining the limit of endurance of material in bending
Urbaha et al. Experimental evaluation of static and fatigue strength of aluminium-based structural metallic alloys
RU2792195C1 (en) Method for determining the effect of preliminary plastic deformation on the fatigue resistance of the material
Rutecka et al. Fatigue damage of Al/SiC composites-macroscopic and microscopic analysis

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20170517

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200928

R151 Written notification of patent or utility model registration

Ref document number: 6780575

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151